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Abstract
In this paper we substantiate the claim implicitly made in previous works that the relaxed micro-

morphic model is the only linear, isotropic, reversibly elastic, nonlocal generalized continuum
model able to describe complete band-gaps on a phenomenological level. To this end, we recapitulate
the response of the standard Mindlin-Eringen micromorphic model with the full micro-distortion gradient
∇P , the relaxed micromorphic model depending only on the CurlP of the micro-distortion P , and a
variant of the standard micromorphic model in which the curvature depends only on the divergence DivP
of the micro distortion. The Div-model has size-effects but the dispersion analysis for plane waves shows
the incapability of that model to even produce a partial band gap. Combining the curvature to depend
quadratically on DivP and CurlP shows that such a model is similar to the standard Mindlin-Eringen
model which can eventually show only a partial band gap.

Keywords: relaxed micromorphic model, band gaps, generalized continuum models, long wavelength limit,
macroscopic consistency, Cauchy continuum, homogenization, multi-scale modeling, parameter identification,
non-redundant model
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1 Introduction
The micromorphic model [5–8, 12] is a generalized continuum model suitable for the effective multi-scale-
description of heterogeneous media with strong contrast of the mechanical properties at the microscopic
level through the introduction of a characteristic length scale Lc. It allows to incorporate new effects
which extend the classical linear elastic description, e.g. size-effects, the dispersion of waves and the
possibility of micro-motions which are in principle independent of the macro motions. This model couples the
macroscopic displacement field u : Ω ⊂ R3 → R3 and an affine substructure deformation attached
at each macroscopic point encoded by the micro-distortion field P : Ω ⊂ R3 → R3×3.

The curvature contribution in the micromorphic model conceptually determines how the substructure
interacts with itself and the associated characteristic length is a measure of the range of action of such micro-
structure related deformation modes. In this sense we call the full-gradient contribution ‖∇P‖2 (or any other
curvature term essentially controlling ∇P ) of strong interaction type: neighboring substructures feel the
presence of each other, or, what is the same, the generated moment stresses depend on ∇P .

To the contrary, in the relaxed micromorphic model, the corresponding moment stresses depend only
on CurlP , therefore there is some freedom between particles but a connection of neighboring cells is still
possible thanks to tangent micro-interactions. Certain substructure deformations are energetically free (in
fact all compatible parts ∇ϑ in P are not taken into account) while the model remains reversibly elastic and
energy-conservative. We may call this a weak interaction. As a matter of fact, the wording relaxed is
motivated by this observation.

In the Div-model to be introduced below, a similar effect appears. The corresponding moment stresses
depend only on DivP . Therefore, substructure deformations of the type P = Curl ζ + ∇ϑ, where ζ :
R3×3 → R3×3 is arbitrary and ϑ : R3 → R3 satisfies ∆ϑ ≡ 0 are energetically free. This model is, hence, also
of weak-interaction type.

It is therefore intriguing that it is not simply weak versus strong interaction that determines the
possibility of band gaps but there is some further hidden mechanism in the relaxed micromorphic model
which, together with a positive Cosserat couple modulus µc > 0, is decisive for the ability to model complete
band gaps and still being nonlocal.

In further contributions we will provide more detailed arguments concerning the fact that the residual
freedom which is peculiar of the relaxed micromorphic model is a key feature for allowing band-gap behaviors.
In fact, internal variable models (i.e. models with no dependence on the derivatives of P at all) still allow the
description of complete band gaps [18,19], but they loose any information concerning non-locality. Non-local
effects are intrinsically present in micro-structured materials, even if in some particular cases their overall
effect can be, in a first approximation, neglected. Nevertheless, as far as the contrast of mechanical properties
between adjacent unit cells at the micro level becomes more pronounced, non local effects are sensible to
rapidly become non-negligible. In this optic, a model including non-locality is to be considered as the natural
choice for modeling the mechanical behavior of metamaterials.

This paper is now structured as follows. First, we introduce the relaxed micromorphic model with an
augmented curvature energy depending also on DivP . The governing equations are derived and the plane
wave ansatz is introduced to study wave propagation. Then we particularize the result for specific cases
and show the resulting dispersion curves for each of them. Finally, we provide for completeness the standard
Mindlin-Eringen micromorphic model together with its dispersion curves thus recognizing that it is equivalent
to a particular case of the augmented relaxed micromorphic model with DivP .

