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1 Introduction

In 1963, Dirac discovered two “remarkable representations” [1] of the isometry group of

the four-dimensional anti de Sitter spacetime AdS4, which are the ultrashort modules

of SO(2, 3) nowadays known as the (Dirac) “singletons”. Fifteen years later, Flato and

Fronsdal showed that “one massless particle equals two Dirac singletons” [2], i.e. the ten-

sor product of two singletons gives an infinite (direct) sum of massless particles of all

integer spins. This result, often referred to as Flato-Fronsdal theorem, together with its

generalizations (to supersymmetric and some higher-dimensional cases [3–6], to arbitrary

dimensions [7, 8], to multilinetons [9, 10] as well as to arbitrary spin singletons [11]) has

provided an important guiding principle for higher-spin gravity as it dictates consistent

field contents of the theory prior to the actual construction of its dynamical equations.

Another cornerstone for higher-spin gravity theories is the higher-spin algebra playing

the role of the global symmetry algebra associated to the gauge symmetry underlying the
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theory. Fradkin and Vasiliev first constructed a consistent higher-spin algebra [12], upon

which the latter author obtained a set of nonlinear field equations describing interacting

massless higher-spin fields propagating around AdS4 [13] (see e.g. [14, 15] for reviews of

these equations and their higher-dimensional generalizations). Later on, it was realized

that the higher-spin algebra can be viewed as the algebra of symmetries, namely the endo-

morphisms, of singletons [16]. This point of view allowed a wide range of generalizations,

notably to dynamical equations for completely symmetric tensor gauge fields in higher

dimensions [17].

To recapitulate, there are three key modules of the higher-spin algebra: the singleton

(which plays a role analogous to the fundamental representation), the Hilbert space of

the theory (the so-called “twisted-adjoint module”) and finally the vector space of the

higher-spin algebra itself (the “adjoint module”). The second module is the tensor product

of the first one with itself, whereas the last module corresponds to the endomorphisms

of the first one. In this sense, the adjoint module was identified in [18] with the tensor

product of the singleton (denoted by Sng) with its dual (denoted by Sng). In [18], this

naive relation between the tensor product module Sng⊗Sng and the infinite sum of finite-

dimensional modules spanning the adjoint module was referred to as the “twisted Flato-

Fronsdal theorem”. We will use here the same terminology for the refined relation that we

will propose below.

A very convenient tool to handle various modules and their operations is the Lie algebra

character. This mathematical object is closely related to the (one loop) partition function

in physics (see e.g. [19–27] in the context of higher-spin holography) in the presence of

chemical potentials for angular momenta. As partition functions contain most of physical

information about the system under consideration, one can expect to be able to use charac-

ters in many mathematical analyses about the system. Indeed, the Flato-Fronsdal theorem

was derived originally in a handy way using the so(2, 3) character of Dirac singletons and

those of massless spin-s representations.

In this note, we reconsider the twisted Flato-Fronsdal theorem, that is, the relation

between the adjoint module and the tensor product module Sng⊗Sng. Since Sng and Sng

are respectively a lowest and a highest weight module of infinite dimension, the decompo-

sition of their tensor product is subtle and requires a more careful treatment. In order to

study this issue more concretely, we use the characters of the relevant modules and work

with a prescription in which the characters can be manipulated in the usual manners. In

this way, we find that the character of the tensor product module Sng ⊗ Sng does not co-

incide with the character of the adjoint module. Analyzing in detail the four-dimensional

massless higher-spin algebra, we find that the adjoint module differs from Sng ⊗ Sng and

obtain the precise relation between them by observing that the adjoint module character

coincides in fact with the symmetrization of the Sng ⊗ Sng character over the variables of

the character. We examine this heuristic formula over other higher-spin algebras confirm-

ing its validity in the type-A` and type-B theories in any dimensions, but mismatches by a

few finite-dimensional modules in the type-B`>2 and type-J cases. This confirms that the

adjoint module is not given by the simple tensor product Sng ⊗ Sng, but requires proper

amendments, about which we shall discuss throughout the paper.

– 2 –
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The organization of the paper is as follows. In the next section (section 2), we sketch

the issue with the classical four-dimensional example. Then, we move to general dimensions

in section 3. The cases of lower dimensions (two and three dimensions) are presented as

useful toy models in section 4. We extend our consideration to higher-order and higher-

spin singletons and find some exceptions to our conjecture in section 5. The last section

contains a brief summary and discussion of our results. In appendix A, we collect some

technical details on (generalized) Verma modules, while their Lie algebra characters (see

e.g. [28–30] for the character formulae of all irreps of the conformal algebra) are discussed

in appendix B.

2 Four dimensions

Let us first consider four-dimensional higher-spin gravity whose equations were initially

constructed by Vasiliev in [13], and whose spectrum is concerned by Flato and Fronsdal’s

original result [2]. The four-dimensional Vasiliev equations contain an “interaction am-

biguity” (first exhibited in [31] and further studied in e.g. [32–35]), given by a series of

parameters. If the theory is required to have a definite parity, there remain only two al-

lowed values for those parameters. These two choices are referred to as type A and type B,

respectively. By now, it is understood that the type-A theory with the Neumann boundary

condition1 for the bulk scalar corresponds to the free scalar CFT3 [36], whereas the type-B

theory with the Dirichlet condition corresponds to the free spinor CFT3 [37].

In the following, we shall review some details of the three modules of the higher-spin

algebra — singleton, twisted-adjoint and adjoint modules. As they are also modules of

the isometry subalgebra so(2, 3), it will be useful to treat them using so(2, 3) irreducible

representations (irreps). For that, the basic object to consider is the lowest-weight module

V(∆, s) , whose character is given by

χ
so(2,3)
V(∆,s)(q, x) = TrV(∆,s)

(
qE xJ3

)
=

q∆

(1− q)(1− q x)(1− q x−1)
χso(3)
s (x) , (2.1)

where the spin-s character of so(3) is

χso(3)
s (x) :=

xs+
1
2 − x−s−

1
2

x
1
2 − x−

1
2

. (2.2)

Here E and J3 are the Cartan generators of so(2, 3) (see appendix A where our conventions

are summarized). For the purpose of the current section, it is sufficient to take the above

formula for granted. Details about the derivation in any dimension will be provided in

section 3. In terms of the variables q = e−β and x = ei α, this so(2, 3) character reads

χ
so(2,3)
V(∆,s)(β, α) =

e−(∆− 3
2

)β

4 sinh β
2 (coshβ − cosα)

χso(3)
s (α) , with χso(3)

s (α) =
sin(s+ 1

2)α

sin α
2

,

(2.3)

and, the spin-s so(3) character coincides with the Dirichlet kernel.

1In the Poincaré patch of AdS4, the bulk scalar with Dirichlet condition approaches the boundary as

φ(z, ~x) ∼
z→0

z ϕ(~x) whereas the one with Neumann condition does as φ(z, ~x) ∼
z→0

z2 ϕ(~x) .
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Singleton module. The free massless scalar and spinor fields in three dimensions are

nothing but the singleton representations that Dirac had found in [1]. Flato and Fronsdal

named the latter and former as “Di” and “Rac”, respectively. In terms of the lowest-weight

module V(∆, s), the singletons Rac and Di correspond to the quotients,

Rac :=D
(

1

2
,0

)
=V

(
1

2
,0

)
/V
(

5

2
,0

)
, Di :=D

(
1,

1

2

)
=V

(
1,

1

2

)
/V
(

2,
1

2

)
. (2.4)

These representations are “ultrashort”, even “minimal” in the sense (which can be made

mathematically precise [38–40]) that they can be described as three-dimensional on-shell

fields. Using the character (2.3) of V(∆, s), it is simple to derive the characters of the

singletons. They are

χ
so(2,3)
Rac (β, α) =

cosh β
2

coshβ − cosα
, χ

so(2,3)
Di (β, α) =

cos α2
coshβ − cosα

. (2.5)

It is also instructive to study the oscillator realization of the singletons. Using two sets of

oscillators (a, a†) and (b, b†) with canonical commutation relations [a, a†] = 1 = [b, b†] , the

generators of so(2, 3) can be realized as [41–43]

E =
1

2

(
a† a+ b† b+ 1

)
, J3 =

1

2

(
a† a− b† b

)
,

J+ = a† b , L−1 =
1

2

(
a2 + b2

)
, L−2 = − i

2

(
a2 − b2

)
, L−3 = a b , (2.6)

with so(3) = span{J+, J−, J3} and where L−a (a = 1, 2, 3) are the lowering operators with

respect to E. The remaining generators are the Hermitian conjugates of the above (see

appendix A for conventions). The Fock states,

|m,n〉 =
(a†)m (b†)n√

m!n!
|0, 0〉 , (2.7)

are eigenvectors of the Cartan subalgebra generators E and J3:

E |m,n 〉 =
1

2
(m+ n+ 1) |m,n 〉 , J3 |m,n 〉 =

1

2
(m− n) |m,n 〉 . (2.8)

The vacuum state |0, 0〉 is the lowest-energy state of the Rac module, whereas the Di

module has lowest-energy module spanned by the doublet {|1, 0〉, |0, 1〉}. Indeed, we have

Di = D(1, 1
2), i.e. the vacuum carries a spin- 1

2 representation of so(3) and its energy is

one. The lowest-energy states of Rac and Di are annihilated by the lowering operators L−a .

The full Rac and Di modules are then freely generated by applying the raising operators

L+
a . As a consequence Rac and Di are spanned by states |m,n〉 with even and odd m+ n,

respectively. Using these results, we can calculate the characters of the singletons as

χ
so(2,3)
Rac/Di(β, α) = TrRac/Di

(
e−β E+i α J3

)
=

∑
even/odd m+n

e−β
m+n+1

2
+i α m−n

2 . (2.9)

To perform the sum, we can make the change of variables,

m+ n = 2s , m− n = 2(s− k) , (2.10)

– 4 –
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where k = 0, 1, . . . , 2s and s ∈ N for Rac and s ∈ N + 1
2 for Di. Then, we get

χ
so(2,3)
Rac/Di(β, α) =

∑
s∈N+0/ 1

2

e−β (s+ 1
2

)
2 s∑
k=0

ei α (s−k) =
∑

s∈N+0/ 1
2

e−β (s+ 1
2

) χso(3)
s (α) . (2.11)

The infinite sum in (2.11) leads to geometric series and one finally recovers the

characters (2.5).

Twisted-adjoint module. All the other irreps D(∆, s) of so(2, 3) in the unitary region

∆ > s + 1 are much “longer” and they can be viewed as the Hilbert space of a four-

dimensional on-shell field. In particular, the representations describing massless spin-s

particles on AdS4 lie at the unitary bound, and correspond to the quotients,

D(s+ 1, s) = V(s+ 1, s)/V(s+ 2, s− 1) , (2.12)

with the characters,

χ
so(2,3)
D(s+1,s)(β, α) =

e−(s− 1
2

)β sin(s+ 1
2)α− e−(s+ 1

2
)β sin(s− 1

2)α

4 sinh β
2 sin α

2 (coshβ − cosα)
. (2.13)

Flato and Fronsdal have shown in [2] the following rule for the decomposition in irreducible

so(2, 3)-modules of the tensor product of two Rac or Di:

Rac⊗ Rac =

∞⊕
s=0

D(s+ 1, s) , Di⊗Di = D(2, 0)⊕
∞⊕
s=1

D(s+ 1, s) . (2.14)

The right-hand-side of the above equations is nothing but the field content — namely,

the twisted-adjoint module — of the type-A and type-B higher-spin gravity theories, re-

spectively. This suggests that the CFT3 operators bilinear in the free massless scalar

(Rac) or spinor (Di) fields — hence fall in the tensor product of two singletons represen-

tations — corresponds to the AdS4 massless gauge fields of higher-spin gravity together

with one bulk scalar field (with “Neumann” or “Dirichlet” boundary conditions, respec-

tively) [36, 37, 44, 45]. This tensor product decomposition has been proven with the help

of the so(2, 3) characters by checking the following algebraic identities,(
χ
so(2,3)
Rac

)2
=

∞∑
s=0

χ
so(2,3)
D(s+1,s) ,

(
χ
so(2,3)
Di

)2
= χD(2,0) +

∞∑
s=1

χ
so(2,3)
D(s+1,s) . (2.15)

In terms of oscillators, the tensor product of two singletons is realized by doubling the

oscillators: (ai, a
†
i ) and (bi, b

†
i ) with i = 1, 2 . Hence, the twisted-adjoint module is spanned

by the states of the type,

|m,n; p, q〉 =
(a†1)m (b†1)n (a†2)p (b†2)q√

m!n! p! q!
|0, 0; 0, 0〉 . (2.16)

Defining the action of an so(2, 3) element X on the singleton Fock state |m,n〉 as

X |m,n〉 =
∑
p,q

Rm,np,q(X) |p, q〉 , (2.17)

– 5 –
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the action of X on |m,n; p, q〉 gives

X |m,n; p, q〉 =
∑
s,t

(
Rm,ns,t(X) |s, t; p, q〉+Rp,qs,t(X) |m,n; s, t〉

)
. (2.18)

For the decomposition of the twisted-adjoint module into so(2, 3)-irreducible ones, one

can examine the lowest-weight states — that are annihilated by L−1 + i L−2 and J+ (then,

consequently all L−a with a = 1, 2, 3 annihilate the state) — in this doubled singleton Fock

space (aka “doubleton”),

(a2
1 + a2

2) |Ψ〉 = 0 = (a†1 b1 + a†2 b2) |Ψ〉 , |Ψ〉 =
∑

m,n,p,q

cm,n,p,q |m,n; p, q〉 . (2.19)

It is simple (see e.g. [25, 46, 47]) to show that any such a state |Ψ〉 is a linear combination

of the lowest-weight states of D(s+ 1, s) (and D(2, 0) for the case of Di) hence confirming

the rule (2.14).

Adjoint module. The adjoint module, namely the higher-spin algebra, is spanned by

the higher-spin Killing tensors. For a given spin s, the Killing tensor is a finite-dimensional

module of so(2, 3) . In terms of Young diagram, it corresponds to the rectangle made of

two rows of length s− 1,

s− 1
s− 1

, (2.20)

whereas in terms of the lowest-weight module it corresponds to the non-unitary module

D(1− s, s− 1) defined by the following sequence of quotients,

D(1− s, s− 1) = V(1− s, s− 1)/D(2− s, s) ,
D(2− s, s) = V(2− s, s)/D(s+ 1, s) , (2.21)

where D(s + 1, s) is defined in (2.12). Here we used the Bernstein-Gel’fand-Gel’fand res-

olution detailed in [48]. Another point of view on this module makes use of the fact that

it is finite-dimensional. The two real Lie algebras so(2, 3) and so(5) are two distinct real

forms of the same complex Lie algebra soC(5). The character of the finite-dimensional

so(5)-module labeled by the dominant integral weight (s− 1, s− 1) reads

χ
so(5)
(s−1,s−1)(α1, α2) =

sin[(s− 1
2)α1] sin[(s+ 1

2)α2]− sin[(s− 1
2)α2] sin[(s+ 1

2)α1]

2 sin α1
2 sin α2

2 (cosα1 − cosα2)
. (2.22)

Using the above information, we can obtain the corresponding so(2, 3) character, which is

in fact simply related to the so(5) character (2.22) as

χ
so(2,3)
D(1−s,s−1)(β, α) = χ

so(5)
(s−1,s−1)(i β, α) . (2.23)

Collecting all these results, we can calculate the so(2, 3) character of the adjoint module

of the higher-spin algebra as

χ
so(2,3)
Adj (β, α) =

∞∑
s=1

χ
so(2,3)
D(1−s,s−1)(β, α) . (2.24)

– 6 –
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This infinite sum of characters involves a trigonometric series which is not convergent in the

classical sense, but which is convergent in the sense of distribution theory.2 Accordingly,

it can be evaluated using resummation techniques,3

∞∑
n=1

sin(nx) =
1

2
cot(x/2) . (2.25)

Using this formula, we obtain the character of the adjoint module as

χ
so(2,3)
Adj (β, α) =

cosh2 β
2 + cos2 α

2

(coshβ − cosα)2
. (2.26)

Now the question is whether we can obtain the above character from the characters of the

singletons (2.5). If this was possible in general, for an unknown higher-spin theory dual to

a certain CFT with given spectrum, then we would be able to systematically identify the

corresponding higher-spin algebra.

