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Abstract

In this paper, we study the anisotropy classes of the fourth order elastic tensors of the relaxed micro-
morphic model, also introducing their second order counterpart by using a Voigt-type vector notation.
In strong contrast with the usual micromorphic theories, in our relaxed micromorphic model only clas-
sical elasticity-tensors with at most 21 independent components are studied together with rotational
coupling tensors with at most 6 independent components. We show that in the limit case Lc → 0 (which
corresponds to considering very large specimens of a microstructured metamaterial the meso- and micro-
coefficients of the relaxed model can be put in direct relation with the macroscopic stiffness of the medium
via a fundamental homogenization formula. We also show that a similar homogenization formula is not
possible in the case of the standard Mindlin-Eringen-format of the anisotropic micromorphic model. Our
results allow us to forecast the successful short term application of the relaxed micromorphic model to
the characterization of anisotropic mechanical metamaterials.
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1 Prelude
Modeling in continuum mechanics is an art encompassing mathematics, mechanics, physics and experiments.
Many researchers have been attracted to the field of generalized continuum mechanics, following the works
of the masters Mindlin and Eringen and have dealt with the description of particular aspects of generalized
continuum theories, usually introducing “ad hoc” terms to provide sensational additional effects. That has
been done, while fundamental questions concerning the range of applicability or the descriptive power of
generalized continuum mechanics had not been settled leading to an understandable disdain of the majority
of researchers in continuum mechanics for these models. We, on the contrary, believe in the usefulness of
generalized continuum mechanical models but at the same time we are aware of their current shortcomings.

We are deeply convinced that scientific advancements do not consist in producing a zoo of possibilities
and to combine more effects (which are themselves not yet properly understood), but in reducing com-
plexity and in explaining in simpler terms previously non-connected ideas without losing the accuracy of
the mathematical description of the physical problem we are interested in.

A major guidance for enlightened modeling certainly comes from the experimental side. Basing ourselves
on the phenomena we want to describe, we should not use superfluous information (superfluous because
in practice, it cannot be determined) and, among valid competing hypotheses, the one with the simplest
assumptions should be selected.

In this work we deal with the anisotropic relaxed micromorphic model in this spirit directed towards
simplification. Whether we have achieved a step into this direction must be judged by our readers.

This paper originated from the need of setting up a transparent theory for the description of anisotropic
materials with embedded microstructures.

Recent papers [43, 44] provided the evidence that the relaxed micromorphic model, even when restricted
to the isotropic case, is usable to characterize the mechanical behavior of metamaterials with unorthodox
dynamical properties. More precisely, it has been shown that the isotropic relaxed micromorphic model can
be effectively used to model band-gap metamaterials, i.e. microstructured materials which are able to “stop”
the propagation of elastic waves due to local resonances at the level of the microstructure.

The enormous advantage of using the relaxed micromorphic model for the description of such metama-
terials is undoubtedly that of mastering the behavior of complex media via the introduction of few elastic
coefficients (Young modulus, Poisson ratio and few extra microstructure-related homogenized coefficients).
This simplified modeling of metamaterials allows to open the door towards the conception of “metastruc-
tures”, i.e. structures which are made up of metamaterials as basic building blocks and which preserve their
unconventional behavior at the scale of the structure (i.e. wave absorption).

The successful fitting of the isotropic relaxed micromorphic model on actual metamaterials was already
been provided in [43,44]. Nevertheless, such studies have also suggested the need of generalizing the theoretical
framework to the anisotropic case, to describe in detail the mechanical behavior of periodic and quasi-periodic
metamaterials.

In this paper we provide such theoretical framework with the aim of readily applying it in a forthcom-
ing paper which will be focused on the fitting of the anisotropic relaxed micromorphic model on actual
metamaterials with low degree of anisotropy.

2 Introduction
Recent years have seen a colossal increase of interest in so called generalized or enriched continuum models.
This exponential growth is mainly due to the need felt to incorporate, viewed from the phenomenological
level, additional features like the discreteness of matter, characteristic length scales, dispersion of waves,
among others. All such features are not captured by standard elasticity approaches. The idea of using
generalized continuum models to account for the homogenized behavior of microstructured materials has
extensively been exploited in the last years (see e.g [21–25]). One of the most known generalized continuum
models is the micromorphic continuum model introduced by Mindlin and Eringen [11, 16–19, 54] in the
early sixties of the last century. It includes many special cases among which the much older Cosserat-type
models [5, 12,20,34,35,40,64,70,71].

In this paper we do not present the historic development of enriched continua, referring the reader to [52,
69] for this purpose. Furthermore, we restrict our attention to the linearized framework noting that the first
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Figure 1: Enriched kinematics for a micromorphic
continuum. The macroscopic deformation of the
body Ω ⊂ R3 is described by ϕ : Ω ⊂ R3 → R3.
In each macroscopic material point x ∈ Ω there
is a substructure attached. This substructure has
the possibility to shear, stretch and shrink and is
described by an affine mapping 1+ P . Decisive is the
constitutive choice of the strain energy density which
couples the macroscopic displacement u and the
micro-distortion P . Our new relaxed micromorphic
model introduces the weakest possible constitutive
coupling still giving a well-posed model.

existence result for the geometrically nonlinear static case has been obtained in [34], which includes a previous
result for the nonlinear Cosserat model [62]. For more details about existence results for micromorphic
models at finite deformations, we refer the reader to [40, 63, 65, 66]. Further existence results are supplied
in [14,15,50,51]. There are many applications treated within the nonlinear micromorphic framework, among
which we limit ourselves to mention [29–33,36,41,53,78–80,86,87].

In the micromorphic model, it is the kinematics which is enriched by introducing an additional field of
non-symmetric micro-distortions P : Ω ⊂ R3 → R3×3, beyond the classical macroscopic displacement
u : Ω ⊂ R3 → R3 (see Fig. 1). Then, a non-symmetric elastic (relative) distortion e = ∇u − P
can be defined and the modeling proceeds by obtaining the constitutive relations linking elastic-distortions
to stresses and by postulating a balance equation for the micro-distortion field P . All such steps might be
preferably done in a variational framework, involving the third order curvature tensor (the micro-distortion
gradient) ∇P , so that only energy contributions need to be defined a priori. For the dynamic case, one
adds in the Hamiltonian the so-called micro-inertia density contributions, acting on the time derivatives of
micro-distortion terms P,t.

In principle, the modeling framework for the micromorphic approach had been completed by Eringen,
Mindlin, in the references already cited, and Germain [26]. Mindlin and Eringen also provided extensions of
the micromorphic model to anisotropy even if such anisotropic models are almost impossible to be applied to
real cases, due to the impressive number of coefficients provided (498 coefficients in the general anisotropic
case).

The existence and uniqueness questions for the linear micromorphic model have been completely settled
both for the static and dynamic case, based on the assumption of uniform positive definiteness of the
appearing constitutive elasticity tensors. However, the over-reliance on uniform positive definiteness, we
believe, has blinded the eyes for the real possibilities inherent in the micromorphic model. These possibilities
have been consistently overlooked until very recently, when, in a series of articles [28, 46, 47, 68, 69], we
have introduced the novel concept of relaxed micromorphic continuum. This model provides a drastic
reduction of the number of constitutive coefficients with respect to Mindlin-Eringens’s one while remaining
well-posed.

Unlike Mindlin-Eringen’s model, the relaxed model mainly works with symmetric elastic (relative)
strains εe := sym (∇u − P ), so that standard 4th order symmetric elasticity tensors can be used in order
to define elastic stresses. Moreover, regarding the curvature, the relaxed model considers the second order
dislocation-density tensor α = −CurlP instead of the third order curvature tensor ∇P with the effect
(among others) that the description of the anisotropy of curvature only needs 4th order tensors, instead of
6th order ones.

A fundamental contribution of the relaxed micromorphic model is given by the fact that well-posedness
results have been proven [69] also for the case where the strain energy density violates strict positive-
definiteness7. In other words, even if the relaxed micromorphic model can be apparently seen as a particular

7It has to be noted that our new approach is only formally included in the standard Mindlin-Eringen micromorphic model
since we consistently give up uniform positive-definiteness in the elastic distortion e and the curvature tensor ∇P which are
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case of the Mindlin-Eringen model by suitably setting some constitutive parameters of their model to zero
(see [47, p. 555]), such choice is not acceptable in the Mindlin-Eringen setting due to the loss of positive-
definiteness of the energy. Nevertheless, it is exactly this feature which makes the relaxed micromorphic
model unique for the description of a wealth of unorthodox material behaviors. The existence results pro-
posed in [69], as well as the drastic reduction of the number of the introduced elastic coefficients, allowed us
to open the way to the application of the relaxed micromorphic model to cases of real interest.

Indeed, the relaxed micromorphic model has already been a source of inspiration for researchers working on
granular materials [55].8 Moreover, the clear and transparent application of the relaxed micromorphic model
in the isotropic case has recently been successfully achieved for the description of band-gap metamaterials
(see [43,44]).

As a matter of fact, the isotropic relaxed micromorphic model has proven its ability to fit the dispersion
curves of phononic crystals for large windows of frequencies and wavelengths, arriving down to wavelengths
which are comparable to the size of the unit cell. The most interesting aspect of the description of such meta-
materials via the relaxed micromorphic model is undoubtedly that of predicting their macroscopic dynamical
response through the introduction of few macroscopic elastic coefficients which are independent of
the frequency.

This means that the coefficients of the relaxed micromorphic model can be seen as true material pa-
rameters, exactly as it is the case for the Young modulus and the Poisson ratio when dealing with classical
materials.

Of course, in order to extend the range of applicability of the relaxed model to a wider class of actual
metamaterials, the model must be generalized to the anisotropic setting. This generalization is the principal
aim of the present work.

In this paper, we want to present such an approach to anisotropy for the relaxed micromorphic model.
Our modeling perspective is to simplify as much as possible, and indeed to reduce to an essential minimum,
the bewildering possibilities of the standard micromorphic model. Indeed, there is no point in exclaiming
happily that the standard micromorphic model has more than 1000 constitutive coefficients which need to
be determined. The true aim of modeling should consist of the opposite: discard all unclear complications
without compromising the essence of the model. We believe that the relaxed micromorphic model is just
going in this direction, thereby opening the way to transparent experimental campaigns for the determination
of the remaining fewer extra parameters.

instead strictly requested in the standard model in order to have well-posedness. For example, controlling only the elastic strain
εe = sym (∇u − P ) in the energy does not locally control the elastic distortion e = ∇u − P and working with CurlP does
not control the curvature ∇P .

8Although delighted by the fact of understanding that the relaxed micromorphic model might be of use for granular mechanics,
we believe that some complements of information must be given in order to interpret the results of [55] in the clearest possible
way. In [55] the authors use micro-macro upscaling techniques for granular assemblies arriving to a standard Mindlin-Eringen
type model at the homogenized scale (see [55, p.224, eq. (43)]. The authors observe that: “remarkably, the nonzero components
in Mindlin’s stiffness tensors are the same as the non-zero components derived from the present model”. Then, the authors
present in equation (66) a constitutive choice of the microscopic parameters which goes in the sense of setting to zero the
parameters of Mindlin’s model in order to get close to the relaxed micromorphic model. Such constitutive choice is not justified
neither by telling that the scope is to recover the relaxed micromorphic model nor on clear microscopic-based arguments that
would shed additional light on the understanding of microstructure-related effects.

Afterwards, the authors present [55, p.231, Fig. 5] two parametric studies on the parameters βmM and βsM . The parameter
βmM is an analogous of the Cosserat couple modulus µc and is once again seen to be determinant for the onset of band gaps.
On the other hand, the parameter βsM is the one that, being non vanishing, still makes a difference between Mindlin-Eringen’s
and our relaxed model. The authors then present a parametric study letting βsM to zero, which indeed means that they are
recovering the relaxed micromorphic model as a limit case. Nevertheless, except some mostly confusing sentences referring to
our paper [47], such fundamental observation are not made at any point of the paper [55].

It should be clearly stated that, by means of the proposed parametric study, they are trying to approach the relaxed micro-
morphic model and that, although the corresponding choice of the parameters is not allowed in Mindlin-Eringen theory, the
well-posedness is still guaranteed. Moreover, it should have been clearly stated that the relaxed micromorphic model is the
only generalized non-local continuum model, among those currently used, which is able to predict complete frequency
band-gaps [28, 46,47,68].

Finally, and this would be for us the main advancement related to the paper [55], a clear microscopic-based interpretation
of the fact of setting to zero the opportune parameters in Mindlin’s theory would be necessary in further works since it is not
currently done in [55]. Of course, the fact of setting to zero some macroscopic parameters leads to some conditions on some
microscopic parameters, but which is the physical interpretation of such conditions on micro-parameters?

In summary, the same goal of clarity that we try to pursue in this paper should be, from our point of view, shared by the
highest possible number of researchers in order to proceed in the direction of a global advancement of knowledge.
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The plan of the paper is as follows.

• We first recall the standard micromorphic model and contrast it with our new relaxed model. We also
show that our relaxed micromorphic model supports a clear group-invariant framework, opening the
way to the introduction of anisotropy classes.

• We present our favored description of anisotropy regarding the higher order contribution in CurlP .
Thereby we split CurlP as sym CurlP + skew CurlP and let a classical fourth order tensor act only
on sym CurlP ∈ Sym(3) together with another tensor with only 6 parameters acting on skew CurlP ∈
so(3).

• We consider the long-wavelength limit (characteristic length Lc → 0) which must coincide with a linear
elastic model that has lost any characteristic length (sometimes called internal variable model). From
this hypothesis, we are able to relate coefficients of the micromorphic scale to the macroscopic ones.
The result is a convincing homogenization formula for all considered anisotropy classes. This is also
done using classical Voigt-notation in order to facilitate future applications. As already stated, this
homogenization formula relating micro and macro parameters is one of the main results of the present
work, since it opens the way to the application of the model to actual metamaterials via the realization
of standard mechanical tests on “large” specimens.

• We study the format of a possible anisotropic local rotational coupling term acting on skew (∇u − P ).
In this respect we also investigate some possibilities of approximating an anisotropic coupling by an
isotropic one.

• We consider the formal limit Lc →∞ and show that it corresponds to a “zoom” into the micro-structure.
Our relaxed model supports also a clear interpretation for that regime.

• We end our paper by showing that the standard Mindlin-Eringen micromorphic model does not support
the clear relation between macroscopic and microscopic elasticity moduli which is instead provided by
our simplified anisotropic relaxed model.

3 Notational agreement
Throughout this paper Latin subscripts take the values 1, 2, 3 while Greek subscripts take the values
1, 2, 3, 4, 5, 6 and we adopt the Einstein convention of sum over repeated indices if not differently specified.

