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Bayesian Texture Classification From Indirect
Observations Using Fast Sampling

Cornelia Vacar, Jean-Frangois Giovannelli, and Yannick Berthoumieu

Abstract—A Bayesian method for texture model choice from
blurred and noisy (i.e., indirect) observations is presented. The
textures are modeled by stationary Random Fields, with various
distribution laws, either Gaussian or Scale Mixtures of Gaus-
sians. The power spectral densities of the fields are modeled
by parametric functions and the aim is to select the most ap-
propriate model among a set of candidates. This is achieved by
computing the a posteriori model probabilities through parameter
marginalization. The marginalization is done by sampling and
harmonic mean approach, considering separately each model,
in a within-model sampling strategy. The highly nonlinear de-
pendency with respect to the parameters imposes the use of
the Metropolis-Hastings sampler. Moreover, to achieve efficient
sampling, the paper proposes a new fast algorithm based on the
Fisher information matrix, the Fisher Metropolis-Hastings.

Index Terms—Bayes, harmonic mean, Metropolis-Hastings,
model choice, texture modeling and analysis.

I. TEXTURE AND MODEL CHOICE

HE central problem in this work is selecting a texture
model from a blurred and noisy image. It is solved in a
Bayesian framework, where the posterior probability for each
model is determined from the model evidences. The classifica-
tion method is optimal from the risk point of view, however,
these evidences are intractable and thus are numerically com-
puted by Monte Carlo Markov Chain (MCMC) methods.
Texture represents a central aspect in image processing. A
desirable feature of a texture model is to provide a large capa-
bility of description, while being relatively easy to handle and
numerically efficient. The literature devoted to texture modeling
is fairly rich, covering various classes of models that can be an-
alyzed from different points of view. The representation domain
can be spatial [1], [2], Fourier [3], [4], wavelet [5], [6] and the
model can be deterministic (pseudo-periodic, based on struc-
tural elements), or probabilistic (stochastic-like), as for instance
the random field-based model [4], [7]-[11].
In this work, the textured images are modeled by Random
Fields (RF), with different parametric forms for the pixel inter-
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action and probability distributions. This type of model is very
tractable, equally adapted to synthesis and analysis tasks and
known to exhibit good performances for stochastic-like texture
processing. Nevertheless, it can also be used in the case of more
deterministic or pseudo-periodic textures, through specific pixel
interactions. From the texture modeling point of view, the con-
tribution of this paper is to introduce a new non-Gaussian model,
fully adapted to analysis and synthesis tasks. The particularities
of this model are the following:

+ Independent Fourier coefficients for the textured image.
These coefficients are marginally non-Gaussian, but con-
ditionally Gaussian, to ensure model tractability. This is
achieved using Scale Mixtures of GRFs (SMGRF).

* Formulation in the Fourier domain in order to exploit the
multiplicative form of the blur in the frequency domain.

Model choice has applications in a wide range of fields, for
instance microbiology, proteomics, genomics, economics, sta-
tistics, signal and image analysis. The Generalized Maximum
Likelihood Estimator (GMLE) method for model selection
consists in determining the model with the highest likelihood
for the MLEs of the parameters. However, this estimator is
not applicable for indirect observations or the non-Gaussian
texture model. Among the most frequently used model selec-
tion methods are the well-known Akaike Information Criterion
(AIC) [12], Deviance Information Criterion (DIC) [13] and the
Bayesian Information Criterion (BIC) [14]. Nevertheless, all
these criteria are based on two levels of approximations. First,
a second order Taylor approximation of the likelihood around
its maximum is done in order to derive the form of the criteria.
On a second level, except for very simple cases, the maximum
likelihood value cannot be computed analytically and, thus,
numerical methods (such as optimization) are employed for
its computation. In this context, the evidence based methods
represent an alternative Bayesian approach [15] that does not
rely on an approximation at the first level. Nevertheless, since
the evidences are intractable, numerical methods are employed
for their computation, this corresponding to an approximation
on the aforementioned second level, the numerical one. The
evidence-based classification can take the form of Bayes fac-
tors or the posterior model probabilities computation method
presented in this work.

The latter relies on the formulation of an optimal decision
function from the risk viewpoint. Practically, it consists in com-
puting the a posteriori model probabilities, based on (i) the joint
law for the model, the data, the model parameters and on (ii)
computing the evidence for each model. This computation is
done by marginalizing the parameters from the joint law. Since
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this law is complicated, the integral is intractable and it is ap-
proximated either using MCMC sampling, or the Laplace ap-
proximation [16].

