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Pluralitas non est ponenda sine necessitate." -"Plurality should not to be supposed without necessity.

Introduction

Recent years have seen a colossal increase of interest in so called generalized or enriched continuum models. This exponential growth is mainly due to the need felt to incorporate, viewed from the phenomenological level, additional features like the discreteness of matter, characteristic length scales, dispersion of waves, among others. All such features are not captured by standard elasticity approaches. The idea of using generalized continuum models to account for the homogenized behavior of microstructured materials has extensively been exploited in the last years (see e.g [START_REF] Forest | Mechanics of generalized continua: construction by homogenizaton[END_REF][START_REF] Forest | Homogenization methods and mechanics of generalized continua -part 2[END_REF][START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF][START_REF] Forest | Nonlinear microstrain theories[END_REF][START_REF] Forest | Generalized continua and non-homogeneous boundary conditions in homogenisation methods[END_REF]). One of the most known generalized continuum models is the micromorphic continuum model introduced by Mindlin and Eringen [START_REF] Claus | Dislocation dispersion of elastic waves[END_REF][START_REF] Cemal | Mechanics of micromorphic materials[END_REF][START_REF] Cemal | Microcontinuum field theories[END_REF][START_REF] Cemal Eringen | A micromorphic approach to dislocation theory and its relation to several existing theories. In Fundamental aspects of dislocation theory, Volume II[END_REF][START_REF] Cemal Eringen | Nonlinear theory of simple micro-elastic solids -I[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF] in the early sixties of the last century. It includes many special cases among which the much older Cosserat-type models [START_REF] Boehmer | Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity[END_REF][START_REF] Cosserat | Théorie des corps déformables[END_REF][START_REF] Fischle | The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D[END_REF][START_REF] Jeong | Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions[END_REF][START_REF] Jeong | A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature[END_REF][START_REF] Lankeit | Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers[END_REF][START_REF] Neff | The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric[END_REF][START_REF] Neff | A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy[END_REF][START_REF] Neff | Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature[END_REF].

In this paper we do not present the historic development of enriched continua, referring the reader to [52,[START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] for this purpose. Furthermore, we restrict our attention to the linearized framework noting that the first In each macroscopic material point x ∈ Ω there is a substructure attached. This substructure has the possibility to shear, stretch and shrink and is described by an affine mapping 1+ P . Decisive is the constitutive choice of the strain energy density which couples the macroscopic displacement u and the micro-distortion P . Our new relaxed micromorphic model introduces the weakest possible constitutive coupling still giving a well-posed model.

existence result for the geometrically nonlinear static case has been obtained in [START_REF] Jeong | Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions[END_REF], which includes a previous result for the nonlinear Cosserat model [START_REF] Neff | On material constants for micromorphic continua[END_REF]. For more details about existence results for micromorphic models at finite deformations, we refer the reader to [START_REF] Lankeit | Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers[END_REF][START_REF] Neff | Existence of minimizers for a finite-strain micromorphic elastic solid[END_REF][START_REF] Neff | Existence of minimizers in nonlinear elastostatics of micromorphic solids[END_REF][START_REF] Neff | Existence theorem for geometrically nonlinear Cosserat micropolar model under uniform convexity requirements[END_REF]. Further existence results are supplied in [START_REF] Ebobisse | Existence and uniqueness for rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin[END_REF][START_REF] Ebobisse | Existence results in dislocation based rate-independent isotropic gradient plasticity with kinematical hardening and plastic spin: The case with symmetric local backstress[END_REF][START_REF] Maria | Ground states in complex bodies[END_REF][START_REF] Maria | Computational aspects of the mechanics of complex materials[END_REF]. There are many applications treated within the nonlinear micromorphic framework, among which we limit ourselves to mention [29-33, 36, 41, 53, 78-80, 86, 87].

In the micromorphic model, it is the kinematics which is enriched by introducing an additional field of non-symmetric micro-distortions P : Ω ⊂ R 3 → R 3×3 , beyond the classical macroscopic displacement u : Ω ⊂ R 3 → R 3 (see Fig. 1). Then, a non-symmetric elastic (relative) distortion e = ∇u -P can be defined and the modeling proceeds by obtaining the constitutive relations linking elastic-distortions to stresses and by postulating a balance equation for the micro-distortion field P . All such steps might be preferably done in a variational framework, involving the third order curvature tensor (the micro-distortion gradient) ∇P , so that only energy contributions need to be defined a priori. For the dynamic case, one adds in the Hamiltonian the so-called micro-inertia density contributions, acting on the time derivatives of micro-distortion terms P ,t .

In principle, the modeling framework for the micromorphic approach had been completed by Eringen, Mindlin, in the references already cited, and Germain [START_REF] Germain | The method of virtual power in continuum mechanics. Part 2: Microstructure[END_REF]. Mindlin and Eringen also provided extensions of the micromorphic model to anisotropy even if such anisotropic models are almost impossible to be applied to real cases, due to the impressive number of coefficients provided (498 coefficients in the general anisotropic case).

The existence and uniqueness questions for the linear micromorphic model have been completely settled both for the static and dynamic case, based on the assumption of uniform positive definiteness of the appearing constitutive elasticity tensors. However, the over-reliance on uniform positive definiteness, we believe, has blinded the eyes for the real possibilities inherent in the micromorphic model. These possibilities have been consistently overlooked until very recently, when, in a series of articles [START_REF] Ghiba | The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF][START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF], we have introduced the novel concept of relaxed micromorphic continuum. This model provides a drastic reduction of the number of constitutive coefficients with respect to Mindlin-Eringens's one while remaining well-posed.

Unlike Mindlin-Eringen's model, the relaxed model mainly works with symmetric elastic (relative) strains ε e := sym ( ∇u -P ), so that standard 4 th order symmetric elasticity tensors can be used in order to define elastic stresses. Moreover, regarding the curvature, the relaxed model considers the second order dislocation-density tensor α = -Curl P instead of the third order curvature tensor ∇P with the effect (among others) that the description of the anisotropy of curvature only needs 4 th order tensors, instead of 6 th order ones.

A fundamental contribution of the relaxed micromorphic model is given by the fact that well-posedness results have been proven [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] also for the case where the strain energy density violates strict positivedefiniteness 7 . In other words, even if the relaxed micromorphic model can be apparently seen as a particular case of the Mindlin-Eringen model by suitably setting some constitutive parameters of their model to zero (see [47, p. 555]), such choice is not acceptable in the Mindlin-Eringen setting due to the loss of positivedefiniteness of the energy. Nevertheless, it is exactly this feature which makes the relaxed micromorphic model unique for the description of a wealth of unorthodox material behaviors. The existence results proposed in [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF], as well as the drastic reduction of the number of the introduced elastic coefficients, allowed us to open the way to the application of the relaxed micromorphic model to cases of real interest.

Indeed, the relaxed micromorphic model has already been a source of inspiration for researchers working on granular materials [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF]. 8 Moreover, the clear and transparent application of the relaxed micromorphic model in the isotropic case has recently been successfully achieved for the description of band-gap metamaterials (see [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF]).

As a matter of fact, the isotropic relaxed micromorphic model has proven its ability to fit the dispersion curves of phononic crystals for large windows of frequencies and wavelengths, arriving down to wavelengths which are comparable to the size of the unit cell. The most interesting aspect of the description of such metamaterials via the relaxed micromorphic model is undoubtedly that of predicting their macroscopic dynamical response through the introduction of few macroscopic elastic coefficients which are independent of the frequency.

This means that the coefficients of the relaxed micromorphic model can be seen as true material parameters, exactly as it is the case for the Young modulus and the Poisson ratio when dealing with classical materials.

Of course, in order to extend the range of applicability of the relaxed model to a wider class of actual metamaterials, the model must be generalized to the anisotropic setting. This generalization is the principal aim of the present work.

In this paper, we want to present such an approach to anisotropy for the relaxed micromorphic model. Our modeling perspective is to simplify as much as possible, and indeed to reduce to an essential minimum, the bewildering possibilities of the standard micromorphic model. Indeed, there is no point in exclaiming happily that the standard micromorphic model has more than 1000 constitutive coefficients which need to be determined. The true aim of modeling should consist of the opposite: discard all unclear complications without compromising the essence of the model. We believe that the relaxed micromorphic model is just going in this direction, thereby opening the way to transparent experimental campaigns for the determination of the remaining fewer extra parameters.

instead strictly requested in the standard model in order to have well-posedness. For example, controlling only the elastic strain εe = sym ( ∇u -P ) in the energy does not locally control the elastic distortion e = ∇u -P and working with Curl P does not control the curvature ∇P .

8 Although delighted by the fact of understanding that the relaxed micromorphic model might be of use for granular mechanics, we believe that some complements of information must be given in order to interpret the results of [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF] in the clearest possible way. In [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF] the authors use micro-macro upscaling techniques for granular assemblies arriving to a standard Mindlin-Eringen type model at the homogenized scale (see [55, p.224, eq. (43)]. The authors observe that: "remarkably, the nonzero components in Mindlin's stiffness tensors are the same as the non-zero components derived from the present model". Then, the authors present in equation (66) a constitutive choice of the microscopic parameters which goes in the sense of setting to zero the parameters of Mindlin's model in order to get close to the relaxed micromorphic model. Such constitutive choice is not justified neither by telling that the scope is to recover the relaxed micromorphic model nor on clear microscopic-based arguments that would shed additional light on the understanding of microstructure-related effects.

Afterwards, the authors present [55, p.231, Fig. 5] two parametric studies on the parameters β mM and β sM . The parameter β mM is an analogous of the Cosserat couple modulus µc and is once again seen to be determinant for the onset of band gaps. On the other hand, the parameter β sM is the one that, being non vanishing, still makes a difference between Mindlin-Eringen's and our relaxed model. The authors then present a parametric study letting β sM to zero, which indeed means that they are recovering the relaxed micromorphic model as a limit case. Nevertheless, except some mostly confusing sentences referring to our paper [START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF], such fundamental observation are not made at any point of the paper [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF].

It should be clearly stated that, by means of the proposed parametric study, they are trying to approach the relaxed micromorphic model and that, although the corresponding choice of the parameters is not allowed in Mindlin-Eringen theory, the well-posedness is still guaranteed. Moreover, it should have been clearly stated that the relaxed micromorphic model is the only generalized non-local continuum model, among those currently used, which is able to predict complete frequency band-gaps [START_REF] Ghiba | The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF].

Finally, and this would be for us the main advancement related to the paper [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF], a clear microscopic-based interpretation of the fact of setting to zero the opportune parameters in Mindlin's theory would be necessary in further works since it is not currently done in [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF]. Of course, the fact of setting to zero some macroscopic parameters leads to some conditions on some microscopic parameters, but which is the physical interpretation of such conditions on micro-parameters?

In summary, the same goal of clarity that we try to pursue in this paper should be, from our point of view, shared by the highest possible number of researchers in order to proceed in the direction of a global advancement of knowledge.

The plan of the paper is as follows.

• We first recall the standard micromorphic model and contrast it with our new relaxed model. We also show that our relaxed micromorphic model supports a clear group-invariant framework, opening the way to the introduction of anisotropy classes.

• We present our favored description of anisotropy regarding the higher order contribution in Curl P .

Thereby we split Curl P as sym Curl P + skew Curl P and let a classical fourth order tensor act only on sym Curl P ∈ Sym(3) together with another tensor with only 6 parameters acting on skew Curl P ∈ so(3).

• We consider the long-wavelength limit (characteristic length L c → 0) which must coincide with a linear elastic model that has lost any characteristic length (sometimes called internal variable model). From this hypothesis, we are able to relate coefficients of the micromorphic scale to the macroscopic ones.

The result is a convincing homogenization formula for all considered anisotropy classes. This is also done using classical Voigt-notation in order to facilitate future applications. As already stated, this homogenization formula relating micro and macro parameters is one of the main results of the present work, since it opens the way to the application of the model to actual metamaterials via the realization of standard mechanical tests on "large" specimens.

• We study the format of a possible anisotropic local rotational coupling term acting on skew ( ∇u -P ).

In this respect we also investigate some possibilities of approximating an anisotropic coupling by an isotropic one.

• We consider the formal limit L c → ∞ and show that it corresponds to a "zoom" into the micro-structure.

Our relaxed model supports also a clear interpretation for that regime.

• We end our paper by showing that the standard Mindlin-Eringen micromorphic model does not support the clear relation between macroscopic and microscopic elasticity moduli which is instead provided by our simplified anisotropic relaxed model.