We denote by R3×3 the set of real 3 × 3 second order tensors and by R3×3×3 the set of real 3 × 3 × 3
third order tensors. The standard Euclidean scalar product on R3×3 is given by

〈
X,Y

〉
R3×3 = tr(X · Y T )

and, thus, the Frobenius tensor norm is ‖X‖2 =
〈
X,X

〉
R3×3 . Moreover, the identity tensor on R3×3 will be

denoted by 1, so that tr(X) =
〈
X,1

〉
. We adopt the usual abbreviations of Lie-algebra theory, i.e.:

• Sym(3) := {X ∈ R3×3 |XT = X} denotes the vector-space of all symmetric 3× 3 matrices

• so(3) := {X ∈ R3×3 |XT = −X} is the Lie-algebra of skew symmetric tensors

• sl(3) := {X ∈ R3×3 | tr(X) = 0} is the Lie-algebra of traceless tensors

• R3×3 ' gl(3) = {sl(3)∩Sym(3)}⊕so(3)⊕R·1 is the orthogonal Cartan-decomposition of the Lie-algebra

For all X ∈ R3×3, we consider the decomposition

X = dev symX + skewX +
1

3
tr(X)1 (1)

where:

• symX = 1
2 (XT +X) ∈ Sym(3) is the symmetric part,

• skewX = 1
2 (X −XT ) ∈ so(3) is the skew-symmetric part,

6



• devX = X − 1
3 tr(X)1 ∈ sl(3) is the deviatoric part .

Throughout all the paper, we denote:

• the sixth order tensors L̂ : R3×3×3 → R3×3×3 by a hat

• the fourth order tensors C : R3×3 → R3×3 by overline

• without superscripts, i.e.C, the classical fourth order tensors acting only on symmetric matrices
C : Sym(3)→ Sym(3) or skew-symmetric ones Cc : so(3)→ so(3)

• the second order tensors C̃ : R6 → R6 or C̃ : R3 → R3 appearing as elastic stiffness by a tilde.

We denote by CX the linear application of a 4th order tensor to a 2nd order tensor and also for the linear
application of a 6th order tensor L̂ to a 3rd order tensor. In symbols:(

CX
)
ij

= CijhkXhk ,
(
L̂A
)
ijh

= L̂ijhpqrApqr . (2)

The operation of simple contraction between tensors of suitable order is denoted by a central dot, for example:(
C̃ · v

)
i

= C̃ijvj ,
(
C̃ ·X

)
ij

= C̃ihXhj . (3)

Typical conventions for differential operations are implied, such as a comma followed by a subscript to
denote the partial derivative with respect to the corresponding Cartesian coordinate, i. e. (·),j = ∂(·)

∂xj
.

Given a skew-symmetric matrix A ∈ so(3) we consider:

A =

 0 A12 A13

−A12 0 A23

−A13 −A23 0

 , axl
(
A
)

= (−A23, A13,−A12)T . (4)

ore equivalently in index notation: [
axl
(
A
)]
k

= −1

2
εijk Aij =

1

2
εkij Aji , (5)

where ε is the Levi-Civita third order permutation tensor.

4 A review on the micromorphic approach
In this section we recall the general anisotropic setting of classical Mindlin-Eringen micromorphic elasticity,
as well as that of relaxed micromorphic elasticity. We show that, given its intrinsic formulation, the relaxed
micromorphic model features 93 coefficients instead of Mindlin/Eringen 498.

In subsection 4.2.1, a further reduction of coefficient is proposed for those cases in which one wants to
feature a symmetric stress.

In subsection 4.2.2, it is shown that the most general form of the relaxed curvature energy (in the
anisotropic setting) which satisfies certain additional invariance requirements features 21+7=28 coefficients
instead of the 378 featured by the classical Mindlin-Eringen model. Moreover some further simplification
of the curvature energy are proposed, up to arriving to the isotropic case in which the curvature energy
only shows 3 coefficients. As a matter of fact, we propose a consistent framework for the definition of the
curvature energy of the relaxed micromorphic model which is fully consistent with invariance arguments.
Such clear theoretical framework is of primordial importance for the introduction of suitable constitutive
expressions for the curvature energy. Nevertheless, it is likely that, in a first instance, non-local effects in
real metamaterials can be controlled via the introduction of very few characteristic lengths. For this reason,
the maximum generality of the anisotropic setting for the curvature could find effective applications only in
a second instance, when the most important step of the identification of the elastic coefficients Ce, Cmicro

and Cc will be achieved on a suitable class of targeted metamaterials.
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In subsection 4.2.3, the general anisotropic setting for the kinetic energy to be used in the relaxed mi-
cromorphic model is provided. This step is strongly complementary to the constitutive choice for the static
case featured by equation (8). Indeed, if some deformation mechanism are introduced in the definition of
the strain energy densities, analogous inertiae must be introduced in the kinetic energy to have a well-posed
problem in the dynamical case. This step is essential to securely proceed towards controllable applications
on actual metamaterials subjected to dynamical loading.

4.1 The standard Mindlin-Eringen model
The elastic energy of the general anisotropic centro-symmetric micromorphic model in the sense of Mindlin-
Eringen (see [54] and [17, p. 270, eq. 7.1.4]) can be represented as:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(6)

+
1

2

〈
Ecross (∇u − P ) , symP

〉
R3×3︸ ︷︷ ︸

anisotropic cross− coupling

+
µL2

c

2

〈
L̂aniso∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

full anisotropic curvature

,

where Ce : R3×3 → R3×3 is a 4th order micromorphic elasticity tensor which has at most 45 independent coef-
ficients and which acts on the non-symmetric elastic distortion e = ∇u − P and Ecross : R3×3 → Sym(3)
is a 4th order cross-coupling tensor with the symmetry

(
Ecross

)
ijkl

=
(
Ecross

)
jikl

having at most 54 inde-
pendent coefficients. The fourth order tensor Cmicro : Sym(3) → Sym(3) has the classical 21 independent
coefficients of classical elasticity, while L̂aniso : R3×3×3 → R3×3×3 is a 6th order tensor that shows an astonish-
ing 378 parameters. The parameter µ > 0 is a typical shear modulus and Lc > 0 is one characteristic length,
while L̂aniso is, accordingly, dimensionless. Here, for simplicity, we have assumed just a decoupled format
of the energy: mixed terms of strain and curvature have been discarded by assuming centro-symmetry.
Counting the number of coefficients we have 45 + 21 + 54 + 378 = 498 independent coefficients.

If we assume an isotropic behavior of the curvature we obtain:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
R3×3︸ ︷︷ ︸

full anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(7)

+
1

2

〈
Ecross (∇u − P ) , symP

〉
R3×3︸ ︷︷ ︸

anisotropic cross− coupling

+
µL2

c

2

〈
L̂iso∇P,∇P

〉
R3×3×3︸ ︷︷ ︸

isotropic curvature

,

where the 6th order tensor L̂iso has still 11 independent non-dimensional constants [17]. This can be explained
considering that the general isotropic 6th order tensor has 15 coefficients which, considering that in a quadratic
form representation we can assume a major symmetry of the type L̂ijklmn = L̂lmnijk, reduce to 11 (see
[57,83]).9 On the other hand, the local energy has 7 independent coefficients in the isotropic case: Ce has 3,
Cmicro ∼ 2, Ecross ∼ 2 adding up to the usual 18 constitutive coefficients to be determined in the isotropic
case.

One of the major obstacles in using the micromorphic approach for specific materials is the impossibility
to determine such multitude of new material coefficients. Not only is the huge number a technical problem,
but also the interpretation of coefficients is problematic [8–10]. Some of these coefficients are size-dependent
while others are not. A purely formal approach, as is often done, cannot be the final answer.

4.2 The relaxed micromorphic model
Our novel relaxed micromorphic model endows Mindlin-Eringen’s representation with more geometric struc-
ture. Since Ecross is difficult to interpret, it is discarded right-away. Nevertheless, the structure of the model

9The 11 coefficients of the curvature in the isotropic case reduce to 5 in the particular case of second gradient elasticity
(see [13]) which is obtained from a micromorphic model by setting P = ∇u .
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continues to be very rich. We write:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(8)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

+
µL2

c

2

〈
Laniso CurlP, CurlP

〉
R3×3︸ ︷︷ ︸

curvature

.

The second order tensor α := −CurlP is usually called the dislocation density tensor.10 Here
Ce, Cmicro : Sym(3) → Sym(3) are both classical 4th order elasticity tensors acting on symmetric sec-
ond order tensors only: Ce acts on the symmetric elastic strain εe := sym (∇u − P ) and Cmicro acts
on the symmetric micro-strain symP and both map to symmetric tensors. The tensor Cc : so(3)→ so(3)
is a 4th order tensor that acts only on skew-symmetric matrices and yields only skew-symmetric tensors and
Laniso : R3×3 → R3×3 is a dimensionless 4th order tensor with at most 45 constants. Counting coefficients we
now have 21+21+6+45=93, instead of Mindlin-Eringen’s 498 coefficients. The main advantage at this stage
is that our Ce, unlike Ce, possesses all the symmetries that are peculiar of the classical elasticity tensors
acting on sym∇u .

The large number of isotropic constants in the standard Mindlin-Eringen model has always been of
concern. Previous attempts to endow the Mindlin-Eringen model with more structure include Koh’s [37,77] so-
called micro-isotropy postulate which requires, among others, that symσ is an isotropic function of sym∇u
only. This reduces the number of isotropic coefficient also to 5 (similarly to our relaxed model) but the fact
of connecting symσ to sym∇u only cannot be considered to be a well-grounded hypothesis.

Considering the energy in equation (8), the resulting elastic stress is:

σ (∇u , P ) = Ce sym (∇u − P ) + Cc skew (∇u − P ), (9)

which is solely related to elastic distortions e = ∇u − P . One of the main results of the present paper is to
provide a simple but effective homogenization formula which relates the elastic tensors Ce and Cmicro to the
macroscopic elastic properties of the considered medium that will be encoded in the effective elastic tensor
Cmacro.

The derivation of the macroscopic consistency condition we propose in the present paper is of primary
importance for an effective application of the proposed model to cases of real interest.

Indeed, the basic idea is that of considering a sample of a specific microstructured material which is large
enough to let the effect of the underlying microstructure being negligible. On this large sample, standard
mechanical tests can be performed to allow for the unique determination of the elastic coefficients Cmacro.

The existence of our formula relating Cmacro (which is well known) to Ce and Cmicro (which are still
unknown), allows to further reduce the number of coefficients that need to be determined to unequivocally
characterize the mechanical behavior of microstructured materials.

This unique feature of our relaxed model gives again more credibility to the relaxed approach by opening
the way to a clear experimental campaign to determine some of the new micromorphic elastic constants.

In the general anisotropic micromorphic model initially proposed by Mindlin-Eringen [19] the question
of parameter identification has already been treated. However, the resulting interpretation of the material
constants, as well as their connection to the classical anisotropy formulation of linear elasticity, is still not
settled satisfactorily, and presumably impossible.

As already seen, in our relaxed model the complexity of the general micromorphic model has been deci-
sively reduced, featuring basically only symmetric strain-like variables and the Curl of the micro-distortion
P . However, the relaxed model is still general enough to include the full micro-stretch as well as the full
Cosserat micro-polar model, see [69]. Furthermore, well-posedness results for the static and dynamic cases
have been provided in [69] making decisive use of recently established coercive inequalities, generalizing Korn’s
inequality to incompatible tensor fields [2, 61,74–76].

10The dislocation tensor is defined as αij = − (CurlP )ij = −Pih,kεjhk, where ε is the Levi-Civita tensor.
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Furthermore, certain limiting cases of the anisotropic relaxed micromorphic model give as a result other
micromorphic models, e.g. the Cosserat model, the micro-dilation theory, the micro-incompressible micro-
morphic model, the micro-stretch theory and the microstrain model) as it is shown in Appendix A.1. Instead,
the second gradient model cannot be found as a limiting case differently from what happens in the Eringen
Mindlin micromorphic model, see Appendix A.2 for the one dimensional case.

4.2.1 Possible symmetry of the relaxed micromorphic stress

In this subsection, we recall some arguments that allow the possibility of featuring a symmetric stress tensor
for the relaxed micromorphic model by setting the 6 components of the tensor Cc to be vanishing. Considering
the scalar product

〈
X,Y

〉
= tr(X · Y T ), we start by noticing that, given the definition of the fourth order

tensors Ce and Cc, they respect a generalized version of the orthogonal decomposition of second order
tensors (X = symX ⊕ skewX), in the sense that:

sym [Ce symX + Cc skewX] = Ce symX, (10)
skew [Ce symX + Cc skewX] = Cc skewX .

We recall that the elastic stress of the relaxed micromorphic model is:

σ (∇u , P ) = Ce sym (∇u − P ) + Cc skew (∇u − P ), (11)

so that skew-symmetry of the elastic stress σ is entirely controlled by the rotational coupling tensor Cc since,
relying on formulas (10), we have

skew σ = skew [Ce sym (∇u − P ) + Cc skew (∇u − P )] = Cc skew (∇u − P ). (12)

For a positive definite coupling tensor Cc, we note that skew-symmetric stresses skew σ 6= 0 occur if and only
if skew (∇u − P ) 6= 0.

If Cc ≡ 0, the elastic Cauchy stress σ satisfiesBoltzmann’s axiom of symmetry of force stresses.
In addition, for Cc ≡ 0, the elastic distortion e = ∇u − P can be non-symmetric, while the elastic
stress σ remains symmetric.11

In [78] the authors have introduced the original and important notion of non-redundant strain mea-
sures in the micromorphic continuum. As it turns out, the relaxed micromorphic model with zero rotational
coupling tensor Cc ≡ 0 is a non-redundant micromorphic formulation. Conversely, the standard Mindlin-
Eringen model remains redundant, as does the linear Cosserat model.

With Boltzmann’s axiom, which is in sharp contrast to standard micromorphic models, the model would
feature symmetric force-stress tensors. Such an assumption has been made, for example, by Teisseyre [84,85]
in his model for the description of seismic wave propagation phenomena (for the use of micromorphic models
for earthquake modeling see also the discussion in [60]).