2 The relaxed micromorphic continuum with ‖CurlP‖2 and ‖DivP‖2

The relaxed micromorphic model [10, 11, 15, 16] has been introduced in 2013 in [16] and endows the
standard Mindlin-Eringen’s representation with more geometric structure by reducing the curvature energy
term to depend only on the second order dislocation density tensor α = −CurlP . Here, we additionally
consider also a curvature term depending on DivP . The strain energy density for the resulting micromorphic
continuum can be written as:
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W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(1)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µL2

c

2
‖CurlP‖2 +

µL2
d

2
‖DivP‖2︸ ︷︷ ︸

simple isotropic curvature

,

where all the introduced elastic coefficients are assumed to be constant. This decomposition of the strain
energy density, valid in the isotropic, linear-elastic case, has been proposed in [9, 15] where well-posedness
theorems have also been proved. It is clear that this decomposition introduces a limited number of elastic
parameters and we will show how this may help in the physical interpretation of these latter. Positive
definiteness of the potential energy implies the following simple relations on the introduced parameters

µe > 0, µc ≥ 0, 3λe + 2µe > 0, µmicro > 0, 3λmicro + 2µmicro > 0, µL2
c > 0, µL2

d > 0. (2)

We need to remark that this model variant is not strictly positive definite in the sense of the standard Mindlin-
Eringen model. One of the most interesting features of the proposed strain energy density is the reduced
number of elastic parameters which are needed to fully describe the mechanical behavior of a micromorphic
continuum. Indeed, each parameter can be easily related to specific micro and macro deformation modes.

Comparing classical linear elasticity with our new relaxed model for Lc, Ld → 0 we can offer an a priori
relation between µe, λe, µmicro and λmicro on the one side and the effective macroscopic elastic parameters
λmacro and µmacro on the other side that we call macroscopic consistency condition (see [1] for the fully
anisotropic case and [14] for the isotropic case)

µmacro :=
µmicro µe
µmicro + µe

, 2µmacro + 3λmacro :=
(2µmicro + 3λmicro) (2µe + 3λe)

(2µmicro + 3λmicro) + (2µe + 3λe)
. (3)

For µmicro →∞ we recover the Cosserat model or micropolar model which means that P ∈ so(3) and
for Lc → 0 we obtain classical linear elasticity with µmacro, λmacro from (3).

For comparison, the standard isotropic Mindlin-Eringen model with µc > 0 and curvature energy depend-
ing on ‖∇P‖2 tends to a second gradient model when µe, µc →∞.

The dynamical formulation is obtained defining the kinetic and strain energy densities of the considered
mechanical system and postulating a stationary action principle. For this, we introduce a micro-inertia
density contribution:

J (u,t, P,t) =
1

2
ρ ‖u,t‖2 +

1

2
η ‖P,t‖2, (4)

where η is the scalar micro-inertia density and ρ is the scalar mean density.
For us it is not at all surprising that the combination of Curl and Div in the curvature contribution at pos-

itive Cosserat couple modulus behaves similarly as does the full-micro gradient model. This is understandable
since after integration and imposing boundary conditions we have the well-known inequality [17]:

∃C+ > 0 ∀P ∈ C∞0 (Ω,R3×3) :

∫
Ω

‖CurlP‖2 + ‖DivP‖2dx ≥ C+(Ω)

∫
Ω

‖∇P‖2dx. (5)

Equation (5) means that ‖CurlP‖2 and ‖DivP‖2 considered point-wise are not equivalent to the full gradient
term ‖∇P‖2, but they become so after integration. Therefore, the Curl-Div-model effectively controls all
first derivatives of P . In consequence, the dispersion relations are similar, as can clearly be seen comparing
Figures 7 and 8 with Figures 1 and 2.

It should also be remarked that the well-posedness of the Div-model (Lc = 0) needs a strictly positive
Cosserat couple modulus µc > 0 since an inequality of the type:

∃C+ > 0 ∀P ∈ C∞0 (Ω,R3×3) :

∫
Ω

‖ symP‖2 + ‖DivP‖2dx ≥ C+(Ω)

∫
Ω

‖P‖2dx+ ‖DivP‖2dx (6)
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is not true. Then for µc > 0, there is no need for any additional inequality since the elastic energy density
bounds a priori ∫

Ω

‖P‖2 + ‖DivP‖2dx. (7)

Therefore, the corresponding suitable space is a tensor-valued H(Div)-Sobolev-space.
Both expressions DivP and CurlP can be used to formulate a complete anisotropic curvature energy.