Notational agreement

Throughout this paper Latin subscripts take the values 1, 2, 3 while Greek subscripts take the values 1, 2, 3, 4, 5, 6 and we adopt the Einstein convention of sum over repeated indices if not differently specified. We denote by R 3×3 the set of real 3 × 3 second order tensors and by R 3×3×3 the set of real 3 × 3 × 3 third order tensors. The standard Euclidean scalar product on R 3×3 is given by X, Y R 3×3 = tr(X • Y T ) and, thus, the Frobenius tensor norm is X 2 = X, X R 3×3 . Moreover, the identity tensor on R 3×3 will be denoted by 1, so that tr(X) = X, 1 . We adopt the usual abbreviations of Lie-algebra theory, i.e.:

• Sym(3) := {X ∈ R 3×3 |X T = X} denotes the vector-space of all symmetric 3 × 3 matrices

• so(3) := {X ∈ R 3×3 |X T = -X} is the Lie-algebra of skew symmetric tensors • sl(3) := {X ∈ R 3×3 | tr(X) = 0} is the Lie-algebra of traceless tensors • R 3×3 gl(3) = {sl(3) ∩ Sym(3)} ⊕ so(3) ⊕ R•1 is the orthogonal Cartan-decomposition of the Lie-algebra
For all X ∈ R 3×3 , we consider the decomposition

X = dev symX + skewX + 1 3 tr(X) 1 (1) 
where:

• sym X = 1 2 (X T + X) ∈ Sym(3) is the symmetric part, • skew X = 1 2 (X -X T ) ∈ so(3) is the skew-symmetric part, • dev X = X -1 3 tr(X) 1 ∈ sl(3) is the deviatoric part .
Throughout all the paper, we denote:

• the sixth order tensors L : R 3×3×3 → R 3×3×3 by a hat

• the fourth order tensors C : R 3×3 → R 3×3 by overline

• without superscripts, i.e. C, the classical fourth order tensors acting only on symmetric matrices C : Sym(3) → Sym(3) or skew-symmetric ones C c : so(3) → so(3)

• the second order tensors C : R 6 → R 6 or C : R 3 → R 3 appearing as elastic stiffness by a tilde.

We denote by C X the linear application of a 4 th order tensor to a 2 nd order tensor and also for the linear application of a 6 th order tensor L to a 3 rd order tensor. In symbols:

C X ij = C ijhk X hk , L A ijh = L ijhpqr A pqr . (2) 
The operation of simple contraction between tensors of suitable order is denoted by a central dot, for example:

C • v i = C ij v j , C • X ij = C ih X hj . (3) 
Typical conventions for differential operations are implied, such as a comma followed by a subscript to denote the partial derivative with respect to the corresponding Cartesian coordinate, i. e. (•) ,j = ∂(•) ∂xj . Given a skew-symmetric matrix A ∈ so(3) we consider:

A =   0 A 12 A 13 -A 12 0 A 23 -A 13 -A 23 0   , axl A = (-A 23 , A 13 , -A 12 ) T . (4) 
ore equivalently in index notation:

axl A k = - 1 2 ijk A ij = 1 2 kij A ji , (5) 
where is the Levi-Civita third order permutation tensor.

A review on the micromorphic approach

In this section we recall the general anisotropic setting of classical Mindlin-Eringen micromorphic elasticity, as well as that of relaxed micromorphic elasticity. We show that, given its intrinsic formulation, the relaxed micromorphic model features 93 coefficients instead of Mindlin/Eringen 498. In subsection 4.2.1, a further reduction of coefficient is proposed for those cases in which one wants to feature a symmetric stress.

In subsection 4.2.2, it is shown that the most general form of the relaxed curvature energy (in the anisotropic setting) which satisfies certain additional invariance requirements features 21+7=28 coefficients instead of the 378 featured by the classical Mindlin-Eringen model. Moreover some further simplification of the curvature energy are proposed, up to arriving to the isotropic case in which the curvature energy only shows 3 coefficients. As a matter of fact, we propose a consistent framework for the definition of the curvature energy of the relaxed micromorphic model which is fully consistent with invariance arguments. Such clear theoretical framework is of primordial importance for the introduction of suitable constitutive expressions for the curvature energy. Nevertheless, it is likely that, in a first instance, non-local effects in real metamaterials can be controlled via the introduction of very few characteristic lengths. For this reason, the maximum generality of the anisotropic setting for the curvature could find effective applications only in a second instance, when the most important step of the identification of the elastic coefficients C e , C micro and C c will be achieved on a suitable class of targeted metamaterials.

In subsection 4.2.3, the general anisotropic setting for the kinetic energy to be used in the relaxed micromorphic model is provided. This step is strongly complementary to the constitutive choice for the static case featured by equation [START_REF] Chen | Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables[END_REF]. Indeed, if some deformation mechanism are introduced in the definition of the strain energy densities, analogous inertiae must be introduced in the kinetic energy to have a well-posed problem in the dynamical case. This step is essential to securely proceed towards controllable applications on actual metamaterials subjected to dynamical loading.

The standard Mindlin-Eringen model

The elastic energy of the general anisotropic centro-symmetric micromorphic model in the sense of Mindlin-Eringen (see [START_REF] David | Micro-structure in linear elasticity[END_REF] and [17, p. 270, eq. 7.1.4]) can be represented as:

W = 1 2 C e ( ∇u -P ) , ( ∇u -P ) R 3×3
full anisotropic elastic -energy

+ 1 2 C micro sym P, sym P R 3×3 micro -self -energy (6) 
+ 1 2 E cross ( ∇u -P ) , sym P R 3×3 anisotropic cross -coupling + µL 2 c 2 L aniso ∇P, ∇P R 3×3×3 full anisotropic curvature ,
where C e : R 3×3 → R 3×3 is a 4 th order micromorphic elasticity tensor which has at most 45 independent coefficients and which acts on the non-symmetric elastic distortion e = ∇u -P and E cross : R 3×3 → Sym(3) is a 4 th order cross-coupling tensor with the symmetry E cross ijkl = E cross jikl having at most 54 independent coefficients. The fourth order tensor C micro : Sym(3) → Sym(3) has the classical 21 independent coefficients of classical elasticity, while L aniso : R 3×3×3 → R 3×3×3 is a 6 th order tensor that shows an astonishing 378 parameters. The parameter µ > 0 is a typical shear modulus and L c > 0 is one characteristic length, while L aniso is, accordingly, dimensionless. Here, for simplicity, we have assumed just a decoupled format of the energy: mixed terms of strain and curvature have been discarded by assuming centro-symmetry.

Counting the number of coefficients we have 45 + 21 + 54 + 378 = 498 independent coefficients. If we assume an isotropic behavior of the curvature we obtain:

W = 1 2 C e ( ∇u -P ) , ( ∇u -P ) R 3×3
full anisotropic elastic -energy

+ 1 2 C micro sym P, sym P R 3×3 micro -self -energy (7) 
+ 1 2 E cross ( ∇u -P ) , sym P R 3×3 anisotropic cross -coupling + µL 2 c 2 L iso ∇P, ∇P R 3×3×3 isotropic curvature
, where the 6 th order tensor L iso has still 11 independent non-dimensional constants [START_REF] Cemal | Microcontinuum field theories[END_REF]. This can be explained considering that the general isotropic 6 th order tensor has 15 coefficients which, considering that in a quadratic form representation we can assume a major symmetry of the type L ijklmn = L lmnijk , reduce to 11 (see [START_REF] Monchiet | On the inversion of non symmetric sixth-order isotropic tensors and conditions of positiveness of third-order tensor valued quadratic functions[END_REF][START_REF] James | Theory of Invariants[END_REF]). 9 On the other hand, the local energy has 7 independent coefficients in the isotropic case: C e has 3, C micro ∼ 2, E cross ∼ 2 adding up to the usual 18 constitutive coefficients to be determined in the isotropic case.

One of the major obstacles in using the micromorphic approach for specific materials is the impossibility to determine such multitude of new material coefficients. Not only is the huge number a technical problem, but also the interpretation of coefficients is problematic [START_REF] Chen | Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables[END_REF][START_REF] Chen | Determining material constants in micromorphic theory through phonon dispersion relations[END_REF][START_REF] Chen | Atomistic viewpoint of the applicability of microcontinuum theories[END_REF]. Some of these coefficients are size-dependent while others are not. A purely formal approach, as is often done, cannot be the final answer.

The relaxed micromorphic model

Our novel relaxed micromorphic model endows Mindlin-Eringen's representation with more geometric structure. Since E cross is difficult to interpret, it is discarded right-away. Nevertheless, the structure of the model continues to be very rich. We write: The second order tensor α := -Curl P is usually called the dislocation density tensor. 10 Here C e , C micro : Sym(3) → Sym(3) are both classical 4 th order elasticity tensors acting on symmetric second order tensors only: C e acts on the symmetric elastic strain ε e := sym ( ∇u -P ) and C micro acts on the symmetric micro-strain sym P and both map to symmetric tensors. The tensor C c : so(3) → so(3) is a 4 th order tensor that acts only on skew-symmetric matrices and yields only skew-symmetric tensors and L aniso : R 3×3 → R 3×3 is a dimensionless 4 th order tensor with at most 45 constants. Counting coefficients we now have 21+21+6+45=93, instead of Mindlin-Eringen's 498 coefficients. The main advantage at this stage is that our C e , unlike C e , possesses all the symmetries that are peculiar of the classical elasticity tensors acting on sym ∇u . The large number of isotropic constants in the standard Mindlin-Eringen model has always been of concern. Previous attempts to endow the Mindlin-Eringen model with more structure include Koh's [START_REF] Severino | A special theory of microelasticity[END_REF][START_REF] Parameshwaran | Wave propagation in a micro-isotropic, micro-elastic solid[END_REF] socalled micro-isotropy postulate which requires, among others, that sym σ is an isotropic function of sym ∇u only. This reduces the number of isotropic coefficient also to 5 (similarly to our relaxed model) but the fact of connecting sym σ to sym ∇u only cannot be considered to be a well-grounded hypothesis.

W = 1 2 C e sym (
Considering the energy in equation ( 8), the resulting elastic stress is:

σ ( ∇u , P ) = C e sym ( ∇u -P ) + C c skew ( ∇u -P ), (9) 
which is solely related to elastic distortions e = ∇u -P . One of the main results of the present paper is to provide a simple but effective homogenization formula which relates the elastic tensors C e and C micro to the macroscopic elastic properties of the considered medium that will be encoded in the effective elastic tensor C macro . The derivation of the macroscopic consistency condition we propose in the present paper is of primary importance for an effective application of the proposed model to cases of real interest.

Indeed, the basic idea is that of considering a sample of a specific microstructured material which is large enough to let the effect of the underlying microstructure being negligible. On this large sample, standard mechanical tests can be performed to allow for the unique determination of the elastic coefficients C macro .

The existence of our formula relating C macro (which is well known) to C e and C micro (which are still unknown), allows to further reduce the number of coefficients that need to be determined to unequivocally characterize the mechanical behavior of microstructured materials.

This unique feature of our relaxed model gives again more credibility to the relaxed approach by opening the way to a clear experimental campaign to determine some of the new micromorphic elastic constants.

In the general anisotropic micromorphic model initially proposed by Mindlin-Eringen [START_REF] Cemal Eringen | Nonlinear theory of simple micro-elastic solids -I[END_REF] the question of parameter identification has already been treated. However, the resulting interpretation of the material constants, as well as their connection to the classical anisotropy formulation of linear elasticity, is still not settled satisfactorily, and presumably impossible.

As already seen, in our relaxed model the complexity of the general micromorphic model has been decisively reduced, featuring basically only symmetric strain-like variables and the Curl of the micro-distortion P . However, the relaxed model is still general enough to include the full micro-stretch as well as the full Cosserat micro-polar model, see [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]. Furthermore, well-posedness results for the static and dynamic cases have been provided in [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] making decisive use of recently established coercive inequalities, generalizing Korn's inequality to incompatible tensor fields [START_REF] Bauer | New Poincaré-type inequalities[END_REF][START_REF] Neff | On Korn's first inequality with non-constant coefficients[END_REF][START_REF] Neff | A canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin[END_REF][START_REF] Neff | Maxwell meets Korn: A new coercive inequality for tensor fields in R n×n with square-integrable exterior derivative[END_REF][START_REF] Neff | Poincaré meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields[END_REF].

Furthermore, certain limiting cases of the anisotropic relaxed micromorphic model give as a result other micromorphic models, e.g. the Cosserat model, the micro-dilation theory, the micro-incompressible micromorphic model, the micro-stretch theory and the microstrain model) as it is shown in Appendix A.1. Instead, the second gradient model cannot be found as a limiting case differently from what happens in the Eringen Mindlin micromorphic model, see Appendix A.2 for the one dimensional case.