One of the simplest descriptions of the higher-spin algebra is viewing it as the algebra

of endomorphisms of the singleton module,

Adj = End(Sng) , (2.27)

where “Sng” stands for either the Di or Rac module. We already know that the higher-spin

algebra is identical both in type-A and type-B theories. Let us explore this point in the

oscillator realization. Since the singleton module is the Fock space spanned by |m,n〉 (2.7),

its endomorphism algebra can be generated by the operators,

Xm,n;p,q =
(a†)m (b†)n ap bq√

m!n! p! q!
, (2.28)

with even m + n + p + q . The above presentation of the higher-spin algebra is simply

related to the more typical realization in terms of the oscillators yα and ȳα̇,4 by

y1 = a+ b† , y2 = i (a† − b) , ȳα̇ = (yα)† . (2.29)

The action of an so(2, 3) element X on this state is, by definition of the adjoint

representation,

X BXm,n;p,q = [X ,Xm,n;p,q] . (2.30)

However, this cannot be written easily in terms of the singleton representation Rp,qm,n(X) .

What is more naturally connected to the singleton representation is the basis,

Tm,n;p,q = |m,n〉〈p, q| = (a†)m (b†)n√
m!n!

|0, 0〉〈0, 0| a
p bq√
p! q!

, (2.31)

2See e.g. the section 6.13 of the book [49], devoted to the summability of Fourier series of periodic

distributions.
3More precisely, this trigonometric series is Cesaro (thus Abel) resummable. For a proof of (2.25), see

e.g. [50] (chapter XIII, section 60, Ex. 5).
4The higher-spin algebra is the algebra of even functions of yα and ȳα̇ endowed with the Moyal star

product.

– 7 –
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on which an so(2, 3) element X acts as

X B Tm,n;p,q =
∑
s,t

Rm,ns,t(X)T s,t;p,q −Rp,qs,t(X†)Tm,n;s,t . (2.32)

Hence, in this basis, it becomes clear that the adjoint module is the tensor product of the

singleton module — represented by Rm,ns,t (X) — and its dual module — represented by

−Rp,qs,t (X†). In order to relate Tm,n;p,q to the more standard basis Xm,n;p,q, we need to

realize the vacuum projector |0, 0〉〈0, 0| as a function of oscillators,

|0, 0〉〈0, 0| = Πvac(a, a
†) Πvac(b, b

†) . (2.33)

By imposing the conditions,

Π†vac = Πvac , Πvac a
† = 0 , Π2

vac = Πvac , (2.34)

one can determine it as

Πvac(a, a
†) =

∞∑
n=0

(−1)n

n!
(a†)n an . (2.35)

Therefore, the Tm,n;p,q basis is related to the Xm,n;p,q basis as an infinite linear combination,

Tm,n;p,q =
∞∑

s,t=0

(−1)s+t√
Cm+s
s Cp+ss Cn+t

t Cq+tt

Xm+s,n+t;p+s,q+t , (2.36)

where Cmn is the binomial coefficient. If we restrict the higher-spin algebra to all finite linear

combinations of Xm,n;p,q — hence polynomials in the oscillators — then the basis Tm,n;p,q

does not belong to the higher-spin algebra. In other words, the finite linear combinations

of Xm,n;p,q and Tm,n;p,q give two distinct endomorphism algebras. This subtlety arises due

to the fact that we are dealing with infinite-dimensional spaces.

Having this subtlety in mind, let us proceed further. From the viewpoint of the en-

domorphisms in the Tm,n;p,q basis, one would expect the adjoint module to be the tensor

product of a singleton and its anti-singleton (as first pointed out in [18]):

Adj
?
= Sng ⊗ Sng , (2.37)

where we put the question mark at the equality because of an inconsistency we shall

face soon below. The anti-singleton, denoted by “Sng”, is a highest-weight module with

maximal energy −E0, whereas the singleton “Sng” is a lowest-weight module with minimal

energy E0 (see the section 3 for additional comments on the definition of anti-singletons).

From the clear relation between Sng and Sng , we can relate the character of the anti-

singletons to that of the singletons as

χ
so(2,3)

Sng
(β, α) = χ

so(2,3)
Sng (−β,−α) = χ

so(2,3)
Sng (β, α) . (2.38)

The last equality holds because the singleton characters are even functions of β and α

(see (2.5)). If all the above discussions were free from subtleties, we should be able to

– 8 –
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reproduce the character of the adjoint module (2.26) as the product of the singleton and

anti-singleton characters. However, the identity (2.38) already shows that it cannot be so,

because the adjoint and twisted adjoint modules have different characters (since they are

not isomorphic). More explicitly, we find the following discrepancies

χ
so(2,3)
Adj (β, α) =

cosh2 β
2 + cos2 α

2

(coshβ − cosα)2

6= χ
so(2,3)
Rac (β, α)χ

so(2,3)

Rac
(β, α) =

cosh2 β
2

(coshβ − cosα)2

6= χ
so(2,3)
Di (β, α)χ

so(2,3)

Di
(β, α) =

cos2 α
2

(coshβ − cosα)2
. (2.39)

What went wrong? There are several potential sources of discrepancies. First, it might be

due to the problem of change of basis between Xm,n;p,q and Tm,n;p,q . Second, it might be

a problem of characters: the lowest-weight modules and the highest-weight modules have

different radius of convergence for q or, equivalently, for β . The former one converges for

β > 0 while the latter one does so for β < 0 . Once the infinite series are evaluated in

the convergent region of β, this region can be analytically continued to the outer region.

However, there might be subtleties in handling the characters of lowest-weight modules

and highest-weight modules simultaneously. To give away the bottom line already, various

considerations (that are presented below) indicate that the relation (2.37) itself, namely

the naive twisted Flato-Fronsdal theorem, should be modified.

In order to understand better this discrepancy, let us redo the character computations

using the oscillator realization. The higher-spin algebra is spanned by the elements Xm,n;p,q

with m+n+ p+ q ∈ 2N, as defined in (2.28), which also form a basis. In the present case,

the so(2, 3) subalgebra acts on the elements of the higher-spin algebra through the adjoint

action. The generators Xm,n;p,q are also eigenvectors of E and J3:

[E,Xm,n;p,q] =
m+ n− p− q

2
Xm,n;p,q , [J3, X

m,n;p,q] =
m− n− p+ q

2
Xm,n;p,q .

(2.40)

This implies that the character associated to the adjoint module is:

χ
so(2,3)
Adj (β, α) = TrAdj

(
e−β E+i αJ3

)
=

∑
m+n+p+q ∈2N

e−β
m+n−p−q

2
+ i α m−n−p+q

2 . (2.41)

Note that the above series is not well-defined because of the infinite degeneracy for a given

eigenvalue E and J3. However, we can still make some formal manipulations on it. Let us

start by separating (2.41) into two parts:

χ
so(2,3)
Adj (β, α) =

∑
m+n∈2N
p+q∈2N

e−β
m+n−p−q

2
+ i α m−n−p+q

2 +
∑

m+n∈2N+1
p+q∈2N+1

e−β
m+n−p−q

2
+ i α m−n−p+q

2 .

(2.42)

The first series factors as∑
m+n∈2N

e−
β
2

(m+n+1)+i α
2

(m−n)
∑

p+q∈2N
e+β

2
(p+q+1)−i α

2
(p−q)

= χ
so(2,3)
Rac (β, α)× χso(2,3)

Rac (−β,−α) = χ
so(2,3)
Rac (β, α)× χso(2,3)

Rac
(β, α) , (2.43)
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whereas the second series factors as∑
m+n∈2N+1

e−
β
2

(m+n+1)+i α
2

(m−n)
∑

p+q∈2N+1

e+β
2

(p+q+1)−i α
2

(p−q)

= χ
so(2,3)
Di (β, α)× χso(2,3)

Di (−β,−α) = χ
so(2,3)
Di (β, α)× χso(2,3)

Di
(β, α) . (2.44)

Therefore, we find

χ
so(2,3)
Adj = χ

so(2,3)
Rac × χso(2,3)

Rac
+ χ

so(2,3)
Di × χso(2,3)

Di
, (2.45)

which is in accordance with (2.26). Note again that the above manipulation is formal and

can be understood only as a regularization procedure. The generators Tm,n;p,q are also

eigenvectors, of identical eigenvalues, than the generators Xm,n;p,q. However, the basis

elements Tm,n;p,q of the space Rac ⊗ Rac are such that m + n ∈ 2N and p + q ∈ 2N,

therefore the corresponding character is equal to the first sum (2.43) and one finds

χ
so(2,3)

Rac⊗Rac
= χ

so(2,3)
Rac × χso(2,3)

Rac
. (2.46)

Similarly, the basis elements Tm,n;p,q of the space Di ⊗ Di are such that m + n ∈ 2N + 1

and p+ q ∈ 2N + 1, leading to

χ
so(2,3)

Di⊗Di
= χ

so(2,3)
Di × χso(2,3)

Di
. (2.47)

These computations suggest a neat conclusion in four dimensions: the heuristic equal-

ity (2.37) should be replaced with

Adj = (Rac⊗ Rac)⊕ (Di⊗Di) , (2.48)

as suggested from the change of basis (2.36) if one properly takes into account the range

of the indices.

Let us summarize what we have observed. First, we have seen that the adjoint module

of the higher-spin algebra is actually larger than that of the Rac and anti-Rac tensor-

product module. This was manifest in the oscillator analysis and the complementary

vector space was identified with the Di ⊗Di module. In fact, as we shall see in below, the

tensor-product module Rac ⊗ Rac fails to cover the entire adjoint module also in higher

dimensions. However, the complementary space cannot be interpreted as Di⊗Di except in

four dimensions. This should be related to the fact that only in four dimensions Rac and Di

have the same endomorphism algebra. In other words, the type-A and type-B higher-spin

algebras coincide with each other only in four dimensions.

We can also regard the complementary space as a “permuted” Rac module, in the

sense that

χ
so(2,3)
Di (i α1, α2) = −χso(2,3)

Rac (i α2, α1) . (2.49)

Then, the result (2.45) can be viewed as the symmetrization,

χ
so(2,3)
Adj (i α1, α2) = χ

so(2,3)
Rac (i α1, α2)χ

so(2,3)

Rac
(i α1, α2) + (1↔ 2)

= χ
so(2,3)
Di (i α1, α2)χ

so(2,3)

Di
(i α1, α2) + (1↔ 2) . (2.50)
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In fact, the character of the adjoint module is clearly symmetric under the exchange of

i β and α as it is the sum of the characters of D(1 − s, s − 1) given in (2.22) having this

property. On the other hand, the product of the singleton and anti-singleton characters

is generically asymmetric as we can see in (2.39). Hence, the simplest way to relate this

asymmetric function to the symmetric one would be by the symmetrization of (2.50). The

relation (2.50) at the level of the characters can be translated back to the modules as

Adj =
(
Rac⊗ Rac

)
⊕
(
τ(Rac)⊗ τ(Rac)

)
=
(
Di⊗Di

)
⊕
(
τ(Di)⊗ τ(Di)

)
, (2.51)

where τ is the weight-space map exchanging the two Cartan generators, and hence can be

viewed as an element of the Weyl group of so(2, 3) (quotiented by the normalizer subgroup

of Rac ⊗ Rac or Di ⊗ Di). In order to obtain the second equality in (2.51), we used

the relations

τ(Rac)⊗ τ(Rac) = Di⊗Di ,

τ(Di)⊗ τ(Di) = Rac⊗ Rac , (2.52)

which can also be used in order to relate (2.48) and (2.51). Since the “symmetrized” tensor

product in (2.51) can be generalized to higher dimensions, we propose it as a refined version

for the twisted Flato-Fronsdal theorem.5 Interestingly, the idea of symmetrization works

in higher dimensions as well as for the higher order singletons, as we shall show in the

following sections.

Before moving to general dimensions, let us comment on the unitarity of modules.

The mere tensor product of two unitary modules (Sng and Sng) should not result in a non-

unitary module (the adjoint module) in general. Hence, at first glance, this indicates that

a refinement is needed in the naive twisted Flato-Fronsdal theorem (2.37). But, the issue is

in fact more subtle: the new additional term in the refined twisted Flato-Fronsdal theorem

can be written either as Di⊗Di in (2.48) or as τ(Rac)⊗τ(Rac) in (2.51). Since Di is unitary

while τ(Rac) is not, the (non-)unitarity of the refinement term is not clear. This subtlety

can be related to the possibility that the relation (2.48) or (2.51) may require a suitable

completion of the corresponding vector spaces. Indeed, the change of basis (2.36) relating

the two modules expresses the generator Tm,n;p,q as an infinite linear combination of the

generators Xm,n;p,q, and the norm of the former may diverge even though each summand

has a finite norm. This subtle point will be left somewhat implicit in expressions like (2.48)

and (2.51). This issue may be related to the regularization of the adjoint module character

provided by the twisted Flato-Fronsdal theorem.

3 General dimensions

In this section, we shall provide more evidences of the “symmetrization” prescription for

the relation between singleton and adjoint module character, by examining the type-A and

type-B models in any dimension.

5Let us stress that the twisted Flato-Fronsdal theorem (2.51) essentially relies on the change of basis in

the higher-spin algebra (more precisely, a suitable completion thereof). In other words, our proof does not

actually relies on characters.
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For a smooth demonstration, let us provide here some details about the so(d) and

so(2, d) characters. A unitary irreducible representation of so(d) is entirely determined by

a highest weight ` = (`1, . . . , `r) with r = [d/2] the integer part of d/2 which is also the

rank of so(d), and `1 > · · · > `r−1 > |`r| (the last number `r can be negative only for

so(2r) ) are either all integers or all half-integers. Its character is given by

χ
so(d)
` (x) = Tr`

[
xM

12

1 · · ·xM2r−12r

r

]
=


det
[
xi
kj−xi−kj

]
∆(r)(x)

∏r
i=1

(
xi

1
2−xi−

1
2

) [d= 2r+1]

det
[
xi
kj+xi

−kj
]
+det

[
xi
kj−xi−kj

]
2∆(r)(x)

[d= 2r]

, (3.1)

with x = (x1, . . . , xr) and ki = `i + d
2 − i. Here ∆(r)(x) is the Vandermonde determinant,

∆(r)(x) =
∏

16i<j6r

(
xi + x−1

i − xj − x
−1
j

)
. (3.2)

Notice that the character formulae displayed in the previous section can be recovered after

setting xk = ei αk with k = 1, . . . , r (and setting r = 1 since d = 3 there).

Turning now to the non-compact Lie algebra so(2, d), any of its irreducible lowest-

weight modules can be described in terms of (quotients of) lowest-weight generalized Verma

modules V(∆, `) (see appendix A for conventions and technical details). The character of

the latter module is given by

χ
so(2,d)
V(∆,`)(q,x) = TrV(∆,`)

[
qM

0′0
xM

12

1 · · ·xM2r−1 2r

r

]
= q∆ Pd(q,x)χ

so(d)
` (x) , (3.3)

where the function Pd(q,x) defined as

Pd(q,x) =
1

(1− q)d−2r

r∏
i=1

1

(1− q xi)
(
1− q x−1

i

) = χ
so(2,d)
V(0,0) (q,x) , (3.4)

is the character of the module associated with the trivial weight.

