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A Psychophysical Evaluation of Texture
Compression Masking Effects

Guillaume Lavoué, Senior Member, IEEE, Michael Langer, Adrien Peytavie and Pierre Poulin.

Abstract—Lossy texture compression is increasingly used to reduce GPU memory and bandwidth consumption. However, as raised
by recent studies, evaluating the quality of compressed textures is a difficult problem. Indeed using Peak Signal-to-Noise Ratio (PSNR)
on texture images, like done in most applications, may not be a correct way to proceed. In particular, there is evidence that masking
effects apply when the texture image is mapped on a surface and combined with other textures (e.g., affecting geometry or normal).
These masking effects have to be taken into account when compressing a set of texture maps, in order to have a real understanding of
the visual impact of the compression artifacts on the rendered images. In this work, we present the first psychophysical experiment
investigating the perceptual impact of texture compression on rendered images. We explore the influence of compression bit rate, light
direction, and diffuse and normal map content on the visual impact of artifacts. The collected data reveal huge masking effects from
normal map to diffuse map artifacts and vice versa, and reveal the weakness of PSNR applied on individual textures for evaluating
compression quality. The results allow us to also analyze the performance and failures of image quality metrics for predicting the
visibility of these artifacts. We finally provide some recommendations for evaluating the quality of texture compression and show a
practical application to approximating the distortion measured on a rendered 3D shape.

Index Terms—Texture compression, psychophysical experiment, image quality assessment, diffuse map, normal map.
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1 INTRODUCTION

THREE dimensional graphical objects are now
commonplace in many fields of industry, including

digital entertainment, computational engineering, and
cultural heritage. They commonly consist of geometric
surfaces on which one or more textures are mapped to
make their rendering more realistic. Multiple texture maps
are usually considered (e.g., affecting surface geometry or
normal, or reflectance terms such as diffuse, gloss, specular)
to reproduce accurately physical characteristics of surface
materials (e.g., albedo, microsurface, reflectivity), and thus
to generate highly realistic scenes.
These textures are mostly stored in some form of images
and, in most cases, subjected to lossy compression. This
compression may occur either to fasten streaming and
remote visualization of the 3D scene (in that case, variable-
bit-rate methods may be used such as JPEG or JPEG2000 [1])
or to reduce storage on the graphics processing unit (GPU)
(using GPU-friendly random-access methods such as [2],
[3], [4]). As raised by Olano et al. [5], texture compression
will always be necessary in interactive applications such as
games, since it allows for more texture data to reside on
the GPU. That way, compression decreases data transfers to
GPU, and it thus reduces latency and/or allows for more
detailed textures to be used. Lossy compression introduces
artifacts that may impact the visual quality of the rendered
3D scene. Consequently, compression has to be carefully
driven and evaluated by accurate metrics. The most
common approach in evaluating texture compression is to
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use simple metrics (e.g., PSNR) or visual image inspection
on individual textures. However, as raised by Griffin and
Olano [6], inspecting individual textures is incorrect for
two reasons: (1) Texture images are not visualized directly
but are mapped onto 3D shapes that are then shaded and
rendered according to certain viewpoints and lighting
configurations. Therefore, the perception of compression
artifacts on a texture image may be very different than
their perception on a rendered 3D scene (i.e., after shading,
viewpoint selection, and rasterization). (2) One particular
shape may often be rendered using several texture maps
(e.g., diffuse and normal), even of different resolutions, that
interact during rendering and may thus mutually mask
their artifacts.
Griffin and Olano [6] have studied the two effects
mentioned above (they refer to (1) as geometric masking and
to (2) as texture-set masking). Their results tend to show
that they significantly mask compression artifacts and that
compression algorithms may be too conservative. However,
these results are not based on a psychophysical quality
study, but on outcomes from objective metrics (CIELAB
δE94 and SSIM [7]) taken as perceptual oracles of perceived
visual quality. As shown by recent studies [8], [9], [10],
such image quality metrics may be very poor at evaluating
artifacts on rendered 3D surfaces.
The goal of this work is similar to the one of Griffin and
Olano [6], i.e., investigating the effect of geometric and
texture-set masking on the perception of texture compression
artifacts. However, in addition to using objective metrics,
we conducted two psychophysical experiments (Sec. 3).
Our statistical analysis (Sec. 4) quantitatively demonstrates
the impact of these masking effects on artifact detection
thresholds, as well as the influence of light direction and
texture content. We also used the psychophysical data
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to evaluate the performance of image quality metrics
for predicting the visibility of these artifacts (Sec. 5) and
make some recommendations for optimizing the quality
of texture compression (Sec. 6). We finally demonstrate
the practical use of theses recommendations in a realistic
application (Sec. 7).

2 RELATED WORK

We are interested in evaluating the quality of rendered
scenes, subjected to compression of their texture maps
applied on surfaces. We review here, briefly, the existing
work in visual quality assessment for 3D scenes; for a more
complete recent survey of this field we refer the reader
to [11].

Near-threshold Image Metrics. For 2D natural images,
research into objective quality assessment metrics is
substantially developed [12]. Bottom-up techniques try
to mimic the low-level mechanisms of the human visual
system (HVS) such as the contrast sensitivity function
(CSF), usually modeled by a band-pass filter, and the
visual masking effects that define the fact that one visual
pattern can hide the visibility of another. They include
the Sarnoff Visual Discrimination Model (VDM) [13],
the Visible Difference Predictor (VDP) [14], and the
more recent HDR-VDP-2 [15], suited for any range of
luminance. These bottom-up approaches usually focus
on near-threshold visual models and produce maps of
just-noticeable differences. They have been extensively used
in computer graphics for perceptually-based rendering,
e.g., to reduce and/or optimize the number of samples
of global illumination algorithms [16], [17], [18], and for
simplification and Level of Detail (LoD) selection [19], [20],
[21], [22].