4.2.1

Possible symmetry of the relaxed micromorphic stress

In this subsection, we recall some arguments that allow the possibility of featuring a symmetric stress tensor for the relaxed micromorphic model by setting the 6 components of the tensor C c to be vanishing. Considering the scalar product X, Y = tr(X • Y T ), we start by noticing that, given the definition of the fourth order tensors C e and C c , they respect a generalized version of the orthogonal decomposition of second order tensors (X = symX ⊕ skewX), in the sense that:

sym [C e symX + C c skewX] = C e symX, (10) 
skew [C e symX + C c skewX] = C c skewX .
We recall that the elastic stress of the relaxed micromorphic model is:

σ ( ∇u , P ) = C e sym ( ∇u -P ) + C c skew ( ∇u -P ), (11) 
so that skew-symmetry of the elastic stress σ is entirely controlled by the rotational coupling tensor C c since, relying on formulas (10), we have

skew σ = skew [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] = C c skew ( ∇u -P ). (12) 
For a positive definite coupling tensor C c , we note that skew-symmetric stresses skew σ = 0 occur if and only if skew ( ∇u -P ) = 0.

If C c ≡ 0, the elastic Cauchy stress σ satisfies Boltzmann's axiom of symmetry of force stresses. In addition, for C c ≡ 0, the elastic distortion e = ∇u -P can be non-symmetric, while the elastic stress σ remains symmetric. 11In [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF] the authors have introduced the original and important notion of non-redundant strain measures in the micromorphic continuum. As it turns out, the relaxed micromorphic model with zero rotational coupling tensor C c ≡ 0 is a non-redundant micromorphic formulation. Conversely, the standard Mindlin-Eringen model remains redundant, as does the linear Cosserat model. With Boltzmann's axiom, which is in sharp contrast to standard micromorphic models, the model would feature symmetric force-stress tensors. Such an assumption has been made, for example, by Teisseyre [START_REF] Teisseyre | Earthquake processes in a micromorphic continuum[END_REF][START_REF] Teisseyre | Symmetric micromorphic continuum: wave propagation, point source solutions and some applications to earthquake processes[END_REF] in his model for the description of seismic wave propagation phenomena (for the use of micromorphic models for earthquake modeling see also the discussion in [START_REF] Nagahama | Micromorphic continuum and fractal fracturing in the lithosphere[END_REF]).

It must also be observed that the relaxed micromorphic model can be used with C c positive semi-definite or indeed zero (in the isotropic case µ c = 0), while we always assume that C e , C micro (and later C macro ) are strictly positive definite tensors. Assuming that C e and C micro are positive definite tensors means that:

∃ c + e > 0 : ∀S ∈ Sym(3) : C e S, S R 3×3 ≥ c + e S 2 R 3×3 . (13) 
In sharp contrast to the standard Mindlin-Eringen format, we assume for the rotational coupling tensor C c only positive semi-definiteness, i.e:

∀A ∈ so(3) : C c A, A R 3×3 ≥ 0. (14) 
As already noted, this allows the rotational coupling tensor C c to vanish, in which case the relaxed micromorphic model is non-redundant [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF]. 12The reader might ask himself: how is it possible that the rotational coupling tensor C c can be absent but the resulting model is still well-posed? This is possible because in that case, the skew-symmetric part of P is not controlled locally but as a result of the boundary value problem and boundary conditions. In this sense, allowing for C c ≡ 0 is one of the decisive new possibilities offered by the relaxed micromorphic model. However, in [START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF] it has been shown that in the isotropic case (C c = µ c 1) the presence of C c allows to control the onset of band-gaps. In section 5 we discuss the possible forms that C c may have for certain given anisotropy classes.

Microscopic curvature

In the general micromorphic model, the curvature energy term is of the form:

W curv = W curv (∇P ), (15) 
In our relaxed framework, we assume that it depends only on the second order dislocation density tensor through:

W relax curv = W relax curv ( Curl P ). (16) 
First, we remark here that the relaxed micromorphic curvature expression can also be written as:

Curl P = -Curl ( ∇u -P ) , (17) 
because Curl P is invariant under P → P + ∇ϑ, see [START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF]. Now, we need to shortly discuss that such a reduced formulation is fully able to be treated in an invariant setting. To this end, let P : Ω ⊂ R 3 → R 3×3 be the micro-distortion field to which we apply the following coordinate transformation (generating the so-called Rayleigh-action on it [START_REF] Auffray | On the algebraic structure of isotropic generalized elasticity theories[END_REF]):

P # (ξ) := Q • P (Q T • ξ) • Q T , x = Q T • ξ, (18) 
for given Q ∈ SO(3). Transforming the displacement to a rotated reference and spatial configuration, we have:

u # (ξ) := Q • u (Q T • ξ) , ∇ ξ u # (ξ) = Q • ∇ x u(Q T • ξ) • Q T , (19) 
thus, we require that P transforms as ∇u under simultaneous rotations of the reference and spatial configurations. Then it can be shown [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF] that:

Curl ξ P # (ξ) = Q • [ Curl x P (Q T • ξ)] • Q T . ( 20 
)
For the description of anisotropy in the curvature energy we require form-invariance of expression ( 16) under the transformation [START_REF] Cemal Eringen | A micromorphic approach to dislocation theory and its relation to several existing theories. In Fundamental aspects of dislocation theory, Volume II[END_REF] with respect to all rotations Q ∈ G-material symmetry group. Taking [START_REF] Fischle | The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D[END_REF] into account, this means ∀Q ∈ G -material symmetry group :

W relax curv (Q T • Curl P • Q) = W relax curv ( Curl P ). (21) 
In the same spirit as done with the local energy terms, a first simplification of the curvature expression, which is consistent with the invariance condition ( 21) is given by:

W relax curv ( Curl P ) = µL 2 c
2 L e sym Curl P, sym Curl P + L c skew Curl P, skew Curl P .

Here, L e : Sym(3) → Sym(3) is a classical, positive definite elasticity tensor with at most 21 independent (non-dimensional) coefficients and L c : so(3) → so( 3) is a positive definite tensor with at most 6 independent (non-dimensional) coefficients. Taking isotropy into account, the total number of coefficients reduces to 3, while in the cubic case we have 4 coefficients. We can think of another reduction of the curvature expression which is fully consistent with groupinvariance requirements. Let:

W relax curv = W relax curv ( sym Curl P ) . (23) 
Considering the same transformation law [START_REF] Cemal Eringen | A micromorphic approach to dislocation theory and its relation to several existing theories. In Fundamental aspects of dislocation theory, Volume II[END_REF] as before, the complete representation of anisotropy in terms of representation ( 23) is easy. Indeed, we may employ the classical format of the 4 th order elasticity tensors to write:

W relax curv ( sym Curl P ) = µL 2 c 2 L e sym Curl P, sym Curl P . (24) 
Here L e : Sym(3) → Sym( 3) is a classical, positive definite elasticity tensor with at most 21 independent (non-dimensional) coefficients. The expression in ( 24) is certainly preferable for its simplicity for the treatment of anisotropic curvatures. However, it is not clear whether a formulation based on ( 24) can lead to mathematically well-posed results due to the current lack of a suitable coercive inequality for that case [START_REF] Bauer | New Poincaré-type inequalities[END_REF][START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF]. Our guess at the moment is that it should work for the micro-incompressible case, in which the constraint tr P = 0 is appended. This case is reminiscent of gradient plasticity with plastic spin [START_REF] Ebobisse | Existence and uniqueness for rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin[END_REF][START_REF] Ebobisse | Existence results in dislocation based rate-independent isotropic gradient plasticity with kinematical hardening and plastic spin: The case with symmetric local backstress[END_REF][START_REF] Neff | A canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin[END_REF] in which the micro-distortion P is identified with the plastic distortion.

As explained in detail in [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF], isotropy of the curvature energy is tantamount to requiring form-invariance of expression ( 16) under the transformation [START_REF] Cemal Eringen | A micromorphic approach to dislocation theory and its relation to several existing theories. In Fundamental aspects of dislocation theory, Volume II[END_REF], i.e.:

W relax curv Curl ξ P # (ξ) = W relax curv ( Curl x P (x)) . (25) 
Taking [START_REF] Fischle | The geometrically nonlinear Cosserat micropolar shear-stretch energy. Part I: A general parameter reduction formula and energy-minimizing microrotations in 2D[END_REF] into account, isotropy of the curvature is satisfied if and only if:

∀Q ∈ SO(3) : W relax curv Q • ( Curl x P (x)) • Q T = W relax curv ( Curl x P (x)) . (26) 
i.e. W relax curv must be an isotropic scalar function. We need to highlight the fact that Curl P is not just an arbitrary combination of first derivatives of P (and as such included in the standard Mindlin-Eringen most general anisotropic micromorphic format), but that the formulation in Curl P supports a completely invariant setting, as seen in [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF], [START_REF] Neff | The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric[END_REF]. Since Curl P is a second order tensor, it allows us to discard the 6 th order tensors of classical Mindlin-Eringen micromorphic elasticity and to work instead with 4 th order tensors whose anisotropy classification is much easier and well-known [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF].

In general, if we consider an isotropic curvature term, we obtain the following representation:

µL 2 c 2 L iso Curl P, Curl P R 3×3 = µL 2 c 2 α 1 dev sym Curl P 2 + α 2 skew Curl P 2 + α 3 [tr ( Curl P )] 2 , (27) 
with scalar weighting parameters α 1 , α 2 , α 3 ≥ 0. Since, in this paper, the curvature energy does not play a major role we will mostly just use Curl P 2 , corresponding to α 1 , α 2 = 1 and α 3 = 1 3 . .

Micro-inertia density

The dynamical formulation of the proposed relaxed micromorphic model is obtained in the following way. We define a joint Hamiltonian and obtain the equations from the postulate of stationary action. In order to generalize the kinetic energy density to the anisotropic micromorphic framework, we need to introduce a micro-inertia density contribution of the type:

1 2 J P ,t , P ,t . (28) 
Here J : R 3×3 → R 3×3 is the 4 th order micro-inertia density tensor with, in general, 45 independent coefficients. Eringen has added a conservation law for the micro-inertia density tensor J, but in this work we assume a constant micro-inertia density tensor J as well as a constant mass density ρ. We assume throughout this paper that J is positive definite, i.e.:

∃ c + > 0 : ∀X ∈: R 3×3 : J X, X R 3×3 ≥ c + X 2 R 3×3 . (29) 
Considering dimensional consistency, we can always write the micro-inertia density tensor J as:

J = ρ L 2 c J 0 , (30) 
where J 0 : R 3×3 → R 3×3 is dimensionless. Here, ρ > 0 is the mean mass density

[ρ] = kg/m 3 and L c ≥ 0 is another characteristic length [ L c ] = m.
We also propose a split of this micro-inertia density, similar to that adopted for the other elastic tensors like:

1 2 J P ,t , P ,t = 1 2 J e sym P ,t , sym P ,t + 1 2 J c skew P ,t , skew P ,t . (31) 
Here, J e : Sym(3) → Sym(3) maps symmetric tensors into symmetric tensors while J c : so(3) → so(3) maps skew-symmetric tensors to skew-symmetric tensors. We assume then that both J e and J c are positive definite.

In the isotropic case, the micro-inertia density tensor J 0 can be represented by three dimensionless parameters η 1 , η 2 , η 3 > 0 such that:

1 2 J P ,t , P ,t = ρ L 2 c 2 η 1 dev sym P ,t 2 + η 2 skew P ,t 2 + η 3 (tr ( P ,t )) 2 . ( 32 
)
4.2.4 Linear elasticity as upper energetic limit for the relaxed micromorphic model -statics

The relaxed micromorphic model admits linear elasticity as an upper energetic limit for any characteristic length scale L c > 0. This can be seen by noticing that an admissible field for the micro-distortion P is always P = ∇u . Then, a standard minimization argument shows 13 :

min (u, P ) Ω 1 2 C e sym ( ∇u -P ) , sym ( ∇u -P ) R 3×3 + 1 2 C micro sym P, sym P R 3×3 (33) 
+ 1 2 C c skew ( ∇u -P ) , skew ( ∇u -P ) R 3×3 + µL 2 c 2 L aniso Curl P, Curl P R 3×3 dx ≤ Ω 1 2 C micro sym ∇u , sym ∇u R 3×3 dx .
Thus, we see that the relaxed model is always energetically weaker than a linear elastic comparison material with elastic stiffness C micro for any given stiffness C e . This, again, is in contrast to the standard Mindlin-Eringen format which will, in general, generate arbitrary stiffer response as L c → ∞ and C e → ∞ simultaneously.