This is possible since DivP and CurlP are not arbitrary collections of partial derivatives of P but satisfy
the transformation laws:

Curlξ P
#(ξ) = Q [ Curlx P (x)]QT , ξ = QTx, where P#(ξ) := QP (QT ξ)QT , (8)

Divξ P
#(ξ) = Q [Divx P (x)] ,

with respect to simultaneous rigid rotations Q of the spatial and referential frame [13, eq. (4.29) ]. Therefore
we may make the ansatz:

W (∇P ) =WCurl( CurlP ) +WDiv(DivP ) (9)

=
µL2

c

2

〈
Laniso CurlP, CurlP

〉
R3×3 +

µL2
c

2

〈
C̃aniso DivP,DivP

〉
R3 ,

where Laniso : R3×3 → R3×3 is a 4th order tensor with in general 45 independent coefficients and C̃aniso :
R3 → R3 (for isotropy C̃aniso has just 1 parameter [1]). In case of isotropy this can be significantly reduced
to:

W (∇P ) =
µL2

c

2

[
α1 ‖dev sym CurlP‖2 + α2 ‖ skew CurlP‖2 +

α3

3
( tr CurlP )

2
+ α4 ‖DivP‖2

]
. (10)

2.1 Governing equations
The Lagrangian density L for the augmented relaxed model is defined as follows:

L (u,t, P,t, ∇u , P, CurlP,DivP ) = J (u,t, P,t)−W (∇u , P, CurlP,DivP ) . (11)

In order to find the strong equations of motion we have to perform the first variation of the action functional

A [(u, P )] :=

∫
I

∫
Ω

L (u,t, P,t, ∇u , P, CurlP,DivP ) dx dt, (12)

where I = [a, b] is the time interval during which we observe the motion of our system. For the kinetic part
we compute

δ

∫
I

∫
Ω

J (u,t, P,t) dx dt =

∫
I

∫
Ω

[
Du,tJ (u,t, P,t) · δu,t +DP,tJ (u,t, P,t) · δP,t

]
dx dt (13)

=

∫
I

∫
Ω

1

2

[
Du,t

(
ρ
〈
u,t, u,t

〉)
· δu,t +DP,t

(
η
〈
P,t, P,t

〉)
· δP,t

]
dx dt

=

∫
I

∫
Ω

[
ρ
〈
u,t, δu,t

〉
+ η

〈
P,t, δP,t

〉]
dx dt

= ρ

∫
Ω

( 〈
u,t, δu

〉∣∣b
a
−
∫
I

〈
u,tt, δu

〉
dt

)
dx+ η

∫
Ω

( 〈
P,t, δP

〉∣∣b
a
−
∫
I

〈
P,tt, δP

〉
dt

)
dx.

So considering only the bulk part we find∫
Ω

∫
I

〈
− ρ u,tt, δu

〉
dt dx+

∫
Ω

∫
I

〈
− η P,tt, δP

〉
dt dx. (14)
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For the potential part we find

δ

∫
I

∫
Ω

Wdxdt =

∫
I

∫
Ω

[ 〈
D∇uW, δ∇u

〉
+
〈
DPW, δP

〉
+
〈
DCurlPW, δCurlP

〉
+
〈
DDivPW, δDivP

〉]
dx dt.

(15)

Having already evaluated the part
〈
D ∇uW, δ∇u

〉
+
〈
DPW, δP

〉
+
〈
DCurlPW, δCurlP

〉
in [11], we perform

the explicit calculation only for the term in DivP . So we have

δ

∫
I

∫
Ω

µL2
d

2
‖DivP‖2 dx dt =

∫
I

∫
Ω

µL2
d

2
δ ‖DivP‖2 dx dt =

∫
I

∫
Ω

µL2
d

〈
DivP, δDivP

〉
dx dt (16)

=

∫
I

∫
Ω

µL2
d

〈
DivP,Div δP

〉
dx dt.

with6 〈
DivP,Div δP

〉
= Div (DivP · δP )−

〈
∇DivP, δP

〉
(17)

that in index notation is

Pij,jδPih,h = (Pij,jδPih),h − Pij,jhδPih , (18)

we integrate by parts and find that

δ

∫
I

∫
Ω

µL2
d

2
‖DivP‖2 dx dt =

∫
I

∫
Ω

µL2
d

[
Div ( DivP · δP )−

〈
∇DivP, δP

〉]
dx dt (19)

=

∫
I

∫
∂Ω

µL2
d

〈
DivP · δP, n

〉
ds dt+

∫
I

∫
Ω

〈
− µL2

d∇DivP, δP
〉
dx dt,

where n is the unit normal field to the boundary. Considering only the kinetic energy associated to P and
the potential energy related to DivP we have∫