Supra-threshold Image Metrics. The near-threshold models
described above are usually not suited to characterize supra-
threshold perceptual distortions. In contrast, some authors
propose top-down metrics that do not take into account
any HVS model, but instead that operate based on some
intuitive hypotheses of what HVS attempts to achieve when
shown a distorted image. The most well-known example is
the Structural SIMilarity index (SSIM) [7]. A large number
of top-down image quality metrics have been proposed
since then [23], [24], [25], the most recent being data-driven,
i.e., the metrics are learned based on user studies [26],
[27], [28]. Several authors use these top-down metrics for
visual quality evaluation in computer graphics. Zhu et
al. [29] study the relationship between viewing distance
and perceptibility of model details using SSIM [7], while
Griffin and Olano [6] use this metric to evaluate the visual
impact of texture map compression. SSIM is also used by
Brady et al. [30] and Havran et al. [31] to evaluate quality of
Bidirectional Reflectance Distribution Functions (BRDFs),
using rendered images.

Metrics Dedicated to Rendering Artifacts. Most
of the quality metrics presented above have been
designed and evaluated on natural images with mostly
compression/transmission related artifacts (e.g., Gaussian
noise, JPEG artifacts). A recent study [8] has shown that

they are not suited for evaluating artifacts introduced by
rendering in synthetic images, e.g., aliasing or noise from
global illumination approximations. Several authors have
recently introduced quality metrics specifically dedicated to
this kind of rendering artifacts [32], [33], [34].

Metrics for 3D Mesh. While the metrics above operate in
image space, several authors have proposed metrics that
operate directly in the space of 3D meshes. They mostly
rely on geometry characteristics, such as curvature [35],
dihedral angles [36], or roughness [37]. Some of them
combine geometry difference with a difference in diffuse
texture maps [10], [38].

Metrics for BTF. Filip et al. [39] and Guthe et al. [40]
introduce quality metrics for Bidirectional Texture Functions
(BTFs), with the goal of driving their compression. Jarabo
et al. [41] evaluate the impact of approximate filtering on
the appearance of BTFs, with respect to their characteristics
(e.g., structure, roughness, contrast). While the purpose of
this latter study is different from ours, it has been inspiring
to us since we also want to evaluate the impact of different
characteristics (texture content, compression strength,
lighting) on the detection of artifacts.

The objective of our experiment is to study the impact
on rendered images of artifacts coming from texture com-
pression (diffuse and normal). Collected data will allow us
to assess if image quality metrics presented above are able
to correctly evaluate the perceptual impact of such artifacts.

3 PSYCHOPHYSICAL EXPERIMENTS

We conduct two psychophysical studies to explore masking
effects caused by the normal map on the perception of the
diffuse map compression artifacts and vice versa. Here we
describe the dataset and protocol in more details.

3.1 Stimuli

3.1.1 Texture Maps

We selected four pairs of diffuse/normal texture maps and
a flat stimulus, all illustrated in Figure 1. They represent
typical materials used by designers and exhibit a variety of
characteristics, and thus of potential masking effects. The
diffuse maps come from photographs of real surfaces, and
normal maps have been created from the diffuse maps (a
standard process in texture design). Their characteristics
are detailed in Table 1 in the form of high-level properties
inspired from previous work on texture [42] and BTF [41]
classifications.

TABLE 1
Characteristics of our five texture pairs.

Texture Normal
content amplitudes

Flat Uniform Zero
Stones Random (non-uniform), sharp sparse edges Low
Water Random (non-uniform), Low Frequency Low

Hedge Random (uniform), Medium frequency High
Fabric Structured (uniform), High frequency High
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Fig. 1. Our five reference diffuse (top) and normal (bottom) texture maps.

Following Griffin and Olano [6], we have considered
texture maps corresponding to a traditional real-time shad-
ing workflow, as opposed to a Physically-based Rendering
(PBR) workflow. In traditional real-time shading, the diffuse
texture maps contain not only the albedo but also contain
pre-rendered photometric effects to ensure the rendered
surface has visible features whatever lighting conditions.
Examples are global illumination effects such as ambient
occlusion which occur in Hedge, and specular reflections
and refraction which occur in Water.
Figure 2 illustrates the rendering of our texture pairs (indi-
vidual and combined together), mapped on a plane and lit
using directional lighting. As can be observed in this figure,
diffuse and normal maps are strongly correlated. However,
this does not impact the generality of our study since in our
psychophysical experiments every diffuse map is combined
with every normal map.
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Fig. 2. Rendered texture maps (normal only, diffuse only, and both), on
a textured Lambertian 3D square lit from the left.

We specifically selected small texture patches (128×128)
to restrict where the user is looking, and to prevent long
spatial exploration that could potentially occur with larger
stimuli.