It must also be observed that the relaxed micromorphic model can be used with Cc positive semi-definite
or indeed zero (in the isotropic case µc = 0), while we always assume that Ce, Cmicro (and later Cmacro) are
strictly positive definite tensors. Assuming that Ce and Cmicro are positive definite tensors means that:

∃ c+e > 0 : ∀S ∈ Sym(3) :
〈
Ce S, S

〉
R3×3 ≥ c+e ‖S‖2R3×3 . (13)

11Therefore, using Cc = 0 is similar to the Reuss-bound approach in homogenization theory in which the guiding assumption
is that the stress fields are taken constant but fluctuations in strain are allowed. Here, analogously, we would assume symmetric
stresses σ but non-symmetric distortion-fluctuations in e = ∇u − P . Voigt (see [89, p.596]) already discussed non-symmetric
states of distortion. However, we can supply some further support for using Cc ≡ 0. Indeed as Kröner notes [38], “asymmetric
stress tensors only come under consideration when a distribution of rotational moments acts upon the body externally, which
is excluded here. The question of whether the (...) rotations produces stresses can also be answered. We must first exclude
asymmetric stress tensors, since they contradict the laws of equilibrium in the theory of elasticity”. Furthermore, Kunin [39, p.
21] states the following theorem: in the nonlocal theory of a linear elastic medium of simple structure with finite action-at-a-
distance, it is always possible to introduce a symmetric stress tensor and an energy density, which can be expressed in terms of
stress and strain in the usual way.
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In sharp contrast to the standard Mindlin-Eringen format, we assume for the rotational coupling tensor Cc
only positive semi-definiteness, i.e:

∀A ∈ so(3) :
〈
CcA,A

〉
R3×3 ≥ 0. (14)

As already noted, this allows the rotational coupling tensor Cc to vanish, in which case the relaxed micro-
morphic model is non-redundant [78].12

The reader might ask himself: how is it possible that the rotational coupling tensor Cc can be absent but
the resulting model is still well-posed? This is possible because in that case, the skew-symmetric part of P is
not controlled locally but as a result of the boundary value problem and boundary conditions. In this sense,
allowing for Cc ≡ 0 is one of the decisive new possibilities offered by the relaxed micromorphic model.

However, in [47] it has been shown that in the isotropic case (Cc = µc 1) the presence of Cc allows to
control the onset of band-gaps. In section 5 we discuss the possible forms that Cc may have for certain given
anisotropy classes.

4.2.2 Microscopic curvature

In the general micromorphic model, the curvature energy term is of the form:

Wcurv = Wcurv(∇P ), (15)

In our relaxed framework, we assume that it depends only on the second order dislocation density tensor
through:

W relax
curv = W relax

curv ( CurlP ). (16)

First, we remark here that the relaxed micromorphic curvature expression can also be written as:

CurlP = −Curl (∇u − P ) , (17)

because CurlP is invariant under P → P +∇ϑ, see [68].
Now, we need to shortly discuss that such a reduced formulation is fully able to be treated in an invariant

setting. To this end, let P : Ω ⊂ R3 → R3×3 be the micro-distortion field to which we apply the following
coordinate transformation (generating the so-called Rayleigh-action on it [1]):

P#(ξ) := Q ·
[
P (QT · ξ)

]
·QT , x = QT · ξ, (18)

for given Q ∈ SO(3). Transforming the displacement to a rotated reference and spatial configuration, we
have:

u#(ξ) := Q · u (QT · ξ) , ∇ξu#(ξ) = Q · ∇xu(QT · ξ) ·QT , (19)

thus, we require that P transforms as ∇u under simultaneous rotations of the reference and spatial config-
urations. Then it can be shown [58] that:

Curlξ P
#(ξ) = Q · [ Curlx P (QT · ξ)] ·QT . (20)

For the description of anisotropy in the curvature energy we require form-invariance of expression (16)
under the transformation (18) with respect to all rotations Q ∈ G-material symmetry group. Taking (20)
into account, this means

∀Q ∈ G −material symmetry group : W relax
curv (QT · CurlP ·Q) = W relax

curv ( CurlP ). (21)

In the same spirit as done with the local energy terms, a first simplification of the curvature expression, which
is consistent with the invariance condition (21) is given by:

W relax
curv ( CurlP ) =

µL2
c

2

[ 〈
Le sym CurlP, sym CurlP

〉
+
〈
Lc skew CurlP, skew CurlP

〉]
. (22)

12In Misra et al. [55] the rotational coupling Cc is related to the tangential stiffness between grains. This is consistent with
Shimbo’s law [81] relating the rotational stiffness to the internal friction. We need to remark that friction is, strictly speaking,
a dissipative effect outside purely elastic response.
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Here, Le : Sym(3) → Sym(3) is a classical, positive definite elasticity tensor with at most 21 independent
(non-dimensional) coefficients and Lc : so(3)→ so(3) is a positive definite tensor with at most 6 independent
(non-dimensional) coefficients. Taking isotropy into account, the total number of coefficients reduces to 3,
while in the cubic case we have 4 coefficients.

We can think of another reduction of the curvature expression which is fully consistent with group-
invariance requirements. Let:

W relax
curv = Ŵ relax

curv ( sym CurlP ) . (23)

Considering the same transformation law (18) as before, the complete representation of anisotropy in terms
of representation (23) is easy. Indeed, we may employ the classical format of the 4th order elasticity tensors
to write:

Ŵ relax
curv ( sym CurlP ) =

µL2
c

2

〈
Le sym CurlP, sym CurlP

〉
. (24)

Here Le : Sym(3) → Sym(3) is a classical, positive definite elasticity tensor with at most 21 independent
(non-dimensional) coefficients. The expression in (24) is certainly preferable for its simplicity for the treat-
ment of anisotropic curvatures. However, it is not clear whether a formulation based on (24) can lead to
mathematically well-posed results due to the current lack of a suitable coercive inequality for that case [2,3].
Our guess at the moment is that it should work for the micro-incompressible case, in which the constraint
trP = 0 is appended. This case is reminiscent of gradient plasticity with plastic spin [14,15,74] in which the
micro-distortion P is identified with the plastic distortion.

As explained in detail in [58], isotropy of the curvature energy is tantamount to requiring form-invariance
of expression (16) under the transformation (18), i.e.:

W relax
curv

(
Curlξ P

#(ξ)
)

= W relax
curv ( Curlx P (x)) . (25)

Taking (20) into account, isotropy of the curvature is satisfied if and only if:

∀Q ∈ SO(3) : W relax
curv

(
Q · ( Curlx P (x)) ·QT

)
= W relax

curv ( Curlx P (x)) . (26)

i.e. W relax
curv must be an isotropic scalar function. We need to highlight the fact that CurlP is not just

an arbitrary combination of first derivatives of P (and as such included in the standard Mindlin-Eringen
most general anisotropic micromorphic format), but that the formulation in CurlP supports a completely
invariant setting, as seen in [58], [64]. Since CurlP is a second order tensor, it allows us to discard the 6th

order tensors of classical Mindlin-Eringen micromorphic elasticity and to work instead with 4th order tensors
whose anisotropy classification is much easier and well-known [7].

In general, if we consider an isotropic curvature term, we obtain the following representation:

µL2
c

2

〈
Liso CurlP, CurlP

〉
R3×3 =

µL2
c

2

(
α1‖ dev sym CurlP‖2 + α2‖ skew CurlP‖2 + α3 [tr ( CurlP )]

2
)
,

(27)

with scalar weighting parameters α1, α2, α3 ≥ 0. Since, in this paper, the curvature energy does not play a
major role we will mostly just use ‖CurlP‖2, corresponding to α1, α2 = 1 and α3 = 1

3 . .

4.2.3 Micro-inertia density

The dynamical formulation of the proposed relaxed micromorphic model is obtained in the following way.
We define a joint Hamiltonian and obtain the equations from the postulate of stationary action. In order
to generalize the kinetic energy density to the anisotropic micromorphic framework, we need to introduce a
micro-inertia density contribution of the type:

1

2

〈
J P,t, P,t

〉
. (28)

Here J : R3×3 → R3×3 is the 4th order micro-inertia density tensor with, in general, 45 independent coef-
ficients. Eringen has added a conservation law for the micro-inertia density tensor J, but in this work we
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assume a constant micro-inertia density tensor J as well as a constant mass density ρ. We assume throughout
this paper that J is positive definite, i.e.:

∃ c+ > 0 : ∀X ∈: R3×3 :
〈
JX,X

〉
R3×3 ≥ c+‖X‖2R3×3 . (29)

Considering dimensional consistency, we can always write the micro-inertia density tensor J as:

J = ρ L̂2
c J0, (30)

where J0 : R3×3 → R3×3 is dimensionless. Here, ρ > 0 is the mean mass density [ρ] = kg/m3 and L̂c ≥ 0 is
another characteristic length [L̂c] = m. We also propose a split of this micro-inertia density, similar to that
adopted for the other elastic tensors like:

1

2

〈
J P,t, P,t

〉
=

1

2

〈
Je symP,t, symP,t

〉
+

1

2

〈
Jc skewP,t, skewP,t

〉
. (31)

Here, Je : Sym(3) → Sym(3) maps symmetric tensors into symmetric tensors while Jc : so(3) → so(3) maps
skew-symmetric tensors to skew-symmetric tensors. We assume then that both Je and Jc are positive definite.

In the isotropic case, the micro-inertia density tensor J0 can be represented by three dimensionless pa-
rameters η1, η2, η3 > 0 such that:

1

2

〈
J P,t, P,t

〉
=

ρL̂2
c

2

(
η1 ‖dev symP,t‖2 + η2 ‖ skewP,t‖2 + η3 (tr (P,t))

2
)
. (32)

4.2.4 Linear elasticity as upper energetic limit for the relaxed micromorphic model - statics

The relaxed micromorphic model admits linear elasticity as an upper energetic limit for any characteristic
length scale Lc > 0. This can be seen by noticing that an admissible field for the micro-distortion P is always
P = ∇u . Then, a standard minimization argument shows 13:

min
(u, P )

{∫
Ω

1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3 +

1

2

〈
Cmicro symP, symP

〉
R3×3 (33)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3 +

µL2
c

2

〈
Laniso CurlP, CurlP

〉
R3×3 dx

}
≤
∫

Ω

1

2

〈
Cmicro sym∇u , sym∇u

〉
R3×3 dx .

Thus, we see that the relaxed model is always energetically weaker than a linear elastic comparison
material with elastic stiffness Cmicro for any given stiffness Ce. This, again, is in contrast to the standard
Mindlin-Eringen format which will, in general, generate arbitrary stiffer response as Lc → ∞ and Ce → ∞
simultaneously.

13The strict equality in (33) is trivial considering that replacing P = ∇u on the left hand side and recalling that Curl∇ϑ = 0.
On the other hand, the inequality can be justified thinking that a solution (u∗, P ∗) of the relaxed micromorphic problem is
a minimizer, in the sense that W (u∗, P ∗) ≤ W (u, P ) for any admissible field (u, P ). Hence, taking a generic field P = ∇u
(which is of course admissible) justifies the equation (33).
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4.3 Energy formulations and equilibrium equations for various symmetries
Gathering our findings, we propose the following representation of the energy for the relaxed anisotropic
centro-symmetric model, which has maximally 21+21+6+21+6=75 independent coefficients:

W =
1

2

〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
R3×3︸ ︷︷ ︸

micro− self − energy

(34)

+
1

2

〈
Cc skew (∇u − P ) , skew (∇u − P )

〉
R3×3︸ ︷︷ ︸

invariant local anisotropic
rotational elastic coupling

+
µL2

c

2

[ 〈
Le sym CurlP, sym CurlP

〉
R3×3 +

〈
Lc skew CurlP, skew CurlP

〉
R3×3

]
︸ ︷︷ ︸

curvature

.

This constitutive expression of the strain energy density for the relaxed micromorphic model is the most
general one that can be provided in the anisotropic and centrosymmetric framework and already it provides
a drastic reduction of the constitutive coefficients with respect to the standard Mindlin-Eringen model (75
coefficients against the 498 of Mindlin-Eringen). With a look towards immediate applications, it can be
considered that non-local effects can be considered, in a first instance, to be isotropic, so that the curvature
coefficients reduce from 21+6=27, to at most 2. We end up with a fully anisotropic model which features at
most 51 parameters for describing:

• the full anisotropy at the microstructural level.

• the full anisotropy at the macroscopic level.

• the possibility of describing non-localities through the introduction of suitable characteristic lengths.

Of course, given particular metamaterials with particular symmetries, this number of parameters can be
further reduced.

For example, the fully isotropic case requires to determine (Ce ∼ 2, Cmicro ∼ 2,Cc ∼ 1, Le ∼ 2, Lc ∼ 1)
altogether 8 constitutive coefficients of which the rotational coupling coefficient µc can be set to zero to enforce
symmetric elastic stresses σ. As seen before, Eringen’s formulation has 18 coefficients and Koh’s [37] micro-
isotropic model has still 10.14 This simplified framework allowing to describe the full micro-macro anisotropy
and the presence of non-localities via the introduction of “only” 51 parameters is of fundamental importance
to proceed towards an enlightened characterization of the actual metamaterial.

Considering

ρ L̂2
c

2

〈
J0 P,t, P,t

〉
, (35)

as the micro-inertia term, the dynamical equilibrium equations for the anisotropic relaxed micromorphic
model take the compact format:

ρ u,tt = Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] ,

ρ L̂2
c J0 P,tt =Ce sym (∇u − P ) + Cc skew (∇u − P )− Cmicro symP (36)

− µL2
c Curl (Le sym CurlP + Lc skew CurlP ) .

14Note that establishing positive-definiteness of the energy is now an easy matter as compared to [82]: we only need to require
positive definiteness of the occurring standard 4th order tensors Ce,Cmicro,Cc,Le,Lc.
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If we consider the isotropic case and the simplest curvature form, it is possible to reduce the relaxed repre-
sentation to (see [43,45–47,69,72]):

W =µe‖ sym (∇u − P )‖2 +
λe
2

tr ( sym (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+µmicro‖ symP‖2 +
λmicro

2
(tr ( symP ))

2︸ ︷︷ ︸
micro− self − energy

(37)

+ µc‖ skew (∇u − P )‖2︸ ︷︷ ︸
invariant local isotropic

rotational elastic coupling

+
µL2

c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

,

and the isotropic format of the micro-inertia becomes:

1

2

〈
J P,t, P,t

〉
=

ρL̂2
c

2

(
η1 ‖dev symP,t‖2 + η2 ‖ skewP,t‖2 + η3 (tr (P,t))

2
)
. (38)

Hence, the dynamical equilibrium equations for the isotropic relaxed micromorphic model take the form:

ρ u,tt = Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] , (39)

η1 ρ L̂
2
c dev sym [P,tt] = dev sym

[
Ce sym (∇u − P )− Cmicro symP − µL2

c Curl CurlP
]
,

η2 ρ L̂
2
c skew [P,tt] =Cc skew (∇u − P )− µL2

c skew Curl CurlP ,

η3 ρ L̂
2
c tr [P,tt] = tr

[
Ce sym (∇u − P )− Cmicro symP − µL2

c Curl CurlP
]
.