The contragredient representation carried by the dual module of a module M has the

opposite quantum numbers6 with respect to M . For a given lowest-weight module M ,

there exists a highest-weight module M with exactly the opposite quantum numbers. We

shall refer to this highest-weight module as “anti-M” and equate it with the dual module,

disregarding potential subtleties of infinite dimensional vector space. Then, the characters

of the anti-module M is simply related to that of the module M as

χ
so(2,d)

M
(q,x) = χ

so(2,d)
M (q−1,x−1) , (3.5)

where x−1 = (x−1
1 , x−1

2 , . . . , x−1
r ).

6Recall that, given a representation (V, ρ) of a semisimple Lie algebra g, the contragredient representation

(V ∗, ρ∗) is defined as (ρ∗(x) ·φ)(v) = φ(ρ◦ τ(x) ·v) for x ∈ g, v ∈ V , φ ∈ V ∗ and τ the Chevalley involution.

This automorphism of g acts on the Cartan subalgebra generators Hi and the ladders operators Eα as

τ(Hi) = −Hi and τ(Eα) = −E−α.
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For future use, let us enlist a few properties of the function Pd and of the so(d)

characters. First, Pd(q,x) satisfies

Pd(q−1,x−1) = Pd(q−1,x) = (−q)d Pd(q,x) , (3.6)

and can be expressed as a series of so(d) character as [11]

Pd(q,x) =

∞∑
s,n=0

qs+2n χso(d)
s (x) , (3.7)

where χ
so(d)
s denotes the spin-s character of so(d), corresponding to the highest weight

(s, 0, . . . , 0). Finally, the so(2 + d) character of the irrep (`0, `) can be written in terms of

the so(d) character for the irrep ` as

χ
so(2+d)
(`0,`) (x0,x) =

r∑
k=0

Pd(xk,xk)×


(
x−`0k − x`0+d

k

)
χ
so(d)
` (xk) [d = 2r + 1][

x−`0k χ
so(d)
`−

(xk) + x`0+d
k χ

so(d)
`+

(xk)
]

[d = 2r]
,

(3.8)

where xk = (x0, . . . , xk−1, xk+1, . . . , xr) and `± = (`1, . . . , `r−1,±`r) . This identity will

play a key role in uncovering simple relations between the singleton and adjoint module

characters, and can be derived from the Weyl character formula (see appendix B). It is

worth noting that the identity (3.8) can be also viewed as a relation between the so(2 + d)

character and the so(2, d) character of V(∆, `) :

χ
so(2+d)
(`0,`) (x0,x) =

r∑
k=0


χ
so(2,d)
V(−`0,`)(xk,xk)− χ

so(2,d)
V(`0+d,`)(xk,xk) [d = 2r + 1]

χ
so(2,d)
V(−`0,`−)(xk,xk) + χ

so(2,d)
V(`0+d,`+)(xk,xk) [d = 2r]

. (3.9)

Another property of the so(d) characters that will prove useful in the subsequent sections

is the following:

χ
so(d)
(`1,...,`j−1,`j−1,`j+1+1,`j+2,...,`r)

(x) = −χso(d)
(`1,...,`j−1,`j+1,`j ,`j+2,...,`r)

(x) , (3.10)

as it implies in particular that the character with the label

(`1, . . . , `j−1, `− 1, `, `j+2, . . . , `r) (3.11)

identically vanishes. Equipped with the above identities, let us consider the type-A and

type-B higher-spin theories in any dimension, which are based on the scalar and spinor

singletons respectively.

3.1 Type A

Let us begin with the type-A massless higher-spin gravity in d+1 dimensions. It is expected

to be dual to the U(N) free scalar CFT in d dimensions. The free conformal scalar field

carries nothing but the spin-0 singleton representation of so(2, d) :

D
(
d− 2

2
,0

)
≡
V(d−2

2 ,0)

D(d+2
2 ,0)

, (3.12)
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s

E

0 1 2 3 4 . . .

ε0
ε0 + 1
ε0 + 2
ε0 + 3

...

−ε0
−(ε0 + 1)
−(ε0 + 2)
−(ε0 + 3)

...

×
×

×
×

×
×

×· ·
·

×
×

×
×

×
×

×· · ·

Figure 1. Weight diagram of the scalar singleton, or Rac (blue crosses) and of the scalar anti-

singleton, or anti-Rac (red crosses).

that, from now on, we shall refer to as “Rac”, thereby extending the four-dimensional

terminology to any d . Note that 0 stands for the trivial weight (0, . . . , 0). Using (3.3), one

computes the character of the quotient in (3.12):

χ
so(2,d)
Rac (q,x) = q

d−2
2
(
1− q2

)
Pd(q,x). (3.13)

The energy eigenvalues of this representation is bounded from below, hence it is a lowest-

weight representation. One can define an analogous representation whose energy is now

bounded from above. We refer to the corresponding module as anti-singleton Rac and its

character is simply related to that of the singleton as

χ
so(2,d)

Rac
(q,x) = χ

so(2,d)
Rac (q−1,x−1) = χ

so(2,d)
Rac (q−1,x) . (3.14)

Notice that the character of the Rac and Rac modules are simply related to each other,

using (3.6), by a sign depending on the parity of d, namely,

χ
so(2,d)

Rac
(q,x) = (−1)d+1χ

so(2,d)
Rac (q,x) . (3.15)

Using the property (3.7), the character of Rac and Rac can be also expressed as

χ
so(2,d)
Rac (q,x) =

∞∑
s=0

qε0+s χso(d)
s (x) , χ

so(2,d)

Rac
(q,x) =

∞∑
s=0

q−ε0−s χso(d)
s (x) , (3.16)

where ε0 := (d − 2)/2 . From the above formulae, the weight space of the Rac and Rac

representations respectively can be read off. Their weights are depicted in figure 1.
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Now, let us see how the character of the adjoint module can be related to the Rac

module. The higher-spin algebra of type-A theory is the collection of the so(2 + d) irrep

(s − 1, s − 1) := (s − 1, s − 1, 0, . . . , 0) for s = 1, 2, . . . ,∞. Applying the identity (3.8) to

these irreps, we obtain

χ
so(2+d)
(s−1,s−1)(x0,x) =

r∑
k=0

Pd(xk,xk)
(
x1−s
k + (−1)d xs+d−1

k

)
χ
so(d)
s−1 (xk) . (3.17)

In the right-hand-side of the equation, the last two factors can be summed over s by using

the properties (3.6) and (3.7) as

∞∑
s=1

(
x1−s
k + (−1)d xs+d−1

k

)
χ
so(d)
s−1 (xk) =

(
x−1
k − xk

) (
xk − x−1

k

)
Pd(x−1

k ,xk) . (3.18)

Notice that when summing the above expression, we used the identity (3.7) as if it was valid

simultaneously in both domains of convergence |xk| < 1 and |xk| > 1 for all k = 0, 1, · · · , r.
Multiplying the above equation by Pd(xk,xk) and symmetrizing over k, we finally obtain

χ
so(2+d)
Adj (x0,x) =

∞∑
s=1

χ
so(2+d)
(s−1,s−1)(x0,x) =

r∑
k=0

χ
so(2,d)
Rac (xk,xk)χ

so(2,d)

Rac
(xk,xk) , (3.19)

where one should remember that xk = (x0, . . . , xk−1, xk+1, . . . , xr). Hence, the sum over

the characters corresponding to all the so(2 + d) two-row rectangular Young diagrams (i.e.

the diagrams (2.20) for s = 1, 2, . . . ,∞) is equal to the product of the characters of a Rac

and an anti-Rac symmetrized over all variables.

3.2 Type B

The type-B massless higher-spin gravity in d + 1 dimensions is conjectured to be dual to

the free CFT with Dirac spinor in d dimensions.

Even d + 1 dimensions. For d + 1 even (that is d odd), this free Dirac spinor carries

the spin-1
2 singleton representation,

Di := D
(
d− 1

2
,
1

2

)
=
V(d−1

2 , 1
2

)

V(d+1
2 , 1

2
)

(3.20)

with 1
2

= (1
2 , . . . ,

1
2) . The character of Di has the form [11],

χ
so(2,d)
Di (q,x) = q

d−1
2 (1− q)Pd(q,x)χ

so(d)
1
2

(x) , (3.21)

and the character of anti-Di is simply related to the above as

χ
so(2,d)

Di
(q,x) = χ

so(2,d)
Di (q−1,x−1) = χ

so(2,d)
Di (q−1,x) , (3.22)

since χ
so(d)
1
2

(x−1) = χ
so(d)
1
2

(x). From the identity (3.7), we derive another useful identity,

(1− q)Pd(q,x)χ
so(d)
1
2

(x) =
∞∑
s=0

qs χ
so(d)(
s+ 1

2
, 1
2

r−1
)(x) , (3.23)
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where the notation cm in a weight stands for a sequence of m identical entries c : for

instance, (s+ 1
2 ,

1
2

r−1
) = (s+ 1

2 ,
1
2 , . . . ,

1
2). The identity (3.23) implies that, similarly to the

Rac, the character of Di can be written as

χ
so(2,d)
Di (q,x) =

∞∑
s=0

q
d−1

2
+s χ

so(d)(
s+ 1

2
, 1
2

r−1
)(x) . (3.24)

Notice that the character of the Di singleton is actually identical to that of its anti-singleton

Di for d = 2r + 1:

χ
so(2,2r+1)

Di
(q,x) = χ

so(2,2r+1)
Di (q,x) , (3.25)

similarly to the Rac case.

We want to relate this character to that of the adjoint module of type-B higher-spin

algebra. In the section 3.1, we started from the adjoint module and showed that its

character can be written in terms of the Rac and anti-Rac characters. In the type-B case,

its higher-spin algebra was identified in [8], so we can proceed, in principle, in the same

way. However, the utility of the twisted Flato-Fronsdal theorems is actually to identify

the higher-spin algebra directly from the underlying singleton modules. Hence, for type-B

theory let us proceed in the opposite way to the type-A case: we begin with the Di and

anti-Di character and find the character of the adjoint module.

The starting point is the product of the Di and anti-Di characters,

χ
so(2,d)
Di (q,x)χ

so(2,d)

Di
(q,x) =

(
1− q + 1− q−1

)
Pd(q,x)Pd(q−1,x)χ

so(d)
1
2

(x)χ
so(d)
1
2

(x) .

(3.26)

Using (3.6) and (3.23), the above can be expressed as

χ
so(2,d)
Di (q,x)χ

so(2,d)

Di
(q,x)

= Pd(q,x)

∞∑
s=0

(
q−s − qs+d

)
χ
so(d)(
s+ 1

2
, 1
2

r−1
)(x)χ

so(d)
1
2

(x)

= Pd(q,x)
∞∑
s=0

r−1∑
m=0

(
q−s − qs+d

) [
χ
so(d)
(s,1m)(x) + χ

so(d)
(s+1,1m)(x)

]
. (3.27)

In the last line, the product of two so(d) characters is decomposed in terms of other so(d)

characters using the decomposition rule (see e.g. [51] for the general decomposition rule of

the tensor product of two so(d)-modules, recalled in [52]):

(
s+

1

2
,

1

2

r−1
)
⊗
(

1

2

r
)

=

r−1⊕
m=0

[
(s, 1m)⊕ (s+ 1, 1m)

]
. (3.28)

Note that the modules with improper weight labels do not contribute, namely the first

term in the summand on the right-hand-side of the above decomposition is absent, when

m 6= 0, for s = 0. This can be also viewed from the fact that the characters associated

with the improper labels that appear in (3.28) identically vanish, due to the identity (3.10).
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Finally, symmetrizing over the variables, we get

r∑
k=0

χ
so(2,d)
Di (xk,xk)χ

so(2,d)

Di
(xk,xk) =

∞∑
s=0

r−1∑
m=0

[
χ
so(2+d)
(s,s,1m)(x0,x) + χ

so(2+d)
(s,s+1,1m)(x0,x)

]
.

(3.29)

Once again, the characters with improper labels identically vanish (i.e. the second term on

the right-hand-side), hence we derive in the end,

r∑
k=0

χ
so(2,d)
Di (xk,xk)× χ

so(2,d)

Di
(xk,xk) = χ

so(2+d)
0 (x0,x) +

∞∑
s=2

r∑
m=0

χ
so(2+d)
(s−1,s−1,1m)(x0,x) ,

(3.30)

where χ
so(2+d)
0 = 1 corresponds to the identity of the higher-spin algebra. The content of

the right-hand-side precisely coincides with the adjoint module of the type-B higher-spin

algebra identified in [8].

Odd d + 1 dimensions. For even values d = 2r of the boundary dimension, one can

consider a chiral (or anti-chiral) spinor singleton, i.e. whose spin is either 1
2+

or 1
2−. The

corresponding so(2, d) module is [48]

Di± := D
(
d− 1

2
,
1

2±

)
=
V
(
d−1

2 , 12±
)

D
(
d+1

2 , 12∓
) , (3.31)

and its character reads

χ
so(2,2r)
Di±

(q,x) = q
2r−1

2

(
χ
so(2r)
1
2±

(x)− q χso(2r)1
2∓

(x)

)
P2r(q,x) . (3.32)

Using the expression (3.7) of Pd, we can rewrite the character as

χ
so(2,2r)
Di±

(q,x) =

∞∑
s=0

q
2r−1

2
+s χ

so(2r)(
s+ 1

2
, 1
2

r−1

±

)(x) . (3.33)

The characters of the anti-Di modules are given, by definition, as

χ
so(2,2r)

Di±
(q,x) = χ

so(2,2r)
Di±

(q−1,x−1) . (3.34)

But now differently from the previous cases, the symmetry property of the so(2r) character

χ
so(2r)(
s+ 1

2
, 1
2

r−1

±

)(x) depends on the parity of r :

χ
so(2r)(
s+ 1

2
, 1
2

r−1

±

)(x−1) =


χ
so(2r)(
s+ 1

2
, 1
2

r−1

±

)(x) [even r]

χ
so(2r)(
s+ 1

2
, 1
2

r−1

∓

)(x) [odd r]
. (3.35)

As a consequence, the relation between the characters of the anti-Di and the Di modules

also depend on the parity of r :

χ
so(2,2r)

Di±
(q,x) = −

χ
so(2,2r)
Di∓

(q,x) [even r]

χ
so(2,2r)
Di±

(q,x) [odd r]
. (3.36)
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Due to the possible chirality of the Di singleton, only a subset of the mixed-symmetry fields,

present in the even-dimensional twisted Flato-Fronsdal theorem (3.30), will appear. Let us

start by recalling the generalized Flato-Fronsdal theorem (first derived in [8]), before deriv-

ing the corresponding twisted version. To do so, we will need the following decomposition

rules of so(2r),

1

2±
⊗ 1

2±
=

[ r2 ]⊕
m=0

1r−2m
± , and

1

2+
⊗ 1

2−
=

[ r−1
2 ]⊕

m=0

1r−1−2m , (3.37)

together with

(
s+

1

2
,
1

2

r−1

±

)
⊗ 1

2±
=

[ r−1
2 ]⊕

m=0

(s+ 1, 1r−1−2m
± )⊕

[ r−2
2 ]⊕

m=0

(s, 1r−2−2m) , (3.38)

and (
s+

1

2
,
1

2

r−1

±

)
⊗ 1

2∓
=

[ r−2
2 ]⊕

m=0

(s+ 1, 1r−2−2m)⊕
[ r−1

2 ]⊕
m=0

(s, 1r−1−2m
± ) . (3.39)

In the following, we will treat separately the case of odd and even rank r:

• Even rank r = 2k. In this case, the tensor product of two singletons of the same

chirality decomposes into a direct sum of hook-shaped massless fields whose first

columns are of all even heights from 0 to r, together with a collection of massive

p-forms with p taking all even values from 0 to r. Explicitly,

(
χ
so(2,d)
Di±

)2
=

k∑
m=0

χ
so(2,d)

D(d−1,12m
± )

+

∞∑
s=2

k−1∑
m=0

χ
so(2,d)

D(s+d−2,s,12m+1
± )

. (3.40)

In particular, this decomposition contains the massive scalar D
(
d− 1 , 0

)
as well as

massless fields whose first columns are of maximal height r and of the same chirality

as the Di singletons. The totally symmetric fields are however absent from this spec-

trum, they are instead contained in the tensor product of two singletons of opposite

chiralities, together with hook-shaped massless fields and massive p-forms whose first

column is of odd height:

χ
so(2,d)
Di+

× χso(2,d)
Di−

=

∞∑
s=1

χ
so(2,d)
D(s+d−2,s) +

∞∑
s=2

k−1∑
m=1

χ
so(2,d)
D(s+d−2,s,12m)

+

k−1∑
m=1

χ
so(2,d)
D(d−1,12m+1)

.