3.1.2 Compression
These texture maps have then been compressed by the
ASTC algorithm [3]. ASTC is a lossy block-based compres-
sion algorithm that represents the state of the art in terms
of performance. It encodes each block using 128 bits; hence,
by adjusting the size (in texture pixels, i.e. texels) of the
blocks, it can produce a large variety of output qualities. The

larger the block size is, the more efficient is the compression,
and the larger (and more visible) are the block artifacts. For
each reference texture map, we created 5 lossy compressed
versions corresponding to 5 block sizes: 6×6, 8×8, 10×10,
12×10, and 12×12, that correspond respectively to bit rates:
3.56, 2.00, 1.28, 1.07, and 0.89 bits per pixel. These sizes have
been adjusted during a pilot experiment in order to enclose
the detection thresholds for all our reference diffuse and
normal maps. We used the ARM Mali GPU Texture Com-
pression Tool [43] with compression mode set to fast. Nor-
mal maps were compressed using the normal psnr mode.
Examples of compression artifacts are illustrated in Figure
3. One can observe that block artifacts highly depend on the
maps. For instance, 8 × 8 artifacts are clearly identifiable in
the Water diffuse map but much more difficult to perceive
in the Fabric one.
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Fig. 3. Examples of compressed diffuse (top) and normal (bottom)
texture maps, for different block sizes of the ASTC algorithm [3].

3.1.3 Rendering
Normal Masking Experiment
The first experiment studies the masking effects caused
by the normal map on the perception of the diffuse map
compression artifacts. For each compressed diffuse texture
image, except for Flat (4 maps × 5 compression levels = 20
images), we make one rendering with every normal map
(5 maps) and using 2 light directions; we thus rendered 200
images.
For rendering, the diffuse and normal images are mapped
onto a geometric 3D square of Lambertian reflectance. We
set a directional light from the left with two directions:
0◦ and 42.5◦ from the normal direction of the square. The
scenes are rendered by ray-tracing using the Mental Ray
software [44]. Figure 4 illustrates some rendered results.
The rendered images of resolution 128 × 128 respect the
usual setting of one pixel per texel for ideal rendering.

Fabric,Hedge,42 Water,Fabric,0 Water,Fabric,42 Stones,Fabric,0 Hedge,Water,42

Fig. 4. Examples of stimuli for the Normal Masking experiment. Triplets
indicate: diffuse map, normal map, light direction. Light comes from the
left. Diffuse maps are compressed with block size 10× 10.

Diffuse Masking Experiment
The second experiment studies the masking effects caused
by the diffuse texture maps on the perception of the normal
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maps compression artifacts. For this experiment we remove
the Stones stimulus since its normal map is of low ampli-
tude and compression artifacts remain invisible whatever
our compression parameters. Consequently, we select the 3
remaining normal maps × 5 compression levels, and render
with 4 diffuse maps (Flat, Fabric, Water, and Hedge) using
2 light directions; we thus render 120 images. To emphasize
the visual impact of normals, we select 2 light directions:
27◦ and 72◦ from the viewing direction, also coming from
the left. We do not select the 0◦ direction since the effects of
normals on the surface would be too small for human sub-
jects to perceive artifacts. Figure 5 illustrates some rendered
results. Note that images are not normalized, i.e., scenes lit
from 72◦s are darker.

Flat,Water,27 Flat,Water,72 Water,Water,27 Fabric,Water,27 Fabric,Water,72

Fig. 5. Examples of stimuli for the Diffuse Masking experiment. Triplets
indicate: diffuse map, normal map, light direction. Light comes from the
left. Normal maps are compressed with block size 12× 12.

3.2 Procedure

Our two psychophysical experiments aim to measure
thresholds for detecting artifacts. They follow the same ran-
domized two-alternative-choice (2AFC) design. Each sub-
ject is shown triplets of rendered images, corresponding
to the same diffuse/normal map combination. Images are
displayed on a 50% grey background and the order of
triplets is randomized. The reference rendering (without
any compression) is displayed in the center. On left and
right, two test images are displayed. One is the same as the
reference and the other involves a compressed map (either
diffuse or normal, depending on the experiment); their
position (left or right) is randomized. Subjects were asked:
”Which image is different from the reference?” and clicked
on the corresponding image. They were given a maximum
of 8 seconds; after this time, a pop-up window asked them
to choose. As in [39], this time limit aims to prevent subjects
from making an exhaustive pixel-wise comparison of the
images.
All stimuli were presented on a calibrated 17.3” LCD display
(1920 × 1080 pixel resolution) in a dark room. A chin-
rest was used to keep constant viewing distance of 0.35m,
corresponding to an angular resolution of 33.5 pixels per
degree. With our setting, each image subtends approxi-
mately 3.8◦ of visual angle. 22 paid subjects participated in
the experiments. All were students from McGill university,
aged between 18 and 33, with normal or corrected-to-normal
vision. Each subject completed the two experiments. 11 did
the Normal Masking one followed by the Diffuse Masking
one, and 11 did the inverse. They took on average 35
minutes in total to perform both experiments.

4 DATA ANALYSIS

In this section we study the effect of light direction and
texture content on the compression error detection threshold.
We investigate, in particular, the involved masking effects.

4.1 Normal Masking Experiment
In this experiment, the normal texture potentially masks the
compressed diffuse texture. Figure 6 illustrates the raw re-
sults of this first experiment. The detection probabilities are
displayed for each set of conditions. Green indicates visual
equivalence to the reference (75% 2AFC threshold), while
red means a visual difference. Figure 7 summarizes these
results using boxplots of detection probabilities. Table 2
provides results of pairwise t-tests between each condition.
We chose to represent these tables as n × (n − 1) matrices
(for comparing n conditions), instead of n × n symmetric
matrices with empty main diagonals. Each cell considers,
for the two conditions, the distributions of detection proba-
bilities. The following paragraphs discuss the effects of each
parameter. Note that when the Flat normal is used (first row
of Figure 6), what we are examining is not masking, but
rather whether the compressed textures are distinguishable
from original ones.
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Fig. 6. Results of the Normal Masking experiment. Detection probabil-
ities P are given for each pair of diffuse/normal maps, and for each
compression level and light direction. Green means that rendered im-
ages are considered identical (P < 0.75), while red means that visible
differences are detected (P ≥ 0.75).