For more information about the dynamics of the relaxed micromorphic model see [48,72].

4.4 Some considerations on the macroscopic consistency condition in the
isotropic case

In this section, we want to recall some results concerning the macroscopic consistency condition for the
relaxed micromorphic model in the isotropic case [62,67].

Although such condition has already been derived in [62,67] and even if it is only valid for the particular
case of isotropy, we want to underline the idea which is behind such condition. Indeed, it is of fundamen-
tal importance to catch the power that the introduced homogenization formulas may have for an effective
application of the relaxed micromorphic model. In section 6.2, we will present a generalization of such ho-
mogenization formulas to the fully anisotropic framework so opening the way for the effective mechanical
characterization of a huge class of mechanical metamaterials.

The main idea, which is behind the determination of our homogenized formulas, is that of considering a
very large sample of a given microstructured material. This sample must be large enough that the effect of
the microstructure on the macroscopic behavior of the sample can be considered to be negligible.

Under this hypothesis, we can introduce a macroscopic elasticity tensor Cmacro : Sym(3)→ Sym(3) which
best fits the macroscopic behavior of the sample and we can suppose that the material behavior can be
described by classical linear elasticity with energy:

W =
1

2

〈
Cmacro sym∇u , sym∇u

〉
. (40)

The corresponding classical symmetric Cauchy stress is clearly defined as:

σ( sym∇u ) =Cmacro sym∇u . (41)

For very large sample sizes, however, a scaling argument shows easily that the relative characteristic length
scale Lc of the micromorphic model must vanish. Therefore, we have a way of comparing the classical
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formulation (40) to the relaxed micromorphic formulation (8) and to offer an a priori relation between Ce,
Cmicro on the one hand and Cmacro on the other.

In the isotropic case, this has been already done in [62,67] with the isotropic macroscopic consistency
conditions:

(2µmacro + 3λmacro) =
(2µe + 3λe) (2µmicro + 3λmicro)

(2µe + 3λe) + (2µmicro + 3λmicro)
, (42)

µmacro =
µe µmicro

µe + µmicro
= µe (µe + µmicro)

−1
µmicro.

Or, analogously:

(2µe + 3λe) =
(2µmacro + 3λmacro) (2µmicro + 3λmicro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
, (43)

µe =
µmacro µmicro

µmicro − µmacro
= µmacro (µmicro − µmacro)

−1
µmicro.

Note that these formulas determine µmacro and κmacro (the elastic bulk modulus κmacro = 2µmacro+3λmacro

3 ) to
be one half of the harmonic mean of µe, µmicro, and κe, κmicro respectively.

As a matter of fact, the harmonic mean H (µe, µmicro) defined for real numbers is:

H (µe, µmicro) =

[
1

2

(
1

µe
+

1

µmicro

)]−1

=
2µe µmicro

µe + µmicro
. (44)

In the isotropic case, upon inspection of formula (43), we see that the “macroscopic” elastic response,
embodied by µmacro and λmacro, cannot be equal or stiffer than the microscopic response, embodied by µmicro

and λmicro. This is certainly physically sound and expresses in short that “smaller is stiffer” . Moreover,
µmicro = µmacro is tantamount to “micro = macro” and formally equivalent to µe →∞.

The fundamental importance of formulas (43) and (43) has already been proven in [44], where it is shown
that the macroscopic stiffnesses provide the slopes of the acoustic curves for band-gap metamaterials. This
will be even clearer in further applications where static test will be conceived to evaluate “a priori” λmacro

and µmacro.

5 Mandel-Voigt vector notation
In this section, we consider an equivalent formulation of the relaxed micromorphic model obtained by using
the Mandel-Voigt vector notation for the macro strain ∼ ∇u as well as for the micro strain symP .

This means that the second order tensors sym∇u and symP are replaced by the vectors ε and β, in
which the components of the original tensors are sorted column-wise by respecting a given order which is
chosen “a priori”.

As it will be shown in subsection 5.1, the use of such vector notation allows to represent the fourth order
tensors Ce and Cmicro in R3 as second order tensors C̃e and C̃micro in R6.

This representation is more suitable if one wants to specify the anisotropy classes of C̃e and C̃micro in a
format that is easily found in the literature.

For completeness, also the coupling fourth order tensor Cc can be casted in the form of a second order
tensor C̃c in R3 by suitably arranging the non-vanishing components of the skew-symmetric second order
tensor skew(∇u − P ) in a vector γ ∈ R3. As it will be shown in subsection 5.2, also the anisotropy classes
of tensors of the type of C̃c are easily found in the literature.
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We consider the general anisotropic expression for the relaxed micromorphic model (see equation (8)),
given in index notation as:

W =
1

2
(Ce)ijkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl +

1

2
(Cc)ijkl ( skew (∇u − P ))ij ( skew (∇u − P ))kl

+
1

2
(Cmicro)ijkl ( symP )ij ( symP )kl +

µL2
c

2
(Pia,b εjab) (Pic,d εjcd) , (45)

where ε is the Levi-Civita tensor. We recall that Ce, Cmicro : Sym(3)→ Sym(3) have at most 21 independent
constants, while Cc : so(3)→ so(3) has at most 6 independent constants.

5.1 Determination of the symmetric second order tensors C̃e and C̃micro in terms
of Ce and Cmicro

We now consider a linear mapping Mαij : Sym(3) → R6 (as done in [49, 88, 89]) such that the independent
components of ( sym∇u )ij are isomorphically mapped in a corresponding vector εα such as:

εα =Mαij ( sym∇u )ij . (46)

And in the same fashion we have:

βα =Mαij ( symP )ij . (47)

Here and in the following, Latin subscripts range in {1, 2, 3} while Greek subscripts vary in {1, 2, 3, 4, 5, 6}.
Following Mandel and Voigt, we set:

β =


( symP )11

( symP )22

( symP )33

c ( symP )23

c ( symP )13

c ( symP )12

 , ε =


( sym∇u )11

( sym∇u )22

( sym∇u )33

c ( sym∇u )23

c ( sym∇u )13

c ( sym∇u )12

 , (48)

where the coefficient c depends on the notation used (2 for Voigt notation [88,89],
√

2 for Mandel notation [49])
and this defines the mapping M.

The components of the defined mapping Mαij can be represented as 3× 3 matrices once fixing the index
α, as:

M1ij =

 1 0 0
0 0 0
0 0 0

 , M2ij =

 0 0 0
0 1 0
0 0 0

 , M3ij =

 0 0 0
0 0 0
0 0 1

 ,

(49)

M4ij =

 0 0 0
0 0 c

2
0 c

2 0

 , M5ij =

 0 0 c
2

0 0 0
c
2 0 0

 , M6ij =

 0 c
2 0

c
2 0 0
0 0 0

 .

We define the inverse operator M−1
ijα : R6 → Sym(3) such that:

( sym∇u )ij =M−1
ijα εα, ( symP )ij = M−1

ijα βα, (50)

and such that the following property:

MαijM
−1
ijβ = δ̃αβ , (51)
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where δ̃ is the Kronecker δ in R6 × R6, holds. It is possible to show that the components of the inverse
operator are:

M−1
ij1 =

 1 0 0
0 0 0
0 0 0

 , M−1
ij2 =

 0 0 0
0 1 0
0 0 0

 , M−1
ij3 =

 0 0 0
0 0 0
0 0 1

 ,

(52)

M−1
ij4 =

 0 0 0
0 0 1

c
0 1

c 0

 , Mij5 =

 0 0 1
c

0 0 0
1
c 0 0

 , M−1
ij6 =

 0 1
c 0

1
c 0 0
0 0 0

 .

The mapping M has zeros everywhere except in the components {111, 222, 333, 423, 513, 612}. Therefore, we
can express it compactly as:

Mαij = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +
c

2

(
δ̃α4 (δi2δj3 + δi3δj2) + δ̃α5 (δi1δj3 + δi3δj1)

)
(53)

+
c

2
δ̃α6 (δi1δj2 + δi2δj1) .

Analogously for the inverse M−1:

M−1
ijα = δ̃α1δi1δj1 + δ̃α2δi2δj2 + δ̃α3δi3δj3 +

1

c

(
δ̃α4 (δi2δj3 + δi3δj2) + δ̃α5 (δi1δj3 + δi3δj1)

)
(54)

+
1

c
δ̃α6 (δi1δj2 + δi2δj1) .

It can be checked that applying the linear mapping (53) to a symmetric second order tensor sij , the result
is a vector in R6 whose first 3 components are the elements s11, s22 and s33, while its last 3 components are
c s23, c s13 and c s12, respectively. This is consistent with the classical notation of equation (48).

Now, if we consider a quadratic energy in ε - β, recalling equation (46) and (47), we can write it as:

1

2

(
C̃e
)
αβ

(εα − βα) (εβ − ββ) =
1

2

(
C̃e
)
αβ

MαijMβkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl , (55)

where, C̃e : R6 → R6 is a general second order symmetric tensor on R6×6(matrix), with 21 independent
coefficients.

Comparing equation (55) with the corresponding part of (45), i.e.:

1

2
(Ce)ijkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl = (56)

1

2

(
C̃e
)
αβ

MαijMβkl ( sym (∇u − P ))ij ( sym (∇u − P ))kl ,

we must have:

(Ce)ijkl = Mαij

(
C̃e
)
αβ

Mβkl . (57)

For what follows, it is useful to remark that:

(Ce)−1
ijkl = M−1

ijα

(
C̃e
)−1

αβ
M−1
klβ . (58)

This last relation is not trivial and is proven in the Appendix A.3. On the other hand, the converse relations
read: (

C̃e
)
αβ

= M−1
ijα (Ce)ijklM

−1
klβ ,

(
C̃e
)−1

αβ
= Mαij (Ce)−1

ijklMβkl . (59)
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Using (59) and recalling expression (54) for the components of M−1, it can be seen that the second order
tensor C̃e can be written as a function of the components of the fourth order tensor Ce:

C̃e =



(Ce)1111 (Ce)1122 (Ce)1133
2
c (Ce)1123

2
c (Ce)1113

2
c (Ce)1112

(Ce)2211 (Ce)2222 (Ce)2233
2
c (Ce)2223

2
c (Ce)2213

2
c (Ce)2212

(Ce)3311 (Ce)3322 (Ce)3333
2
c (Ce)3323

2
c (Ce)3313

2
c (Ce)3312

2
c (Ce)2311

2
c (Ce)2322

2
c (Ce)2333

4
c2 (Ce)2323

4
c2 (Ce)2313

4
c2 (Ce)2312

2
c (Ce)1311

2
c (Ce)1322

2
c (Ce)1333

4
c2 (Ce)1323

4
c2 (Ce)1313

4
c2 (Ce)1312

2
c (Ce)1211

2
c (Ce)1222

2
c (Ce)1233

4
c2 (Ce)1223

4
c2 (Ce)1213

4
c2 (Ce)1212


, (60)

which is a symmetric 6× 6 matrix due to the symmetries of Ce according to which

(Ce)ijkl = (Ce)klij . (61)

In the same fashion, we have the relationships involving Cmicro and C̃micro as well as Cmacro and C̃macro:

(Cmicro)ijkl = Mαij

(
C̃micro

)
αβ

Mβkl, (Cmacro)ijkl = Mαij

(
C̃macro

)
αβ

Mβkl ,

(Cmicro)
−1
ijkl = M−1

ijα

(
C̃micro

)−1

αβ
M−1
klβ , (Cmacro)

−1
ijkl = M−1

ijα

(
C̃macro

)−1

αβ
M−1
klβ ,

(62)

and, conversely:(
C̃micro

)
αβ

= M−1
ijα (Cmicro)ijklM

−1
klβ ,

(
C̃macro

)
αβ

= M−1
ijα (Cmacro)ijklM

−1
klβ ,(

C̃micro

)−1

αβ
= Mαij (Cmicro)

−1
ijklMβkl,

(
C̃macro

)−1

αβ
= Mαij (Cmacro)

−1
ijklMβkl.

(63)

(64)

5.2 Determination of the fourth order tensors Cc in terms of C̃c

In this subsection, we extend the reasoning used in the previous subsection for the elastic tensors acting on
symmetric strain measure to the elastic tensor Cc which instead acts on skew-symmetric strain measures and
so provide the “rotational coupling” in the relaxed micromorphic model

To this aim, we may always represent the 4th order tensor Cc : so(3) → so(3) acting on skew-symmetric
matrices in its version acting on axial vectors only, i.e. we write:〈

Cc skew (X) , skew (X)
〉
R3×3 =

〈
C̃c axl ( skew (X)) , axl ( skew (X))

〉
R3 , (65)

where C̃c : R3 → R3 is a symmetric second order tensor (since it appears in a quadratic form) and the
operator axl defined in equation (5). Therefore, C̃c has only 6 independent coefficients and so does Cc.
Given a second order tensor X, it can be verified that:

‖ skew (X)‖2R3×3 = 2 ‖ axl ( skew (X))‖2R3 . (66)

Before understanding the general anisotropic character of the coupling tensor Cc, we recall the transformation
behavior of the energy expression in the isotropic case. An energy defined on second order tensors is isotropic
if the transformation:

X → QT ·X ·Q for Q ∈ SO(3), (67)

does not affect the value of the energy. More precisely, we say that a local energy contribution acting on
second order tensors is isotropic if

W (X) = W (QT ·X ·Q). (68)
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Given a second order tensor which is subjected to the transformation (67), it is clear that its skew-symmetric
part transforms as follows:

skew (X)→ skew
(
QT ·X ·Q

)
= QT · skew (X) ·Q for Q ∈ SO(3) , (69)

and the corresponding axial vector of skew (X) satisfies the transformation law:

axl ( skew (X))→ axl
(

skew
(
QT ·X ·Q

))
= axl

(
QT · skew (X) ·Q

)
= Q · axl ( skew (X)) , (70)

see [58,59]. Based on these transformation laws, we may investigate the anisotropy of the rotational coupling
with the representation in terms of the second order tensor C̃c. Indeed, for the isotropy of an energy of the
type W ( skewX) we require the invariance:

∀Q ∈ SO(3) :
〈
Cc skew (X) , skew (X)

〉
R3×3 =

〈
Cc skew

(
QT ·X ·Q

)
, skew

(
QT ·X ·Q

) 〉
R3×3 , (71)

which, recalling (65) and (70) is also equivalent to:

∀Q ∈ SO(3) :
〈
C̃c · axl ( skew (X)) , axl ( skew (X))

〉
R3

=
〈
C̃c · axl

(
skew

(
QT ·X ·Q

))
, axl

(
skew

(
QT ·X ·Q

)) 〉
R3 (72)

=
〈
C̃c ·Q · axl ( skew (X)) , Q · axl ( skew (X))

〉
R3 .