I

∫
Ω

(
1

2
η ‖P,t‖2 −

µL2
d

2
‖DivP‖2

)
dx dt (20)

and, with reference to equations (14) and (19), the bulk part of the first variation is∫
I

∫
Ω

( 〈
− η P,tt, δP

〉
−
〈
− µL2

d∇DivP, δP
〉)
dx dt =

∫
I

∫
Ω

〈
− η P,tt + µL2

d∇DivP, δP
〉
dx dt. (21)

Altogether, see also [11], the strong equations in the bulk are

ρ u,tt = Div [2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P )] ,

η P,tt = 2µe sym (∇u − P ) + λe tr (∇u − P )1+ 2µc skew (∇u − P ) (22)

− 2µmicro symP − λmicro tr (P )1− µL2
c Curl CurlP + µL2

d∇DivP︸ ︷︷ ︸
new augmented term

.

In our study of wave propagation in micromorphic media we limit ourselves to the case of plane waves
traveling in an infinite domain. We suppose that the space dependence of all introduced kinematic fields
are limited to the component x1 of x which is also the direction of propagation of the wave. Therefore we
look for solutions of (22) in the form:

u(x, t) = α ei(k x1−ω t) , α ∈ R3 , P (x, t) = β ei(k x1−ω t) , β ∈ R3×3 . (23)
6Here and in the sequel 〈·, ·〉 denotes the scalar product between two tensor of orders greater than one (e.g.

〈
A,B

〉
=

AijBij). Moreover a central dot stands for the simple contraction between two tensors of order greater than one. For example
(A · v)i = Aijvj . Finally we use Einstein convention of sum over repeated indexes if not differently specified.
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2.2 Decomposition of the equations of motion
Considering the system of PDEs found in (22), we can rewrite this system in a fashion more convenient for the
study of the propagation of plane waves in a homogeneous isotropic medium. Our approach consists always
in projecting the found relations in the three orthogonal sub vector spaces Sym (3) ∩ sl (3) , so (3) ,

〈
1
〉
. In

this way, a tensor X ∈ R3×3 is uniquely written by means of the Cartan-Lie decomposition as:

X = dev sym (X) + skew (X) +
1

3
tr (X)1 (24)

where

dev sym (X) =


XD X(12) X(13)

X(12) XD
2 X(23)

X(13) X(23) XD
3

 , skew (X) =


0 X[12] X[13]

−X[12] 0 X[23]

−X[13] −X[23] 0

 ,

(25)
1

3
tr (X)1 = XS1,

in which we set

XS =
1

3
(X11 +X22 +X33) , X[12] =

1

2
(X12 −X21) , X(12) =

1

2
(X12 +X21) ,

XD = X11 −XS , X[13] =
1

2
(X13 −X31) , X(13) =

1

2
(X13 +X31) , (26)

XD
α = Xαα −XS , α = 2, 3, X[23] =

1

2
(X23 −X32) , X(23) =

1

2
(X23 +X32) .

The components XD
2 and XD

3 are not independent, but are related by the following relation

XD
2 −XD

3 = XV = P22 − P33. (27)

In this way, applying the Cartan-Lie decomposition to the tensor X = symP in the first equation and to all
the tensors appearing in the second one, the equations (22) can be written as follows

ρ u,tt = Div [2µe sym (∇u − P ) + λe tr (∇u − P )1 + 2µc skew (∇u − P )] ,

η ( dev symP,tt) = 2µe dev sym (∇u − P )− 2µmicro dev symP − µL2
c dev sym ( Curl CurlP )

+ µL2
d dev sym (∇DivP ) ,

(28)

η ( skewP,tt) = 2µc skew (∇u − P )− µL2
c skew ( Curl CurlP ) + µL2

d skew (∇DivP ) ,

η
1

3
tr (P,tt)1 =

(
2µe + 3λe

3

)
tr (∇u − P )1−

(
2µmicro + 3λmicro

3

)
tr (P )1

− µL2
c

1

3
tr ( Curl CurlP )1+ µL2

d

1

3
tr (∇DivP )1,

where we have only five independent equations for the dev sym-part, three independent equations for the
skew-part and one independent equation for the spherical part.