Compression Quality. The compression quality obviously
influences the perceived visibility of artifacts. Larger block

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2018.2805355

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

Compression Quality Diffuse Map

Normal Map Light Direction

Fig. 7. Boxplots of detection probabilities obtained for the different con-
ditions of each parameter, for the Normal Masking experiment (diffuse
maps are compressed). Mean values are displayed as red circles.

TABLE 2
P-values from pairwise paired t-test (Bonferroni-corrected) between all

conditions, for the Normal Masking experiment.

Compression Quality Diffuse Map

12×12 12×10 10×10 8×8
12×10 1.000 - - -
10×10 0.122 1.000 - -

8×8 <0.001 <0.001 <0.001 -
6×6 <0.001 <0.001 <0.001 <0.001

Water Hedge Fabric
Hedge 1.000 - -
Fabric <0.001 <0.001 -
Stones <0.001 <0.001 0.280

Normal Map Light Direction

Water Flat Stones Hedge
Flat 1.000 - - -

Stones 0.303 1.000 - -
Hedge 0.001 0.002 0.011 -
Fabric <0.001 <0.001 <0.001 0.003

42.5◦

0◦ <0.001

sizes induce block artifacts that are both larger in size and
in amplitude. Still, it is interesting to observe that there are
no significant differences in detection probabilities between
10× 10, 12× 10, and 12× 12 (see Table 2).

Diffuse Map. The content of the diffuse map influences the
detection probabilities. Hedge and Water diffuse maps seem
to be the most sensitive to compression, as illustrated by the
large number of red cells in the last two columns of Figure 6,
as well as their boxplots from Figure 7 (top right). Reasons
are different: Hedge has many high-contrast sharp edges
that are easily damaged by block artifacts, while Water is
quite smooth with very low intrinsic masking effects.

Normal Map. When looking at Figures 6 and 7 (bottom left)
it appears obvious that the normal map strongly influences
the perception of diffuse map artifacts. For example, in
Figure 6, for the Water diffuse map, visible differences are
perceived for all compression ratios when combined with
the Flat normal map, while no difference is perceived when
combined with Fabric. The two critical factors that deter-
mine masking effects are frequency and amplitude. In Fig-
ure 7, Hedge and Fabric normal maps, which have highest

frequency and amplitude, lead to significantly lower detec-
tion probabilities (see also Table 2, bottom left). A closer look
reveals that for a given high amplitude (Hedge and Fabric),
masking effects increase with frequency. Indeed, Fabric is
of higher frequency and Fabrics masking effects are clearly
stronger. Similarly, for a given low amplitude (Water and
Stones), a high frequency and noisy texture provides slightly
higher masking effects. However, low amplitude normal
maps (Water and Stones) are not significantly different from
the Flat one and lead to high detection probabilities.
When carefully looking at Figure 6, the normal masking
effects are slightly more complex. Indeed, all artifacts on
the Water diffuse map are almost completely masked by
Hedge and Fabric normal maps. However, the masking
effects of these two normal maps are much lower for the
other diffuse maps (i.e., Stones, Fabric, and Hedge). The
masking effects brought by a normal map actually depend
on the diffuse map content. Note that a strong correlation
between diffuse and normal maps (as we have when we
combine a diffuse/normal pair) does not seem to lower or
increase the masking effects.

Light Direction. A significant impact due to light direction
is observed. First, when the angle between light direction
and surface normal increases, then the rendered image is
darker, thus decreasing the contrast of the signal. Second,
this masking is reinforced by the fact that non-perpendicular
lighting emphasizes the influence of the normal map (which
thus increases contrast-masking effects).

4.2 Diffuse Masking Experiment
In this experiment, the diffuse map potentially masks the
compressed normal map. As above, Figure 8 illustrates raw
results, Figure 9 summarizes these results using boxplots
of detection probabilities, and Table 3 provides results of
pairwise t-tests between each condition. The following
paragraphs discuss the effects of each parameter.

Compression Quality. We observe that when compressing
normal maps, the level of compression has less impact on
the perception of artifacts than when compressing diffuse
maps. The visibility of artifacts actually mostly depends on
the diffuse masking, as detailed below.

Normal Map. When looking at Figure 9 (top right) one
could state that the content of the normal map itself does
not seem to have a significant influence on the perception of
artifacts. This is confirmed by Table 3 (top right). However,
Figure 8 clearly shows that the normal map does have an
influence, that is very strongly related to the masker. Indeed,
as illustrated in the first two rows of Figure 8, with a weak
masking (Flat or Water diffuse map), the Water normal map
is the most sensitive to compression. However, when the
Fabric diffuse map is applied (strong masking) then the
inverse effect is observed (see the third row of Figure 8):
artifacts are more perceived on Fabric and Hedge normal
maps than on Water. Like in the previous experiment, and
even stronger, we observe an important interaction between
diffuse and normal maps in the perception of artifacts.