Energy formulations and equilibrium equations for various symmetries

Gathering our findings, we propose the following representation of the energy for the relaxed anisotropic centro-symmetric model, which has maximally 21+21+6+21+6=75 independent coefficients:

W = 1 2 C e sym ( ∇u -P ) , sym ( ∇u -P ) R 3×3 anisotropic elastic -energy + 1 2 C micro sym P, sym P R 3×3 micro -self -energy (34) 
+ 1 2 C c skew ( ∇u -P ) , skew ( ∇u -P ) R 3×3
invariant local anisotropic rotational elastic coupling

+ µL 2 c 2 L e sym Curl P, sym Curl P R 3×3 + L c skew Curl P, skew Curl P R 3×3 curvature .
This constitutive expression of the strain energy density for the relaxed micromorphic model is the most general one that can be provided in the anisotropic and centrosymmetric framework and already it provides a drastic reduction of the constitutive coefficients with respect to the standard Mindlin-Eringen model (75 coefficients against the 498 of Mindlin-Eringen). With a look towards immediate applications, it can be considered that non-local effects can be considered, in a first instance, to be isotropic, so that the curvature coefficients reduce from 21+6=27, to at most 2. We end up with a fully anisotropic model which features at most 51 parameters for describing:

• the full anisotropy at the microstructural level.

• the full anisotropy at the macroscopic level.

• the possibility of describing non-localities through the introduction of suitable characteristic lengths.

Of course, given particular metamaterials with particular symmetries, this number of parameters can be further reduced.

For example, the fully isotropic case requires to determine (C e ∼ 2, C micro ∼ 2, C c ∼ 1, L e ∼ 2, L c ∼ 1) altogether 8 constitutive coefficients of which the rotational coupling coefficient µ c can be set to zero to enforce symmetric elastic stresses σ. As seen before, Eringen's formulation has 18 coefficients and Koh's [START_REF] Severino | A special theory of microelasticity[END_REF] microisotropic model has still 10. 14 This simplified framework allowing to describe the full micro-macro anisotropy and the presence of non-localities via the introduction of "only" 51 parameters is of fundamental importance to proceed towards an enlightened characterization of the actual metamaterial.

Considering

ρ L 2 c 2 J 0 P ,t , P ,t , (35) 
as the micro-inertia term, the dynamical equilibrium equations for the anisotropic relaxed micromorphic model take the compact format:

ρ u ,tt = Div [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] , ρ L 2 c J 0 P ,tt = C e sym ( ∇u -P ) + C c skew ( ∇u -P ) -C micro sym P (36) 
-µL 2 c Curl (L e sym Curl P + L c skew Curl P ) .

If we consider the isotropic case and the simplest curvature form, it is possible to reduce the relaxed representation to (see [43, 45-47, 69, 72]): , and the isotropic format of the micro-inertia becomes:

W = µ e sym (
1 2 J P ,t , P ,t = ρ L 2 c 2 η 1 dev sym P ,t 2 + η 2 skew P ,t 2 + η 3 (tr ( P ,t )) 2 . ( 38 
)
Hence, the dynamical equilibrium equations for the isotropic relaxed micromorphic model take the form:

ρ u ,tt = Div [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] , (39) 
η 1 ρ L 2 c dev sym [ P ,tt ] = dev sym C e sym ( ∇u -P ) -C micro sym P -µL 2 c Curl Curl P , η 2 ρ L 2 c skew [ P ,tt ] = C c skew ( ∇u -P ) -µL 2 c skew Curl Curl P , η 3 ρ L 2 c tr [ P ,tt ] = tr C e sym ( ∇u -P ) -C micro sym P -µL 2 c Curl Curl P .
For more information about the dynamics of the relaxed micromorphic model see [START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF][START_REF] Neff | Real wave propagation in the isotropic-relaxed micromorphic model[END_REF].

Some considerations on the macroscopic consistency condition in the isotropic case

In this section, we want to recall some results concerning the macroscopic consistency condition for the relaxed micromorphic model in the isotropic case [START_REF] Neff | On material constants for micromorphic continua[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF].

Although such condition has already been derived in [START_REF] Neff | On material constants for micromorphic continua[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF] and even if it is only valid for the particular case of isotropy, we want to underline the idea which is behind such condition. Indeed, it is of fundamental importance to catch the power that the introduced homogenization formulas may have for an effective application of the relaxed micromorphic model. In section 6.2, we will present a generalization of such homogenization formulas to the fully anisotropic framework so opening the way for the effective mechanical characterization of a huge class of mechanical metamaterials.

The main idea, which is behind the determination of our homogenized formulas, is that of considering a very large sample of a given microstructured material. This sample must be large enough that the effect of the microstructure on the macroscopic behavior of the sample can be considered to be negligible.

Under this hypothesis, we can introduce a macroscopic elasticity tensor C macro : Sym(3) → Sym(3) which best fits the macroscopic behavior of the sample and we can suppose that the material behavior can be described by classical linear elasticity with energy:

W = 1 2 C macro sym ∇u , sym ∇u . ( 40 
)
The corresponding classical symmetric Cauchy stress is clearly defined as:

σ( sym ∇u ) = C macro sym ∇u . (41) 
For very large sample sizes, however, a scaling argument shows easily that the relative characteristic length scale L c of the micromorphic model must vanish. Therefore, we have a way of comparing the classical formulation [START_REF] Lankeit | Integrability conditions between the first and second Cosserat deformation tensor in geometrically nonlinear micropolar models and existence of minimizers[END_REF] to the relaxed micromorphic formulation [START_REF] Chen | Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables[END_REF] and to offer an a priori relation between C e , C micro on the one hand and C macro on the other. In the isotropic case, this has been already done in [START_REF] Neff | On material constants for micromorphic continua[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF] with the isotropic macroscopic consistency conditions:

(2µ macro + 3λ macro ) =
(2µ e + 3λ e ) (2µ micro + 3λ micro ) (2µ e + 3λ e ) + (2µ micro + 3λ micro ) ,

µ macro = µ e µ micro µ e + µ micro = µ e (µ e + µ micro ) -1 µ micro . (42) 
Or, analogously:

(2µ e + 3λ e ) = (2µ macro + 3λ macro ) (2µ micro + 3λ micro ) (2µ micro + 3λ micro ) -(2µ macro + 3λ macro ) , (43) 
µ e = µ macro µ micro µ micro -µ macro = µ macro (µ micro -µ macro ) -1 µ micro .
Note that these formulas determine µ macro and κ macro (the elastic bulk modulus κ macro = 2µmacro+3λmacro

3

) to be one half of the harmonic mean of µ e , µ micro , and κ e , κ micro respectively.

As a matter of fact, the harmonic mean H (µ e , µ micro ) defined for real numbers is:

H (µ e , µ micro ) = 1 2 1 µ e + 1 µ micro -1 = 2 µ e µ micro µ e + µ micro . (44) 
In the isotropic case, upon inspection of formula [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF], we see that the "macroscopic" elastic response, embodied by µ macro and λ macro , cannot be equal or stiffer than the microscopic response, embodied by µ micro and λ micro . This is certainly physically sound and expresses in short that "smaller is stiffer". Moreover, µ micro = µ macro is tantamount to "micro = macro" and formally equivalent to µ e → ∞.

The fundamental importance of formulas ( 43) and ( 43) has already been proven in [START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF], where it is shown that the macroscopic stiffnesses provide the slopes of the acoustic curves for band-gap metamaterials. This will be even clearer in further applications where static test will be conceived to evaluate "a priori" λ macro and µ macro .

Mandel-Voigt vector notation

In this section, we consider an equivalent formulation of the relaxed micromorphic model obtained by using the Mandel-Voigt vector notation for the macro strain ∼ ∇u as well as for the micro strain sym P . This means that the second order tensors sym ∇u and sym P are replaced by the vectors ε and β, in which the components of the original tensors are sorted column-wise by respecting a given order which is chosen "a priori".

As it will be shown in subsection 5.1, the use of such vector notation allows to represent the fourth order tensors C e and C micro in R 3 as second order tensors C e and C micro in R 6 .

This representation is more suitable if one wants to specify the anisotropy classes of C e and C micro in a format that is easily found in the literature.

For completeness, also the coupling fourth order tensor C c can be casted in the form of a second order tensor C c in R 3 by suitably arranging the non-vanishing components of the skew-symmetric second order tensor skew( ∇u -P ) in a vector γ ∈ R 3 . As it will be shown in subsection 5.2, also the anisotropy classes of tensors of the type of C c are easily found in the literature.

We consider the general anisotropic expression for the relaxed micromorphic model (see equation ( 8)), given in index notation as:

W = 1 2 (C e ) ijkl ( sym ( ∇u -P )) ij ( sym ( ∇u -P )) kl + 1 2 (C c ) ijkl ( skew ( ∇u -P )) ij ( skew ( ∇u -P )) kl + 1 2 (C micro ) ijkl ( sym P ) ij ( sym P ) kl + µL 2 c 2 ( P ia,b jab ) ( P ic,d jcd ) , (45) 
where is the Levi-Civita tensor. We recall that C e , C micro : Sym(3) → Sym(3) have at most 21 independent constants, while C c : so(3) → so(3) has at most 6 independent constants. We now consider a linear mapping M αij : Sym(3) → R 6 (as done in [START_REF] Mandel | Plastic waves in an infinite three dimensional medium[END_REF][START_REF] Voigt | Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[END_REF][START_REF] Voigt | Lehrbuch der Kristallphysik[END_REF]) such that the independent components of ( sym ∇u ) ij are isomorphically mapped in a corresponding vector ε α such as:

ε α = M αij ( sym ∇u ) ij . (46) 
And in the same fashion we have:

β α = M αij ( sym P ) ij . ( 47 
)
Here and in the following, Latin subscripts range in {1, 2, 3} while Greek subscripts vary in {1, 2, 3, 4, 5, 6}. Following Mandel and Voigt, we set:

β =         ( sym P ) 11 ( sym P ) 22 ( sym P ) 33 c ( sym P ) 23 c ( sym P ) 13 c ( sym P ) 12         , ε =         ( sym ∇u ) 11 ( sym ∇u ) 22 ( sym ∇u ) 33 c ( sym ∇u ) 23 c ( sym ∇u ) 13 c ( sym ∇u ) 12         , ( 48 
)
where the coefficient c depends on the notation used (2 for Voigt notation [START_REF] Voigt | Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[END_REF][START_REF] Voigt | Lehrbuch der Kristallphysik[END_REF], √ 2 for Mandel notation [START_REF] Mandel | Plastic waves in an infinite three dimensional medium[END_REF]) and this defines the mapping M.

The components of the defined mapping M αij can be represented as 3 × 3 matrices once fixing the index α, as:

M 1ij =   1 0 0 0 0 0 0 0 0   , M 2ij =   0 0 0 0 1 0 0 0 0   , M 3ij =   0 0 0 0 0 0 0 0 1   , (49) 
M 4ij =   0 0 0 0 0 c 2 0 c 2 0   , M 5ij =   0 0 c 2 0 0 0 c 2 0 0   , M 6ij =   0 c 2 0 c 2 0 0 0 0 0   .
We define the inverse operator M -1 ijα : R 6 → Sym(3) such that:

( sym ∇u ) ij = M -1 ijα ε α , ( sym 
P ) ij = M -1 ijα β α , (50) 
and such that the following property:

M αij M -1 ijβ = δ αβ , ( 51 
)
where δ is the Kronecker δ in R 6 × R 6 , holds. It is possible to show that the components of the inverse operator are:

M -1 ij1 =   1 0 0 0 0 0 0 0 0   , M -1 ij2 =   0 0 0 0 1 0 0 0 0   , M -1 ij3 =   0 0 0 0 0 0 0 0 1   , (52) 
M -1 ij4 =   0 0 0 0 0 1 c 0 1 c 0   , M ij5 =   0 0 1 c 0 0 0 1 c 0 0   , M -1 ij6 =   0 1 c 0 1 c 0 0 0 0 0   .
The mapping M has zeros everywhere except in the components {111, 222, 333, 423, 513, 612}. Therefore, we can express it compactly as:

M αij = δ α1 δ i1 δ j1 + δ α2 δ i2 δ j2 + δ α3 δ i3 δ j3 + c 2 δ α4 (δ i2 δ j3 + δ i3 δ j2 ) + δ α5 (δ i1 δ j3 + δ i3 δ j1 ) (53) 
+ c 2 δ α6 (δ i1 δ j2 + δ i2 δ j1 ) .
Analogously for the inverse M -1 :

M -1 ijα = δ α1 δ i1 δ j1 + δ α2 δ i2 δ j2 + δ α3 δ i3 δ j3 + 1 c δ α4 (δ i2 δ j3 + δ i3 δ j2 ) + δ α5 (δ i1 δ j3 + δ i3 δ j1 ) (54) 
+ 1 c δ α6 (δ i1 δ j2 + δ i2 δ j1 ) .
It can be checked that applying the linear mapping (53) to a symmetric second order tensor s ij , the result is a vector in R 6 whose first 3 components are the elements s 11 , s 22 and s 33 , while its last 3 components are c s 23 , c s 13 and c s 12 , respectively. This is consistent with the classical notation of equation [START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF]. Now, if we consider a quadratic energy in εβ, recalling equation ( 46) and [START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF], we can write it as:

1 2 C e αβ (ε α -β α ) (ε β -β β ) = 1 2 C e αβ M αij M βkl ( sym ( ∇u -P )) ij ( sym ( ∇u -P )) kl , (55) 
where, C e : R 6 → R 6 is a general second order symmetric tensor on R 6×6 (matrix), with 21 independent coefficients.