If we now set η = axl ( skew (X)), the latter is equivalent to:

∀Q ∈ SO(3) :
〈
C̃c · η, η

〉
R3 =

〈
C̃c ·Q · η,Q · η

〉
R3 =

〈
QT · C̃c ·Qη, η

〉
R3 , (73)

where the transformation laws for the axl-operator given in (70) has been used. Since (73) must hold for all
vectors η ∈ R3 we obtain:

C̃c = QT · C̃c ·Q ∀Q ∈ SO(3) . (74)

Recalling that Q ∈ SO(3) implies QT = Q−1, it can be inferred that this last equation is satisfied if and only
if:

C̃c =
µc
2
1, µc ≥ 0, (75)

which is the expression of C̃c for the isotropic case in which µc is called the Cosserat couple modulus [12].
Let us first state again that the relaxed micromorphic model is fully functional even without using Cc at all.
However, our experience in the isotropic case, in which Cc reduces to the Cosserat couple modulus µc, has
shown that in order to describe complete frequency band gaps, one should take µc > 0. In the anisotropic
case this would translate to requiring that Cc is positive definite.

Next, we discuss the different anisotropy classes for Cc which can be expressed more easily for C̃c. In this
case we discuss the solutions of:

C̃c = QT · C̃c ·Q ∀Q ∈ G - symmetry group of the material. (76)

In other words, the invariance condition is formally equivalent to that previously discussed (see equation
(67)), but the difference stays in the set G in which the transformation matrix Q lives. Depending on the
symmetry properties of the group G, we will be able to define different material classes.

It can be shown that in the respective cases of triclinic, monoclinic, orthorombic, tetragonal (coincides
with transversely isotropy) and isotropy (equivalent to cubic symmetry), the tensor C̃c has the following
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forms (see [42, p. 30] and [7])15:

C̃tric
c =


(
C̃c
)

11

(
C̃c
)

21

(
C̃c
)

31(
C̃c
)

22

(
C̃c
)

23

sym
(
C̃c
)

33

 , C̃mono
c =


(
C̃c
)

11
0

(
C̃c
)

31(
C̃c
)

22
0

sym
(
C̃c
)

33

 ,

C̃orth
c =


(
C̃c
)

11
0 0(

C̃c
)

22
0

sym
(
C̃c
)

33

 , C̃tetr
c = C̃trans

c =


(
C̃c
)

11
0 0(

C̃c
)

11
0

sym
(
C̃c
)

33

 , (77)

C̃iso
c = C̃cubic

c =
(
C̃c
)

11

 1 0 0
1 0

sym 1

 .

After considering the representation (77) we appreciate the fact that there is no difference between the
cubic and isotropic rotational coupling. Both reduce C̃c to be a spherical tensor C̃c = µc

2 1, with µc ≥ 0. We
believe that it is very difficult to make statements about the anisotropic rotational coupling, see the footnote
11.

Indeed, the first applications of the relaxed micromorphic model to real band-gap metamaterials show
that an isotropic version of the tensor C̃c is sufficient to trigger band-gap behaviors. We provide in this paper
the general framework to treat any possible degree of anisotropy for the rotational coupling. Nevertheless,
if there is no evidence of the need of anisotropic rotational coupling based on experimental observations, an
isotropic coupling given by the Cosserat couple modulus µc alone should always be preferred. Therefore, it
is possible to consider a reduction of a given anisotropic rotational coupling to the isotropic case as analyzed
in Appendix A.4.

6 The macroscopic limit of the relaxed model (Lc → 0) - macroscopic
consistency conditions

In this section we provide one of the main findings of the present paper, namely a clear procedure for the
determination of the macroscopic fourth order tensor Cmacro in terms of the microstructure-related Ce and
Cmicro. Thanks to our previous considerations, we are able to establish equivalent relationships between the
second order tensors C̃macro, C̃e and C̃micro. The results that we show in this section have the following
advantages which allow us to expectedly proceed towards well-conceived applications on real metamaterials:

• the consistency condition that we derive here relates the macro moduli in Cmacro to the micro moduli in
Ce and Cmicro. We claim that, given a specific metamaterial, the moduli in Cmacro can be determined
on the basis of very simple mechanical tests. The idea is that of considering a specimen which is big
enough that the effect of the microstructure can be considered to be negligible. Once the tensor Cmacro

is known, then Ce and Cmicro can be directly related via the consistency condition that we present here.
This drastically reduces the number of unknown coefficients that have to be determined, so providing
an effective tool towards manageable applications.

• the way towards application is made even easier by the introduction of the second order tensors C̃macro,
C̃e and C̃micro whose form can be easily found in the literature once the class of anisotropy of the
medium is fixed.

15The most general representation of C̃c ∈ Sym+(3) is C̃c = dev (C̃c) + 1
3
tr(C̃c)1. However, this has nothing to do with

isotropy: it is just a convenient representation for general symmetric C̃c. We note in passing that dev C̃c alone cannot be
positive definite since tr

(
dev C̃c

)
= 0, so there are positive and negative eigenvalues of dev C̃c.
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6.1 Equilibrium equations
The equilibrium equations of the anisotropic relaxed micromorphic model associated to the energy (8) read:

Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] = 0, (78)

Ce sym (∇u − P ) + Cc skew (∇u − P )

−Cmicro symP − µL2
c ( Curl CurlP ) = 0,

or, in index notation: [
(Ce)ijkl ( sym (∇u − P ))kl + (Cc)ijkl ( skew (∇u − P ))kl

]
,j

= 0, (79)

(Ce)ijkl ( sym (∇u − P ))kl + (Cc)ijkl ( skew (∇u − P ))kl

− (Cmicro)ijkl ( symP )kl − µL
2
c (Pik,jk − Pij,kk) = 0.

We define the elastic stress tensor σ(∇u , P ) appearing in (78)1 as:

σ(∇u , P ) :=Ce sym (∇u − P ) + Cc skew (∇u − P ) , (80)

or, in index notation:

σij(∇u , P ) := (Ce)ijkl ( sym (∇u − P ))kl + (Cc)ijkl ( skew (∇u − P ))kl . (81)

Therefore, the equilibrium equation (78)1 can be compactly written as:

Div [σ(∇u , P )] = 0. (82)

6.2 The general relaxed anisotropic case in the limit Lc → 0

We will show that our relaxed micromorphic model defined by the energy (8), or equivalently by the equations
of motion (78), can be reduced to a sort of equivalent “macroscopic model” when letting Lc → 0. Indeed,
when Lc = 0 equation (78)2 gives a direct relation between P and ∇u which, when inserted in (78)1, allows
to rewrite the energy in terms of ∇u . Hence, we can introduce an equivalent macroscopic stress tensor
σmacro( sym∇u ) which is the limit of σ(∇u , P ) for Lc → 0. In symbols:

σmacro( sym∇u ) = lim
Lc→0

σ(∇u , P ) . (83)

In the linear-elastic case the tensor σmacro( sym∇u ) can be written as:

σmacro( sym∇u ) = Cmacro sym∇u , (84)

assuming that it is the Cauchy stress tensor of a classical first gradient continuum.
In view of applications, considering very large samples of the anisotropic medium is equivalent to letting

Lc, the characteristic length, tend to zero. As a consequence of Lc = 0, the second equilibrium equation in
(78) looses the Curl CurlP -term and turns into an algebraic side condition connecting P and ∇u via:

Ce sym (∇u − P )− Cmicro symP + Cc skew (∇u − P ) = 0, (85)

which, in index notation reads:

(Ce)ijkl ( sym (∇u − P ))kl − (Cmicro)ijkl ( symP )kl + (Cc)ijkl ( skew (∇u − P ))kl = 0. (86)

Equation (85) can be decoupled (by the assumed special mapping symmetry properties of the elasticity
tensors, see equations (10)) into two equations for the symmetric and skew-symmetric part, respectively,
yielding:

Ce sym (∇u − P ) = Cmicro symP, Cc skew (∇u − P ) = 0. (87)
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which, in index notation becomes:

(Ce)ijkl ( sym (∇u − P ))kl = (Cmicro)ijkl ( symP )kl , (88)

(Cc)ijkl ( skew (∇u − P ))kl = 0.

This uncoupling is true since Ce and Cmicro map symmetric matrices to symmetric matrices and Cc : so(3)→
so(3), and then Cc skew (∇u − P ) is skew-symmetric by assumption. From the second equation in (87), we
can easily derive that:

Cc skew∇u = Cc skew (P ) . (89)

On the other hand, solving (87)1 for symP gives16:

(Cmicro + Ce) symP =Ce sym∇u , (90)

⇐⇒ symP = (Cmicro + Ce)−1
(Ce sym∇u ) .

This is an identity between the micro-distortion P and the gradient of the displacement ∇u which proves
how, in the macroscopic limiting case, the model is transparent with respect to the micro-distortion, i.e.
only macroscopic deformations involving sym∇u are allowed. We insert (87)1, (89) and (90) into (78) and
considering the uncoupling between symmetric and skew symmetric parts of the involved tensors, we get:

Div [Cmicro symP ] = 0 ⇐⇒ Div
[
Cmicro (Cmicro + Ce)−1 Ce sym∇u

]
= 0. (91)

On the other hand, the classical balance equation for the linear elastic macroscopic response is:

Div [Cmacro sym∇u ] = 0. (92)

Comparing the macroscopic balance equation (92) with the one derived from our relaxed model when letting
Lc = 0 ((91)1), we obtain the following a priori relation between the macroscopic elasticity tensor Cmacro

and the microscopic tensor Cmicro as well as the mesoscopic (relative) elasticity tensor Ce:

Cmacro := Cmicro (Cmicro + Ce)−1 Ce , (93)

which is a generalization of (42) when considering our anisotropic setting. From equation (93) (see Appendix
A.5), we get by simple inversion17:

C−1
macro = C−1

micro (Cmicro + Ce) C−1
e = C−1

e + C−1
micro . (94)

Therefore, we note, surprisingly at first glance, that Cmacro is the “parallel sum” of Ce and Cmicro (the parallel
sum of two tensors A and B is defined as

(
A−1 +B−1

)−1), that is equal to one half of the harmonic mean
operator on positive definite symmetric matrices (see [4, p. 103]), defined as:

H (Ce,Cmicro) :=

[
1

2

(
C−1
e + C−1

micro

)]−1

= 2Cmicro (Ce + Cmicro)
−1 Ce = 2Cmacro . (95)

It is possible to obtain the inverse relation with algebraic operations. First, from equation (94) it is immediate
that:

C−1
e = C−1

macro − C−1
micro , (96)

or equivalently:

Ce =
(
C−1

macro − C−1
micro

)−1
= Cmicro

[
C−1

micro

(
C−1

macro − C−1
micro

)−1 C−1
macro

]
Cmacro . (97)

16We note here that the inverse of an elastic stiffness tensor, like (Cmicro + Ce) has the same symmetry group structure as
Cmicro + Ce itself. This can be shown easily by directly looking at its definition of groups.

17 It can be checked that, given fourth order invertible tensors A, B and C, the following identity holds: (A ·B · C)−1 =
C−1 ·B−1 ·A−1
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Considering that A−1 ·B−1 · C−1 = (C ·B ·A)
−1, we obtain:

Ce =Cmicro

[
Cmacro

(
C−1

macro − C−1
micro

)
Cmicro

]−1 Cmacro (98)

=Cmicro [Cmicro − Cmacro]
−1 Cmacro .

So finally, we have the further compact relation:

Ce = Cmicro (Cmicro − Cmacro)
−1 Cmacro . (99)

Note that these results are true without assuming that the tensors Cmicro, Ce and Cmacro commute (and, in
fact, they do not).

6.3 Particularization for specific anisotropy classes
In order to show how equation (93) particularizes for anisotropy classes, we use the vectorial notation defined
in section (5). In particular, by (93), (57) and (58), we can rewrite equation 93:(

C̃macro

)
αβ

Mαij Mβkl =
(
C̃micro

)
αγ

MαijMγmn

(
C̃micro + C̃e

)−1

δε
M−1
mnδM

−1
pqε

(
C̃e
)
ζβ

Mζpq Mβkl

=
(
C̃micro

)
αγ
δ̃γδ δ̃εζ

(
C̃micro + C̃e

)−1

δε

(
C̃e
)
ζβ

MαijMβkl (100)

=
(
C̃micro

)
αγ

(
C̃micro + C̃e

)−1

γζ

(
C̃e
)
ζβ

MαijMβkl .

From this last equation we easily notice that:

C̃macro = C̃micro ·
(
C̃micro + C̃e

)−1

· C̃e . (101)

This formula for second-order elasticity tensors is completely analogous to (93), which was obtained for 4th
order tensors and allows to pass from micro to macro coefficients just by specifying the special forms of the
6 × 6 matrices C̃macro, C̃micro, C̃e. Using algebraic arguments analogous to those for the 4th order tensors
case, we obtain the inverse relation:

C̃e = C̃micro ·
(
C̃micro − C̃macro

)−1

· C̃macro . (102)

These expressions may be of use when the elastic properties C̃micro of a unit elementary cell of the considered
metamaterial and the macroscopic properties C̃macro of the metamaterial considered as a macroscopic block
are known. Therefore, the elastic coupling tensor C̃e is easily computable and is, in fact uniquely determined.
In the following subsections, we will particularize equations (101) and (102) to specific symmetries, thus
dealing with isotropic, cubic, orthotropic an generally anisotropic materials, as intended in our relaxed
micromorphic framework. For deriving such particular cases, we make the implicit assumption that Ce,
Cmicro and Cmacro have the same symmetries, which is indeed a sensible ansatz.

6.3.1 The isotropic case

In this subsection, we show how the fundamental formula (101) can be particularized to the isotropic case so
retrieving the homogenization formulas for the Lamé parameters proposed in [62,67].