Diffuse Map. As stated before, the masking effects brought
by the diffuse map depend on the normal map content.
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Fig. 8. Results of the Diffuse Masking experiment. Detection probabil-
ities P are given for each pair of diffuse/normal maps, and for each
compression level and light direction. Green means that rendered im-
ages are considered identical (P < 0.75), while red means that visible
differences are detected (P ≥ 0.75).

Compression Quality Normal Map

Diffuse Map Light Direction

Fig. 9. Boxplots of detection probabilities obtained for the different con-
ditions of each parameter, for the Diffuse Masking experiment (normal
maps are compressed). Mean values are displayed as red circles.

However, significant effects of diffuse maps can be observed
(see Figure 9, bottom left). As for normal masking, fre-
quency appears to be a determining masking factor: for a
given contrast (e.g., Water and Fabric have approximately
the same), higher frequencies produce much higher masking
effects (see Fabric). The contrast also plays an important
role since Hedge (high contrast) leads to higher masking

effects than Fabric, whereas having a lower frequency. The
last observation is that even a smooth low frequency diffuse
map like Water does have masking effects, as compared
to Flat. This last finding is particularly important since it
clearly emphasizes the usefulness of taking into account
masking effects when compressing normal maps. As for the
normal masking experiment, we do not observe an influence
of the correlation between diffuse and normal maps on the
masking effects.

Light Direction. Finally, light direction has a slight but
significant impact of the perception of artifacts. Indeed,
normal compression artifacts are more easily perceived for
grazing light angles (72◦). However, surprisingly, this effect
also depends on the compressed normal map (see left and
middle columns of Figure 8).

TABLE 3
P-values from pairwise paired t-test (Bonferroni-corrected) between all

conditions, for the Diffuse Masking experiment.

Compression Quality Normal Map

12×12 12×10 10×10 8×8
12×10 1.000 - - -
10×10 0.020 1.000 - -

8×8 <0.001 0.128 1.000 -
6×6 <0.001 0.002 0.030 0.595

Water Fabric
Fabric 1.000 -
Hedge 0.52 0.39

Diffuse Map Light Direction

Flat Water Fabric
Water 0.002 - -
Fabric <0.001 0.159 -
Hedge <0.001 <0.001 <0.001

72◦

27◦ 0.008

4.3 Inconsistencies

As can be seen in Figures 6 and 8, some inconsistencies
are present in the subjective data. For instance in Figure 6,
the strongest 12 × 12 texture compression is less visible
than 12 × 10 and 10 × 10 ones when compressing the
Stones diffuse map, combined with the Hedge normal map.
A closer look at the data reveal that these inconsistencies
occur when the compressed content is in the middle or
high frequencies and is somehow noisy (diffuse Stones,
diffuse Fabric, normal Hedge, and normal Fabric). In these
cases, we observed that a strong compression makes the
compressed content convey a better perceptual similarity
to the original one than for a weaker compression. For the
case of the Stones diffuse map compression cited above,
the 10×10 compression produces slight smoothing because
the quantization removes some edges; however, at higher
compression rates (e.g., 12×12), some new edges are created
by the larger quantization artifacts that make the images
appear more similar to the original.

5 EVALUATION OF IMAGE QUALITY METRICS

In this section we study the performance of state-of-the-art
image quality metrics in predicting the psychophysical data,
i.e., the visual impact of texture compression artifacts.
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5.1 Metric Selection
Over the last decade, the field of image quality assessment
has been extremely active as hundreds of related methods
can be found [45]. For the present study, we selected metrics
either known for their efficiency or for their widespread use
in the community. We opted for the well-known structural
similarity index (SSIM) [7] and its multi-scale extension MS-
SSIM [46]; these top-down approaches remain among the
top-performing ones. We also selected the bottom-up visible
difference predictor from Mantiuk et al. [15]: HDR-VDP-2.
Since the latter metrics only consider luminance, we selected
the recent color-based approach from Preiss et al. [25]: iCID.
Finally, we included PSNR as standard baseline, often used
in practical applications.
In order to fully explore their possibilities, we ran these
metrics using different sets of parameters. For SSIM and
MS-SSIM, we considered four sizes of local windows. HDR-
VDP-2 is highly tunable: visual resolution, peak sensitivity,
and surrounding luminance. For the resolution, we con-
sidered 33.5 pixels per degree, which corresponds to our
experimental setting, and we explored the peak sensitivity
parameter within [1.3,3.0]. Surrounding luminance was set
to the mean of the image, as this provided the best results.
For these sets of parameters, we selected two kinds of
output from HDR-VDP-2: the probability P of detection
(we selected the mean and maximum values of the per-
pixel probabilities, best results were provided by the mean),
and the quality prediction Q proposed in the extension by
Narwaria et al. [47]. For the iCID metric, we considered
four versions by varying the weights of lightness, chroma,
and hue, and by omitting or not, chroma contrast and
chroma structure (as recommended by the authors). All
these parameters are detailed in Table 4.

TABLE 4
Tested parameters of image quality metrics. Best parameter values

(when testing on both datasets) appear in bold.