Comparing equation [START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF] with the corresponding part of (45), i.e.:

1 2 (C e ) ijkl ( sym ( ∇u -P )) ij ( sym ( ∇u -P )) kl = (56)

1 2 C e αβ M αij M βkl ( sym ( ∇u -P )) ij ( sym ( ∇u -P )) kl ,
we must have:

(C e ) ijkl = M αij C e αβ M βkl . (57) 
For what follows, it is useful to remark that:

(C e ) -1 ijkl = M -1 ijα C e -1 αβ M -1 klβ . (58) 
This last relation is not trivial and is proven in the Appendix A.3. On the other hand, the converse relations read:

C e αβ = M -1 ijα (C e ) ijkl M -1 klβ , C e -1 αβ = M αij (C e ) -1 ijkl M βkl . (59) 
Using ( 59) and recalling expression [START_REF] David | Micro-structure in linear elasticity[END_REF] for the components of M -1 , it can be seen that the second order tensor C e can be written as a function of the components of the fourth order tensor C e :

C e =            (C e ) 1111 (C e ) 1122 (C e ) 1133            , (60) 
which is a symmetric 6 × 6 matrix due to the symmetries of C e according to which

(C e ) ijkl = (C e ) klij . (61) 
In the same fashion, we have the relationships involving C micro and C micro as well as C macro and C macro :

(C micro ) ijkl = M αij C micro αβ M βkl , (C macro ) ijkl = M αij C macro αβ M βkl , (C micro ) -1 ijkl = M -1 ijα C micro -1 αβ M -1 klβ , (C macro ) -1 ijkl = M -1 ijα C macro -1 αβ M -1 klβ , (62) 
and, conversely:

C micro αβ = M -1 ijα (C micro ) ijkl M -1 klβ , C macro αβ = M -1 ijα (C macro ) ijkl M -1 klβ , C micro -1 αβ = M αij (C micro ) -1 ijkl M βkl , C macro -1 αβ = M αij (C macro ) -1 ijkl M βkl . (63) (64) 

Determination of the fourth order tensors C c in terms of C c

In this subsection, we extend the reasoning used in the previous subsection for the elastic tensors acting on symmetric strain measure to the elastic tensor C c which instead acts on skew-symmetric strain measures and so provide the "rotational coupling" in the relaxed micromorphic model To this aim, we may always represent the 4 th order tensor C c : so(3) → so(3) acting on skew-symmetric matrices in its version acting on axial vectors only, i.e. we write:

C c skew (X) , skew (X) R 3×3 = C c axl ( skew (X)) , axl ( skew (X)) R 3 , (65) 
where C c : R 3 → R 3 is a symmetric second order tensor (since it appears in a quadratic form) and the operator axl defined in equation ( 5). Therefore, C c has only 6 independent coefficients and so does C c . Given a second order tensor X, it can be verified that:

skew (X) 2 R 3×3 = 2 axl ( skew (X)) 2 R 3 . (66) 
Before understanding the general anisotropic character of the coupling tensor C c , we recall the transformation behavior of the energy expression in the isotropic case. An energy defined on second order tensors is isotropic if the transformation:

X → Q T • X • Q for Q ∈ SO(3), (67) 
does not affect the value of the energy. More precisely, we say that a local energy contribution acting on second order tensors is isotropic if

W (X) = W (Q T • X • Q). (68) 
Given a second order tensor which is subjected to the transformation (67), it is clear that its skew-symmetric part transforms as follows:

skew (X) → skew Q T • X • Q = Q T • skew (X) • Q for Q ∈ SO(3) , (69) 
and the corresponding axial vector of skew (X) satisfies the transformation law:

axl ( skew (X)) → axl skew Q T • X • Q = axl Q T • skew (X) • Q = Q • axl ( skew (X)) , (70) 
see [START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF][START_REF] Münch | The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[END_REF]. Based on these transformation laws, we may investigate the anisotropy of the rotational coupling with the representation in terms of the second order tensor C c . Indeed, for the isotropy of an energy of the type W ( skewX) we require the invariance:

∀ Q ∈ SO(3) : C c skew (X) , skew (X) R 3×3 = C c skew Q T • X • Q , skew Q T • X • Q R 3×3 , (71) 
which, recalling ( 65) and ( 70) is also equivalent to:

∀ Q ∈ SO(3) : C c • axl ( skew (X)) , axl ( skew (X)) R 3 = C c • axl skew Q T • X • Q , axl skew Q T • X • Q R 3 (72) = C c • Q • axl ( skew (X)) , Q • axl ( skew (X)) R 3 .
If we now set η = axl ( skew (X)), the latter is equivalent to:

∀ Q ∈ SO(3) : C c • η, η R 3 = C c • Q • η, Q • η R 3 = Q T • C c • Q η, η R 3 , (73) 
where the transformation laws for the axl-operator given in (70) has been used. Since [START_REF] Neff | Curl bounds Grad on SO(3)[END_REF] must hold for all vectors η ∈ R 3 we obtain:

C c = Q T • C c • Q ∀ Q ∈ SO(3) . ( 74 
)
Recalling that Q ∈ SO(3) implies Q T = Q -1 , it can be inferred that this last equation is satisfied if and only if:

C c = µ c 2 1, µ c ≥ 0, (75) 
which is the expression of C c for the isotropic case in which µ c is called the Cosserat couple modulus [START_REF] Cosserat | Théorie des corps déformables[END_REF]. Let us first state again that the relaxed micromorphic model is fully functional even without using C c at all. However, our experience in the isotropic case, in which C c reduces to the Cosserat couple modulus µ c , has shown that in order to describe complete frequency band gaps, one should take µ c > 0. In the anisotropic case this would translate to requiring that C c is positive definite. Next, we discuss the different anisotropy classes for C c which can be expressed more easily for C c . In this case we discuss the solutions of:

C c = Q T • C c • Q ∀ Q ∈ G -symmetry group of the material. ( 76 
)
In other words, the invariance condition is formally equivalent to that previously discussed (see equation [START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF]), but the difference stays in the set G in which the transformation matrix Q lives. Depending on the symmetry properties of the group G, we will be able to define different material classes.

It can be shown that in the respective cases of triclinic, monoclinic, orthorombic, tetragonal (coincides with transversely isotropy) and isotropy (equivalent to cubic symmetry), the tensor C c has the following forms (see [42, p. 30] and [START_REF] Chadwick | A new proof that the number of linear elastic symmetries is eight[END_REF]) 15 :

C tric c =      C c 11 C c 21 C c 31 C c 22 C c 23 sym C c 33      , C mono c =      C c 11 0 C c 31 C c 22 0 sym C c 33      , C orth c =      C c 11 0 0 C c 22 0 sym C c 33      , C tetr c = C trans c =      C c 11 0 0 C c 11 0 sym C c 33      , (77) 
C iso c = C cubic c = C c 11   1 0 0 1 0 sym 1   .
After considering the representation (77) we appreciate the fact that there is no difference between the cubic and isotropic rotational coupling. Both reduce C c to be a spherical tensor C c = µc 2 1, with µ c ≥ 0. We believe that it is very difficult to make statements about the anisotropic rotational coupling, see the footnote 11.

Indeed, the first applications of the relaxed micromorphic model to real band-gap metamaterials show that an isotropic version of the tensor C c is sufficient to trigger band-gap behaviors. We provide in this paper the general framework to treat any possible degree of anisotropy for the rotational coupling. Nevertheless, if there is no evidence of the need of anisotropic rotational coupling based on experimental observations, an isotropic coupling given by the Cosserat couple modulus µ c alone should always be preferred. Therefore, it is possible to consider a reduction of a given anisotropic rotational coupling to the isotropic case as analyzed in Appendix A.4.

6 The macroscopic limit of the relaxed model (L c → 0) -macroscopic consistency conditions

In this section we provide one of the main findings of the present paper, namely a clear procedure for the determination of the macroscopic fourth order tensor C macro in terms of the microstructure-related C e and C micro . Thanks to our previous considerations, we are able to establish equivalent relationships between the second order tensors C macro , C e and C micro . The results that we show in this section have the following advantages which allow us to expectedly proceed towards well-conceived applications on real metamaterials:

• the consistency condition that we derive here relates the macro moduli in C macro to the micro moduli in C e and C micro . We claim that, given a specific metamaterial, the moduli in C macro can be determined on the basis of very simple mechanical tests. The idea is that of considering a specimen which is big enough that the effect of the microstructure can be considered to be negligible. Once the tensor C macro is known, then C e and C micro can be directly related via the consistency condition that we present here. This drastically reduces the number of unknown coefficients that have to be determined, so providing an effective tool towards manageable applications.

• the way towards application is made even easier by the introduction of the second order tensors C macro , C e and C micro whose form can be easily found in the literature once the class of anisotropy of the medium is fixed.

Equilibrium equations

The equilibrium equations of the anisotropic relaxed micromorphic model associated to the energy (8) read:

Div [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] = 0, (78) 
C e sym ( ∇u -P ) + C c skew ( ∇u -P ) -C micro sym P -µL 2 c ( Curl Curl P ) = 0, or, in index notation:

(C e ) ijkl ( sym ( ∇u -P )) kl + (C c ) ijkl ( skew ( ∇u -P )) kl ,j = 0, (79) 
(C e ) ijkl ( sym ( ∇u -P )) kl + (C c ) ijkl ( skew ( ∇u -P )) kl -(C micro ) ijkl ( sym P ) kl -µL 2 c ( P ik,jk -P ij,kk ) = 0.
We define the elastic stress tensor σ( ∇u , P ) appearing in (78) 1 as:

σ( ∇u , P ) := C e sym ( ∇u -P ) + C c skew ( ∇u -P ) , (80) 
or, in index notation:

σ ij ( ∇u , P ) := (C e ) ijkl ( sym ( ∇u -P )) kl + (C c ) ijkl ( skew ( ∇u -P )) kl . (81) 
Therefore, the equilibrium equation ( 78) 1 can be compactly written as:

Div [σ( ∇u , P )] = 0. ( 82 
)
6.2 The general relaxed anisotropic case in the limit L c → 0

We will show that our relaxed micromorphic model defined by the energy [START_REF] Chen | Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables[END_REF], or equivalently by the equations of motion [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF], can be reduced to a sort of equivalent "macroscopic model" when letting L c → 0. Indeed, when L c = 0 equation ( 78) 2 gives a direct relation between P and ∇u which, when inserted in (78) 1 , allows to rewrite the energy in terms of ∇u . Hence, we can introduce an equivalent macroscopic stress tensor σ macro ( sym ∇u ) which is the limit of σ( ∇u , P ) for L c → 0. In symbols:

σ macro ( sym ∇u ) = lim Lc→0 σ( ∇u , P ) . (83) 
In the linear-elastic case the tensor σ macro ( sym ∇u ) can be written as:

σ macro ( sym ∇u ) = C macro sym ∇u , (84) 
assuming that it is the Cauchy stress tensor of a classical first gradient continuum.

In view of applications, considering very large samples of the anisotropic medium is equivalent to letting L c , the characteristic length, tend to zero. As a consequence of L c = 0, the second equilibrium equation in [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF] looses the Curl Curl P -term and turns into an algebraic side condition connecting P and ∇u via:

C e sym ( ∇u -P ) -C micro sym P + C c skew ( ∇u -P ) = 0, (85) 
which, in index notation reads:

(C e ) ijkl ( sym ( ∇u -P )) kl -(C micro ) ijkl ( sym P ) kl + (C c ) ijkl ( skew ( ∇u -P )) kl = 0. ( 86 
)
Equation ( 85) can be decoupled (by the assumed special mapping symmetry properties of the elasticity tensors, see equations ( 10)) into two equations for the symmetric and skew-symmetric part, respectively, yielding:

C e sym ( ∇u -P ) = C micro sym P, C c skew ( ∇u -P ) = 0. ( 87 
)
which, in index notation becomes:

(C e ) ijkl ( sym ( ∇u -P )) kl = (C micro ) ijkl ( sym P ) kl , (88) 
(C c ) ijkl ( skew ( ∇u -P )) kl = 0.
This uncoupling is true since C e and C micro map symmetric matrices to symmetric matrices and C c : so(3) → so(3), and then C c skew ( ∇u -P ) is skew-symmetric by assumption. From the second equation in [START_REF] Franck | A micromorphic model for the multiple scale failure of heterogeneous materials[END_REF], we can easily derive that:

C c skew ∇u = C c skew ( P ) . ( 89 
)
On the other hand, solving (87) 1 for sym P gives 16 :

(C micro + C e ) sym P = C e sym ∇u , (90) 
⇐⇒ sym P = (C micro + C e ) -1 (C e sym ∇u ) .
This is an identity between the micro-distortion P and the gradient of the displacement ∇u which proves how, in the macroscopic limiting case, the model is transparent with respect to the micro-distortion, i.e. only macroscopic deformations involving sym ∇u are allowed. We insert (87) 1 , ( 89) and ( 90) into [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF] and considering the uncoupling between symmetric and skew symmetric parts of the involved tensors, we get:

Div [C micro sym P ] = 0 ⇐⇒ Div C micro (C micro + C e ) -1
C e sym ∇u = 0.