If we demand that the kinematic fields u and P are plane waves in the x1 direction as indicated in (23),
we have equivalently the following expressions in index notation:

ui (x, t) = ui (x1, t) = αi e
i(kx1−ωt), (29)

Pij (x, t) = Pij (x1, t) = βij e
i(kx1−ωt).
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In this way, it is easy to derive the expression in components of the projected equations. With respect to the
article [11], we have to explicitly calculate only the new part in ∇DivP . We have that

∇DivP = ∇Div dev sym P +∇Div skew P +∇Div

(
1

3
tr (P )1

)
,

so

dev sym∇DivP = dev sym

(
∇Div dev sym P +∇Div skew P +∇Div

1

3
tr (P )1

)
,

skew∇DivP = skew

(
∇Div dev sym P +∇Div skew P +∇Div

1

3
tr (P )1

)
, (30)

1

3
tr (∇DivP )1 =

1

3
tr

(
∇Div dev sym P +∇Div skew P +∇Div

1

3
tr (P )1

)
1,

and finally, using the fact that P is assumed to depend only on the scalar space variable x1, we obtain

dev sym∇DivP =


2
3P

D
,11 + 2

3P
S
,11

1
2P(12),11 − 1

2P[12],11
1
2P(13),11 − 1

2P[13],11

1
2P(12),11 − 1

2P[12],11 − 1
3P

D
,11 − 1

3P
S
,11 0

1
2P(13),11 − 1

2P[13],11 0 − 1
3P

D
,11 − 1

3P
S
,11

 ,

skew∇DivP =
1

2


0 −P(12),11 + P[12],11 −P(13),11 + P[13],11

P(12),11 − P[12],11 0 0

P(13),11 − P[13],11 0 0

 , (31)

1

3
tr (∇DivP )1 =

1

3

(
PD,11 + PS,11

)
1.

Introducing the quantities7

cm =

√
µL2

c

η
, cd =

√
µL2

d

η
, cs =

√
µe + µc

ρ
,

cp =

√
λe + 2µe

ρ
, ωs =

√
2 (µe + µmicro)

η
, ωp =

√
2 (µe + µmicro) + 3 (λe + λmicro)

η
, (32)

ωr =

√
2µc
η
, ωl =

√
λmicro + 2µmicro

η
, ωt =

√
µmicro

η
,

the equations can be written as:
7Due to the chosen values of the parameters, which are supposed to satisfy (2), all the introduced characteristic velocities

and frequencies are real. Indeed it can be checked that the condition (3λe + 2µe) > 0 together with the condition µe > 0 imply
(λe + 2µe) > 0.
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• a set of three equations only involving longitudinal quantities:

ü1 = c2pu1,11 −
2µe
ρ

PD,1 −
3λe + 2µe

ρ
PS,1 , (33)

P̈D =
4

3

µe
η
u1,1 +

1

3
c2m P

D
,11 −

2

3
c2mP

S
,11 − ω2

s P
D +

2

3
c2d P

D
,11 +

2

3
c2d P

S
,11︸ ︷︷ ︸

new augmented terms

, (34)

P̈S =
3λe + 2µe

3η
u1,1 −

1

3
c2mP

D
,11 +

2

3
c2mP

S
,11 − ω2

p P
S +

1

3
c2d P

D
,11 +

1

3
c2d P

S
,11︸ ︷︷ ︸

new augmented terms

, (35)

• two sets of three equations only involving transverse quantities in the ξ-th direction, with ξ = 2, 3:

üξ = c2suξ,11 −
2µe
ρ

P(1ξ),1 +
η

ρ
ω2
rP[1ξ],1, (36)

P̈(1ξ) =
µe
η
uξ,1 +

1

2
c2m P(1ξ),11 +

1

2
c2m P[1ξ],11 − ω2

s P(1ξ) +
1

2
c2d P(1ξ),11 −

1

2
c2d P[1ξ],11︸ ︷︷ ︸

new augmented terms

, (37)

P̈[1ξ] = −1

2
ω2
r uξ,1 +

1

2
c2m P(1ξ),11 +

1

2
c2mP[1ξ],11 − ω2

r P[1ξ] −
1

2
c2d P(1ξ),11 +

1

2
c2d P[1ξ],11︸ ︷︷ ︸

new augmented terms

, (38)

• One equation only involving the variable P(23):

P̈(23) = −ω2
sP(23) + c2mP(23),11, (39)

• One equation only involving the variable P[23] :

P̈[23] = −ω2
rP[23] + c2mP[23],11, (40)

• One equation only involving the variable PV :

P̈V = −ω2
sP

V + c2mP
V
,11. (41)

In what follows we will refer to the dispersion curves stemming from the last three equations as "uncoupled
waves". This nomenclature has been chosen because in these equations each variable is not coupled to the
others, so that such waves propagate independently of the others. Due to the non-locality of the considered
micromorphic model, such modes, even if independent one from the other show a dispersive behavior which
is completely due to the existence of a characteristic length Lc. From a phenomenological point of view, this
means that such modes do not propagate at a constant speed since they are affected by what is occurring in
the adjacent cells. Such phenomenon is more intuitively understandable if one thinks to a strongly contrasted
medium.