Metric Parameter Values
SSIM [7] Local Window Size 8, 11, 14, 17 pixels

MS-SSIM [46] Smallest Local Window 2, 3, 4, 6 pixels
HDRVDP2.P [15] Peak sensitivity 1.3··1.46··3.0
HDRVDP2.Q [47] Peak sensitivity 1.3··2.06··3.0

iCID [25] Chroma contrast & struct. keep, remove
iCID [25] Stronger weight of hue yes, no

5.2 Evaluation Measure
Our objective is to evaluate the performance of the metrics
described above in predicting the perceived visibility of
artifacts. This is a binary classification problem (i.e., visible
or not visible), hence we evaluate the performance using
the Receiver Operating Characteristic (ROC) curve, which
represents the relation between sensitivity (true-positive
rate) and specificity (true-negative rate) by varying a de-
cision threshold on the metric output. The area under the
ROC curve (AUC) can be used as a direct indicator of the
performance (1.0 corresponds to a perfect classification, 0.5
corresponds to a random one). For each metric, instead of a
single AUC value, we compute an AUC distribution using a
bootstrap technique [48]: The AUC is computed 2000 times,

each time on a random set of images having the same
size as the original dataset; this random set is generated
by sampling with replacement. The bootstrap distribution
allows for statistical testing and its percentiles provide the
95% confidence interval.

5.3 Performance Comparison on Rendered Images

In this first study, image metrics are applied on rendered
images. We evaluate the performance of the metrics on each
dataset separately (resp. from normal masking and diffuse
masking experiments) and on both datasets together (i.e.,
on all images). Figure 10 illustrates the AUC values for
these three settings, and the ROC curve for the last one. The
following sub-sections respectively present the performance
of metrics and analyze their failures.

AUCs for Normal Masking Exp. AUCs for Diffuse Masking Exp.

AUCs for both Exp. ROCs for both Exp.

Fig. 10. AUC values (with 95% confidence interval) for several image
quality metrics applied on the rendered images. AUCs are computed on
each dataset and on both together. ROC curves are also illustrated for
this latter case. Metrics are represented by different colors detailed in
the legend of the plots.

5.3.1 Overall Performance
When compression is applied on the diffuse texture (Nor-
mal Masking Experiment), then SSIM provides the best
performance, while not significantly better than MS-SSIM
and iCID (P-value resp. equal to 0.10 and 0.58). In that
case, HDR-VDP-2 (both Q and P ) performs significantly
worse than its counterparts, except of course PSNR, which
provides the worst results.
When compression is applied on the normal texture (Diffuse
Masking Experiment), all metrics provide weaker perfor-
mance, suggesting that compression artifacts applied on
normal maps may be more difficult to predict. iCID provides
the worst results, which is logical since it is based mostly
on chrominance, while the normal map artifacts introduce
mostly luminance impairments. MS-SSIM provides the best
results, without being significantly different from SSIM and
HDR-VDP-2.
Finally, when considering both datasets together, we chal-
lenge the capability of metrics to generalize over different
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artifacts. In that case, iCID, SSIM, and MS-SSIM show a
statistically equivalent performance. However, ROC curves
show that iCID is better on high specificity (i.e., low false-
positive rate).

5.3.2 Analysis of Metric Failures

To understand more precisely the metric failures, we
generated for each metric the classification results obtained
at the Youden cut-point of the ROC curves, i.e., maximizing
sensitivity + specificity. The obtained classifications are
detailed in Figures 11 and 12 and their analysis is detailed
below.
Normal Masking dataset. As can be seen in Figure 11,
the PSNR metric completely underestimates the visibility
of artifacts on the Water diffuse map, as compared with
other maps. The reason is that this metric is unable to
take into account the intrinsic masking effects inherent
to the compressed texture content, which makes artifacts
less visible when applied on a middle-high-frequency
content (and thus more visible on low-frequency areas
such as Water). HDR-VDP-2 and SSIM are better for this
task but still tend to underestimate the visibility of Water
artifacts for low compression strengths. We also observe
that HDR-VDP-2 underestimates the effect of lighting for
the Edge diffuse map, when strong maskers are present
(Fabric and Edge). SSIM is slightly better for this task while
PSNR completely fails. Note that iCID and MS-SSIM results
are similar to SSIM’s, and HDR-VDP-2.Q is similar to HDR-
VDP-2.P; their figures are available in the supplementary
material.
Diffuse Masking dataset. For this dataset, once again,
PSNR greatly underestimates the visibility of artifacts on
the low-frequency Water normal map, while overestimates
those from the high-frequency Fabric map. The iCID metric
shares the same problem for this dataset. HDR-VDP-2
and SSIM better handle these intrinsic masking effects,
however they still underestimate the Water artifacts for the
72◦ lighting. Note that for this dataset, SSIM results are
similar to MS-SSIM’s, and HDR-VDP-2.Q is similar to HDR-
VDP-2.P; their figures are available in the supplementary
material.

Subjects PSNR HDRVDP2.P SSIM

TP=0.69, FP=0.17 TP=0.78, FP=0.13 TP=0.88, FP=0.16

Fig. 11. Classification obtained for different metrics at the maximum
value of Youden’s index, for the Normal Masking experiment. Main
differences w.r.t. the human-perceived classification are spotted in black.

Subjects PSNR iCID HDRVDP2.P MS-SSIM

TP=0.51 TP=0.60 TP=0.57 TP=0.66
FP=0.23 FP=0.16 FP=0.14 FP=0.15

Fig. 12. Classification obtained for different metrics at the maximum
value of Youden’s index, for the Diffuse Masking experiment. Main
differences w.r.t. the human-perceived classification are spotted in black.