In the context of evidence computation using MCMC, some
of the parameters have very complicated laws and their sam-
pling can be costly, thus requiring the use of efficient solutions.
The recent literature regarding efficient sampling is mainly fo-
cused on two types of algorithms: optimal tuning of the standard
Metropolis Hastings (MH) samplers [17], or adapted proposi-
tion laws [18]. The adapted proposals exploit the information
encoded in the target law in order to achieve an efficient explo-
ration. They can be based on first order derivatives of the target,
this being the case of the Metropolis Adjusted Langevin Algo-
rithm (MALA) [19], [20] and of the Hamiltonian methods [21].
Another class of algorithms takes advantage of the target cur-
vature through Hessian-based (Newton-like) proposals. Such
terms have first been employed in optimization algorithms [22],
but they have recently been successfully adapted to sampling
[23]-[25]. From this stand point, our contribution is algorithmic
and consists in integrating an improved Newton-like proposal
[26] using the Fisher matrix instead of the inverse Hessian, i.e.,
the Fisher Random Walk MH (FRWMH), presented in [26]. In
this manner, an important performance increase is achieved, due
to the specific nature of our problem: there is no need for com-
puting second order derivatives and thus a Newton type pro-
posal is built using only first order derivatives.

To summarize, the main contributions are: (i) addressing the
problem of texture model choice from indirect observations, (ii)
tackling this problem in an optimal manner, (iii) introducing a
new non-Gaussian model for the texture, tractable and efficient
and (iv) enhancing the speed performances of the MCMC sam-
pling phase, by using the FRWMH algorithm.

The paper is structured as follows: Section II presents the
problem and the evidence-based model choice, Section III de-
tails the texture models and Section IV gives a Fisher informa-
tion analysis of the problem. Section V is devoted to evidence
computation and sampling, while Section VI presents the re-
sults. Section VII concludes the paper with comments on the
method and perspectives for future work.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us now present the method to choose the texture model,
say M = k, among K possible models. This is carried out
starting from indirect observations, i.e., blurred and noisy data.
The observation model is:

y=Hz+n (1)

where y, & and n € C are the lexicographically ordered ob-
servations, unobserved textured image and noise, respectively.
The images are of size N x N and P = N? denotes the number
of pixels. The point spread function (PSF) is represented by the
convolution matrix H, of size P x P. The Fourier transform
of the PSF is referred to as the Transfer Function (TF) and its

o
coefficients are denoted h,,.
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Fig. 1. Texture realizations of the employed image model.
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Fig. 2. Observation model graph and variable dependency.

A. Distributions

The noise n is zero-mean stationary Gaussian, with covari-
ance matrix R, (), driven by the unknown parameter set 4.
From this model, the conditional law for ¢ writes:

S, v) o det [Rn ()] ' exp |~ lly ~ Halh, )| @

The method is equally adapted to any type of noise correlation,
however, our numerical study focuses on the white noise case,
i.e., R, (y) = v, 11, with vy, the precision (inverse variance).

The texture models are parametric and driven by the param-
eter set ¢. Thus, for each model, k, we have the corresponding
law f(2|¢,, M = k) and its associated parameter set {;. The
exact form of these laws and the structure of the parameter sets
will be specified in Section III. Typical realizations of such tex-
tures are shown in Fig. 1.

In this context, our model selection method relies on a
Bayesian hierarchical framework and Fig. 2 illustrates the
variable interdependency. We are considering a case where
the prior information about the parameters is very reduced,
consequently, uninformative priors [27] are used. For ~,,, the
conjugate form with respect to the likelihood (2) is a Gamma
law:

7T(’Yn) - ﬁ?n ’7an71 exp [_Bn’YH]
['(a)

- g(anaﬁn) (3)

This law becomes an uninformative Jeffreys prior in the limit
case (ap, — 0,8, — 0).

The a priori distribution for the model is fully described by
the p, = Pr(M = k) probabilities. Our numerical study re-
lies on an uninformative prior, i.e., equiprobable models: p,, =
1/K,k=1...K.

The priors for the texture parameters §,, will be defined in
accordance with the employed texture models, in Section III.

B. Decision Function

A decision function, denoted A, associates a model k& to the
data gy, i.e., A(y) = k. Moreover, a cost function quantifies
the decision error. Let this function be C(k, k*), where k is the
chosen model and k* represents the true model. This cost has
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the properties C'(k, k*) > 0 and C'(k*, k*) < C(k, k*), when
k #£ k*. Based on the cost, the risk is defined as:

P(A) = Eay [C(A®Y), R)]

and the optimal decision function is A, = argmina p(A). The
optimality is achieved because the cost is averaged over all pos-
sible data, models and parameter values. Moreover, for a binary
cost function C'(k, k*) = 1 — §(k, k*), the method implicitly
selects the model with the Maximum a Posteriori (MAP) prob-
ability:

M = arg max;, Pr(M = kly) 4)

Using Bayes' rule, the posterior model probabilities are:

Pr(M = kly) = W

and require the two following quantities.

1) The probability distribution of the data, f(y). Fortunately,
it does not depend on the model, thus can be calculated by
normalization.

2) The evidence/marginal likelihood, e, = f(y|M = k),
obtained from the joint law of data and unknowns, given
the model, by marginalizing the unobserved texture, the
noise and the texture parameters:

(&)

o= [ M= b)aw ©)
¥

where ¥ = {v,,,z, {, } gathers all the unknowns.
This law is written using the conditioning rule and the hier-
archy shown in Fig. 2:

f(y7‘I’|~/’\/l = k) = f(y|m:’7n) : f(w‘Ck’M = k)
T(pIM = k) - m(va) (7)

It now becomes clear that (6) is intractable due to the nu-
merous layers of non-linearity and must be computed numeri-
cally. In this work, this is done by an MCMC algorithm.