(91)

On the other hand, the classical balance equation for the linear elastic macroscopic response is:

Div [C macro sym ∇u ] = 0. (92) 
Comparing the macroscopic balance equation ( 92) with the one derived from our relaxed model when letting L c = 0 ((91) 1 ), we obtain the following a priori relation between the macroscopic elasticity tensor C macro and the microscopic tensor C micro as well as the mesoscopic (relative) elasticity tensor C e :

C macro := C micro (C micro + C e ) -1 C e , (93) 
which is a generalization of (42) when considering our anisotropic setting. From equation (93) (see Appendix A.5), we get by simple inversion 17 :

C -1 macro = C -1 micro (C micro + C e ) C -1 e = C -1 e + C -1 micro . (94) 
Therefore, we note, surprisingly at first glance, that C macro is the "parallel sum" of C e and C micro (the parallel sum of two tensors A and B is defined as A -1 + B -1 -1 ), that is equal to one half of the harmonic mean operator on positive definite symmetric matrices (see [4, p. 103]), defined as:

H (C e , C micro ) := 1 2 C -1 e + C -1 micro -1 = 2 C micro (C e + C micro ) -1 C e = 2 C macro . ( 95 
)
It is possible to obtain the inverse relation with algebraic operations. First, from equation (94) it is immediate that:

C -1 e = C -1 macro -C -1 micro , (96) 
or equivalently:

C e = C -1 macro -C -1 micro -1 = C micro C -1 micro C -1 macro -C -1 micro -1 C -1 macro C macro .
(97) 16 We note here that the inverse of an elastic stiffness tensor, like (C micro + Ce) has the same symmetry group structure as

C micro + Ce itself.
This can be shown easily by directly looking at its definition of groups. 17 It can be checked that, given fourth order invertible tensors A, B and C, the following identity holds:

(A • B • C) -1 = C -1 • B -1 • A -1 Considering that A -1 • B -1 • C -1 = (C • B • A)
-1 , we obtain:

C e = C micro C macro C -1 macro -C -1 micro C micro -1 C macro (98) = C micro [C micro -C macro ] -1 C macro .
So finally, we have the further compact relation:

C e = C micro (C micro -C macro ) -1 C macro . ( 99 
)
Note that these results are true without assuming that the tensors C micro , C e and C macro commute (and, in fact, they do not).

Particularization for specific anisotropy classes

In order to show how equation ( 93) particularizes for anisotropy classes, we use the vectorial notation defined in section [START_REF] Boehmer | Soliton-like solutions based on geometrically nonlinear Cosserat micropolar elasticity[END_REF]. In particular, by ( 93), ( 57) and ( 58), we can rewrite equation 93:

C macro αβ M αij M βkl = C micro αγ M αij M γmn C micro + C e -1 δ M -1 mnδ M -1 pq C e ζβ M ζpq M βkl = C micro αγ δ γδ δ ζ C micro + C e -1 δ C e ζβ M αij M βkl (100) = C micro αγ C micro + C e -1 γζ C e ζβ M αij M βkl .
From this last equation we easily notice that:

C macro = C micro • C micro + C e -1 • C e . (101) 
This formula for second-order elasticity tensors is completely analogous to (93), which was obtained for 4 th order tensors and allows to pass from micro to macro coefficients just by specifying the special forms of the 6 × 6 matrices C macro , C micro , C e . Using algebraic arguments analogous to those for the 4 th order tensors case, we obtain the inverse relation:

C e = C micro • C micro -C macro -1 • C macro . (102) 
These expressions may be of use when the elastic properties C micro of a unit elementary cell of the considered metamaterial and the macroscopic properties C macro of the metamaterial considered as a macroscopic block are known. Therefore, the elastic coupling tensor C e is easily computable and is, in fact uniquely determined.

In the following subsections, we will particularize equations ( 101) and (102) to specific symmetries, thus dealing with isotropic, cubic, orthotropic an generally anisotropic materials, as intended in our relaxed micromorphic framework. For deriving such particular cases, we make the implicit assumption that C e , C micro and C macro have the same symmetries, which is indeed a sensible ansatz.

The isotropic case

In this subsection, we show how the fundamental formula (101) can be particularized to the isotropic case so retrieving the homogenization formulas for the Lamé parameters proposed in [START_REF] Neff | On material constants for micromorphic continua[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF].

In the isotropic case and employing the Voigt notation, the constitutive elastic tensor has the following specific structure: 

C iso e =        
which, with the help of the bulk modulus κ e = 1 3 (2µ e + 3λ e ) can be expressed as: 

C iso e =         κ e + 4/
Analogously:

C iso micro =         κ micro + 4/3 µ micro κ micro -2/3 µ micro κ micro -2/3 µ micro 0 0 0 κ micro -2/3 µ micro κ micro + 4/3 µ micro κ micro -2/3 µ micro 0 0 0 κ micro -2/3 µ micro κ micro -2/3 µ micro κ micro + 4/3 µ micro 0 0 0 0 0 0 µ micro 0 0 0 0 0 0 µ micro 0 0 0 0 0 0 µ micro         . ( 105 
)
Using the consistency condition in equation ( 101) and simplifying, we can write:

C iso macro =         κ macro + 4/3 µ macro κ macro -2/3 µ macro κ macro -2/3 µ macro 0 0 κ macro -2/3 µ macro κ macro + 4/3 µ macro κ macro -2/3 µ macro 0 0 κ macro -2/3 µ macro κ macro -2/3 µ macro κ macro + 4/3 µ macro 0 0 0 0 0 µ macro 0 0 0 0 0 µ macro 0 0 0 0 0 µ macro         , (106) 
where we set:

κ macro = κ e κ micro κ e + κ micro , µ macro = µ e µ micro µ e + µ micro . (107) 
The relation for κ macro can also be expressed as a function of µ macro and λ macro :

(2µ macro + 3λ macro ) = (2µ micro + 3λ micro ) (2µ e + 3λ e ) (2 (µ e + µ micro ) + 3 (λ e + λ micro )) . (108) 
Equations (107) can also be inverted:

κ e = κ macro κ micro κ micro -κ macro = κ macro (κ micro -κ macro ) -1 κ micro , µ e = µ macro µ micro µ micro -µ macro = µ macro (µ micro -µ macro ) -1 µ micro . (109) 
The first equation in (109) can be analogously rewritten in terms of λ e and µ e as:

(2µ e + 3λ e ) = (2µ macro + 3λ macro ) (2µ micro + 3λ micro ) (2µ micro + 3λ micro ) -(2µ macro + 3λ macro ) .

(110)

The cubic symmetry case

In this subsection, we start showing the interest that the homogenization formula (101) may have in the case of simple anisotropies, as the cubic case. This formula for the cubic case will be applied in forthcoming works to show how it is fundamental for the mechanical characterization of real metamaterials. In the cubic case, the constitutive tensors in Voigt-format have the following structure: 

C cub e =         2µ e +
which, using the bulk modulus κ e = 1 3 (2µ e + 3λ e ) can be rewritten as: 

C cub e =         κ e + 4/
Analogously:

C cub micro =         κ micro + 4/3 µ micro κ micro -2/3 µ micro κ micro -2/3 µ micro 0 0 0 κ micro -2/3 µ micro κ micro + 4/3 µ micro κ micro -2/3 µ micro 0 0 0 κ micro -2/3 µ micro κ micro -2/3 µ micro κ micro + 4/3 µ micro 0 0 0 0 0 0 µ * micro 0 0 0 0 0 0 µ * micro 0 0 0 0 0 0 µ * micro         . (113) 
Using the consistency condition in equation ( 101), we obtain:

C cub macro =         κ macro + 4/3 µ macro κ macro -2/3 µ macro κ macro -2/3 µ macro 0 0 κ macro -2/3 µ macro κ macro + 4/3 µ macro κ macro -2/3 µ macro 0 0 κ macro -2/3 µ macro κ macro -2/3 µ macro κ macro + 4/3 µ macro 0 0 0 0 0 µ * macro 0 0 0 0 0 µ * macro 0 0 0 0 0 µ * macro         . (114) 
where:

κ macro = κ e κ micro κ e + κ micro , µ macro = µ e µ micro µ e + µ micro , µ * macro = µ * e µ * micro µ * e + µ * micro . (115) 
The relation for κ macro can also be expressed as a function of µ macro and λ macro :

(2µ macro + 3λ macro ) = (2µ micro + 3λ micro ) (2µ e + 3λ e ) (2 (µ e + µ micro ) + 3 (λ e + λ micro )) . (116) 
Equations (115) can also be inverted:

κ e = κ macro κ micro κ micro -κ macro = κ macro (κ micro -κ macro ) -1 κ micro , µ e = µ macro µ micro µ micro -µ macro = µ macro (µ micro -µ macro ) -1 µ micro , µ * e = µ * macro µ * micro µ * micro -µ * macro = µ * macro (µ * micro -µ * macro ) -1 µ * micro . (117) 
The first equation in (117) can be analogously rewritten in terms of λ e and µ e as:

(2µ e + 3λ e ) = (2µ macro + 3λ macro ) (2µ micro + 3λ micro ) (2µ micro + 3λ micro ) -(2µ macro + 3λ macro ) .

(118)

The orthotropic case

In the orthotropic case, the constitutive tensors have the following specific structure: 

C orth e =               C e
0 0 0 C e 66               . ( 119 
)
Since it will be useful in the following, we define the sub-block C a e as: 

Analogously: 

C orth micro =               C micro
0 0 0 0 0 C micro 66               , (121) 
and we define, for subsequent convenience, the sub-block C a micro as:

C a micro =      C micro 11 C micro 12 C micro 13 C micro 12 C micro 22 C micro 23 C micro 13 C micro 23 C micro 33      . ( 122 
)
Using the consistency condition in equation ( 101), we obtain: The formulas in equation ( 124) can also be inverted as:

C orth macro =              
C a e = C a macro • C a micro -C a macro -1 • C a micro , C e pp = C macro pp C micro pp C micro -C macro pp . ( 125 
)
6. [START_REF] Bhatia | Positive definite matrices[END_REF] The long wavelength limit -dynamic considerations

The governing equations for the anisotropic relaxed micromorphic model in the dynamical case take the form:

ρ u ,tt = Div [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] , (126) 
ρ L 2 c J 0 P ,tt = C e sym ( ∇u -P ) + C c skew ( ∇u -P ) -C micro sym P -µL 2 c Curl Curl P.

Using the isotropy of inertia we can split (126) 2 into 3 coupled systems of equations: This split of the inertia is essential for the description of real metamaterials in the dynamic regime (see [START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF]).

η 1 ρ L
The classical continuum theory is the long wavelength limit, corresponding to large length and time scales, and it predicts properties independent of specimen size. The long wave length limit is given by letting L c , L c → 0 simultaneously. In this case, the system (126) formally reduces to: As in the static case, we may rewrite (128) in the format of classical dynamic linear elasticity, yielding:

ρ u ,tt = Div [C e sym ( ∇u -P ) + C c skew ( ∇u -P )] , (128 
ρ u ,tt = Div [C macro sym ∇u ] , (129) 
where, following (93), we obtain again:

C macro = C micro (C micro + C e ) -1 C e . (130) 
We have thus shown that the fundamental homogenization formula that we propose in this paper can be eventually obtained as a macroscopic limit in the statical case, or as a long wavelength limit in the dynamical case.

Non reduction for the standard Mindlin-Eringen model

In this section, we explicitly show that the considerations that allowed us to derive the macroscopic consistency conditions for the relaxed micromorphic model cannot be repeated for the classical Mindlin Eringen model which hence does not provide a transparent connection of the micro and meso elastic tensors to the macroscopic properties of the medium.