5.4 Performance Comparison with Unknown Render-
ing Parameters

In this section, we investigate how to predict the visual
impact of artifacts, when the rendering parameters are un-
known. This scenario corresponds to the most realistic use-
case where the designer determines the compression level
of the texture maps before any rendering and even without
knowing the rendering parameters. In that case we consider
two possibilities: either the metric is computed using only
the compressed map (the masking map is ignored), or the
metric is computed on a rendered image, with arbitrary
light direction (in that case we selected a direction different
from the images of the datasets). For comparison we also
include results obtained when the metrics are computed on
the rendered images from the datasets (as in the previous
section). For this study, we consider the image metric that
provided the best results in the study above, i.e., SSIM
(with a 17× 17 local window), as well as PSNR, commonly
used by designers to evaluate and select the appropriate
compression level. Figure 13 illustrates the results.
As can be seen in the figure, applying PSNR directly on
the texture map provides a very poor prediction of the
perceived visibility of artifacts (see the lightest-grey bars
in the histograms). Applying SSIM directly on the texture
map (lightest-red bars) is better but remains quite inefficient,
especially for predicting artifacts from the normal maps
(top right histogram). When the metrics are computed on
rendered images with arbitrary light directions (medium-
grey and medium-red bars), then results are much improved
for both SSIM and PSNR. This implies that it is crucial
to take into account the masking effects that occur during
rendering, even in an approximate way (i.e., with arbitrary
rendering parameters). As illustrated in the top row his-
tograms, AUC values obtained when SSIM is computed on
an arbitrary rendering (medium-red bars) are quite close
to what is obtained when using the exact same render-
ing parameters than in the psychophysical tests (dark-red
bars). The difference between those two settings is larger
when merging both datasets together (see bottom right
histogram), meaning that it is more difficult to find a unique
threshold on the metric outcome that will predict correctly
the visibility of both diffuse and normal map compression
artifacts.
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AUCs for Normal Masking Exp. AUCs for Diffuse Masking Exp.

AUCs for both Exp. ROCs for both Exp.

Fig. 13. AUC values (with 95% confidence intervals) for SSIM and PSNR
applied on the texture maps (Map in the legend), on rendered images
with arbitrary light directions (Arb. Rend.), and on the original rendered
images from the experiments (Known Rend.). AUCs are computed on
each dataset and on both together. ROC curves are also illustrated for
this latter case. Metrics are represented by different colors detailed in
the legend of the plots.

6 RECOMMENDATIONS AND DISCUSSION

Our analysis of artifact perceptual impacts (Sec. 4) and
metric performance (Sec. 5) reveals several interesting
findings and allows us to make useful recommendations
for texture map compression.
First, Figures 7 and 9 illustrate that it is impossible to find
a unique compression parameter for which artifacts remain
invisible whatever the texture map. Indeed, even at the
highest bit rate (i.e., smallest 6× 6 block size), compression
produces visible artifacts on certain texture maps when
there is no masking. On the contrary, artifacts produced
by the strongest compression (12 × 12) may be completely
masked in some cases. So the conclusion that can be drawn
here is that fixing the compression parameter to a single
value for all texture maps is not a good way to proceed.
It appears necessary to quantify the loss of quality due to
compression.
As stated in the introduction, and as raised by Griffin
and Olano [6], the most common approach in evaluating
the quality loss due to texture compression is to use
PSNR directly on the texture maps. However, as shown
in Figure 13, it appears as a very bad strategy, since this
process provides results close to random for predicting
visibility of artifacts (see light-grey bars, AUC=0.60 when
considering both datasets).
Figure 13 also shows that using a perceptual metric is far
more efficient than PSNR, and in particular, SSIM (with the
appropriate scale) provides the best results. As illustrated
in Figure 13, like for PSNR, applying this perceptual metric
directly on texture maps provides very bad results. The best
way to predict the perceptual impact of artifacts is to apply
this perceptual metric on rendered images. Since in most
cases, the rendering parameters are not known beforehand,
the metric could be applied on a simulated rendering using

an arbitrary light direction. The simplest way to proceed
is to render both maps on a geometric square and then
apply the perceptual metric on the resulting image. Such
quick evaluation process, illustrated in the section below,
can easily be integrated to a texture compression tool and
would provide a significant improvement in visual quality
estimation.

7 PRACTICAL APPLICABILITY

To illustrate the process recommended above, we propose
a practical application where we approximate the distor-
tion present on a real 3D scene by running a metric on a
simple rendering of a geometric square using an arbitrary
light direction. We selected six 3D graphical assets (human
characters) typical in games, which were put in a realistic
pose, lit by sunlight and rendered using global illumination
(see the first image in Figure 14). We applied either diffuse
or normal texture compression using two strengths (10×10
and 12×12) and measured the ground-truth distortion maps
using the SSIM metric on rendered images (see the third
image in Figure 14). We then computed what we call the
approximated distortion maps by running the SSIM metric
on a geometric square mapped with both texture maps
and lit by an arbitrary directional light (we selected three
directions: 42◦, 27◦, and 13◦ from the normal direction of
the square). We then texture mapped these approximated
distortion maps onto the 3D object shapes (see the fourth
image in Figure 14) and computed the correlation with the
ground-truth distortion maps. In practice, we obtained 72
approximated maps (6 objects × 2 compression strengths
× 2 compressed map types × 3 light directions). Note that
correlations are computed over the rendered shapes only,
and after median filtering to reduce noise. As baselines we
applied the same process with distortion maps obtained
by running the SSIM metric directly on the compressed
texture maps (either diffuse or normal) without rendering,
as illustrated in the fifth image in Figure 14.
Results are presented in Figure 15. More results are detailed
in the supplementary material, together with all stimuli and
distortion maps. We observe that the approximated distor-
tion maps reach a mean correlation of 0.59 with the ground-
truth distortion maps. This is reasonable and significantly
better than results obtained by running the metric on the
compressed maps alone (0.47 mean correlation). The per-
formance of our approximation remains stable among light
directions and reasonably stable among 3D shapes, whereas
one asset led to significantly weaker results (Lumber, with
a mean correlation of 0.41). Artifacts due to normal map
compression appear more difficult to predict, than those due
to diffuse map compression. The projection and shading on
a real shape logically has a great impact on these artifacts as
compared to our approximation on a geometric square.
Limitation. Precisely evaluating the perceptual impact of
texture compression for an arbitrary 3D scene is highly
complex, particularly when rendering parameters are
not known beforehand. We showed that approximating
the distortion using a flat Lambertian surface with an
arbitrary directional lighting leads to improved and more
stable results as compared to a baseline computation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2018.2805355