(3.41)

Using the so(d) tensor product rules recalled previously, as well as the decompo-

sition (3.33), one can show that the tensor product of a spinor singleton of fixed

chirality with its anti-singleton decomposes as

r∑
j=0

χ
so(2,d)
Di±

(xj ,xj)×χso(2,d)

Di±
(xj ,xj) = χ

so(2+d)
0 (x0,x) +

∞∑
s=2

k−1∑
m=0

χ
so(2+d)
(s−1,s−1,12m)

(x0,x) ,

(3.42)
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whereas the tensor product of the Di+ singleton with the Di− anti-singleton yields

r∑
j=0

χ
so(2,d)
Di±

(xj ,xj)× χso(2,d)

Di∓
(xj ,xj) =

∞∑
s=2

k−1∑
m=0

χ
so(2+d)

(s−1,s−1,12m+1
± )

(x0,x) . (3.43)

The modules appearing in the same/opposite-chirality twisted Flato-Fronsdal theo-

rem (3.42)/(3.43) correspond to the Killing tensors associated to the massless fields

appearing in the opposite/same-chirality Flato-Fronsdal theorem (3.41)/(3.40). This

crossed correspondence may look problematic if we consider the (anti-)chiral projec-

tion, but it is in fact consistent since, in the non-minimal type-B theory, we have to

take the tensor product of Di± and its complex conjugate for the bulk spectrum. In

d = 4k dimensions, the complex conjugate flips the chirality, hence the bulk spectrum

is (3.41), which is compatible with (3.42) [8, 26, 53].

• Odd rank r = 2k + 1. In this case, the tensor product of two singletons of the same

chirality decomposes into a direct sum of hook-shaped massless fields whose first

columns are of any odd height, together with a collection of massive p-forms with p

taking all odd values from 1 to r. Explicitly,

(
χ
so(2,d)
Di±

)2
=

∞∑
s=1

χ
so(2,d)
D(s+d−2,s) +

∞∑
s=2

k∑
m=1

χ
so(2,d)

D(s+d−2,s,12m
± )

+

k∑
m=1

χ
so(2,d)

D(d−1,12m+1
± )

. (3.44)

Notice that contrarily to the case of odd rank, this tensor product contains the tower

of totally symmetric fields of arbitrary spin but does not contain the massive scalar

D
(
d − 1 , 0

)
. The latter is instead part of the tensor product decomposition of two

Di singletons of opposite chiralities, together with hook-shaped massless fields whose

first columns are of any even height as well as massive p-forms with p = 2, 4, . . . , r−1:

χ
so(2,d)
Di+

× χso(2,d)
Di−

=

∞∑
s=2

k∑
m=1

χ
so(2,d)
D(s+d−2,(s,12m−1))

+

k∑
m=0

χ
so(2,d)
D(d−1,12m)

. (3.45)

A computation similar to the previous case shows that the tensor product of a spinor

singleton of fixed chirality with its anti-singleton can be decomposed as follows:

r∑
j=0

χ
so(2,d)
Di±

(xj ,xj)× χso(2,d)

Di±
(xj ,xj) = χ

so(2,d)
0 (x0,x) +

∞∑
s=2

k∑
m=0

χ
so(2+d)

(s−1,s−1,12m
± )

(x0,x) ,

(3.46)

i.e. as the direct sum of the Young diagram describing the Killing tensors associated to

each massless field appearing in (3.45). Finally, the tensor product Di+⊗Di−, as well

as the tensor product Di−⊗Di+, both contain the same so(2+d) diagrams, i.e. those

associated with the Killing tensor of the massless fields appearing in (3.46), namely,

r∑
j=0

χ
so(2,d)
Di±

(xj ,xj)× χso(2,d)

Di∓
(xj ,xj) =

∞∑
s=2

k−1∑
m=0

χ
so(2+d)
(s−1,s−1,12m+1)

(x0,x) . (3.47)
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If one instead consider a spinor singleton which is a Dirac fermion, i.e. contains both

chiralities, then the corresponding Di module is given by the direct sum of the two chiral

modules:

Di := D
(
d− 1

2
,
1

2

)
= D

(
d− 1

2
,
1

2+

)
⊕D

(
d− 1

2
,
1

2−

)
, (3.48)

whose character reads

χ
so(2,d)
Di (q,x) = q

d−1
2 (1− q)

(
χ
so(d)
1
2+

(x) + χ
so(d)
1
2−

(x)
)
Pd(q,x) . (3.49)

Notice that in this case, the characters of the parity-invariant Di and Di modules are also

simply related by a dimension dependent sign, namely,

χ
so(2,d)

Di
(q,x) = (−1)d+1χ

so(2,d)
Di (q,x) . (3.50)

The endomorphism algebra of this parity-invariant singleton admits a similar decomposi-

tion to the previously covered odd-d case, except for the fact that most diagrams have a

multiplicity 2:

r∑
k=0

χ
so(2,d)
Di (xk,xk)× χ

so(2,d)

Di
(xk,xk)

= 2χ
so(2+d)
0 (x0,x) + 2

∞∑
s=2

r−1∑
m=0

χ
so(2+d)
(s−1,s−1,1m)(x0,x)+

+

∞∑
s=2

(
χ
so(2+d)

(s−1,s−1,1r−1
+ )

(x0,x) + χ
so(2+d)

(s−1,s−1,1r−1
− )

(x0,x)
)
. (3.51)

The appearance of those extra degeneracies with respect to the odd-d case (3.30) is caused

by the fact that we include both chiralities in (3.48), hence the representations for which

the last so(d) weight vanishes (i.e. `r = 0) come twice.

3.3 Type AB

Although one of the appealing features of higher-spin holography is the fact that these

dualities do not require supersymetry, the four dimensional higher-spin gravity admits a

supersymmetric extension with arbitrary N : see [54] for a review (as well as the recent pa-

per [55] where several one-loop tests of these extensions were performed, together with [26]

for the 6-dimensional case). Supersymmetric higher-spin algebras7 were studied in four

dimensions in [43, 46, 57], an analysis later extended to any dimension in [8], where it was

also shown that the spectrum of these supersymmetric higher-spin theories is given by the

tensor product of the direct sum of the Rac and Di singletons (possibly decorated with

Chan-Paton factor, that we will not consider here).8

In four dimensions, the N = 1 supersymmetric extension of the algebra so(2, 3) ∼=
sp(4,R) is the superalgebra osp(1|4), of which the sum Di ⊕ Rac is a supermultiplet. The

7In dimensions 3, 4 and 6, the higher symmetries of super-Laplacians were studied in [56], thereby

extending Eastwood’s approach to the supersymmetric case.
8See also [26, 39, 58–60] for the quasiconformal approach to higher-spin (super)algebras.
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tensor product of a Rac with a Di decomposes into an infinite tower of totally symmetric

massless fields of all half-integer spin s = 1
2 ,

3
2 , . . . , and therefore the tensor product of

the irreducible osp(1|4)-module Di⊕Rac with itself contains all totally symmetric fields of

integer and half-integer spins (as well as the mixed-symmetry fields appearing in the tensor

product of two Di singletons in higher dimensions). The N = 1 higher-spin superalgebra

extending osp(1|4) can be realized in terms of the oscillators a and b introduced in the

section 2 by relaxing the constraint of parity. By extending the computations of so(2, 3)

characters, one can check at the level of characters the isomorphism [18]:

Adj =
⊕

s=1, 3
2
,2, 5

2
,...

D(1− s, s− 1) = (Di⊕ Rac)⊗ (Di⊕ Rac) , (3.52)

which is the supersymmetric extension of (2.48). Here, “Adj” stands for the adjoint module

of the four-dimensional N = 1 higher-spin superalgebra.

In higher dimensions, the Di and Rac do not form a supermultiplet on their own, due to

the fact that the AdSd+1 isometry algebra so(2, d) admits a supersymmetric extension (i.e.

a Lie superalgebra which contains the latter in its bosonic subsector), only in dimensions

d + 1 = 4, 5, 6 and 7, superalgebras which are respectively osp(N|4), sl(N|4), F (4) and

osp(N|8). Nevertheless, let us investigate the twisted Flato-Fronsdal theorem for this pair

of modules. Using (3.33), the product of the character of a Rac singleton with that of the

Di anti-singleton can be written as

χ
so(2,d)
Rac (q,x)× χso(2,d)

Di
(q,x) = q−

1
2 (1− q2)Pd(q,x)

∞∑
s=0

q−s χ
so(d)(
s+ 1

2
, 1
2

r−1
)(x) , (3.53)

whereas for Rac with Di:

χ
so(2,d)

Rac
(q,x)× χso(2,d)

Di (q,x) = q
1
2 (1− q−2)Pd(q−1,x)

∞∑
s=0

qs χ
so(d)(
s+ 1

2
, 1
2

r−1
)(x) , (3.54)

Symmetrizing the r + 1 variables of the above expression and using (3.8), we end up with

the following sum of so(2 + d) characters:

r∑
k=0

(
χ
so(2,d)
Rac (xk,xk)× χ

so(2,d)

Di
(xk,xk) + χ

so(2,d)

Rac
(xk,xk)× χ

so(2,d)
Di (xk,xk)

)
(3.55)

=
∞∑
s=0

χ
so(d+2)(
s+ 1

2
,s+ 1

2
, 1
2

r−1
)(x0,x)−

∞∑
s=0

χ
so(d+2)(
s− 3

2
,s+ 1

2
, 1
2

r−1
)(x0,x) .

Using the symmetry property (3.10), the characters appearing in the second sum can be

expressed as the characters of bona fide so(2 + d) Young diagrams, given that

χ
so(d+2)(
s− 3

2
,s+ 1

2
, 1
2

r−1
) = −χso(d+2)(

s− 1
2
,s− 1

2
, 1
2

r−1
) , χ

so(d+2)(
− 1

2
,− 1

2
, 1
2

r−1
) = 0 , (3.56)
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hence we end up with

r∑
k=0

χ
so(2,d)
Di⊕Rac(xk,xk)×χ

so(2,d)

Di⊕Rac
(xk,xk)

=
∞∑
s=1

r−1∑
m=1

χ
so(2+d)
(s−1,s−1,1m)(x0,x)+

∞∑
s=1

(
χ
so(d+2)
(s−1,s−1)(x0,x)+2χ

so(d+2)(
s− 1

2
,s− 1

2
, 1
2

r−1
)(x0,x)

)
. (3.57)

Notice that we are considering a parity-invariant spin- 1
2 singleton here. Strictly speaking,

the formula (3.57) holds for odd d. For d = 2r, we have Di = Di+ ⊕ Di−, which leads to

the appearance of a multiplicity 2 (that we leave implicit) for all diagrams appearing in

the above identity, except those of maximal height (namely for m = r − 1 in the first sum

on the left hand side) which appear once with each chirality. Again, this result agrees with

the gauge fields present in the type-AB higher-spin gravity.

4 Lower dimensions

4.1 Two dimensions

Although the d = 1 case may appear9 somewhat degenerate from the point of view of the

higher-spin interpretation of its representations, the characters of the conformal algebra

so(2, 1) (see e.g. [64–66] for details on the representations of this algebra) provide a useful

toy model for seeing explicitly the subtleties related to their domain of convergences.

Relevant modules. The character of an so(2, 1) Verma module V∆ of lowest-weight ∆ is

χso(2,1)
V∆

(q) =
q∆

1− q
|q|<1
=

∞∑
n=0

q∆+n . (4.1)

The domain of convergence of the power series in the variable q around the origin q = 0, is

the disk |q| < 1. This meromorphic function admits an analytic continuation in the domain

|q| > 1 where it has a convergent power series expansion in the variable q−1 around the

point at infinity q =∞:

χso(2,1)
V∆

(q) = −χso(2,1)
V1−∆

(q−1) = − q∆−1

1− q−1

|q|>1
= −

∞∑
n=0

q∆−1−n . (4.2)

However, the coefficients of this power series in q−1 are negative integers, which prohibit

the interpretation of this function as the character of a highest-weight module.

The lowest-weight case (4.1) should be compared with the character of the so(2, 1)

Verma module V∆ of highest-weight −∆:

χso(2,1)

V∆

(q) = χso(2,1)
V∆

(q−1) =
q−∆

1− q−1

|q|>1
=

∞∑
n=0

q−∆−n . (4.3)

9Actually, higher-spin extensions of two-dimensional Jackiw-Teitelboim gravity have been consid-

ered [61–63] in the context of AdS2/CFT1 holography.
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The domain of convergence of this power series around the point at infinity q = ∞ is the

domain |q| > 1. One should stress that it is this power series in q−1 with positive integer

coefficients that justifies the interpretation of this meromorphic function as the character

of a highest-weight module. However, notice the identity,

χso(2,1)

V∆

= −χso(2,1)
V1−∆

, (4.4)

which is valid everywhere (except at q = 0,∞).

The Verma module V∆ is unitary for ∆ > 0. For ∆ 6 0, the module is non-unitary and

becomes reducible for non-positive half-integer ∆ = −j: the non-unitary module V−j con-

tains an invariant submodule Vj+1 which is unitary. The irreducible module Dj = V−j/Vj+1

is nothing but the (2j + 1)-dimensional spin-j module, which is non-unitary for so(2, 1)

but becomes unitary for so(3). The character of the irreducible module Dj is

χso(2,1)
Dj

(q) = χso(2,1)
V−j

(q)− χso(2,1)
Vj+1

(q) =

j∑
n=−j

qn (4.5)

=
qj+

1
2 − q−j−

1
2

q
1
2 − q−

1
2

=
sinh(j + 1

2)β

sinh β
2

≡ χso(3)
j (iβ) . (4.6)

Since this so(2, 1)-module is finite-dimensional, it is both lowest-weight and highest-weight,

which translates into the property χso(2,1)
Dj

(q−1) = χso(2,1)
Dj

(q). The Laurent series in the right

of (4.5) contains negative powers, seen either as a power series in q or as a power series in

q−1, but it converges for any q 6= 0,∞.

Flato-Fronsdal theorem. The Clebsch-Gordan decomposition of these finite-dimensional

so(2, 1)-modules is the celebrated rule

χso(2,1)
Dj1

(q)× χso(2,1)
Dj2

(q) =

j1+j2∑
j=|j1−j2|

χso(2,1)
Dj

(q) (4.7)

as can be checked by an explicit computation of the product of characters of the form (4.5).

One may also consider the tensor product of two lowest-weight Verma modules,

χso(2,1)
V∆1

(q)× χso(2,1)
V∆2

(q) =
q∆1+∆2

(1− q)2

|q|<1
=

∞∑
n=0

χso(2,1)
V∆1+∆2+n

(q) (4.8)

where we used the formula (4.1) and expanded (1− q)−1 in power series around the origin

(valid for |q| < 1) to obtain the result,

V∆1 ⊗ V∆2 =

∞⊕
n=0

V∆1+∆2+n , (4.9)

which we will use later on.