The elastic energy of the general anisotropic micromorphic model in the sense of Mindlin-Eringen can be represented as: 

W = 1 2 C e (
The same expression in index notation is:

W = 1 2 C e ijkl ( ∇u -P ) ij ( ∇u -P ) kl + 1 2 (C micro ) ijkl ( sym P ) ij ( sym P ) kl + µL 2 c 2 P ij,k P ij,k . (132) 
Here, we have discarded E cross for simplicity. Note that the coupling of skew-symmetric terms is now also contained in C e in some hidden way, instead of being explicitly present as in C c and our relaxed model. The static equilibrium equations are:

Div C e ( ∇u -P ) = 0, (133) 
-C e ( ∇u -P ) + C micro sym P + µL 2 c Div [∇P ] = 0. These can be equivalently written as:

C e ijkl ( ∇u -P ) kl ,j = 0, (134) 
-C e ijkl ( ∇u -P ) kl + (C micro ) ijkl ( sym P ) kl + µL 2 c P ij,kk = 0. Here we can define the elastic (relative) stress in such a way that it depends bijectively on the non-symmetric elastic distortion e = ∇u -P since C e is assumed to be uniformly positive definite: σ ( ∇u , P ) = C e ( ∇u -P ) , σ ij ( ∇u , P ) = C e ijkl ( ∇u -P ) kl .

We can write in this model:

∇u -P = C -1 e σ , (136) where C 
-1

e is the Mindlin-Eringen elastic micromorphic compliance tensor. In order to find the corresponding macroscopic tensor, we have to write the micromorphic elastic (relative) stress as a function of only ∇u .

Considering very large samples of the anisotropic structure amounts to letting L c , the characteristic length, tend to zero. As a consequence of L c = 0, the second equilibrium equation in (133) looses the Div∇P -term and turns into an algebraic side-condition connecting P and ∇u via:

C e ( ∇u -P ) = C micro sym P . (137) 
Or, again in index notation:

C e ijkl ( ∇u -P ) kl = (C micro ) ijkl ( sym P ) kl . (138) 
From this equation we obtain: In index notation this becomes:

( sym P ) ij = C e + C micro -1
ijkl C e klmn ( sym ∇u ) mn + C e + C micro -1

ijkl C e klmn ( skew ( ∇u -P )) mn .

(140)

On the other hand, replacing (137) in (133) 1 yields:

Div [C micro sym P ] = 0 . (141) 
And again, by replacing this result in (139) we obtain:

Div C micro C e + C micro -1 C e sym ∇u + C micro C e + C micro -1 C e skew ( ∇u -P ) = 0. ( 142 
)
It is not possible to decouple this last equation due to the presence of the rotational coupling term skew ( ∇u -P ). Therefore, the only condition we can obtain is:

C micro C e + C micro -1 C e sym ∇u + C micro C e + C micro -1 C e skew ( ∇u -P ) = C macro sym ∇u , (143) 
or, in index notation:

(C micro ) klmn C e + C micro -1 mnpq C e pqij ( sym ∇u ) ij + (144) + (C micro ) klmn C e + C micro -1 mnpq C e pqij ( skew ( ∇u -P )) ij = (C macro ) klij ( sym ∇u ) ij .
This has to hold for any sym ∇u . Noting that C macro sym ∇u ∈ Sym(3) and considering the symmetric part and the skew-symmetric part individually, we have 

           sym C micro C e + C micro
Similarly, in index notation we obtain:

           sym (C micro ) klmn C e + C micro -1 mnpq C e pqij ( sym ∇u ) ij + ( skew ( ∇u -P )) ij = (C macro ) klij ( sym ∇u ) ij , skew (C micro ) klmn C e + C micro -1 mnpq C e pqij ( sym ∇u ) ij + ( skew ( ∇u -P )) ij = 0. (146) 
A sufficient condition in order to obtain a decoupling of these equations (sym and skew) is exactly the reduced anisotropic format put forward in our relaxed model.

The microscopic limit -static considerations

There is another interesting limit behavior in our relaxed micromorphic model. We may consider, formally, to let L c → ∞. Conceptually, this means a "zoom" into the micro-structure. A scaling argument shows that this is tantamount to considering very small samples of the given multiscale material.

The standard Mindlin-Eringen model

Letting L c → ∞ and considering the curvature-term in the form µL 2 c ∇P 2 means that, in the limit, ∇ P → 0 and P must be homogeneous: P (x) = P . This means that the micro-structure does not have the possibility to respond in any inhomogeneous way. 

where |Ω| = Ω 1 dx denotes the measure of Ω and the last equation has been derived considering that the variation with respect to a homogeneous P is:

Ω C e ∇u -P , -δ P dx + |Ω| C micro sym P , δ P The problem (148) has a unique solution in the displacement u, from which we determine P . Defining C : R 3×3 → R 3×3 such that:

C P := C e P + C micro sym P = C e 1 |Ω| Ω ∇u dx , (150) 
shows that C is invertible. Therefore, we obtain that the value of the homogeneous P results as

P := C -1 C e 1 |Ω| Ω ∇u dx . (151) 
In conclusion, the micro-distortion P is uniquely related to the average 1 |Ω| Ω ∇u dx (over a representative unit cell). However, this relationship is not, in any way, transparent due to the unclear interaction of C and C e .

The relaxed micromorphic model but with ∇P 2

In this model variant, letting L c → ∞, generates again a response similar as before; P (x) = P must be homogeneous and the remaining minimization problem 

where |Ω| = Ω 1 dx and the last equation has been derived by using the fact that the variation with respect to a homogeneous P is:

Ω C e sym ∇u -P , -δ P dx + |Ω| C micro sym P , δ P 

The problem (153) has a unique solution in the displacement u, from which we determine sym P :

sym P := (C e + C micro ) -1 C e 1 |Ω| Ω sym ∇u dx , (156) 
from which, since

C macro = C micro (C e + C micro ) -1
C e , we notice that: In our relaxed micromorphic model with the curvature depending only on Curl P , things turn out much differently. Letting L c → ∞ does not generate a homogeneous P ; rather, it enforces that the micro-distortion P must be compatible and therefore that there exists a function ϑ : Ω ⊂ R 3 → R 3 such that P (x) = ∇ϑ(x).

C micro sym P = C macro 1 |Ω| Ω sym ∇u dx (157) ⇐⇒ sym P = C -1 micro C macro 1 |Ω| Ω sym ∇u dx . ( 158 
Therefore, the remaining minimization problem is:

Ω 1 2 C e sym ( ∇u -∇ϑ) , sym ( ∇u -∇ϑ) + 1 2 C micro sym∇ϑ, sym∇ϑ dx → min (u, ϑ) ,      Div [C e sym ( ∇u -∇ϑ)] = 0 , Div [-C e sym ( ∇u -∇ϑ) + C micro sym∇ϑ] = 0 . (159) 
Leaving the boundary conditions for ϑ aside (i.e. no Dirichlet type boundary condition for P ) we immediately get a solution of (159) by choosing ∇u = ∇ϑ which gives:

Ω 1 2 C micro sym ∇u , sym ∇u dx → min (u) Div [C micro sym ∇u ] = 0 . (160) 
Therefore, we get exactly the classical linear elastic response with the microscopic stiffness C micro for L c → ∞, as we should!

Conclusion

Gathering our new findings for the anisotropic relaxed micromorphic model together, we have obtained that for zero characteristic length scale L c = 0 (which corresponds to a long wavelength limit or to a specimen of arbitrarily large size), it is possible to identify both the symmetric and the skew-symmetric part of the micro-distortion P as function of to the gradient of the displacement ∇u :

(C micro + C e ) sym P = C e sym ∇u , (161) 
C c skew ( P ) = C c skew ∇u .

From this result we obtain that the experimentally observable macroscopic stiffness for an energy-equivalent linear elastic medium has the stiffness tensor:

C macro = 1 2 H (C e , C micro ) = C -1 micro + C -1 e -1 = C e (C micro + C e ) -1 C micro . (162) 
Here, H is the harmonic mean of the elastic (relative) stiffness tensor C e and the microscopic stiffness tensor C micro of the relaxed micromorphic model. Inverting the expression (162) yields:

C e = C micro (C micro -C macro ) -1 C macro = C -1 macro -C -1 micro -1 . (163) 
In (163), the tensor C e is uniquely determined and positive definite, provided that C micro -C macro is positive definite. No similar simple expression exists for the standard anisotropic Mindlin-Eringen model. On the other hand, letting L c → ∞, we saw that our model tends to a classical linear elastic response with the microscopic stiffness C micro . This results allows us to say that we have obtained a transparent scaleseparation between the macroscopic linear response C macro for L c = 0 and the microscopic linear response C micro for L c → ∞. The intermediate cases can be interpreted as an "interpolation" between the macro and the micro-behavior obtained for L c > 0.

We remark that the rotational coupling tensor C c is in no way related to either the macroscopic or the microscopic measurable quantities, in sharp contrast to C micro , C macro , C e .

Furthermore, our presented model allows full use of the well-known Voigt-representation for classical elasticity tensors. Thus, we do not need to investigate the anisotropy classes based on 6 th -order tensors [START_REF] Auffray | On the algebraic structure of isotropic generalized elasticity theories[END_REF], neither for the local energy contribution nor for the curvature expression. This makes the presented framework by far more attractive, due to the transparent comparison to classical linear, anisotropic elasticity.

Our a priori novel macroscopic consistency condition (162) drastically reduces the burden of determining constitutive coefficients. Indeed, the fundamental importance of formula (162) will be soon provided in a forthcoming paper in which a "cubic" band-gap metamaterial will be investigated. The macroscopic coefficients C macro will be determined on the basis of classical static tests on samples of the considered metamaterial. This will allow to drastically reduce the constitutive parameters to be determined. Such remaining parameters together with the micro-inertiae and, eventually the characteristic length L c , will be determined on the basis of dynamical tests, following what done in [START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF] for the isotropic case.

More particularly, the dispersion curves issued via the relaxed micromorphic model will be fitted on the experimental ones for some fixed directions of propagation of the traveling wave. Once the parameters will be calibrated, they will be validated by checking that the fitting on the dispersion curves remains reliable also on the other directions of propagation. This will provide the first evidence of the use of an enriched continuum model of the micromorphic type for the effective mechanical characterization of specific anisotropic metamaterials.

A Appendices

A.1 Certain limiting cases of the relaxed micromorphic continuum

In this section, we show certain limiting cases of the anisotropic relaxed micromorphic continuum model. Since we assume C micro , Ce to be positive definite and Cc positive semi-definite, there exist three positive constants c + dev , c + tr , c + e > 0 and c + c ≥ 0 such that: Ce sym ( ∇u -P ) , sym ( ∇u -P ) R 3×3 ≥ c + e sym ( ∇u -P ) 

C micro → ∞ , Ce > 0 , Cc ≥ 0 , P ∈ R 3×3 , (165) 
which is the case if we assume c + dev , c + tr → ∞. In this case, the fact that the energy is bounded implies sym P 2 = 0 formally and, therefore, that P ∈ so(3). This resulting model is equivalent to the Cosserat model or micropolar model. The appearance of only Curl P in the curvature is consistent with the classical Cosserat or micropolar model, since for skewsymmetric P (x) = A(x) ∈ so(3) it holds that CurlA is isomorphic to ∇A, see [START_REF] Neff | Curl bounds Grad on SO(3)[END_REF]. On the other hand, we may consider:

dev sym C micro → ∞ , Ce > 0 , Cc ≥ 0 , P ∈ Sym(3) , (166) 
by which we mean to assume that c + dev → ∞ and skew P = 0. In this case, we obtain that dev sym P 2 = 0 and, therefore, we can infer that P = R • 1. This model is called micro-dilation theory (see [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]) and again, the presence of Curl P is fully consistent with the general micro-dilation theory. One more case is:

tr C micro → ∞ , Ce > 0 , Cc ≥ 0 , P ∈ R 3×3 , (167) 
where we assume that c + tr → ∞ and, therefore, tr P = 0. In this case we obtain that P ∈ sl(3). This model is the microincompressible micromorphic model. Analogously, we may consider:

dev sym C micro → ∞ , Ce > 0 , Cc ≥ 0 , P ∈ R 3×3 , (168) 
where we assume that c + dev → ∞. In this case we obtain only that dev sym P 2 = 0 and therefore that P = R • 1 + so(3). This set of models is called micro-stretch theory (see [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]). Instead, if we just consider:

C micro > 0 , Ce > 0 , Cc ≥ 0 , P ∈ Sym(3) ,

which means constraining P in such a way that skew P = 0, then this resulting model is equivalent to Forest's microstrain model, see [START_REF] Forest | Nonlinear microstrain theories[END_REF]. Finally, if we consider:

C micro > 0 , Ce → ∞ , Cc = 0 , P ∈ Sym(3) .