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

(a) (b) (c) (d) (e)
Rendering Rendering Ground-truth Approximated Baseline

Original map Compres. map distortion distortion distortion

Fig. 14. Illustration of the performance of our recommended distortion
approximation. (a) Rendering of a 3D shape mapped with uncom-
pressed diffuse and normal maps; (b) rendering after compression of the
normal map (10×10); (c) ground-truth distortion obtained by computing
the SSIM metric on the rendered images; (d) our approximation obtained
by computing the metric after mapping diffuse and normal maps on
a geometric square and rendering under a 13◦ directional light (0.76
correlation with ground-truth), and (e) baseline distortion obtained by
computing the metric directly on the compressed normal map (0.54
correlation). At the top left of each distortion map, we display the image
on which the distortion has been computed.

Effect of Approximated distortions Effect of light directions
vs Baseline distortions on Approximated distortions

Effect of 3D shapes Effect of compressed map types
on Approximated distortions on Approximated distortions

Fig. 15. Boxplots of Pearson correlations with ground-truth distortion.
Top-left: Results obtained by Approximated and Baseline distortions (for
all map types, lighting directions, and shapes). Other panels: Effects of
the different factors on the Approximated distortions. Mean values are
displayed as red circles.

on texture map only, i.e., a better ability to predict the
real distortion that is caused by texture compression. An
improved prediction would require to account for many
additional factors: distortion due to projection on the 3D
shape and foreshortening, self-visibility/occlusion over
the surface, projected shadows and self-shadowing, non-
uniform resolution of the texture map (in terms of texels
per pixel), glossiness/”metalness” of material, silhouettes,
inter-reflections, and much more complex light transport

of global illumination effects. Our findings constitute an
important first step toward the full understanding of the
perceptual impact of texture compression. Future work will
explore all these factors to find improved ways to predict
their effects without requiring the full rendering.

8 CONCLUSION

In this work, we presented a psychophysical experiment
that investigates different masking effects in the percep-
tion of texture compression artifacts. We show that strong
compression artifacts can be hidden by contrast masking,
while less severe artifacts may be visible when no masking
occurs. We analysed how amplitude and frequency influ-
ence masking effects and showed that these masking effects
also depend on the interaction between diffuse and normal
maps. Our analysis also emphasizes the significant impact
of lighting in the perception of artifacts.
Our psychophysical data also allow us to evaluate the
performance of image quality metrics in predicting the
visibility of artifacts in different scenarios (on texture maps
and on rendered images, with or without knowing the
light direction) and to analyze their failures. We find that
computing PSNR on texture maps is particularly inefficient
and that a perceptual metric, such as SSIM, computed on a
rendered image (even with an arbitrary lighting) provides
much better performance.
Our dataset should stimulate research about visual quality
metrics; indeed, even computed on a rendered image, we
have shown that the best metrics are still far from reaching
a perfect classification of visible distortions. In particular,
the failures of the complex bottom-up HDR-VDP2 metric
indicate that work is still needed to better predict human
vision even in controlled condition. As raised by recent
surveys [11], the future of quality metrics may rely on an
appropriate combination of low-level psychophysical mod-
els and machine learning techniques.
For compressing the texture we used the ASTC algorithm,
which has the benefit of being random-access (i.e., each
block of texture can be accessed and decompressed inde-
pendently by the GPU) while being able to provide a large
range of bit rates by varying the block size. Many other
compression algorithms exist that may introduce different
kinds of artifacts, depending on the transforms they use. For
instance, the JPEG algorithm considers a fixed block size and
quantizes Discrete Cosine Transform (DCT) coefficients. As
part of future work, we would like to investigate the vari-
ability of our results according to the nature of compression
artifacts.
Finally, as stated in Sec. 3, we have considered texture maps
corresponding to a traditional real-time shading workflow,
where the diffuse texture contains not only the base color
of the material but also some illumination effects (e.g.,
ambient occlusion, global illumination, etc.). We plan to
make similar psychophysical studies with physically-based
rendering (PBR) materials, i.e., represented for instance by
albedo, ”metalness”, and roughness texture maps.
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He holds a Ph.D. from the University of British
Columbia and an M.Sc. from the University of
Toronto, both in Computer Science. He has
served on more than 60 program committees
of international conferences. He has supervised
15 Ph.D. and more than 40 M.Sc. students. His
research interests cover a wide range of topics,
including image synthesis, image-based model-

ing, procedural modeling, natural phenomena, scientific visualization,
and computer animation.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2018.2805355

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