The formula (4.9) is a sort of d = 1 analogue of the Flato-Fronsdal theorem, in the sense

that it is a decomposition of the tensor product of two lowest-weight infinite-dimensional

– 23 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
9

modules. However, it becomes much more delicate to manipulate the tensor product

of infinite-dimensional modules where one module is lowest-weight and the other one is

highest-weight (as in the twisted Flato-Fronsdal theorem) because the resulting module is

neither lowest nor highest weight. Therefore, its character involves Laurent series which

should be treated with care.

Twisted Flato-Fronsdal theorem. Treating the characters as meromorphic functions

and performing the power series expansion, one can write the equality as

χso(2,1)
V∆1

(q)× χso(2,1)

V∆2

(q) = −χso(2,1)
V∆1

(q)× χso(2,1)
V1−∆2

(q) =
− q1+∆1−∆2

(1− q)2

|q|<1
= −

∞∑
n=0

χso(2,1)
V1+∆1−∆2+n

(q) . (4.10)

Unfortunately, the last line has negative coefficients as a power series (in q or in q−1),

which confirms that it lacks any sound group-theoretical intepretation as lowest or highest

weight module.

In fact, the group-theoretical interpretation of the factors in the left-hand-side of (4.10),

as characters of lowest vs highest weight modules, holds in two distinct domains (|q| < 1

versus |q| > 1). The same remark holds for the infinite sum
⊕∞

j=0Dj of all irreducible

finite-dimensional so(2, 1) modules, which could be considered as a d = 1 analogue of the

adjoint module: it is tempting (and will be justified below) to compute the formal sum∑∞
j=0 χ

so(2,1)
Dj

(q) via the formula (4.5) as the difference of the two series in the right-hand-

sides of
∞∑
j=0

χso(2,1)
V−j

(q)
|q|<1
=

−q
(1− q)2

and

∞∑
j=0

χso(2,1)
Vj+1

(q)
|q|>1
=

q

(1− q)2
, (4.11)

to obtain the meromorphic function

∞∑
j=0

χso(2,1)
Dj

(q) = − 1

2 sinh2 β
2

= − 2 q

(1− q)2
, (4.12)

which has negative coefficients as a power series, whether in q or q−1. Again, this fact

precludes any clear group-theoretical interpretation. Nevertheless, the equality (4.12) is

valid. Indeed, the following trigonometric series is divergent but can be evaluated via

Cesaro’s resummation:10

∞∑
n=0

sin

[(
n+

1

2

)
x

]
=

1

2 sin x
2

, (4.13)

from which one deduces the character formula,

∞∑
j=0

χ
so(3)
j (α) =

1

2 sin2 α
2

, (4.14)

10See e.g. [50] (chapter XIII, section 60, ex. 7).
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which holds as a distribution and whose Wick rotation is (4.12). Therefore, one can write

the relation,

∞∑
j=0

χso(2,1)
Dj

(q) = 2χso(2,1)
V∆

(q)× χso(2,1)

V∆

(q) , (4.15)

as a d = 1 analogue of the twisted Flato-Fronsdal theorem.11

In order to provide a concrete realization of the isomorphism,

V∆ ⊗ V∆ =

∞⊕
j=0

Dj , (4.16)

let us consider the elements Lm+ |∆〉 of the Verma module V∆ of so(2, 1) generated by the

lowest-weight vector |∆〉. Mimicking the discussion of the oscillator realization in section 2,

one can introduce two concrete realizations of the generators of End(V∆), and compare the

so(2, 1) decomposition in the two cases:

• Firstly, as elements of V∆ ⊗ V∆ ,

Tm;n := Lm+ |∆〉〈∆|Ln− . (4.17)

with m,n ∈ N . The identities

[L−, T
m;n] = m(2 ∆ +m− 1)Tm−1;n − Tm;n+1 ,

[L+, T
m;n] = Tm+1;n − n(2 ∆ + n− 1)Tm;n−1 . (4.18)

allows to identify the lowest (or highest) weight states of the spin-j submodule

Dj ⊂ End(V∆): they are the elements

Y j
−j :=

∞∑
m=0

Γ(2∆− 1)

m! Γ(2∆ +m)
Tm;m+j , Y j

j :=

∞∑
m=0

Γ(2∆− 1)

m! Γ(2∆ +m)
Tm+j;m (4.19)

of V∆ ⊗ V∆ .

• Secondly, as elements in the universal enveloping algebra12 U
(
so(2, 1)

)
. Let us recall

that the Lie algebra so(2, 1) is spanned by the generators {E,L+, L−} obeying the

commutation relations

[E,L±] = ±L± , [L−, L+] = 2E . (4.20)

11The tensor product of two discrete series representations of respectively highest and lowest weight kind

has been studied in [67] (see [66] for a recent review): its usual decomposition contains in fact principal as

well as complementary series representations on top of discrete series ones. Therefore, naively the tensor

product decomposition of [67] is not reproduced by our so(2, 1) character analysis. However, these two

approaches are difficult to compare because continuous (principal and complementary) series representations

have unbounded spectrum of E. Nevertheless, the decomposition (4.15) will be justified below.
12This is motivated by the fact that there exists a natural inclusion U

(
g
)
/Ann(M) ↪→ End(M) for g a

Lie algebra and M a g-modules with annihilator Ann(M) [68].
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Following closely the presentation of the universal enveloping algebra of so(2, 1) ∼=
sl(2,R) [69, 70] (see also [71, 72] for more details), we can consider the basis given by

Xj,k
m := cj,m C2

k admL−L
j
+ , with 0 6 m 6 2j , k ∈ N , (4.21)

and where C2 := E2− 1
2(L+L−+L−L+) = E(E−1)+L+L− is the Casimir operator of

so(2, 1) generating the center of the universal enveloping algebra, while the coefficients

cj,m are normalization factors. The decomposition of U
(
so(2, 1)

)
in terms of finite-

dimensional modules under the adjoint action of so(2, 1) can be read more easily, as

adL+L
j
+ = 0 , and adEL

j
+ = j Lj+ , ∀j ∈ N , (4.22)

i.e. Lj+ defines a highest-weight vector of weight j, and thus the various power of

admL− for m = 0, . . . , 2j define the elements of this spin-j module. However, each of

those modules have an infinite multiplicity in U
(
so(2, 1)

)
since they appear dressed

with arbitrary power of the quadratic Casimir operator of so(2, 1) according to (4.21).

Considering the quotient,

gl[λ] :=
U
(
so(2, 1)

)
〈C2 − µλ1〉

, with µλ :=
λ2 − 1

4
, (4.23)

i.e. by modding out the ideal Iλ =
(
C2−µλ1

)
U
(
so(2, 1)

)
of the universal enveloping

algebra, the vector space of the resulting algebra decomposes as the direct sum [73]

gl[λ] =
∞⊕
j=0

Dj . (4.24)

In other word, by fixing the value of the Casimir operator, one lifts the (infinite)

degeneracy of the finite-dimensional modules. A basis of gl[λ] is therefore given by:

V j
n := (−1)j+n

(j + n)!

(2j)!
adj−nL−

Lj+ , with |n| 6 j , (4.25)

where the generators {V j
n }−j6n6j span the spin j module Dj in the decomposi-

tion (4.24). One can also describe this decomposition in more covariant terms by

making use of the generators L̃A := 1
2ε
ABCLBC of so(2, 1). All elements of U

(
so(2, 1)

)
can be written as linear combinations of elements of the form P (C2) L̃{A1

· · · L̃Aj}
where P (C2) is a polynomial in the quadratic Casimir C2 = −L̃AL̃A and the brackets

over the indices indicates total symmetrization over all indices and traceless projec-

tion. Therefore, U
(
so(2, 1)

)
branches in spin-j submodules. Moreover, the quadratic

Casimir operator takes the value C2 = ∆(∆ − 1) on the Verma module V∆ with

∆ = 1±λ
2 . Therefore, the elements L̃{A1

· · · L̃Aj} provide a covariant basis of End(V∆) .

4.2 Three dimensions

The d = 2 conformal algebra is a direct sum of two d = 1 conformal algebras: so(2, 2) =

so(2, 1) ⊕ so(2, 1). Accordingly, the so(2, 2) Verma module V(∆, s) is related to the that

of so(2, 1) as

V(∆, s) = V∆+s
2
⊗ V∆−s

2
. (4.26)
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Note that the spin s can take negative values here since they are eigenvalues of so(2).

Introducing the variables,

z = q x = e−β+i α , z̄ = q x−1 = e−β−i α , (4.27)

for the so(2, 2) weights, the character of V(∆, s) is given by

χ
so(2,2)
V(∆,s)(z, z̄) = χ

so(2,1)
V∆+s

2

(z)χ
so(2,1)
V∆−s

2

(z̄) =
z

∆+s
2 z̄

∆−s
2

(1− z)(1− z̄)
. (4.28)

Relevant modules. The character of a scalar field of lowest energy E0 = ∆ is

χ
so(2,2)
D(∆,0)(z, z̄) = χ

so(2,1)
V∆

2

(z)χ
so(2,1)
V∆

2

(z̄) =
(z z̄)∆/2

(1− z)(1− z̄)
. (4.29)

In the limit when the conformal weight of the scalar field goes to the unitarity bound,

∆→ d−2
2 = 0, one finds

χ
so(2,2)
D(∆→0,0)(z, z̄) =

1

(1− z)(1− z̄)
= 1 +

z

1− z
+

z̄

1− z̄
+ χ

so(2,2)
D(2,0) (z, z̄) , (4.30)

which can be understood from the property of the so(2, 1)-module,

V0 = 1⊕ V1 , (4.31)

where 1 denotes the trivial representation of so(2, 1). The last term in (4.30) reflects

the appearance of a submodule, D(2, 0) ⊂ V(0, 0). The appearance of such a submodule

holds in any dimension: D(d+2
2 ,0) ⊂ V(d−2

2 ,0), and the Rac has been defined uniformly

for all dimensions as the quotient V(d−2
2 ,0)/D(d+2

2 ,0), cf (3.12). However, in d = 2 the

Rac =V(0, 0)/D(2, 0) is a reducible module: its character reads

χ
so(2,2)
Rac (z, z̄) = 1 +

z

1− z
+

z̄

1− z̄
, (4.32)

where each of the three terms correspond to the characters of different irreducible modules.

The first term is the character of the trivial module, D(0, 0), which corresponds to a zero-

mode in field-theoretical terms. In fact, the Rac always describes a conformal scalar in

dimension d but the zero-mode has canonical conformal weight (i.e. d−2
2 = 0) only for

d = 2. The last two terms are the characters of the modules D(1,+1) and D(1,−1) ,

which correspond to the left and right moving scalar fields living on the d = 2 conformal

boundary, respectively.

Let us introduce the notations,

V(∆, s)0 := V(∆,+s)⊕ V(∆,−s) , and D(∆, s)0 := D(∆,+s)⊕D(∆,−s) , (4.33)

for parity-invariant combinations. The Di module, describing the d = 2 conformal spinor,

is Di = D(1
2 ,

1
2)0 = Di+ ⊕ Di− with Di± = D(1

2 ,±
1
2), cf (3.31) for d = 2. For spin s > 1,

the irreducible module D(s,±s) is given by

D(s,+s) = V(s, s)/V(s+ 1, s− 1) = (Vs ⊗ V0)/(Vs ⊗ V1) = Vs ⊗ 1,

D(s,−s) = V(s,−s)/V(s+ 1,−s+ 1) = (V0 ⊗ Vs)/(V1 ⊗ Vs) = 1⊗ Vs . (4.34)
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Modules AdS3 CFT2 Equivalent descriptions

D(0, 0) Vacuum Constant zero-mode 1⊗ 1

D(0, 0) A D(1, 1)0 Rac Conformal scalar V(0, 0)/D(2, 0)

D(1
2 ,

1
2)0 Di Conformal spinor (V 1

2
⊗ 1)⊕ (1⊗ V 1

2
)

D(1, 1)0 U(1)⊗2 Chern-Simons Chiral bosons (V1 ⊗ 1)⊕ (1⊗ V1)

D(1, 1)0 A D(2, 0) Maxwell field Conserved current V(1, 1)0/D(2, 0)

D(s, s)0 Massless spin-s field Conserved spin-s current (Vs ⊗ 1)⊕ (1⊗ Vs)
D(1− s, s− 1) Killing tensor Conformal Killing tensor (Ds−1 ⊗ 1)⊕ (1⊗Ds−1)

Table 1. List of relevant so(2, 2) modules and their field-theoretical interpretations.

The corresponding character reads

χ
so(2,2)
D(s,+s)(z, z̄) =

zs

1− z
, χ

so(2,2)
D(s,−s)(z, z̄) =

z̄s

1− z̄
. (4.35)

For s > 1, the parity-invariant module D(s, s)0 = V(s, s)0/V(s + 1, s − 1)0 describes a

conserved spin-s conformal current in d = 2 dimensions or, equivalently, a massless spin-

s AdS3 field. Their holomorphic decomposition as a direct sum, D(s,+s) ⊕ D(s,−s),
reflects the standard lore that massless fields do not have propagating degrees of freedom

in three dimensions. In this sense one may consider all these fields as spin-s singletons (as

pointed out in e.g. [8, 74]). For s = 1, there is a subtlety in the interpretation: the parity-

invariant combination of the two irreducible modules, D(1, 1)0 = D(1,+1)⊕D(1,−1), can

be obtained as the quotient V(1, 1)0/
(
2D(2, 0)

)
, whereas the quotient

Max := V(1, 1)0 /D(2, 0) , (4.36)

which would be the analogue of the higher-dimensional case of spin-1 massless field, is

isomorphic to the reducible module D(1, 1)0 A D(2, 0).13 The former module corresponds

to the U(1) × U(1) Chern-Simons theory whereas the latter module corresponds to the

Maxwell theory. The latter is Hodge dual to a massless scalar in three dimensions without

zero-mode. In group-theoretical terms, this equivalence translates into the isomorphisms

V(0, 0) = D(0, 0) A Max = Rac A D(2, 0) , (4.37)

since Max = D(1, 1)0 A D(2, 0) and Rac = D(0, 0) A D(1, 1)0.

The list of the relevant parity-invariant so(2, 2) modules and their field-theoretical

interpretations are summarized in table 1. Note that we also included the finite-dimensional

irreducible modules D(1− s, s− 1) = (Ds−1⊗ 1)⊕ (1⊗Ds−1) describing conformal Killing

tensors of rank s− 1.

Flato-Fronsdal theorem. Given the identities,

∞∑
s=2

χ
so(2,2)
D(s,s)0

(z, z̄) =

(
z

1− z

)2

+

(
z̄

1− z̄

)2

, (4.38)

13The notation U = V A W indicates thats U is the semidirect sum of the modules V and W thereby

indicating that the W is a submodule of U and that V = U/W .
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and
∞∑
s=1

χ
so(2,2)
D(s,s)0

(z, z̄) =

(
z

1
2

1− z

)2

+

(
z̄

1
2

1− z̄

)2

, (4.39)

it is tempting to write the Flato-Fronsdal theorem for so(2, 2) as(
χ
so(2,2)
D(1,1)0

(z, z̄)
)2

= 2χ
so(2,2)
D(2,0) (z, z̄) +

∞∑
s=2

χ
so(2,2)
D(s,s)0

(z, z̄) , (4.40)

and (
χ
so(2,2)
Di (z, z̄)

)2
= 2χ

so(2,2)
D(1,0) (z, z̄) +

∞∑
s=1

χ
so(2,2)
D(s,s)0

(z, z̄) . (4.41)

The equation (4.41) is consistent with the generalized Flato-Fronsdal theorem in general

dimensions [8], while the case (4.40) is consistent with the tensor product of spin-1 singleton,

namely the type-C case, in general dimensions [11]. In fact, the Flato-Fronsdal theorem in

the scalar case is rather(
χ
so(2,2)
Rac (z, z̄)

)2
=
[
1 + χ

so(2,2)
D(1,1)0

(z, z̄) + χ
so(2,2)
D(2,0) (z, z̄)

]
+
[
χ
so(2,2)
D(1,1)0

(z, z̄) + χ
so(2,2)
D(2,0) (z, z̄)

]
+
∞∑
s=2

χ
so(2,2)
D(s,s)0

(z, z̄), (4.42)

where the scalar field (i.e. the first term between squared brackets) is described by the

reducible module V(0, 0) and contains a non-normalizable zero-mode, and the spin-1 field

(i.e. the second term between squared brackets) corresponds to Maxwell theory. This

version of Flato-Fronsdal theorem has been considered in [22] where the IR divergence

caused by the zero-mode has been thrown away.