In the isotropic case and employing the Voigt notation, the constitutive elastic tensor has the following
specific structure:

C̃iso
e =


2µe + λe λe λe 0 0 0

λe 2µe + λe λe 0 0 0
λe λe 2µe + λe 0 0 0
0 0 0 µe 0 0
0 0 0 0 µe 0
0 0 0 0 0 µe

 , (103)
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which, with the help of the bulk modulus κe = 1
3 (2µe + 3λe) can be expressed as:

C̃iso
e =


κe + 4/3µe κe − 2/3µe κe − 2/3µe 0 0 0
κe − 2/3µe κe + 4/3µe κe − 2/3µe 0 0 0
κe − 2/3µe κe − 2/3µe κe + 4/3µe 0 0 0

0 0 0 µe 0 0
0 0 0 0 µe 0
0 0 0 0 0 µe

 . (104)

Analogously:

C̃iso
micro =


κmicro + 4/3µmicro κmicro − 2/3µmicro κmicro − 2/3µmicro 0 0 0
κmicro − 2/3µmicro κmicro + 4/3µmicro κmicro − 2/3µmicro 0 0 0
κmicro − 2/3µmicro κmicro − 2/3µmicro κmicro + 4/3µmicro 0 0 0

0 0 0 µmicro 0 0
0 0 0 0 µmicro 0
0 0 0 0 0 µmicro

 .

(105)

Using the consistency condition in equation (101) and simplifying, we can write:

C̃iso
macro =


κmacro + 4/3µmacro κmacro − 2/3µmacro κmacro − 2/3µmacro 0 0 0
κmacro − 2/3µmacro κmacro + 4/3µmacro κmacro − 2/3µmacro 0 0 0
κmacro − 2/3µmacro κmacro − 2/3µmacro κmacro + 4/3µmacro 0 0 0

0 0 0 µmacro 0 0
0 0 0 0 µmacro 0
0 0 0 0 0 µmacro

 ,

(106)

where we set:
κmacro =

κe κmicro

κe + κmicro
, µmacro =

µe µmicro

µe + µmicro
. (107)

The relation for κmacro can also be expressed as a function of µmacro and λmacro:

(2µmacro + 3λmacro) =
(2µmicro + 3λmicro) (2µe + 3λe)

(2 (µe + µmicro) + 3 (λe + λmicro))
. (108)

Equations (107) can also be inverted:

κe =
κmacro κmicro

κmicro − κmacro
= κmacro (κmicro − κmacro)

−1
κmicro ,

µe =
µmacro µmicro

µmicro − µmacro
= µmacro (µmicro − µmacro)

−1
µmicro .

(109)

The first equation in (109) can be analogously rewritten in terms of λe and µe as:

(2µe + 3λe) =
(2µmacro + 3λmacro) (2µmicro + 3λmicro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
. (110)

6.3.2 The cubic symmetry case

In this subsection, we start showing the interest that the homogenization formula (101) may have in the case
of simple anisotropies, as the cubic case. This formula for the cubic case will be applied in forthcoming works
to show how it is fundamental for the mechanical characterization of real metamaterials.

In the cubic case, the constitutive tensors in Voigt-format have the following structure:
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C̃cub
e =


2µe + λe λe λe 0 0 0

λe 2µe + λe λe 0 0 0
λe λe 2µe + λe 0 0 0
0 0 0 µ∗e 0 0
0 0 0 0 µ∗e 0
0 0 0 0 0 µ∗e

 , (111)

which, using the bulk modulus κe = 1
3 (2µe + 3λe) can be rewritten as:

C̃cub
e =


κe + 4/3µe κe − 2/3µe κe − 2/3µe 0 0 0
κe − 2/3µe κe + 4/3µe κe − 2/3µe 0 0 0
κe − 2/3µe κe − 2/3µe κe + 4/3µe 0 0 0

0 0 0 µ∗e 0 0
0 0 0 0 µ∗e 0
0 0 0 0 0 µ∗e

 . (112)

Analogously:

C̃cub
micro =


κmicro + 4/3µmicro κmicro − 2/3µmicro κmicro − 2/3µmicro 0 0 0
κmicro − 2/3µmicro κmicro + 4/3µmicro κmicro − 2/3µmicro 0 0 0
κmicro − 2/3µmicro κmicro − 2/3µmicro κmicro + 4/3µmicro 0 0 0

0 0 0 µ∗micro 0 0
0 0 0 0 µ∗micro 0
0 0 0 0 0 µ∗micro

 .

(113)

Using the consistency condition in equation (101), we obtain:

C̃cub
macro =


κmacro + 4/3µmacro κmacro − 2/3µmacro κmacro − 2/3µmacro 0 0 0
κmacro − 2/3µmacro κmacro + 4/3µmacro κmacro − 2/3µmacro 0 0 0
κmacro − 2/3µmacro κmacro − 2/3µmacro κmacro + 4/3µmacro 0 0 0

0 0 0 µ∗macro 0 0
0 0 0 0 µ∗macro 0
0 0 0 0 0 µ∗macro

 .

(114)

where:

κmacro =
κe κmicro

κe + κmicro
, µmacro =

µe µmicro

µe + µmicro
, µ∗macro =

µ∗e µ
∗
micro

µ∗e + µ∗micro

. (115)

The relation for κmacro can also be expressed as a function of µmacro and λmacro:

(2µmacro + 3λmacro) =
(2µmicro + 3λmicro) (2µe + 3λe)

(2 (µe + µmicro) + 3 (λe + λmicro))
. (116)

Equations (115) can also be inverted:

κe =
κmacro κmicro

κmicro − κmacro
= κmacro (κmicro − κmacro)

−1
κmicro ,

µe =
µmacro µmicro

µmicro − µmacro
= µmacro (µmicro − µmacro)

−1
µmicro,

µ∗e =
µ∗macro µ

∗
micro

µ∗micro − µ∗macro

= µ∗macro (µ∗micro − µ∗macro)
−1

µ∗micro .

(117)
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The first equation in (117) can be analogously rewritten in terms of λe and µe as:

(2µe + 3λe) =
(2µmacro + 3λmacro) (2µmicro + 3λmicro)

(2µmicro + 3λmicro)− (2µmacro + 3λmacro)
. (118)

6.3.3 The orthotropic case

In the orthotropic case, the constitutive tensors have the following specific structure:

C̃orth
e =



(
C̃e
)

11

(
C̃e
)

12

(
C̃e
)

13
0 0 0(

C̃e
)

12

(
C̃e
)

22

(
C̃e
)

23
0 0 0(

C̃e
)

13

(
C̃e
)

23

(
C̃e
)

33
0 0 0

0 0 0
(
C̃e
)

44
0 0

0 0 0 0
(
C̃e
)

55
0

0 0 0 0 0
(
C̃e
)

66


. (119)

Since it will be useful in the following, we define the sub-block C̃a
e as:

C̃a
e =


(
C̃e
)

11

(
C̃e
)

12

(
C̃e
)

13(
C̃e
)

12

(
C̃e
)

22

(
C̃e
)

23(
C̃e
)

13

(
C̃e
)

23

(
C̃e
)

33

 (120)

Analogously:

C̃orth
micro =



(
C̃micro

)
11

(
C̃micro

)
12

(
C̃micro

)
13

0 0 0(
C̃micro

)
12

(
C̃micro

)
22

(
C̃micro

)
23

0 0 0(
C̃micro

)
13

(
C̃micro

)
23

(
C̃micro

)
33

0 0 0

0 0 0
(
C̃micro

)
44

0 0

0 0 0 0
(
C̃micro

)
55

0

0 0 0 0 0
(
C̃micro

)
66


, (121)

and we define, for subsequent convenience, the sub-block C̃a
micro as:

C̃a
micro =


(
C̃micro

)
11

(
C̃micro

)
12

(
C̃micro

)
13(

C̃micro

)
12

(
C̃micro

)
22

(
C̃micro

)
23(

C̃micro

)
13

(
C̃micro

)
23

(
C̃micro

)
33

 . (122)

Using the consistency condition in equation (101), we obtain:

C̃orth
macro =



(
C̃macro

)
11

(
C̃macro

)
12

(
C̃macro

)
13

0 0 0(
C̃macro

)
12

(
C̃macro

)
22

(
C̃macro

)
23

0 0 0(
C̃macro

)
13

(
C̃macro

)
23

(
C̃macro

)
33

0 0 0

0 0 0
(
C̃macro

)
44

0 0

0 0 0 0
(
C̃macro

)
55

0

0 0 0 0 0
(
C̃macro

)
66


, (123)
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where, considering p = 4, 5, 6 without the sum over repeated indices, we have:

C̃a
macro = C̃a

e ·
(
C̃a
e + C̃a

micro

)−1

· C̃a
micro ,

(
C̃macro

)
pp

=

(
C̃e
)
pp

(
C̃micro

)
pp(

C̃e + C̃micro

)
pp

. (124)

Here, we introduced the sub-block C̃a
macro:

C̃a
macro =


(
C̃macro

)
11

(
C̃macro

)
12

(
C̃macro

)
13(

C̃macro

)
12

(
C̃macro

)
22

(
C̃macro

)
23(

C̃macro

)
13

(
C̃macro

)
23

(
C̃macro

)
33

 .

The formulas in equation (124) can also be inverted as:

C̃a
e = C̃a

macro ·
(
C̃a

micro − C̃a
macro

)−1

· C̃a
micro ,

(
C̃e
)
pp

=

(
C̃macro

)
pp

(
C̃micro

)
pp(

C̃micro − C̃macro

)
pp

. (125)

6.4 The long wavelength limit - dynamic considerations
The governing equations for the anisotropic relaxed micromorphic model in the dynamical case take the form:

ρ u,tt = Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] , (126)

ρ L̂2
c J0 P,tt =Ce sym (∇u − P ) + Cc skew (∇u − P )− Cmicro symP − µL2

c Curl CurlP.

Using the isotropy of inertia we can split (126)2 into 3 coupled systems of equations:

η1 ρ L̂
2
c dev sym [P,tt] = dev sym

[
Ce sym (∇u − P )− Cmicro symP − µL2

c Curl CurlP
]
,

η2 ρ L̂
2
c skew [P,tt] =Cc skew (∇u − P )− µL2

c skew Curl CurlP , (127)

η3 ρ L̂
2
c tr [P,tt] = tr

[
Ce sym (∇u − P )− Cmicro symP − µL2

c Curl CurlP
]
.

This split of the inertia is essential for the description of real metamaterials in the dynamic regime (see [44]).
The classical continuum theory is the long wavelength limit, corresponding to large length and time

scales, and it predicts properties independent of specimen size. The long wave length limit is given by letting
L̂c, Lc → 0 simultaneously. In this case, the system (126) formally reduces to:

ρ u,tt = Div [Ce sym (∇u − P ) + Cc skew (∇u − P )] , (128)
0 =Ce sym (∇u − P ) + Cc skew (∇u − P )− Cmicro symP .

As in the static case, we may rewrite (128) in the format of classical dynamic linear elasticity, yielding:

ρ u,tt = Div [Cmacro sym∇u ] , (129)

where, following (93), we obtain again:

Cmacro = Cmicro (Cmicro + Ce)−1 Ce . (130)

We have thus shown that the fundamental homogenization formula that we propose in this paper can be
eventually obtained as a macroscopic limit in the statical case, or as a long wavelength limit in the dynamical
case.
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7 Non reduction for the standard Mindlin-Eringen model
In this section, we explicitly show that the considerations that allowed us to derive the macroscopic consis-
tency conditions for the relaxed micromorphic model cannot be repeated for the classical Mindlin Eringen
model which hence does not provide a transparent connection of the micro and meso elastic tensors to the
macroscopic properties of the medium.

The elastic energy of the general anisotropic micromorphic model in the sense of Mindlin-Eringen can be
represented as:

W =
1

2

〈
Ce (∇u − P ) , (∇u − P )

〉
︸ ︷︷ ︸

anisotropic elastic− energy

+
1

2

〈
Cmicro symP, symP

〉
︸ ︷︷ ︸

micro− self − energy

+
µL2

c

2
‖∇P‖2︸ ︷︷ ︸

curvature

. (131)

The same expression in index notation is:

W =
1

2

(
Ce
)
ijkl

(∇u − P )ij (∇u − P )kl +
1

2
(Cmicro)ijkl ( symP )ij ( symP )kl +

µL2
c

2
Pij,k Pij,k. (132)

Here, we have discarded Ecross for simplicity. Note that the coupling of skew-symmetric terms is now also
contained in Ce in some hidden way, instead of being explicitly present as in Cc and our relaxed model. The
static equilibrium equations are:

Div
[
Ce (∇u − P )

]
= 0, (133)

−Ce (∇u − P ) + Cmicro symP + µL2
c Div [∇P ] = 0.

These can be equivalently written as: ((
Ce
)
ijkl

(∇u − P )kl

)
,j

= 0, (134)

−
(
Ce
)
ijkl

(∇u − P )kl + (Cmicro)ijkl ( symP )kl + µL2
c Pij,kk = 0.

Here we can define the elastic (relative) stress in such a way that it depends bijectively on the non-symmetric
elastic distortion e = ∇u − P since Ce is assumed to be uniformly positive definite:

σ (∇u , P ) = Ce (∇u − P ) , σij (∇u , P ) =
(
Ce
)
ijkl

(∇u − P )kl . (135)

We can write in this model:

∇u − P = C−1

e σ , (136)

where C−1

e is the Mindlin-Eringen elastic micromorphic compliance tensor.
In order to find the corresponding macroscopic tensor, we have to write the micromorphic elastic (relative)

stress as a function of only ∇u .
Considering very large samples of the anisotropic structure amounts to letting Lc, the characteristic length,

tend to zero. As a consequence of Lc = 0, the second equilibrium equation in (133) looses the Div∇P -term
and turns into an algebraic side-condition connecting P and ∇u via:

Ce (∇u − P ) = Cmicro symP . (137)

Or, again in index notation: (
Ce
)
ijkl

(∇u − P )kl = (Cmicro)ijkl ( symP )kl . (138)

From this equation we obtain:

Cmicro symP =Ce sym (∇u − P ) + Ce skew (∇u − P )

=Ce sym∇u − Ce symP + Ce skew (∇u − P ) ,

(
Ce + Cmicro

)
symP =Ce sym∇u + Ce skew (∇u − P )

symP =
(
Ce + Cmicro

)−1 Ce sym∇u +
(
Ce + Cmicro

)−1 Ce skew (∇u − P ) . (139)
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In index notation this becomes:

( symP )ij =
(
Ce + Cmicro

)−1

ijkl

(
Ce
)
klmn

( sym∇u )mn +
(
Ce + Cmicro

)−1

ijkl

(
Ce
)
klmn

( skew (∇u − P ))mn .