(170) by which we mean to assume that c + e → ∞ and skew P = 0, we obtaine sym ( ∇u -P ) 2 = 0. Thus, it is possible to derive that sym ∇u = sym P = P . With this last property, we obtain that the curvature term reduces to L aniso Curl sym ∇u , Curl sym ∇u . This resulting model is a variant of the indeterminate couple stress model, as treated in [START_REF] Ghiba | A variant of the linear isotropic indeterminate couplestress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions[END_REF].

It is not possible to suitably restrict the parameters of the relaxed micromorphic model in order to obtain a full higher gradient elasticity model, in sharp contrast to the standard Mindlin-Eringen model where µe → ∞, µc → ∞ implies ∇u = P and ∇P 2 → ∇∇u 2 .

A.2 One-dimensional standard Mindlin-Eringen model versus new relaxed micromorphic model

We let u : [0, 1] → R denote the displacement and p : [0, 1] → R the micro-distortion (we note that u corresponds to the first component of the displacement and p corresponds to P 11 ). Considering a one-dimensional model, we can reduce the energy of the Mindlin-Eringen model to:

µe|u (t) -p(t)| 2 + µc| skew(•) 0 | 2 + µ micro | p(t)| 2 + µL 2 c 2 | p (t)| 2 . ( 171 
)
Therefore, in a purely one-dimensional setting, the µc-term does not appear. Furthermore, if µe → ∞ formally, the energy reads:

µ micro |u (t)| 2 + µL 2 c 2 |u (t)| 2 , (172) 
which is a second gradient elastic energy. The equilibrium equations read:

2µe u (t) -p(t) δu (t) = 0 , ∀ δu ∈ C ∞ 0 ([0, 1], R) , (173) 
-2µe u (t) -p(t) + 2µ micro p δ p(t) + µL 2 c p δ p = 0 . ∀ δ p ∈ C ∞ 0 ([0, 1], R) ,

The following holds:

A -1 ijγ = M -1 ijδ Ce -1 δγ . (188) 
Indeed, using equation (188) we can compute: 

A βij A -1 ijγ = Ce
where we used the symmetry of Ce. This last chain of equalities guarantees that (188) is actually the inverse of A. Then, replacing (188) in (186) we get:

(Ce) -1 qlrs = M -1 qlβ M -1 mnδ Ce -1 δβ 1mnrs = M -1 qlβ Ce -1 δβ M -1 rsδ . (190) 
A.4 Some considerations about the anisotropic rotational coupling in the "relaxed micromorphic model"

A method to reduce any given anisotropic rotational coupling to the isotropic case is, therefore, to simply project C aniso c to its isotropic part, given by the arithmetic mean of the eigenvalues of C aniso (

) 191 
This defines a mapping iso arithm : Sym + (3) → R + 1. We note, however, that applying (191) has certain deficiencies, e.g. it is not stable under inversion:

iso arithm C aniso c -1 = iso arithm C aniso c -1 . ( 192 
)
It is possible, following the approach by Norris and Moakher [START_REF] Moakher | The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry[END_REF], to obtain the closest isotropic tensor to C aniso c with respect to a geodesic structure on Sym + (3). This will define a nonlinear operator iso geod : Sym + (3) → R + 1 such that:

iso geod C aniso c -1 = iso geod C aniso c -1 . (193) 
This will be exemplified in a different contribution. In the meantime, we may alternatively propose a mapping iso log : Sym 

There is also another possibility. We define the harmonic isotropy projector by:

iso harm C aniso c := iso arithm C aniso c -1 -1 . (196) 
This is the harmonic mean of the eigenvalues of C aniso c (the Reuss-bound [START_REF] Böhlke | A minimum problem defining effective isotropic elastic properties[END_REF]). All introduced mappings satisfy the projection property: iso arithm γ + 1 = iso geod γ + 1 = iso log γ + 1 = iso harm γ + 1 = γ + 1.

(197) Let us discuss the differences between iso arithm and iso log . Consider a sequence of C aniso,k c → C aniso,∞ c for k → ∞, where C aniso,∞ c is not positive definite, i.e. some eigenvalue is zero (and det C aniso,∞ c = 0). Then:

iso arithm C aniso,k c = 1 3 tr C aniso,k c 1 → 1 3 tr C aniso,∞ c 1, (198) 
is positive definite. The mapping property is such that iso arithm : Sym + (3) → R + 1. In contrast, we observe that:

iso log C aniso,k c = det C aniso,k c 1 3 1 → 0 R 3×3 . (199) 
Therefore, iso log determines a zero isotropic coupling when eigenvalues of C aniso 

At the present stage of understanding, however, we do not have extra arguments for using an anisotropic rotational coupling instead of an isotropic one. When possible, an isotropic rotational coupling given by the Cosserat couple modulus µc should be preferred.
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 1 Figure 1: Enriched kinematics for a micromorphic continuum. The macroscopic deformation of the body Ω ⊂ R 3 is described by ϕ: Ω ⊂ R 3 → R 3 .In each macroscopic material point x ∈ Ω there is a substructure attached. This substructure has the possibility to shear, stretch and shrink and is
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  ) Since C micro : Sym(3) → Sym(3) and C macro : Sym(3) → Sym(3) we also have that C -1 micro : Sym(3) → Sym(3) and all together, C -1 micro C macro : Sym(3) → Sym(3). In this case, problem (153) is formally equivalent to the classic elastic first gradient case when C = C e . Since we used C c ≡ 0, the skew-symmetric part of P remains indeterminate.
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 2 Figure 2: Transparent scale-separation between macroscopic Cauchy linear elastic response for L c = 0 with stiffness C macro and microscopic Cauchy linear elastic response for L c → ∞ with stiffness C micro . The relaxed micromorphic model "interpolates" between C micro and C macro with parameter L c = 0 C macro and L c = ∞C micro . This clearcut transparency is only obtained within our relaxed micromorphic approach. Thereby, L c → ∞ solves only the micro-unit-cell problem while L c = 0 can be interpreted either as making the body Ω arbitrary large while retaining the size of the unit-cell or keeping the dimensions of the body fixed while reducing the dimensions of the unit cell to zero. No condition on the rotational coupling tensor C c is implied in either case.
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It has to be noted that our new approach is only formally included in the standard Mindlin-Eringen micromorphic model since we consistently give up uniform positive-definiteness in the elastic distortion e and the curvature tensor ∇ P which are

The 11 coefficients of the curvature in the isotropic case reduce to 5 in the particular case of second gradient elasticity (see[START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF]) which is obtained from a micromorphic model by setting P = ∇u .

The dislocation tensor is defined as α ij = -( Curl P ) ij = -P ih,k jhk , where is the Levi-Civita tensor.

Therefore, using Cc = 0 is similar to the Reuss-bound approach in homogenization theory in which the guiding assumption is that the stress fields are taken constant but fluctuations in strain are allowed. Here, analogously, we would assume symmetric stresses σ but non-symmetric distortion-fluctuations in e = ∇u -P . Voigt (see[89, p.596]) already discussed non-symmetric states of distortion. However, we can supply some further support for using Cc ≡ 0. Indeed as Kröner notes[START_REF] Kröner | Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen[END_REF], "asymmetric stress tensors only come under consideration when a distribution of rotational moments acts upon the body externally, which is excluded here. The question of whether the (...) rotations produces stresses can also be answered. We must first exclude asymmetric stress tensors, since they contradict the laws of equilibrium in the theory of elasticity". Furthermore, Kunin[39, p. 21] states the following theorem: in the nonlocal theory of a linear elastic medium of simple structure with finite action-at-adistance, it is always possible to introduce a symmetric stress tensor and an energy density, which can be expressed in terms of stress and strain in the usual way.

In Misra et al.[START_REF] Misra | Granular micromechanics based micromorphic model predicts frequency band gaps[END_REF] the rotational coupling Cc is related to the tangential stiffness between grains. This is consistent with Shimbo's law[START_REF] Shimbo | A geometrical formulation of asymmetric features in plasticity[END_REF] relating the rotational stiffness to the internal friction. We need to remark that friction is, strictly speaking, a dissipative effect outside purely elastic response.

The strict equality in[START_REF] Jänicke | Two-scale modelling of micromorphic continua[END_REF] is trivial considering that replacing P = ∇u on the left hand side and recalling that Curl ∇ϑ = 0. On the other hand, the inequality can be justified thinking that a solution (u * , P * ) of the relaxed micromorphic problem is a minimizer, in the sense that W (u * , P * ) ≤ W (u, P ) for any admissible field (u, P ). Hence, taking a generic field P = ∇u (which is of course admissible) justifies the equation[START_REF] Jänicke | Two-scale modelling of micromorphic continua[END_REF].

Note that establishing positive-definiteness of the energy is now an easy matter as compared to[START_REF] Smith | Inequalities between the constants of a linear micro-elastic solid[END_REF]: we only need to require positive definiteness of the occurring standard 4 th order tensors Ce, C micro , Cc, Le, Lc.

The most general representation of Cc ∈ Sym + (3) is Cc = dev ( Cc) + 1 3 tr( Cc)1. However, this has nothing to do with isotropy: it is just a convenient representation for general symmetric Cc. We note in passing that dev Cc alone cannot be positive definite since tr dev Cc = 0, so there are positive and negative eigenvalues of dev Cc.

We note again that the inverse of a positive definite tensor, like A + B = C micro + Ce has the same symmetry group structure as C micro + Ce itself. This can be easily shown by directly looking at the definition of groups.
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from which we obtain:

2µe u (t) -p(t) = 0 , -2µe u (t) -p(t) + 2µ micro p + µL 2 c p = 0 .

(174)

If we consider Lc → 0 we obtain:

This can be reduced to:

Therefore, this is equivalent to a classical elasticity model with energy:

Thus, in the one-dimensional setting, the Mindlin-Eringen format obeys our homogenization format as well.

For the relaxed micromorphic model we have instead:

Therefore, there are no terms with Lc and the equilibrium equations read:

This is the the same format as the Mindlin-Eringen model with Lc → 0.

Here, it must be noted that when µe → ∞, we obtain formally only a first gradient elasticity model with energy:

This is equivalent to a classical linear elasticity model with µmacro = µ micro , contrary to (172).

Here, one of the differences of the standard Mindlin-Eringen format, in comparison to the new relaxed formulation, clearly appears: the relaxed format does not reduce to a higher gradient elasticity model when specifying certain parameters.

A.3 Proof of equation (58)

By equation [START_REF] Monchiet | On the inversion of non symmetric sixth-order isotropic tensors and conditions of positiveness of third-order tensor valued quadratic functions[END_REF] we have:

On the other hand, using equation ( 57), it can be seen that:

and moreover, formally introducing the tensor A -1 such that AγmnA -1 mnβ = γ βγ , we also have:

Using ( 182) and ( 183) in (181) we get:

From this last expression, by comparing the first and the last equalities, we deduce:

Multiplying by C -1 e hkrs

, we get:

In order to completely determine the fourth order tensor C -1 e in terms of the second order tensor C -1 e , we need to write A -1 explicitly. To this end we recall that, by definition, we have:

A.5 Properties of the resulting constitutive tensors

A.5.1 Symmetry

Let us first consider the direct relation:

The constitutive tensor Cmacro is the result of a product of the type:

where A, B and, as a consequence (A + B) are symmetric. In order to show the symmetry of Cmacro let us suppose that (A + B) is invertible and write accordingly:

We can decompose the product by using the distributive property of the matrix product with respect to the sum:

Therefore:

So we have that Cmacro = A (A + B) -1 B is the difference of two symmetric matrices, since B (A + B) -1 B is also symmetric. 18 For the inverse relation, we consider:

Similarly, we can derive its symmetry (as long as (C micro -Cmacro) -1 kl exists):

A.5.2 Positive definiteness

Let us now investigate the positive-definiteness of

If we assume C micro and Ce to be positive definite, it follows from the properties of positive definiteness, that their sum as well as the inverse of the sum will be positive definite. Note first that a product AB of positive definite matrices A and B has real, positive eigenvalues. This can be seen by considering the characteristic equation:

Now, A 1/2 BA 1/2 is positive definite since, setting η := A 1/2 ξ, we have:

Therefore, the eigenvalues of AB are real and positive. In general, however, the symmetry of the product AB will be lost. In our case, nonetheless, we proved in subsection A.5.1 that Cmacro is symmetric and, therefore, positive definite. For the inverse relationship, we consider:

In this case, in order to obtain the positive definiteness of Ce it is not enough to assume that C micro and Cmacro are positive definite. However, one sufficient condition to impose is that C micro -Cmacro is also positive definite. This property can be thought of as a generalization of the condition found in the isotropic case in which:

smaller is stiffer the macroscopic elastic response cannot be equal or stiffer than the microscopic response µ micro > µmacro, (2µ micro + 3λ micro ) > (2µmacro + 3λmacro).