Let us consider now the tensor product of two singletons of spin s and s′. For the

same chiralities, the d = 1 formula (4.8) implies that the tensor product decomposes into

the direct sum of all massless fields of spin σ > s+ s′ and of chirality ± as

χ
so(2,2)
D(s,±s) χ

so(2,2)
D(s′,±s′) =

∞∑
σ=s+s′

χ
so(2,2)
D(σ,±σ) . (4.43)

For the opposite chiralities, the tensor product reduces to a single massive field of spin

s− s′ and of minimal energy s+ s′ :

χ
so(2,2)
D(s,+s) χ

so(2,2)
D(s′,−s′) = χ

so(2,2)
D(s+s′,s−s′) . (4.44)

Collecting the previous decompositions, we can write the tensor product of two parity-

invariant spin-s and spin-s′ singletons, for s 6= s′ as

χ
so(2,2)
D(s,s)0

(z, z̄)χ
so(2,2)
D(s′,s′)0

(z, z̄) = χ
so(2,2)
D(s+s′,|s−s′|)0

(z, z̄) +

∞∑
σ=s+s′

χ
so(2,2)
D(σ,σ)0

(z, z̄) , (4.45)

and for s = s′ 6= 0 as(
χ
so(2,2)
D(s,s)0

(z, z̄)
)2

= 2χ
so(2,2)
D(2s,0)(z, z̄) +

∞∑
σ=2s

χ
so(2,2)
D(σ,σ)0

(z, z̄) , (4.46)

which, in particular, reproduces the results for the Di in (4.41) and for the spin-1 singleton

in (4.40).
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Twisted Flato-Fronsdal theorem. The finite-dimensional irreps of so(4) are char-

acterised by weights (s1, s2) where s1 and |s2| are both non-negative integers (or both

half-integers) but s2 can be negative. It is isomorphic to the tensor product of two so(3)

finite dimensional modules, D s1+s2
2

⊗D s1−s2
2

. In terms of the characters, this is

χ
so(4)
(s1,s2)(q, x) = χ

so(3)
s1+s2

2

(z)χ
so(3)
s1−s2

2

(z̄) , (4.47)

and in particular,

χ
so(4)
(s−1,s−1)(q, x) = χ

so(3)
s−1 (z) , χ

so(4)
(s−1,1−s)(q, x) = χ

so(3)
s−1 (z̄) . (4.48)

The characters of the chiral spin-s anti-singletons read

χ
so(2,2)

D(s,+s)
(z) = χ

so(2,2)
D(s,+s)(z

−1) , and χ
so(2,2)

D(s,−s)
(z̄) = χ

so(2,2)
D(s,−s)(z̄

−1) . (4.49)

The formula (4.15) implies the identities:

2χ
so(2,2)
D(s,+s)(z)χ

so(2,2)

D(s,+s)
(z) =

∞∑
σ=1

χ
so(4)
(σ−1,σ−1)(z) ,

2χ
so(2,2)
D(s,−s)(z̄)χ

so(2,2)

D(s,−s)
(z̄) =

∞∑
σ=1

χ
so(4)
(σ−1,1−σ)(z̄) , (4.50)

which can be seen as the twisted Flato-Fronsdal in the chiral (or antichiral) sector.

Notice however that the massless fields having the Killing tensors D(σ − 1,±(σ − 1))

with σ = 1, . . . , 2s− 1 are not present in the field content given by the Flato-Fronsdal

theorem (4.46). In fact, these additional modules can be factorized as

2s−1∑
σ=1

χ
so(4)
(σ−1,±(σ−1)) =

(
χ
so(4)
(s−1,±(s−1))

)2
= χ

so(4)
(s−1,±(s−1))χ

so(4)

(s−1,±(s−1))
, (4.51)

and can be interpreted as the endomorphism algebra of the finite-dimensional module

D(s−1, s−1) = Ds−1⊗1 (or, respectively, D(s−1, 1−s) = 1⊗Ds−1). This reflects that the

massless spin-s module D(s, s) = Vs⊗1 appears as a submodule of V(1−s, 1−s) = V1−s⊗1,

whose irreducible part corresponds to Ds−1 = V1−s/Vs. The appearance of the submodule

should be related to the fact that the spin-s singletons (for s > 1) possess gauge symmetries.

We will see in the next section that a similar phenomenon takes place for higher-spin

singletons in d+ 1 = 5 dimensions.

Let us now consider the twisted Flato-Fronsdal theorem for the type-A and type-B

models. We note first that the Rac and Di characters satisfy

χ
so(2,2)

Rac/Di
(z, z̄) = χ

so(2,2)
Rac/Di(z

−1, z̄−1) = −χso(2,2)
Rac/Di(z, z̄). (4.52)

For the Di module, the above is due to the symmetry property of χ
so(2,2)

D( 1
2
,± 1

2
)
. For the Rac

module, this is possible only when we include the zero-mode. By taking the product of
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singleton and anti-singleton characters, we obtain

χ
so(2,2)
Rac (z, z̄)χ

so(2,2)

Rac
(z, z̄) = −

(
1 +

z

1− z
+

z̄

1− z̄

)2

,

χ
so(2,2)
Di (z, z̄)χ

so(2,2)

Di
(z, z̄) = −

(
z

1
2

1− z
+

z̄
1
2

1− z̄

)2

. (4.53)

Analogously to the higher dimensional cases, we take the symmetrization prescription. The

exchange q ↔ x translates into (z, z̄)↔ (z, 1/z̄) according to the definition (4.27). Explicit

computation leads to

χRac(z, z̄)χRac(z, z̄) + χRac(z, z̄
−1)χRac(z, z̄

−1) = −1− 2 z

(1− z)2
− 2 z̄

(1− z̄)2
,

χDi(z, z̄)χDi(z, z̄) + χDi(z, z̄
−1)χDi(z, z̄

−1) = − 2 z

(1− z)2
− 2 z̄

(1− z̄)2
, (4.54)

where we suppressed the superscript so(2, 2) for compactness of the expressions. Comparing

these results with the so(4) characters, we find

χ
so(2,2)
Rac (q, x)χ

so(2,2)

Rac
(q, x) + χ

so(2,2)
Rac (x, q)χ

so(2,2)

Rac
(x, q)

= χ
so(4)
(0,0) (q, x) +

∞∑
s=2

χ
so(4)
(s−1,s−1)0

(q, x) , (4.55)

for the type-A model, and

χ
so(2,2)
Di (q, x)χ

so(2,2)

Di
(q, x) + χ

so(2,2)
Di (x, q)χ

so(2,2)

Di
(x, q)

= 2χ
so(4)
(0,0) (q, x) +

∞∑
s=2

χ
so(4)
(s−1,s−1)0

(q, x) , (4.56)

for the type-B model. Here, the so(4) module (r, r)0 means the direct sum of the (r, r)

and (r,−r) modules. Remark that the type-A model contains the trivial module (0, 0)

once whereas the type-B model has it twice. They correspond to the Killing tensors of the

Maxwell and U(1)×U(1) Chern-Simons theory, respectively.

In AdS3/CFT2, the higher-spin holography [75–77] involves more models than in higher

dimensions: in fact, there is a one-parameter family of models which includes the type-A

and type-B models as particular points in the parameter space. This parameter (corre-

sponding to the ’t Hooft coupling in the AdS/CFT context) is often denoted by λ [70, 73]

(see also [78, 79]) (or sometimes ν [80, 81]) and the chiral part of the underlying higher

spin algebra is referred to as hs[λ] and its asymptotic extension as W∞[λ] [82–85]. The

former higher-spin algebra is the simple14 subalgebra of the Lie algebra (4.23):

gl[λ] = R⊕ hs[λ] , (4.57)

14Except for λ = N a positive integer, in which case it contains an infinite-dimensional ideal as described

in (4.58).
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which is the endomorphism algebra of the modules V 1±λ
2

(the two modules of different

signs have the same symmetry gl[λ], as the latter depends on λ only through its square

λ2). In the region 0 6 λ < 1, both modules are unitary and irreducible. However, when

λ becomes a positive integer, say N , then V 1+N
2

is a unitary irreducible submodule of the

non-unitary reducible module V 1−N
2

. Moreover, the higher-spin algebra decomposes as the

semidirect sum,15

hs[N ] = sl(N) A JN , (4.58)

where JN is an infinite-dimensional ideal of hs[N ] decomposing in irreducible modules of

so(2, 1) as

JN =
∞⊕
j=N

Dj , (4.59)

while sl(N) is a finite-dimensional higher-spin algebra which appears here as the symmetry

of the irreducible module DN−1
2

= V 1−N
2
/V 1+N

2
and which decomposes as

sl(N) =
N−1⊕
j=1

Dj . (4.60)

This allows to shed some light on the comments below the twisted Flato-Fronsdal (4.50) for

the spin-s singleton in the chiral sector: the character (4.51) corresponds to the symmetry

algebra sl(2s − 1) of the Killing tensor D(s − 1, s − 1) = D1−s ⊗ 1 while the symmetry

algebra of the d = 2 spin-s singleton D(s, s) = Vs ⊗ 1 is isomorphic to the ideal J2s−1 .

Following the discussion at the end of section 4.1 on gl[λ], one may say that the re-

sult (4.15) can be viewed as the twisted Flato-Fronsdal theorem relevant for the description

of hs[λ]. In this sense, for a generic value of λ , one (or a combination) of the modules

V 1±λ
2

ought to play the role of singleton. However, it does not seem possible to realize

this picture in terms of a parity-invariant twisted Flato-Fronsdal theorem, except for the

type-A and type-B models (cf (4.55)–(4.56) ) which correspond respectively to λ = 1 and

λ = 0 cases. Technically, it is because the character of the latter module does not have

property similar to (4.52). In fact, it is known that the underlying CFT has a free field

description only for λ = 0, 1.

15For a Lie algebra g and the following semidirect sum of g-modules U = V A W (where W ⊂ U is the

submodule and V = U/W is the quotient module), the algebra A := U(g)/Ann(U) ⊂ End(U) preserves the

submodule W (i.e. AW ⊂W ). Moreover, A decomposes as a semidirect sum,

U(g)/Ann(U) = [U(g)/Ann(V ) ] A I ,

where I ⊂ A is the ideal spanned by the elements with image in W (i.e. I U ⊂W ). Notice that the latter

property also holds in the simpler case when U, V and W are vector spaces (not necessarily with a g-module

structure) in the sense that the subalgebra A ⊂ End(U) of endomorphisms of U preserving the subspace

W decomposes as a semidirect sum, A = End(V ) A I, where I := A ∩Hom(U,W ).
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5 Extensions and exceptions

5.1 Type A`

Let us generalize the previous analysis to the type-A` partially-massless higher-spin the-

ory [9, 86–89]. This family of theories, parametrized by a positive integer `, involves

not only infinitely many massless fields but also partially-massless fields with odd depth

t = 1, 3, . . . , 2`−1. Its higher-spin algebra contains the corresponding Killing tensors, given

by so(2 + d) Young diagrams of the form [9, 90],

s− 1
s− t

(5.1)

for odd t = 1, 3, . . . , 2`−1 and integer s = t, t+1, . . . The type-A` partially-massless higher-

spin gravity in d + 1 dimensions has been conjectured to be dual to the higher-derivative

scalar CFT in d dimensions with the polywave equation,

�` φ = 0 , (5.2)

and the partially massless higher-spin algebra is the algebra of symmetries of the above

equation. In other words, it is the endomorphism algebra of the solution space of (5.2),

as showed in [91] for ` = 2 and generalized to arbitrary values of ` in [92] and [93]. This

space carries an irreducible (but non-unitary for ` > 2) representation,

Rac` := D
(
d− 2`

2
,0

)
= V

(
d− 2`

2
,0

)
/V
(
d+ 2`

2
,0

)
, (5.3)

of the conformal algebra so(2, d). Its character reads

χ
so(2,d)
Rac`

(q,x) = qd/2
(
q−` − q`

)
Pd(q,x) . (5.4)

Using the property (3.7), this can be rewritten as

χ
so(2,d)
Rac`

(q,x) =

∞∑
s=0

`−1∑
k=0

q
d−2`

2
+s+2k χso(d)

s (x) =

∞∑
s=0

2`−1∑
t=1,3,...

q
d−2`

2
+s+t−1 χso(d)

s (x) . (5.5)

The weight diagram of this representation can be immediately read off from the above

formula, and is composed of ` lines16 similar to the one constituting the weight diagram of

the original Dirac singleton (recovered in the case ` = 1) as depicted in figure 2.

To derive, in the partially massless case, a twisted-Flato-Fronsdal theorem analogous

to (3.19), we begin with the formula (3.8) applied to (s− 1, s− t) :

χ
so(2+d)
(s−1,s−t)(x) =

r∑
k=0

(
x1−s
k + (−1)d xs+d−1

k

)
χ
so(d)
s−t (xk)Pd(xk,xk) . (5.6)

16For this reason, Rac` is sometimes referred to as “multipleton” [7], “`−lineton” [18] or “multi-

lineton” [10].
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×

· · ·
· · ·

· · ·
· · ·

Figure 2. Weight diagram of the scalar, order `, singleton (blue crosses) and of the scalar, order

`, anti-singleton (red crosses).

The summand of the above series satisfy

2`−1∑
t=1,3,...

∞∑
s=t

(
x1−s
k + (−1)d xs+d−1

k

)
χ
so(d)
s−t (xk) = (x−`k − x

`
k)(x

`
k − x−`k )Pd(x−1

k ,xk) , (5.7)

where both of the properties (3.6) and (3.7) are used for the derivation with the

same subtleties related to convergence as in the previous sections. Collecting these re-

sults, we finally obtain the twisted-Flato-Fronsdal theorem for type-A` partially massless

higher-spin theory:

r∑
k=0

χ
so(2,d)
Rac`

(xk,xk)χ
so(2,d)

Rac`
(xk,xk) =

2`−1∑
t=1,3,...

∞∑
s=t

χ
so(2+d)
(s−1,s−t)(x0,x) . (5.8)

This result agrees with the collection of Killing tensors (5.1) and, thus, with the Flato-

Fronsdal theorem for type-A` theory.

5.2 Type B`

Similarly to the type-A` case, one can consider the partially-massless extension of the type-

B higher-spin algebra as the symmetry algebra of the higher-order spinor singleton that

we will denote Di`, corresponding to the module:

D
(
d+ 1− 2`

2
,
1

2

)
=
V(d+1−2`

2 , 12)

D(d−1+2`
2 , 12)

, (5.9)
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with the character:

χ
so(2,d)
Di`

(q,x) = q
d+1−2`

2 (1− q2`−1)χ
so(d)
1
2

(x)Pd(q,x) . (5.10)

This corresponds to a spin- 1
2 conformal field ψ, with conformal weight d+1−2`

2 (non-unitary

for ` > 2 and corresponding to the Di for ` = 1) subject to the higher-order Dirac equation:

/∂
2`−1

ψ = 0 . (5.11)

The spectrum of possible bilinears in this fundamental field making up the currents of the

type-B` boundary theory was studied in [10, 94] and contains totally symmetric as well

as “hook-shaped” partially-conserved currents of all spins (see [95–98] for more details on

generic mixed-symmetry partially massless fields and [99] for the ones relevant here).