3 Particularization for specific energies
In what follows we will present the results obtained with particular energies and the numerical values of the
elastic coefficients are chosen as in Table 1 if not differently specified.
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Parameter Value Unit
µe 200 MPa

λe = 2µe 400 MPa
µc = 5µe 1000 MPa
µmicro 100 MPa
λmicro 100 MPa
Lc 1 mm
ρ 2000 Kg/m3

η 10−2 Kg/m

Parameter Value Unit
λmacro 82.5 MPa
µmacro 66.7 MPa
Emacro 170 MPa
νmacro 0.28 −

Table 1: Values of the parameters used in the numerical simulations (left) and corresponding values of the
Lamé parameters and of the Young modulus and Poisson ratio as obtained with formula (3) (right).

We explicitly mention that the numerical values of the present parameters are chosen with the only
constraint of respecting positive definiteness of the strain energy density.

In particular, the value Lc = 1 mm is chosen as representative of the non-locality of the considered meta-
material. This means that Lc represents the distance at which the deformation of a unit cell is "sensed" by
the neighboring cells. Such characteristic length can be smaller than the size of the cell when the neighboring
cells are weakly influenced by what happens in the considered unit cell or can even be much larger than
the size of the unit cell for highly non-local metamaterials. Hence, Lc should not be a priori confused with
the characteristic size of the cell itself. This means that the value of Lc cannot be used to decide for which
wavelength the continuum model starts losing its physical meaning. Indeed, it is clear that for wavelengths
which are smaller than the unit cell a continuum model is not reasonable anymore, since the discreteness of
the metamaterial cannot be treated in an "averaged" sense. In this paper, we decide not to choose a specific
topology for the microstructure of the considered metamaterial, this being the object of future work. We
hence trace the dispersion diagrams by choosing the interval for the wave number k in such a way to disclose
the asymptotic properties of the curves. Whether the value k = 4/mm is such that the continuum model has
already lost is physical meaning or not would be intimately connected to the microstructural topologies.

3.1 The micromorphic model with ‖DivP‖2 and ‖CurlP‖2 (Lc = Ld 6= 0)
We consider now the model obtained considering Lc = Ld with energy:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(42)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µL2

c

2

(
‖DivP‖2 + ‖CurlP‖2

)
︸ ︷︷ ︸
augmented isotropic curvature

.

The dynamical equilibrium equations are:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (43)

− [2µmicro symP + λmicro tr(P )1] + µL2
c (∇ (DivP )− Curl CurlP )︸ ︷︷ ︸

Div∇P=∆P

.

Note that the structure of the equation is equivalent to the one obtained in the standard micromorphic model
with curvature 1

2‖∇P‖
2, see equation (50) in section 4.

We present the dispersion relations obtained with a non-vanishing Cosserat couple modulus µc > 0
(Figure 1) and for a vanishing Cosserat couple modulus µc = 0 (Figure 2). In all the figures we consider
uncoupled waves (a), longitudinal waves (b) and transverse waves (c). The nomenclature adopted is the
following: TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume
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optic, LA: longitudinal acoustic, LO1-LO2: 1st and 2nd longitudinal optic, TA: transverse acoustic, TO1-TO2:
1st and 2nd transverse optic.

(a) (b) (c)

Figure 1: Dispersion relations ω = ω(k) for the micromorphic model with ‖DivP‖2+‖CurlP‖2 and
non-vanishing Cosserat couple modulus µc > 0: only a partial band gap on the uncoupled waves can be
modeled.

(a) (b) (c)

Figure 2: Dispersion relations ω = ω(k) for the micromorphic model with ‖DivP‖2+‖CurlP‖2 and
vanishing Cosserat couple modulus µc = 0: no band gap at all.

We conclude that when considering the model with micromorphic medium with ‖DivP‖2 + ‖CurlP‖2
and vanishing Cosserat couple modulus µc, there always exist waves which propagate inside the considered
medium independently of the value of frequency even if considering separately longitudinal, transverse and
uncoupled waves. The only effect obtainable switching on the Cosserat couple modulus µc is to obtain a
partial band gap for the uncoupled waves.