(140)

On the other hand, replacing (137) in (133)1 yields:

Div [Cmicro symP ] = 0 . (141)

And again, by replacing this result in (139) we obtain:

Div
[
Cmicro

(
Ce + Cmicro

)−1 Ce sym∇u + Cmicro

(
Ce + Cmicro

)−1 Ce skew (∇u − P )
]

= 0. (142)

It is not possible to decouple this last equation due to the presence of the rotational coupling term
skew (∇u − P ). Therefore, the only condition we can obtain is:

Cmicro

(
Ce + Cmicro

)−1 Ce sym∇u + Cmicro

(
Ce + Cmicro

)−1 Ce skew (∇u − P ) = Cmacro sym∇u ,
(143)

or, in index notation:

(Cmicro)klmn
(
Ce + Cmicro

)−1

mnpq

(
Ce
)
pqij

( sym∇u )ij + (144)

+ (Cmicro)klmn
(
Ce + Cmicro

)−1

mnpq

(
Ce
)
pqij

( skew (∇u − P ))ij = (Cmacro)klij ( sym∇u )ij .

This has to hold for any sym∇u . Noting that Cmacro sym∇u ∈ Sym(3) and considering the symmetric part
and the skew-symmetric part individually, we have

sym
{
Cmicro

(
Ce + Cmicro

)−1 Ce sym∇u + Cmicro

(
Ce + Cmicro

)−1 Ce skew (∇u − P )
}

= Cmacro sym∇u ,

skew
{
Cmicro

(
Ce + Cmicro

)−1 Ce sym∇u + Cmicro

(
Ce + Cmicro

)−1 Ce skew (∇u − P )
}

= 0.

(145)

Similarly, in index notation we obtain:
sym

{
(Cmicro)klmn

(
Ce + Cmicro

)−1

mnpq

(
Ce
)
pqij

(
( sym∇u )ij + ( skew (∇u − P ))ij

)}
= (Cmacro)klij ( sym∇u )ij ,

skew
{

(Cmicro)klmn
(
Ce + Cmicro

)−1

mnpq

(
Ce
)
pqij

(
( sym∇u )ij + ( skew (∇u − P ))ij

)}
= 0.

(146)

A sufficient condition in order to obtain a decoupling of these equations (sym and skew) is exactly the reduced
anisotropic format put forward in our relaxed model.

8 The microscopic limit - static considerations
There is another interesting limit behavior in our relaxed micromorphic model. We may consider, formally,
to let Lc →∞. Conceptually, this means a “zoom” into the micro-structure. A scaling argument shows that
this is tantamount to considering very small samples of the given multiscale material.
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8.1 The standard Mindlin-Eringen model
Letting Lc →∞ and considering the curvature-term in the form µL2

c‖∇P‖2 means that, in the limit, ∇P → 0

and P must be homogeneous: P (x) = P̂ . This means that the micro-structure does not have the possibility
to respond in any inhomogeneous way. The remaining minimization problem∫

Ω

1

2

〈
Ce
(
∇u − P̂

)
,
(
∇u − P̂

) 〉
+

1

2

〈
Cmicro sym P̂ , sym P̂

〉
dx→ min

(
u, P̂

)
, P̂ is homogeneous ,

 


Div

[
Ce
(
∇u − P̂

)]
= 0 , u|∂Ω = u0 ,

−Ce
(
∇u − P̂

)
+ Cmicro sym P̂ = 0 , P̂ is homogeneous,

(147)

can be written, considering that P̂ is homogeneous, as∫
Ω

1

2

〈
Ce
(
∇u − P̂

)
,
(
∇u − P̂

) 〉
dx+

|Ω|
2

〈
Cmicro sym P̂ , sym P̂

〉
→ min(u, P̂ ) ,

 


Div

[
Ce ∇u

]
= Div

[
Ce P̂

]
︸ ︷︷ ︸

=0

= 0 , u|∂Ω = u0 ,

Ce P̂ + Cmicro sym P̂ = Ce
[

1
|Ω|
∫

Ω
∇u dx

]
, P̂ is homogeneous,

(148)

where |Ω| =
∫

Ω
1 dx denotes the measure of Ω and the last equation has been derived considering that the

variation with respect to a homogeneous P̂ is:∫
Ω

〈
Ce
(
∇u − P̂

)
,−δ P̂

〉
dx+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
(149)

=

∫
Ω

〈
Ce ∇u ,−δ P̂

〉
dx+

∫
Ω

〈
Ce P̂ , δ P̂

〉
dx+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
=
〈
Ce
∫

Ω

∇u dx,−δ P̂
〉

+ |Ω|
〈
Ce P̂ , δ P̂

〉
+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
=
〈
Ce
∫

Ω

∇u dx+ |Ω|
(
Ce P̂ + Cmicro sym P̂

)
, δ P̂

〉
.

The problem (148) has a unique solution in the displacement u, from which we determine P̂ . Defining
C : R3×3 → R3×3 such that:

C P̂ := Ce P̂ + Cmicro sym P̂ = Ce
[

1

|Ω|

∫
Ω

∇u dx
]
, (150)

shows that C is invertible. Therefore, we obtain that the value of the homogeneous P̂ results as

P̂ := C−1Ce
[

1

|Ω|

∫
Ω

∇u dx
]
. (151)

In conclusion, the micro-distortion P is uniquely related to the average 1
|Ω|
∫

Ω
∇u dx (over a representative

unit cell). However, this relationship is not, in any way, transparent due to the unclear interaction of C and
Ce.
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8.2 The relaxed micromorphic model but with ‖∇P‖2

In this model variant, letting Lc → ∞, generates again a response similar as before; P (x) = P̂ must be
homogeneous and the remaining minimization problem∫

Ω

1

2

〈
Ce sym

(
∇u − P̂

)
, sym

(
∇u − P̂

) 〉
+

1

2

〈
Cmicro sym P̂ , sym P̂

〉
dx→ min (u, P̂ ) ,

 


Div

[
Ce sym

(
∇u − P̂

)]
= 0 , u|∂Ω = u0 ,

−Ce sym
(
∇u − P̂

)
+ Cmicro sym P̂ = 0 , P̂ is homogeneous,

(152)

can be written, since P̂ is homogeneous, as∫
Ω

1

2

〈
Ce sym

(
∇u − P̂

)
, sym

(
∇u − P̂

) 〉
dx+

|Ω|
2

〈
Cmicro sym P̂ , sym P̂

〉
→ min(u, P̂ ) ,

 


Div [Ce sym∇u ] = Div

[
Ce sym P̂

]
︸ ︷︷ ︸

=0

= 0 , u|∂Ω = u0 ,

(Ce + Cmicro) sym P̂ = Ce
[

1
|Ω|
∫

Ω
sym∇u dx

]
, P̂ is homogeneous,

(153)

where |Ω| =
∫

Ω
1 dx and the last equation has been derived by using the fact that the variation with respect

to a homogeneous P̂ is:∫
Ω

〈
Ce sym

(
∇u − P̂

)
,−δ P̂

〉
dx+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
(154)

=

∫
Ω

〈
Ce sym∇u ,−δ P̂

〉
dx+

∫
Ω

〈
Ce sym P̂ , δ P̂

〉
dx+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
=
〈
Ce
∫

Ω

sym∇u dx,−δ P̂
〉

+ |Ω|
〈
Ce sym P̂ , δ P̂

〉
+ |Ω|

〈
Cmicro sym P̂ , δ P̂

〉
=
〈
Ce
∫

Ω

sym∇u dx+ |Ω| (Ce + Cmicro) sym P̂ , δ P̂
〉
.

Since δ P̂ is arbitrary, we obtain:

Ce
∫

Ω

sym∇u dx+ |Ω| (Ce + Cmicro) sym P̂ = 0 . (155)

The problem (153) has a unique solution in the displacement u, from which we determine sym P̂ :

sym P̂ := (Ce + Cmicro)
−1 Ce

[
1

|Ω|

∫
Ω

sym∇u dx
]
, (156)

from which, since Cmacro = Cmicro (Ce + Cmicro)
−1 Ce, we notice that:

Cmicro sym P̂ =Cmacro

[
1

|Ω|

∫
Ω

sym∇u dx
]

(157)

⇐⇒ sym P̂ =C−1
micro Cmacro

[
1

|Ω|

∫
Ω

sym∇u dx
]
. (158)

Since Cmicro : Sym(3)→ Sym(3) and Cmacro : Sym(3)→ Sym(3) we also have that C−1
micro : Sym(3)→ Sym(3)

and all together, C−1
micro Cmacro : Sym(3)→ Sym(3). In this case, problem (153) is formally equivalent to the

classic elastic first gradient case when C = Ce. Since we used Cc ≡ 0, the skew-symmetric part of P remains
indeterminate.
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Figure 2: Transparent scale-separation between
macroscopic Cauchy linear elastic response for Lc = 0
with stiffness Cmacro and microscopic Cauchy linear
elastic response for Lc → ∞ with stiffness Cmicro.
The relaxed micromorphic model “interpolates” be-
tween Cmicro and Cmacro with parameter Lc = 0  
Cmacro and Lc = ∞  Cmicro. This clearcut trans-
parency is only obtained within our relaxed micro-
morphic approach. Thereby, Lc →∞ solves only the
micro-unit-cell problem while Lc = 0 can be inter-
preted either as making the body Ω arbitrary large
while retaining the size of the unit-cell or keeping the
dimensions of the body fixed while reducing the di-
mensions of the unit cell to zero. No condition on the
rotational coupling tensor Cc is implied in either case.

3D	body	

Ω	

8.3 The relaxed micromorphic model with ‖CurlP‖2

In our relaxed micromorphic model with the curvature depending only on CurlP , things turn out much
differently. Letting Lc →∞ does not generate a homogeneous P̂ ; rather, it enforces that the micro-distortion
P must be compatible and therefore that there exists a function ϑ : Ω ⊂ R3 → R3 such that P (x) = ∇ϑ(x).

Therefore, the remaining minimization problem is:∫
Ω

1

2

〈
Ce sym (∇u −∇ϑ) , sym (∇u −∇ϑ)

〉
+

1

2

〈
Cmicro sym∇ϑ, sym∇ϑ

〉
dx→ min (u, ϑ) ,

 


Div [Ce sym (∇u −∇ϑ)] = 0 ,

Div [−Ce sym (∇u −∇ϑ) + Cmicro sym∇ϑ] = 0 .

(159)

Leaving the boundary conditions for ϑ aside (i.e. no Dirichlet type boundary condition for P ) we immediately
get a solution of (159) by choosing ∇u = ∇ϑ which gives:∫

Ω

1

2

〈
Cmicro sym∇u , sym∇u

〉
dx→ min (u)  Div [Cmicro sym∇u ] = 0 . (160)

Therefore, we get exactly the classical linear elastic response with the microscopic stiffness Cmicro for Lc →∞,
as we should!

9 Conclusion
Gathering our new findings for the anisotropic relaxed micromorphic model together, we have obtained that
for zero characteristic length scale Lc = 0 (which corresponds to a long wavelength limit or to a specimen
of arbitrarily large size), it is possible to identify both the symmetric and the skew-symmetric part of the
micro-distortion P as function of to the gradient of the displacement ∇u :

(Cmicro + Ce) symP =Ce sym∇u , (161)
Cc skew (P ) =Cc skew∇u .

From this result we obtain that the experimentally observable macroscopic stiffness for an energy-equivalent
linear elastic medium has the stiffness tensor:

Cmacro =
1

2
H (Ce,Cmicro) =

(
C−1

micro + C−1
e

)−1
= Ce (Cmicro + Ce)−1 Cmicro. (162)
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Here, H is the harmonic mean of the elastic (relative) stiffness tensor Ce and the microscopic stiffness tensor
Cmicro of the relaxed micromorphic model. Inverting the expression (162) yields:

Ce = Cmicro (Cmicro − Cmacro)
−1 Cmacro =

(
C−1

macro − C−1
micro

)−1
. (163)

In (163), the tensor Ce is uniquely determined and positive definite, provided that Cmicro−Cmacro is positive
definite. No similar simple expression exists for the standard anisotropic Mindlin-Eringen model.

On the other hand, letting Lc → ∞, we saw that our model tends to a classical linear elastic response
with the microscopic stiffness Cmicro. This results allows us to say that we have obtained a transparent scale-
separation between the macroscopic linear response Cmacro for Lc = 0 and the microscopic linear response
Cmicro for Lc →∞. The intermediate cases can be interpreted as an “interpolation” between the macro and
the micro-behavior obtained for Lc > 0.

We remark that the rotational coupling tensor Cc is in no way related to either the macroscopic or the
microscopic measurable quantities, in sharp contrast to Cmicro, Cmacro,Ce.

Furthermore, our presented model allows full use of the well-known Voigt-representation for classical
elasticity tensors. Thus, we do not need to investigate the anisotropy classes based on 6th-order tensors [1],
neither for the local energy contribution nor for the curvature expression. This makes the presented framework
by far more attractive, due to the transparent comparison to classical linear, anisotropic elasticity.

Our a priori novel macroscopic consistency condition (162) drastically reduces the burden of determin-
ing constitutive coefficients. Indeed, the fundamental importance of formula (162) will be soon provided
in a forthcoming paper in which a “cubic” band-gap metamaterial will be investigated. The macroscopic
coefficients Cmacro will be determined on the basis of classical static tests on samples of the considered meta-
material. This will allow to drastically reduce the constitutive parameters to be determined. Such remaining
parameters together with the micro-inertiae and, eventually the characteristic length Lc, will be determined
on the basis of dynamical tests, following what done in [44] for the isotropic case.

More particularly, the dispersion curves issued via the relaxed micromorphic model will be fitted on the
experimental ones for some fixed directions of propagation of the traveling wave. Once the parameters will
be calibrated, they will be validated by checking that the fitting on the dispersion curves remains reliable
also on the other directions of propagation. This will provide the first evidence of the use of an enriched
continuum model of the micromorphic type for the effective mechanical characterization of specific anisotropic
metamaterials.
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A Appendices
A.1 Certain limiting cases of the relaxed micromorphic continuum
In this section, we show certain limiting cases of the anisotropic relaxed micromorphic continuum model. Since we assume
Cmicro,Ce to be positive definite and Cc positive semi-definite, there exist three positive constants c+dev, c

+
tr, c

+
e > 0 and c+c ≥ 0

such that: 〈
Ce sym (∇u − P ) , sym (∇u − P )

〉
R3×3 ≥ c+e ‖ sym (∇u − P )‖2R3×3 ,〈

Cmicro symP, symP
〉
R3×3 ≥ c+dev‖ dev symP‖2R3×3 + c+tr ( tr (P ))2 , (164)〈

Cc skew (∇u − P ) , skew (∇u − P )
〉
R3×3 ≥ c+c ‖ skew (∇u − P )‖2R3×3 .