Notice that in odd d + 1 bulk dimensions, these higher-order singletons can also be

chiral as their unitary counter-part, i.e. one can consider the modules:

Di`± := D
(
d+ 1− 2`

2
,

1

2±

)
=
V
(
d+1−2`

2 , 1
2±
)

D
(
d−1+2`

2 , 1
2∓
) , (5.12)

whose character read:

χ
so(2,d)
Di`±

(q,x) := q
d+1−2`

2

(
χ
so(d)
1
2±

(x)− q2`−1χ
so(d)
1
2∓

(x)

)
Pd(q,x) . (5.13)

We will however only consider the parity-invariant singleton, i.e. Di` := Di`+ ⊕ Di`−, so

as to be able to treat both the odd and even dimensional cases on an equal footing. The

only subtlety to keep in mind when reading the decomposition hereafter is that for d = 2r,

all diagrams of maximal height (namely r + 1 for so(2 + d)) come with both chiralities,

whereas all other diagrams come with a multiplicity 2.

Using the fact that the character of this higher-order singleton can be expanded as

χ
so(2,d)
Di`

(q,x) =

2(`−1)∑
k=0

∞∑
s=0

q
d+1−2`

2
+s+k χ

so(d)(
s+ 1

2
, 1
2

r−1
)(x) , (5.14)

and after a calculation similar to that of the previous section, one can show that the tensor

product of the Di` singleton and its anti-singleton can be decomposed as

r∑
k=0

χ
so(2,d)
Di`

(xk,xk)× χ
so(2,d)

Di`
(xk,xk)

=
2`−1∑
t=1

[
χ
so(2+d)
t−1 (x0,x) +

∞∑
s=t+1

r−1∑
m=0

χ
so(2+d)
(s−1,s−t,1m)(x0,x)

]

+

2`−2∑
t=1

∞∑
s=t+1

r−1∑
m=0

χ
so(2+d)
(s−1,s−t,1m)(x0,x) . (5.15)

Notice that the last triple sum in the above decomposition is absent for ` = 1, in which

case the second line reproduces the spectrum of the type-B higher-spin algebra discussed

in the previous subsection (whereas the last line identically vanishes).
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Notice also that the spectrum of the higher-spin theories so far considered — which

is obtained by decomposing the tensor product of the relevant singletons — is closely

related to the so(2 + d) decomposition of the underlying higher-spin algebra: the later

is composed of the Killing tensors of the all the (partially) massless fields appearing in

the former. We were able to recover these decompositions from the tensor product of the

relevant singleton and its anti-singletons for the type-A` (with ` > 1) and type-B higher-

spin algebras, however it seems to fail in the case of the type-B` algebra (with ` > 1).

Indeed, the spectrum of partially-massless fields appearing in the tensor product of two

Di` singletons reads [10]

Di⊗2
` ⊃

2`−1⊕
t=1

[
D
(
d− 1, t

)
⊕

∞⊕
s=t+1

r−1⊕
m=0

D
(
s+ d− t− 1, s, 1m

)]

+

2`−2⊕
t=1

[
D
(
d− 1, t

)
⊕

∞⊕
s=t+1

r−1⊕
m=0

D
(
s+ d− t− 1, s, 1m

)]
(5.16)

and in particular contains two infinite towers of totally symmetric partially massless fields,

of all depths t ranging from 1 to (respectively) either 2` − 1 or 2` − 2, and of all integer

spins s > t. It therefore seems that the set of Killing tensors corresponding to totally

symmetric partially-massless fields of spin s = t are missing for t = 1, 2, . . . , 2`− 2, i.e. one

would expect that the sum

2`−2∑
t=1

χ
so(2+d)
t−1 (x0,x) , (5.17)

should be added to (5.15) in order make up the spectrum of the type-B` higher-spin alge-

bras. This is the first discrepancy that we find in our proposal.

5.3 Type AB`

The type-AB` theory includes the cross terms of the Rac and Di `-linetons, on top of the

contents of the type-A` and type-B` theories. Since we have examined the latter cases in

the previous section, here we focus on the cross terms.

Using (3.33), the product of the character of a Rac singleton with that of the Di

anti-singleton can be written as

χ
so(2,d)
Rac`

(q,x)×χso(2,d)

Di`
(q,x) = q−

1
2 (1−q2`)Pd(q,x)

∞∑
s=0

2(`−1)∑
k=0

q−s−kχ
so(d)(
s+ 1

2
, 1
2

r−1
)(x) , (5.18)

whereas for Rac with Di as

χ
so(2,d)

Rac`
(q,x)×χso(2,d)

Di`
(q,x) = q

1
2 (1−q−2`)Pd(q−1,x)

∞∑
s=0

2(`−1)∑
k=0

qs+kχ
so(d)(
s+ 1

2
, 1
2

r−1
)(x) . (5.19)
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Their sum can be simplified to

χ
so(2,d)
Rac`

(q,x)× χso(2,d)

Di`
(q,x) + χ

so(2,d)

Rac`
(q,x)× χso(2,d)

Di`
(q,x)

=

2`−1∑
t=1

∞∑
s=t

[(
q−s+

1
2 + (−1)d qs+d−

1
2

)
χ
so(d)(
s−t+ 1

2
, 1
2

r−1
)(x)Pd(q,x) (5.20)

−
(
q−s+

1
2

+t + (−1)d qs+d−
1
2
−t
)
χ
so(d)(
s+ 1

2
, 1
2

r−1
)(x)Pd(q,x)

]
.

Symmetrizing the r + 1 variables of the above expression and using (3.8), we end up with

the following sum of so(2 + d) characters

r∑
k=0

(
χ
so(2,d)
Rac`

(xk,xk)× χ
so(2,d)

Di`
(xk,xk) + χ

so(2,d)

Rac`
(xk,xk)× χ

so(2,d)
Di`

(xk,xk)
)

=

2`−1∑
t=1

∞∑
s=t

χ
so(d+2)(
s− 1

2
,s−t+ 1

2
, 1
2

r−1
)(x0,x)−

2`−1∑
t=1

∞∑
s=0

χ
so(d+2)(
s−t− 1

2
,s+ 1

2
, 1
2

r−1
)(x0,x) . (5.21)

Using the symmetry property (3.10), the characters appearing in the second sum can be

expressed as characters of bona fide so(2 + d) Young diagrams, given that

χ
so(d+2)(
s−t− 1

2
,s+ 1

2
, 1
2

r−1
) = −χso(d+2)(

s− 1
2
,s−t+ 1

2
, 1
2

r−1
) . (5.22)

Moreover, due to the same property, the sum of the characters for which s < t identically

vanish. Hence, we end up with

r∑
k=0

χ
so(2,d)

(Rac`⊗Di`)⊕(Di`⊗Rac`)
(xk,xk) = 2

2`−1∑
t=1

∞∑
s=t

χ
so(d+2)(
s− 1

2
,s−t+ 1

2
, 1
2

r−1
)(x0,x) , (5.23)

which is consistent with the corresponding Flato-Fronsdal theorem, giving the decomposi-

tion of the tensor product Rac` ⊗Di` [10].

5.4 Type J

In even boundary dimensions d = 2 r, we have infinitely many singleton representa-

tions [100, 101] corresponding to

Sj± = D
(
j + r − 1, j±

)
with j± := (j, . . . , j,±j) . (5.24)

Their characters can be written in terms of the ones of the lowest-weight module V(∆, `) as

χSj±(q,x) =

r∑
m=0

(−1)m χ
V
(
j+r−1+m,jr−m,(j−1)m± )

)(q,x)

= qj+r−1 P2r(q,x)
r∑

m=0

(−q)m χso(2r)(
jr−m,(j−1)m±

)(x) . (5.25)
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Similarly to the other singletons that we have seen above, these higher-spin singletons for

even d satisfy the property,

χSj±(q,x) =
∞∑
s=0

qj+r+s−1 χ
so(d)

(s+j,jr−1
± )

(x) , (5.26)

from which the term “singleton” originated [102] (cf the historical comment in [103]). The

anti-singleton is the highest-weight counterpart of the singleton, and its character is

χSj±(q,x) = χSj±(q−1,x−1) =

{
χSj±(q−1,x) [even r]

χSj∓(q−1,x) [odd r]
. (5.27)

Remark here that the singleton character χSj±(q,x) does not have a simple property under

q → q−1, even in the parity-invariant case, contrarily to the previously treated Rac` and

Di` singletons. We now consider the product of these two characters:

χSjσ(q,x)χSjτ (q,x) = P2 r(q,x)
∞∑
s=0

r∑
m=0

qm−s(−1)m χ
so(2 r)
(jr−m,(j−1)mσ )

(x)χ
so(2 r)

(s+j,jr−1
τ )

(x) ,

(5.28)

where σ and τ stands for the signs ±. To proceed, we need to decompose the representation,(
jr−m, (j − 1)mσ

)
⊗
(
s+ j, jr−1

τ

)
, (5.29)

into so(2r) irreps. Unfortunately this task is quite cumbersome for generic value of

j, s,m, r , hence we focus on the particular case d = 4 in the rest of this section.

Type-J in five dimensions. For d = 4, the Flato-Fronsdal theorem has been derived

in [11] as

χSj± × χSj± =

2j∑
k=0

χ
so(2,4)
D(2j+2,k,±k)(q,x) +

∞∑
s=2j+1

χ
so(2,4)
D(s+2,s,±2j)(q,x) , (5.30)

χSj± × χSj∓ =

∞∑
s=2j

χ
so(2,4)
D(s+2,s)(q,x) . (5.31)

Let us consider the corresponding twisted Flato-Fronsdal theorem. The tensor prod-

uct (5.29) can be computed more easily thanks to the low dimensional isomorphism so(4) ∼=
so(3)⊕ so(3). Consequently, an so(4) irrep with highest weight (`1, `2) is equivalent to the

direct sum of two so(3) irreps with highest-weights j± := `1±`2
2 , and the tensor product of

two arbitrary representations of so(4) reduces to the tensor products of their two respective

so(3) factors, for which we can use the well-known Clebsch-Gordan decomposition (4.7).

Applying it to the formula (5.28) with σ = + and τ = − , we obtain

χSj+(q,x)χSj−(q,x) =

[
2j−2∑
s=0

q2−s χ
so(4)
(2j−1,−s−1)(x)−

2j−1∑
s=0

q1−s χ
so(4)
(2j−1,−s)(x)

+
∞∑
s=2j

q−s χ
so(4)
(s,−2j)(x)−

∞∑
s=2j

q2−s χ
so(4)
(s,−2j)(x)

]
P4(q,x) . (5.32)
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The same for σ = −, τ = + with variable q−1 gives

χSj+(q,x)χSj−(q,x) =

[
2j−2∑
s=0

qs+2 χ
so(4)
(2j−1,s+1)(x)−

2j−1∑
s=0

qs+3 χ
so(4)
(2j−1,s)(x)

+

∞∑
s=2j

qs+4 χ
so(4)
(s,2j)(x)−

∞∑
s=2j

qs+2 χ
so(4)
(s,2j)(x)

]
P4(q,x) . (5.33)

Symmetrizing the half sum of (5.32) and (5.33), we find

2∑
k=0

χSj±(xk,xk)χSj∓(xk,xk) =
∞∑

s=2j+1

χ
so(6)
(s−1,s−1,±2j)(x0,x) +

2j−2∑
s=0

χ
so(6)
(2j−2,s,±s)(x0,x) ,

(5.34)

where we have included also the product Sj− and Sj+ using the relation (5.27). Let

us comment about the two series in the right-hand-side of the equality. Since the so(6)

irrep (s−1, s−1, 2j) is carried by the Killing tensor of the spin-(s, 2j) gauge field, the first

infinite series matches well the content of gauge fields in the Flato-Fronsdal theorem (5.31).

However, this spectrum does not include the gauge fields corresponding to the second finite

series. In fact, the second series can be written as a perfect square:

2j−2∑
s=0

χ
so(6)
(2j−2,s,±s) =

(
χ
so(6)
(j−1,j−1,±(j−1))

)2
= χ

so(6)
(j−1,j−1,±(j−1)) χ

so(6)

(j−1,j−1,∓(j−1))
, (5.35)

where the so(6) Young diagrams (j−1, j−1,±(j−1)) are the Killing tensor of the spin-±j
singleton. This factorization is analogous to the d = 2 case (4.51). It is interesting to note

the identity,

χ
so(6)
(j−1,j−1,±(j−1))(q,x) = χSj±(q,x) + χSj∓(q,x) , (5.36)

which is again somewhat analogous to the two-dimensional one (4.5).

Similarly, the product of the character of a spin-j singleton of positive/negative chi-

rality with the character of its own anti-singleton can be decomposed into two different

forms: firstly,

χSj±(q,x)χSj±(q,x) =

=

[ ∞∑
s=0

q−s χso(4)
s (x)−

∞∑
s=0

q1−s χ
so(4)
(s+1)(x) +

2j−1∑
s=1

q2 χ
so(4)
(s,±s)(x)

]
P4(q,x) , (5.37)

and secondly,

χSj±(q,x)χSj±(q,x) = χSj±(q−1,x−1)χSj±(q−1,x−1)

=

[ ∞∑
s=0

qs+4 χso(4)
s (x)−

∞∑
s=0

qs+3 χ
so(4)
(s+1)(x) +

2j−1∑
s=1

q2 χ
so(4)
(s,±s)(x)

]
P4(q,x) . (5.38)
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After symmetrization, the half sum of these two decompositions yields

2∑
k=0

χSj±(xk,xk)χSj±(xk,xk) =

2j−1∑
s=1

χ
so(6)
(s−1,s−1)(x0,x) +

∞∑
s=2j

χ
so(6)
(s−1,s−1)(x0,x)

+

2j−1∑
s=1

2∑
k=0

χ
so(4)
(s,±s)(xk)x

2
k P4(xk,xk) . (5.39)

In the first line, the two-row Young diagrams (s−1, s−1) for s > 2j correspond to the Killing

tensors of the totally symmetric massless fields that appear in the tensor product of two

spin-j singletons of opposite chirality. The additional two-row diagrams for 1 6 s 6 2j− 1

can be interpreted as the result of the tensor product of the Killing tensors of the spin-±j
singleton and its dual:

χ
so(6)
(j−1,j−1,±(j−1))(x0,x)χ

so(6)

(j−1,j−1,±(j−1))
(x0,x) =

2j−2∑
k=0

χ
so(6)
(k,k)(x0,x) . (5.40)

If the second line of (5.39) were absent, the above result matches well the symmetry of

the d = 4 spin-j chiral singleton: the modules (s− 1, s− 1) with s > 2j correspond to the

ideal part of the symmetry, while the rest with 1 6 s 6 2j − 1 correspond to the quotient

part [40, 104, 105]. Since the character is not sensitive to the indecomposability, it is

natural that we get both the ideal and quotient algebras here. However, the second line

of (5.39) does include additional terms. We do not have clear interpretation of these terms.

Let us conclude this section with the twisted Flato-Fronsdal of the parity-invariant

spin-j singleton, having character χSj = χSj+ + χSj− . By collecting the previous re-

sults (5.34) and (5.39), we obtain

2∑
k=0

χSj (xk,xk)χSj (xk,xk)

= 2

∞∑
s=2j

χ
so(6)
(s−1,s−1)(x0,x) +

∞∑
s=2j+1

χ
so(6)
(s−1,s−1,2j)0

(x0,x)

+
(
χ
so(6)
(j−1,j−1,j−1)0

(x0,x)
)2

+

2j−1∑
s=1

χ
so(6)
(s−1,s−1)(x0,x) . (5.41)

Here the subscript 0 of the so(6) modules signals that they are the direct sum of the two

chiral representations. Remark that the terms in the second line and the first term in

the third line correspond to the symmetry algebra of the parity-invariant spin-j singleton.