3.2 The micromorphic model with only ‖DivP‖2 obtained as a special case of
the augmented relaxed model with Lc = 0

The isotropic micromorphic model with ‖DivP‖2 is obtained from the model with ‖CurlP‖2 and ‖DivP‖2
by considering Lc = 0 obtaining as standard energy:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(44)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µL2

d

2
‖DivP‖2︸ ︷︷ ︸

isotropic curvature

.
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The dynamical equilibrium equations are:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (45)

− [2µmicro symP + λmicro tr(P )1] + µL2
d∇ (DivP ) .

We present the dispersion relations obtained with a non vanishing Cosserat couple modulus µc > 0
(Figure 3) and for a vanishing Cosserat couple modulus µc = 0 (Figure 4). In the figures we consider
uncoupled waves (a), longitudinal waves (b) and transverse waves (c). TRO: transverse rotational optic,
TSO: transverse shear optic, TCVO: transverse constant-volume optic, LA: longitudinal acoustic, LO1-LO2:
1st and 2nd longitudinal optic, TA: transverse acoustic, TO1-TO2: 1st and 2nd transverse optic.

(a) (b) (c)

Figure 3: Dispersion relations ω = ω(k) for the micromorphic model with ‖DivP‖2 and non-vanishing
Cosserat couple modulus µc > 0: no band gap on the longitudinal and transverse waves can be modeled
and the uncoupled waves have fixed frequencies.

(a) (b) (c)

Figure 4: Dispersion relations ω = ω(k) for the micromorphic model with ‖DivP‖2 and vanishing
Cosserat couple modulus µc = 0: no band gap on the longitudinal and transverse waves can be modeled
and the uncoupled waves have fixed frequencies.

We can conclude that, when considering the micromorphic model with only ‖DivP‖2 for every value of
µc, there always exist waves which propagate inside the considered medium independently of the value of
the frequency. The uncoupled waves assume a peculiar behavior in which the frequency is independent of
the wavenumber k. This is due to the fact that cm = 0 in Eqs. (39), (40) and (41) so that the modes for
uncoupled waves become non-dispersive.
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3.3 The relaxed micromorphic model obtained obtained as a special case of the
augmented relaxed model with Ld = 0

The relaxed micromorphic model is obtained by the model with ‖CurlP‖2 and ‖DivP‖2 by considering
Ld = 0 obtaining the energy:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(46)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µL2

c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

.

The dynamical equilibrium equations are, see also [11]:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (47)

− [2µmicro symP + λmicro tr(P )1]− µL2
c Curl CurlP.

We present the dispersion relations obtained with a non vanishing Cosserat couple modulus µc > 0
(Figure 5) and for a vanishing Cosserat couple modulus µc = 0 (Figure 6). In the figures we consider
uncoupled waves (a), longitudinal waves (b) and transverse waves (c). TRO: transverse rotational optic,
TSO: transverse shear optic, TCVO: transverse constant-volume optic, LA: longitudinal acoustic, LO1-LO2:
1st and 2nd longitudinal optic, TA: transverse acoustic, TO1-TO2: 1st and 2nd transverse optic.

(a) (b) (c)

Figure 5: Dispersion relations ω = ω(k) for the relaxed micromorphic model with non-vanishing Cosserat
couple modulus µc > 0. Complete frequency band gap is the shaded intersected domain bounded from
the maximum between ωl and ωt and the minimum between ωr and ωs. The existence of the band gap is
related to µc > 0 via the cut-off frequency ωr =

√
2µc

η of the uncoupled waves TRO and TO1
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(a) (b) (c)

Figure 6: Dispersion relations ω = ω(k) for the relaxed micromorphic model with vanishing Cosserat
couple modulus µc = 0: only a partial band gap can be modeled.

We can conclude that, in general, when considering the relaxed micromorphic medium with vanishing
Cosserat couple modulus µc, there always exist waves which propagate inside the considered medium inde-
pendently of the value of the frequency. Nevertheless, if one considers a particular case (obtained by imposing
suitable kinematical constraints) in which only longitudinal waves can propagate, then in the frequency range
(ωs, ωl) only standing wave exist which do not allow for wave propagation.

On the other hand, switching on the Cosserat couple modulus µc, allows for the description of complete
frequency band-gaps in which no propagation can occur.