Let us first consider:

Cmicro →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (165)

which is the case if we assume c+dev, c
+
tr → ∞. In this case, the fact that the energy is bounded implies ‖ symP‖2 = 0

formally and, therefore, that P ∈ so(3). This resulting model is equivalent to the Cosserat model or micropolar model.
The appearance of only CurlP in the curvature is consistent with the classical Cosserat or micropolar model, since for skew-
symmetric P (x) = A(x) ∈ so(3) it holds that CurlA is isomorphic to ∇A, see [73]. On the other hand, we may consider:

dev symCmicro →∞ , Ce > 0 , Cc ≥ 0 , P ∈ Sym(3) , (166)

by which we mean to assume that c+dev → ∞ and skewP = 0. In this case, we obtain that ‖dev symP‖2 = 0 and, therefore,
we can infer that P = R · 1. This model is called micro-dilation theory (see [69]) and again, the presence of CurlP is fully
consistent with the general micro-dilation theory. One more case is:

trCmicro →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (167)

where we assume that c+tr → ∞ and, therefore, trP = 0. In this case we obtain that P ∈ sl(3). This model is the micro-
incompressible micromorphic model. Analogously, we may consider:

dev symCmicro →∞ , Ce > 0 , Cc ≥ 0 , P ∈ R3×3 , (168)

where we assume that c+dev →∞. In this case we obtain only that ‖ dev symP‖2 = 0 and therefore that P = R ·1+ so(3). This
set of models is called micro-stretch theory (see [69]).

Instead, if we just consider:

Cmicro > 0 , Ce > 0 , Cc ≥ 0 , P ∈ Sym(3) , (169)

which means constraining P in such a way that skewP = 0, then this resulting model is equivalent to Forest’s microstrain
model, see [24]. Finally, if we consider:

Cmicro > 0 , Ce →∞ , Cc = 0 , P ∈ Sym(3) . (170)

by which we mean to assume that c+e → ∞ and skewP = 0, we obtaine ‖ sym (∇u − P )‖2 = 0. Thus, it is pos-
sible to derive that sym∇u = symP = P . With this last property, we obtain that the curvature term reduces to〈
Laniso Curl sym∇u , Curl sym∇u

〉
. This resulting model is a variant of the indeterminate couple stress model, as treated

in [27].
It is not possible to suitably restrict the parameters of the relaxed micromorphic model in order to obtain a full higher

gradient elasticity model, in sharp contrast to the standard Mindlin-Eringen model where µe →∞, µc →∞ implies ∇u = P
and ‖∇P‖2 → ‖∇∇u‖2.

A.2 One-dimensional standard Mindlin-Eringen model versus new relaxed mi-
cromorphic model

We let u : [0, 1] → R denote the displacement and p̂ : [0, 1] → R the micro-distortion (we note that u corresponds to the first
component of the displacement and p̂ corresponds to P11).

Considering a one-dimensional model, we can reduce the energy of the Mindlin-Eringen model to:

µe|u′(t)− p̂(t)|2 + µc| skew(·)︸ ︷︷ ︸
0

|2 + µmicro |p̂(t)|2 +
µL2

c

2
|p̂ ′(t)|2 . (171)

Therefore, in a purely one-dimensional setting, the µc-term does not appear. Furthermore, if µe → ∞ formally, the energy
reads:

µmicro |u′(t)|2 +
µL2

c

2
|u′′(t)|2 , (172)

which is a second gradient elastic energy. The equilibrium equations read:

2µe
(
u′(t)− p̂(t)

)
δu′(t) = 0 , ∀ δu ∈ C∞0 ([0, 1],R) ,

(173)[
−2µe

(
u′(t)− p̂(t)

)
+ 2µmicro p̂

]
δp̂(t) + µL2

c p̂
′δp̂ ′ = 0 . ∀ δp̂ ∈ C∞0 ([0, 1],R) ,
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from which we obtain:
d

d x

[
2µe

(
u′(t)− p̂(t)

)]
= 0 , −2µe

(
u′(t)− p̂(t)

)
+ 2µmicro p̂+ µL2

c p̂
′′ = 0 . (174)

If we consider Lc → 0 we obtain:

d

dx

[
2µe

(
u′(t)− p̂(t)

)]
= 0 , −2µe

(
u′(t)− p̂(t)

)
+ 2µmicro p̂ = 0 . (175)

This can be reduced to:

d

dx

[
2
µe µmicro

µe + µmicro
u′(t)

]
= 0 , p̂ =

µe

µe + µmicro
u′(t) . (176)

Therefore, this is equivalent to a classical elasticity model with energy:

µmacro |u′(t)|2 , with µmacro =
µe µmicro

µe + µmicro
. (177)

Thus, in the one-dimensional setting, the Mindlin-Eringen format obeys our homogenization format as well.
For the relaxed micromorphic model we have instead:

µe|u′(t)− p̂(t)|2 + µc| skew(·)︸ ︷︷ ︸
=0

|2 + µmicro |p̂(t)|2 +
µL2

c

2
‖ Curl

 p̂ 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

=0

‖2 . (178)

Therefore, there are no terms with Lc and the equilibrium equations read:

d

dx

[
2µe

(
u′(t)− p̂(t)

)]
= 0 , −2µe

(
u′(t)− p̂(t)

)
+ 2µmicro p̂ = 0 . (179)

This is the the same format as the Mindlin-Eringen model with Lc → 0.
Here, it must be noted that when µe →∞, we obtain formally only a first gradient elasticity model with energy:

µmicro |u′(t)|2 . (180)

This is equivalent to a classical linear elasticity model with µmacro = µmicro, contrary to (172).
Here, one of the differences of the standard Mindlin-Eringen format, in comparison to the new relaxed formulation, clearly

appears: the relaxed format does not reduce to a higher gradient elasticity model when specifying certain parameters.

A.3 Proof of equation (58)
By equation (57) we have:

(Ce)ijkl =Mαij

(
C̃e
)
αβ︸ ︷︷ ︸

Aβij

Mβkl . (181)

On the other hand, using equation (57), it can be seen that:

Aβij = M−1
qlβMαql︸ ︷︷ ︸
δ̃αβ

Aαij = M−1
qlβ (Ce)ijql , (182)

and moreover, formally introducing the tensor A−1 such that AγmnA−1
mnβ = γ̃βγ , we also have:

Mβhk = Mγhk Aγmn A
−1
mnβ︸ ︷︷ ︸

δ̃βγ

= (Ce)mnhk A
−1
mnβ . (183)

Using (182) and (183) in (181) we get:

(Ce)ijhk = Aβij Mβhk = M−1
qlβ (Ce)ijql (Ce)mnhk A

−1
mnβ = (Ce)ijql M

−1
qlβ A

−1
mnβ (Ce)mnhk . (184)

From this last expression, by comparing the first and the last equalities, we deduce:

M−1
qlβ A

−1
mnβ (Ce)mnhk = 1qlhk . (185)

Multiplying by
(
C−1
e

)
hkrs

, we get:

M−1
qlβ A

−1
mnβ 1mnrs = (Ce)−1

qlrs . (186)

In order to completely determine the fourth order tensor C−1
e in terms of the second order tensor C̃−1

e , we need to write A−1

explicitly. To this end we recall that, by definition, we have:

Aβij =
(
C̃e
)
αβ

Mαij . (187)
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The following holds:

A−1
ijγ = M−1

ijδ

(
C̃e
)−1

δγ
. (188)

Indeed, using equation (188) we can compute:

Aβij A
−1
ijγ =

(
C̃e
)
αβ

Mαij M
−1
ijδ

(
C̃e
)−1

δγ
=
(
C̃e
)
αβ

δ̃αδ

(
C̃e
)−1

δγ
=
(
C̃e
)
αβ

(
C̃e
)−1

αγ
= δ̃βγ , (189)

where we used the symmetry of C̃e. This last chain of equalities guarantees that (188) is actually the inverse of A. Then,
replacing (188) in (186) we get:

(Ce)−1
qlrs = M−1

qlβM−1
mnδ

(
C̃e
)−1

δβ
1mnrs = M−1

qlβ

(
C̃e
)−1

δβ
M−1
rsδ . (190)

A.4 Some considerations about the anisotropic rotational coupling in the “re-
laxed micromorphic model”

A method to reduce any given anisotropic rotational coupling to the isotropic case is, therefore, to simply project C̃aniso
c to its

isotropic part, given by the arithmetic mean of the eigenvalues of C̃aniso
c (the Voigt bound):

isoarithm

(
C̃aniso
c

)
:=

1

3
tr
(
C̃aniso
c

)
1. (191)

This defines a mapping isoarithm : Sym+(3) → R+
1. We note, however, that applying (191) has certain deficiencies, e.g. it is

not stable under inversion:

isoarithm

((
C̃aniso
c

)−1
)
6=
[
isoarithm

((
C̃aniso
c

))]−1
. (192)

It is possible, following the approach by Norris and Moakher [56], to obtain the closest isotropic tensor to C̃aniso
c with respect

to a geodesic structure on Sym+(3). This will define a nonlinear operator isogeod : Sym+(3)→ R+
1 such that:

isogeod

((
C̃aniso
c

)−1
)

=
[
isogeod

((
C̃aniso
c

))]−1
. (193)

This will be exemplified in a different contribution. In the meantime, we may alternatively propose a mapping isolog : Sym+(3)→
R+

1 as:

isolog

(
C̃aniso
c

)
:= e

1
3
tr(log(C̃aniso

c ))1 = e
1
3
log(det(C̃aniso

c ))1 = e
1
3
log(det(C̃aniso

c ))
1 = det

(
C̃aniso
c

) 1
3
1. (194)

This is the geometric mean of the eigenvalues of C̃aniso
c . This mapping satisfies

isolog

((
C̃aniso
c

)−1
)

=
[
isolog

(
C̃aniso
c

)]−1
. (195)

There is also another possibility. We define the harmonic isotropy projector by:

isoharm

(
C̃aniso
c

)
:=

[
isoarithm

((
C̃aniso
c

)−1
)]−1

. (196)

This is the harmonic mean of the eigenvalues of C̃aniso
c (the Reuss-bound [6]). All introduced mappings satisfy the projection

property:

isoarithm
(
γ+1

)
= isogeod

(
γ+1

)
= isolog

(
γ+1

)
= isoharm

(
γ+1

)
= γ+1. (197)

Let us discuss the differences between isoarithm and isolog. Consider a sequence of C̃aniso,k
c → C̃aniso,∞

c for k → ∞, where

C̃aniso,∞
c is not positive definite, i.e. some eigenvalue is zero (and det

(
C̃aniso,∞
c

)
= 0). Then:

isoarithm

(
C̃aniso,k
c

)
=

1

3
tr
(
C̃aniso,k
c

)
1→

1

3
tr
(
C̃aniso,∞
c

)
1, (198)

is positive definite. The mapping property is such that isoarithm : Sym+(3)→ R+
1. In contrast, we observe that:

isolog

(
C̃aniso,k
c

)
=
(
det
(
C̃aniso,k
c

)) 1
3
1→ 0R3×3 . (199)

Therefore, isolog determines a zero isotropic coupling when eigenvalues of C̃aniso
c vanish. For example,

C̃aniso
c =

a1 0 0
0 0 0
0 0 0

 , isoarithm

(
C̃aniso
c

)
=
a1

3
, isolog

(
C̃aniso
c

)
= 0R3×3 . (200)

At the present stage of understanding, however, we do not have extra arguments for using an anisotropic rotational coupling
instead of an isotropic one. When possible, an isotropic rotational coupling given by the Cosserat couple modulus µc should be
preferred.
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A.5 Properties of the resulting constitutive tensors
A.5.1 Symmetry
Let us first consider the direct relation:

Cmacro = Cmicro (Cmicro + Ce)−1 Ce . (201)

The constitutive tensor Cmacro is the result of a product of the type:

Cmacro =A (A+B)−1B, (202)

where A, B and, as a consequence (A+B) are symmetric. In order to show the symmetry of Cmacro let us suppose that (A+B)
is invertible and write accordingly:

(A+B) (A+B)−1B = B. (203)

We can decompose the product by using the distributive property of the matrix product with respect to the sum:

A (A+B)−1B +B (A+B)−1B = B. (204)

Therefore:

A (A+B)−1B = B −B (A+B)−1B. (205)

So we have that Cmacro = A (A+B)−1B is the difference of two symmetric matrices, since B (A+B)−1B is also symmetric.18
For the inverse relation, we consider:

Ce = Cmicro (Cmicro − Cmacro)
−1 Cmacro . (206)

Similarly, we can derive its symmetry (as long as (Cmicro − Cmacro)
−1
kl exists):

A (A−B)−1B = B +B (A−B)−1B. (207)

A.5.2 Positive definiteness
Let us now investigate the positive-definiteness of

Cmacro = Cmicro (Cmicro + Ce)−1 Ce . (208)

If we assume Cmicro and Ce to be positive definite, it follows from the properties of positive definiteness, that their sum as well
as the inverse of the sum will be positive definite. Note first that a product AB of positive definite matrices A and B has real,
positive eigenvalues. This can be seen by considering the characteristic equation:

det(AB − λ1) = 0 ⇐⇒ det(A−1/2[AB − λ1]A1/2) = 0 ⇐⇒ det(A1/2BA1/2 − λ1) = 0 . (209)

Now, A1/2BA1/2 is positive definite since, setting η := A1/2ξ, we have:〈
A1/2BA1/2ξ, ξ

〉
=
〈
BA1/2ξ, A1/2ξ

〉
=
〈
Bη, η

〉
≥ λmin(B)‖η‖2 = λmin(B)‖A1/2ξ‖2 (210)

=λmin(B)
〈
A1/2ξ, A1/2ξ

〉
= λmin(B)

〈
Aξ, ξ

〉
≥ λmin(B)λmin(A)‖ξ‖2 .

Therefore, the eigenvalues of AB are real and positive. In general, however, the symmetry of the product AB will be lost. In
our case, nonetheless, we proved in subsection A.5.1 that Cmacro is symmetric and, therefore, positive definite.

For the inverse relationship, we consider:

Ce = Cmicro (Cmicro − Cmacro)
−1 Cmacro . (211)

In this case, in order to obtain the positive definiteness of Ce it is not enough to assume that Cmicro and Cmacro are positive
definite. However, one sufficient condition to impose is that Cmicro − Cmacro is also positive definite. This property can be
thought of as a generalization of the condition found in the isotropic case in which:

smaller is stiffer
the macroscopic elastic response cannot be equal or stiffer than the microscopic response

µmicro > µmacro, (2µmicro + 3λmicro) > (2µmacro + 3λmacro).

18We note again that the inverse of a positive definite tensor, like A+B = Cmicro+Ce has the same symmetry group structure
as Cmicro + Ce itself. This can be easily shown by directly looking at the definition of groups.
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