The last term of the third line is from the additional terms in (5.39). By adding up two

contributions from χSj+ χSj+ and χSj− χSj− , such terms form the so(6) character written

above. These modules are in fact a part of the generators of the quotient higher-spin

algebra. However, the quotient algebra was already taken into account by the first term

in the third line. Therefore, these modules are additional and do not match with the

symmetry algebra of the spin-j singleton.
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6 Discussion

In this paper, we have explored the relation between the so(2, d) characters of the singletons

and the adjoint module of higher-spin algebras. Starting from the idea that the higher-spin

algebra is the endomorphism algebra of the singleton module, we attempted to derive the

character for the adjoint module as a product of the singleton character and its dual. We

first noticed that a simple product of the characters cannot reproduce the adjoint module

one because the latter is symmetric under the exchange of its arguments while the former

lacks this symmetry. This lead to our symmetrization prescription of the character product.

In section 2, we used the oscillator realization of the singleton and higher-spin algebra

in four dimensions to relate the extra term (arising from the symmetrization prescrip-

tion) in the character to an extra piece (with respect to the naive tensor product) in the

twisted Flato-Fronsdal theorem (2.48). In section 3, we showed that the symmetrization

prescription correctly reproduces the adjoint module character for the type-A and type-B

models in any dimension. This is based on several interesting identities of the so(2, d) and

so(2 + d) characters, which have their root in the Weyl character formula. In section 5,

the symmetrization prescription was shown to work for the higher-order singleton case of

type-A`. However, in the type-B` theory, we found that the symmetrized product misses a

few Killing tensor modules (5.17). Moreover, for the higher-spin singletons, aka the type-

J model, the symmetrized product contains more Killing tensor modules than necessary,

cf (5.41). In both counterexamples, the mismatch is by a finite number of modules.

The symmetrization prescription of the character arguments can be viewed as an ac-

tion of certain Weyl group elements. Remember that the Weyl group of a semisimple

Lie algebra maps a Cartan subalgebra to itself. Since the variables that we symmetrize

for the twisted Flato-Fronsdal theorem are associated to the Cartan generators, the sym-

metrization prescription can be induced by the action of the Weyl group quotiented by its

normalizer subgroup of the singleton and anti-singleton tensor product. Referring to such

quotient group asW ′, we can restate our prescription in terms of the modules themselves as

Adj =
⊕
w∈W ′

w(Sng)⊗ w(Sng) . (6.1)

In the case d = 3, this prescription reproduces the twisted Flato-Fronsdal theorem (2.51).

In the singleton module — and in all other lowest-weight modules — the energy generator

E plays a distinguished role with respect to the other Cartan generators, which belong

to the rotation subalgebra so(d). The action of the aforementioned Weyl group elements

symmetrize E with those other Cartan generators. Here, it is interesting to note that such

an action will map the singleton module to a non-unitary module.

In contrast, the Killing tensors are already symmetric under this action, hence should

not be “over-symmerized”. Maybe the application of the symmetrization prescription to

the type-J singleton mistreats this subtle point and is the reason for the appearance of the

anomalous finite-dimensional module (the last term in (5.41)).

To recapitulate, the heuristic prescription of symmetrization of the character argu-

ments works surprisingly well for type-A and type-B models, as well as type-A`, but we

– 41 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
9

also found some finite-dimensional discrepancy when the underlying singleton module is

a non-standard one and has more complicated structure. This clearly suggests that our

prescription should have a more refined meaning and asks for further investigations. One

direction worth exploring would be to analyze the type-A (or beyond: type-B, type-C,

etc) higher-spin algebra as the quotient of the universal enveloping algebra of so(2, d) by

the Joseph ideal (or, respectively, more complicated primitive ideals). By comparing the

basis of such quotient space with the lowest-weight module structure, we should be able to

identify the origin of the symmetrization and understand the finite-dimensional mismatch

in the cases beyond type-B. However, such a work is beyond the scope of the current

investigation and will be explored elsewhere.
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A Generalized Verma modules

Recall that the usual commutation relations of so(2, d) read

[MAB,MCD] = i
(
ηBCMAD − ηACMBD − ηBDMAC + ηADMBC

)
, (A.1)

where A,B, . . . ,= 0, 0′, 1, . . . , d, the generators are antisymmetric and Hermitian, MAB =

M †AB = −MBA, and η := diag(−1,−1, 1, . . . , 1). We define

E := M0′0 , L+
a := M0a − iM0′a , L−a := M0a + iM0′a , (A.2)

where a, b = 1, . . . , d . In terms of these generators, the above commutation relations (A.1)

can be rewritten:

[E,L±a ] = ±L±a , [L−a , L
+
b ] = 2

(
iMab + δabE

)
, [Mab, L

±
c ] = 2 i δc[bL

±
a] , (A.3)

together with the so(d) subalgebra commutation relations

[Mab,Mcd] = i
(
δbcMad − δacMbd − δbdMac + δadMbc

)
. (A.4)

The so(2, d) generalized Verma modules V(∆, `) considered in this work are the modules

induced from finite-dimensional modules V[∆; `] of the parabolic subalgebra spanned by

E,Mab and L−c as follows:
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• The finite-dimensional module V[∆; `] carries a representation of so(d) with highest

weight ` = (`1, . . . , `r) where r = [d2 ] is the rank of so(d) and a (one-dimensional)

representation of the so(2) algebra spanned by E characterized by the weight ∆. In

other words, every element of V[∆; `] is an eigenvector of E with eigenvalue ∆. Finally,

generators L−a are represented trivially on V[∆; `], i.e. the module is annihilated by

the action of these lowering operators.

• The generalized Verma modules V(∆, `) is freely generated by the action of the raising

operators L+
a , i.e. it is composed of elements of the form:

L+
a1
. . . L+

an V[∆; `] ∈ V(∆, `) for n ∈ N . (A.5)

B Weyl character formula

We make use of the notations introduced in section 3 and we will give a derivation of

formula (3.8) from the Weyl character formula. This formula expresses the character χλ of

a finite-dimensional, irreducible representation of a complex semi-simple Lie algebra g as

χλ =

∑
w∈W ε(w) ew(λ+ρ)−ρ∏

α∈Φ+
(1− e−α)

, (B.1)

where λ is the highest-weight labeling the representation, W is the Weyl group of g, ε(w) is

the signature of a Weyl group element and ρ := 1
2

∑
α∈Φ+

α is the Weyl vector of g defined

as the half-sum of all the positive roots (represented by the set Φ+) of g. We are interested

in g = so(2 + d), for which the Weyl group is W ∼= Sr+1 n (Z2)r+1 for d = 2r + 1 and

W ∼= Sr+1 n (Z2)r for d = 2r. In other words, the Weyl group acts as the semi-direct

product of the permutation group of r+1 elements with a group of “sign flips” on the r+1

components of an so(2 + d) weight. More concretely, an element w ∈ W of the Weyl group

first flips the sign of a number of components of the so(2 + d) weight (an arbitrary number

of components for d = 2r + 1 and only an even number for d = 2r) and then permutes

these r + 1 components.

Formally, Lie algebra characters are maps from the weight space of the algebra (which

is isomorphic to the dual of the Cartan subalgebra h ⊂ g) to the field of complex numbers:

χλ : h∗ → C . (B.2)

The evaluation of expression (B.1) on an arbitrary weight µ is defined through

eλ(µ) := e(λ, µ) , (B.3)

where ( , ) denotes the Killing form of g, which is simply the Euclidean inner product on

the weight space, h∗ ∼= Rr+1 for so(2 + d). As a consequence, the formula (B.1), when

evaluated on a weight µ, reads

χλ(µ) =

∑
w∈W ε(w)e(w(λ+ρ)−ρ, µ)∏
α∈Φ+

(
1− e−(α, µ)

) . (B.4)
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The Weyl character formula tells us that in order to compute the character of a finite-

dimensional, highest-weight irreducible representation of a complex semi-simple Lie algebra

g, we should (i) compute the product over the positive roots
∏
α∈Φ+

1
1−e−α , and then (ii)

apply the whole Weyl group to the highest-weight λ shifted by the Weyl vector ρ. In the

orthonormal basis ek (with k = 0, . . . , r) of Rr+1, the set of positive roots of so(2 + d) is

given by

• When d = 2r,

Φ+ =
{
ei ± ej with 0 6 i < j 6 r

}
; (B.5)

• When d = 2r + 1,

Φ+ =
{
ei ± ej with 0 6 i < j 6 r

}
∪
{
ek with k = 0, . . . , r

}
. (B.6)

In the orthonormal basis, the components ρk of the Weyl vector read:

ρk =
d

2
− k , k = 0, 1, . . . , r . (B.7)

Notice that we have shifted the components numbering on purpose, so that all the object

defined above which do not have a 0th component can be reinterpreted as the same objects

for the so(d) subalgebra. In other words, the components ρa for a = 1, . . . , r are those of

the Weyl vector of so(d), and the positive roots previously enumerated which do not involve

the unit vector e0 make up the positive root system of so(d) that we will denote Φ
so(d)
+ .

Using (B.5) and (B.6), we can express the Weyl denominator of (B.1) for so(2 + d) in

terms of the Weyl denominator of so(d) as

D
so(2+d)
Weyl (µ) :=

∏
α∈Φ+

1

1− e−(α,µ)
. (B.8)

In even dimensions, d = 2r, it becomes

D
so(2+2r)
Weyl (µ) =

r∏
k=1

1

(1− e−(e0,µ)e−(ek,µ))(1− e−(e0,µ)e(ek,µ))

∏
α∈Φ

so(2r)
+

1

1− e−(α,µ)
(B.9)

=

r∏
k=1

1

(1− x−1
0 x−1

k )(1− x−1
0 xk)

∏
α∈Φ

so(2r)
+

1

1− e−(α,µ)
(B.10)

= P2r(x
−1
0 ,x)D

so(2r)
Weyl (µ) , (B.11)

where we defined the formal variables xk := eµk for k = 0, 1, . . . , r and P2r(x0,x) is the

function defined in (3.4). In odd dimensions, d = 2r + 1, a similar computation — taking

into account the additional root e0 ∈ Φ+\Φso(d)
+ with respect to the previous case — yields
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the same final result:

D
so(3+2r)
Weyl (µ) =

1

1− e−(e0,µ)

r∏
k=1

1

(1− e−(e0,µ)e−(ek,µ))(1− e−(e0,µ)e(ek,µ))
(B.12)

×
∏

α∈Φ
so(2r+1)
+

1

1− e−(α,µ)

= P2r+1(x−1
0 ,x)D

so(2r+1)
Weyl (µ) . (B.13)

Let us define

Cλ :=
eλ∏

α∈Φ+
(1− e−α)

, (B.14)

as well as the affine action of a Weyl element w on a weight λ:

w · λ := w(λ+ ρ)− ρ , (B.15)

where w(λ) still denote the linear action of the Weyl element w on the weight λ. Then we

can rewrite the Weyl character formula as

χλ =
∑
w∈W

ε(w) Cw·λ . (B.16)

It is furthermore possible to show that the following identity holds.

ε(w) Cw·λ = w
(
Cλ
)
, (B.17)

and therefore (B.1) can be recasted as

χλ =
∑
w∈W

w
(
Cλ
)
, (B.18)

where the notation w
(
Cλ
)

represents the action of the reflection w on the variables which

the final character depends on, i.e. µ. More concretely, in the case of g = so(2+d) of interest

for us, the action of a generic element w ∈ W on a weight λ is to first flip the sign of a

number of components of λ and then to permute those components. To each component

of the weight µ, we associated a formal variable, denoted above xk with k = 0, . . . , r for

the components of an so(2 + d) weight, which carries this component as an exponent. As

consequence, in the character formula the action of w on a weight can be transfered as

an operation on the variables xk: a sign flip of the ith component of a weight can be

equivalently represented as sending the corresponding variable xi to its inverse x−1
i , and

the permutation of several components, say the ith and the jth, of a weight are represented

by the same permutation of the corresponding variables xi and xj . With that in mind,

we can simplify (B.1) by first summing on all elements of the Weyl group of so(d) (which

we will denote Wso(d)), i.e. those reflections acting only on the last r variables xi with

i = 1, . . . , r. Using definitions (B.8) and (B.14) as well as formulae (B.11) and (B.13), we

can write

Cso(2+d)
λ (x0,x) = x`00 C

so(d)
` (x)Pd(x−1

0 ,x) (B.19)
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where `0 and ` ≡ (`1, . . . , `r) are respectively the 0th and last r components of the so(2+d)

highest weight λ = (`0, `1, . . . , `r). Considering that the function Pd(x−1
0 ,x) is invariant

under any so(d) Weyl group element (it is unchanged under any permutation or inversion

of the variables xi with i = 1, . . . , r), acting with all elements of Wso(d) on Cso(2+d)
λ (x0,x)

will produce the character of the irreducible so(d) representation with highest weight ` out

of the factor Cso(d)
` (x):∑

w∈Wso(d)

w
(
Cso(2+d)
λ (x0,x)

)
= x`00 χ

so(d)
` (x)Pd(x−1

0 ,x) . (B.20)

After having accounted for elements of the subgroup Wso(d) of W, the character formula

reads:

χ
so(2+d)
λ (x0,x) =

∑
w∈W\Wso(d)

w
(
x`00 χ

so(d)
` (x)Pd(x−1

0 ,x)
)
. (B.21)

Hence we need to take into account the elements of the Weyl group of so(2 + d) that are

not part of the subgroup Wso(d), i.e. inversions of x0 and permutations between x0 and one

of the other variables xk for k = 1, . . . , r. Using (3.6), the character can finally be put into

the same form as (3.8):

χ
so(2+d)
λ (x0,x) =

r∑
k=0

(
x−`0k χ

so(d)
`−

(xk) + (−)dx`0+d
k χ

so(d)
`+

(xk)
)
Pd(xk,xk) , (B.22)

with

`± ≡ (`1, . . . , `r−1,±`r) , (B.23)

for d = 2r and `± = ` for d = 2r+1. Indeed, remember that the Weyl group for orthogonal

algebras is a semi-direct product of the group of sign flips with the group of permutations,

which is why (B.22) is composed a sum of two terms in which a variables xk is singled out:

those two terms correspond to the two possibilities for w ∈ W\Wso(d), either to invert x0

or not. The relative factor of (−xk)d between those two terms comes from the fact that

the function Pd(xk,xk) obey (3.6)

Pd(x−1
k ,xk) = (−xk)d Pd(xk,xk) . (B.24)

Finally, the change of chirality from `+ to `− in even dimensions is due to the fact that in

this case, any elements of the Weyl group has to be composed of an even number of sign

flip of the components of the weights. This means that if the 0th component is sent to

minus itself (equivalently, x0 is inverted), then another of the r remaining components has

to also be affected. As noticed above, the Pd(q,x) function is invariant under any inversion

of the variables x, however one can show that

χ
so(2r)
`+

(x1, . . . , x
−1
k , . . . , xr) = χ

so(2r)
`−

(x1, . . . , xk, . . . , xr) , (B.25)

i.e. inverting only one of the variables of the character of an so(2r) irreducible representation

produces the character of the so(2r) irreducible representation with opposite chirality,17

which explains formula (B.22).

17Notice that this does not contradict the fact that the character of any irreducible representation of a

compact Lie algebra g is invariant under its Weyl group, as in the case of so(2r) an element flipping the

sign of an odd number of components of the highest weight is not part of the Weyl group Wso(2r).
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