4 The standard Mindlin-Eringen model with ‖∇P‖2

The elastic energy of the general anisotropic centro-symmetric micromorphic model in the sense of Mindlin-
Eringen (see [12] and [6, p. 270, eq. 7.1.4]) can be represented as:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(48)

+
1

2

〈
Ecross (∇u − P ) , symP

〉
R3×3︸ ︷︷ ︸

anisotropic cross− coupling

+
µL2

c

2

〈
L̂aniso∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

,

where Ce : R3×3 → R3×3 is a 4th order micromorphic elasticity tensor which has at most 45 independent
coefficients and which acts on the non-symmetric elastic distortion e = ∇u − P and Ecross : R3×3 →
Sym(3) is a 4th order cross-coupling tensor with the symmetry

(
Ecross

)
ijkl

=
(
Ecross

)
jikl

having at most 54
independent coefficients. The fourth order tensor Cmicro : Sym(3)→ Sym(3) has the classical 21 independent
coefficients of classical elasticity, while L̂aniso : R3×3×3 → R3×3×3 is a 6th order tensor that shows an
astonishing 378 parameters. The parameter µ > 0 is a typical shear modulus and Lc > 0 is one characteristic
length, while L̂aniso is, accordingly, dimensionless.

One of the major obstacles in using the micromorphic approach for specific materials is the impossibility
to determine such multitude of new material coefficients. Not only is the huge number a technical problem,
but also the interpretation of coefficients is problematic [2–4]. Some of these coefficients are size-dependent
while others are not. A purely formal approach, as it is often done, cannot be the final answer.
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In what follows, we will consider a simplified isotropic energy:

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(49)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µL2

c

2
‖∇P‖2 .︸ ︷︷ ︸

isotropic curvature

The dynamical equilibrium equations are:

ρ u,tt = Div σ = Div [2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1] ,

η P,tt = 2µe sym (∇u − P ) + 2µc skew (∇u − P ) + λe tr (∇u − P )1 (50)

− [2µmicro symP + λmicro tr(P )1] + µL2
c Div∇P︸ ︷︷ ︸

∆P

.

We present the dispersion relations obtained with a non vanishing Cosserat couple modulus µc > 0
(Figure 7) and for a vanishing Cosserat couple modulus µc = 0 (Figure 8). In the figures we consider
uncoupled waves (a), longitudinal waves (b) and transverse waves (c). TRO: transverse rotational optic,
TSO: transverse shear optic, TCVO: transverse constant-volume optic, LA: longitudinal acoustic, LO1-LO2:
1st and 2nd longitudinal optic, TA: transverse acoustic, TO1-TO2: 1st and 2nd transverse optic.

(a) (b) (c)

Figure 7: Dispersion relations ω = ω(k) for the standard micromorphic model with ‖∇P‖2 with non-
vanishing Cosserat couple modulus µc > 0: only a partial band gap can be modeled for uncoupled waves.

(a) (b) (c)

Figure 8: Dispersion relations ω = ω(k) for the standard micromorphic model with ‖∇P‖2 and vanishing
Cosserat couple modulus µc = 0: no band gap at all.

In a way completely equivalent to the case of ‖DivP‖2 and ‖CurlP‖2 (see section 3.1), we can conclude
that when considering the standard Mindlin-Eringen model with vanishing Cosserat couple modulus µc, there

14



always exist waves which propagate inside the considered medium independently of the value of frequency
even if considering separately longitudinal, transverse and uncoupled waves.

The only effect obtainable switching on the Cosserat couple modulus µc is to obtain a partial band gap
for the uncoupled waves.

5 Conclusion
Metamaterials are artifacts composed by microstructural elements assembled in periodic or quasi-
periodic patterns, giving rise to materials with unorthodox properties. For some of these metamaterials,
the presence of a microstructure allows for macroscopic wave-inhibition. More particularly, this means
that, given the topology of the microstructure, when the material is solicited at frequencies that fall in the
band-gap region, any of the possible micro-motions is activated at such frequencies. Hence, this results in
the impossibility of waves to travel in the considered metamaterial.

The relaxed micromorphic model is the only linear, isotropic, reversibly elastic, non-local
generalized continuum model known to date able to predict complete frequency band gaps. It is
decisive to use CurlP instead of the full micro-distortion gradient ∇P and to take a positive Cosserat couple
modulus µc > 0.

Future work will be devoted to the fitting of some of the introduced parameters on real band-gap meta-
materials. Moreover, the effect of extra micro-inertia terms besides η‖P,t‖2 will be also investigated.

Considering that non-locality is an intrinsic characteristic feature of micro-structured materials, especially
when high contrasts of the mechanical properties occur at the micro-level, models that allow for its description
are a necessary requirement. The relaxed micromorphic model is the only generalized continuum model which
is simultaneously able to account for non-locality and for band-gaps onset in metamaterials.
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