A similar problem has been addressed in our previous work
[28], in the context of direct observations, ¥ = #, and for
Gaussian textures. In that case, (6) reduced to a single integral
with respect to the texture parameters.

III. TEXTURE MODELING

From a theoretical standpoint, the proposed method can
handle any texture model driven by the parameter set {. In this
context, the Gaussian RFs (GRF) model is simple and tractable.
Its extension to a scale mixture of Gaussians (SMG) expands
the representation capabilities without particularly affecting the
algorithm efficiency. This model is based on a set of auxiliary
variables 8 such that, conditionally on these variables, the field
x|s is Gaussian, but marginally & is no longer Gaussian.

This idea, originating from statistics, has been exploited in
problems of deconvolution and denoising [29]-[33] to formu-
late heavier tailed regularization terms and for modeling natural
images [34]-[36]. The SMGs have been used so far to model the
sparse character of the differences between neighboring pixels

(in the spatial domain) and of the wavelet coefficients (in the
wavelet domain).

This is where our work is different. Here, we take into ac-
count that the blur introduced by the observation model is easily
written as a multiplication in the Fourier domain. Moreover, the
Fourier domain is well adapted for representing textural charac-
teristics. Consequently, our SMG model is defined in the Fourier
domain.

Hence the originality since, although the SMG model has
been previously employed in image analysis, to the best of our
knowledge, it has not been used so far to model the Fourier co-
efficients of a textured image.

For the sake of computational efficiency, we have made the
assumption that the textures are zero-mean and stationary, thus
the covariance matrix has a Toeplitz-block-Toeplitz structure.
For general models,! the exact likelihood cannot be computed
due to the huge dimension of the covariance to be inverted. But,
by Whittle's approximation, this matrix has a Circulant-block-
Circulant form, therefore is diagonalizable by discrete Fourier
transform. The reader is invited to refer to [37], [38] for approx-
imation properties and asymptotic behavior. Consequently, the
Fourier coefficients, denoted by :%p, p = 1...P, are decorre-
lated, conditionally on the power spectral density (PSD). The
conditional law of the image is separable in the Fourier domain
and writes:

P P
f@[¢) o H Cp - exp l_ Z<p|§p‘2
p=1 p=1

Each Fourier coefficient follows a zero-mean Gaussian distri-
bution, of variance given by the corresponding PSD element:

‘%pr ~N (0>Cp—1) ©)

Due to the fact that the law for 2|{ is Gaussian, the Fourier
coefficients are independent, conditionally on (.

The model complexity and thus its representation capabilities
can be enhanced, while keeping the limitation to independent
Fourier coefficients, by changing i) the law of the Fourier coef-
ficients and ii) the form of the PSD.

®

A. Fourier Coefficient Distributions

This work focuses on two models for the Fourier coefficient
law, between which only the form of {,, changes:

« Gaussian texture (GRF) - ¢, = v, A,(0)

* non-Gaussian texture (SMGRF) - {, = v, 5,A,(0)
where A, (@) are the shape elements of the parametric PSD,
driven by the parameter set 8. We will denote by A the para-
metric component of the PSD, i.e., the collection of all A,(8).
7. 18 a global scale parameter for the PSD and s, is a local scale
parameter.

The scale parameter pdf determines whether the textures
follow a GRF or a SMGRF model and these parameters allow
us to switch between the two laws, without changing the
parametric part of the PSD, A.

In this context, Fig. 3 completes the problem description from
Fig. 2 by showing the variable hierarchy for the two types of
texture models.

IThis is not the case if the field is defined through its precision matrix (inverse
covariance), e.g. for Markov field.



o Non-Gaussian texture:

02 (6) () (M
(@)

$= {Sl)}pzl...P

Sp ~ g(O‘Sa /86)
o Gaussian texture:
sp=1,p=1..P

Fig. 3. SMGREF texture model.

1) Gaussian Model: Inthe GRF case, the scales are identical:
5p=5=1,forp=1...P, thus (8) and (9) become:

P

F(@le 8. 5) x AF [H An(0)

p=1

P

exp [me)%ﬂ Zpl7,0 ~ N (0, 12, (0)] ")
p=1

(10)

This is the model used in our previous papers [26], [28] for fast
parameter sampling and pixel interaction model choice.

2) Non-Gaussian Model: In this case, a prior is assigned to
5, auxiliary variables and they are included in the estimation
framework. Theoretically, any prior with positive support can be
used. Some immediate examples are Markov or Wishart. Nev-
ertheless, for numerical efficiency, it is essential for this prior to
allow for parallel posterior processing (i.e., the s, should be sep-
arable a posteriori) and to have some conjugacy property with
respect to (8). For this reason, the paper is limited to a priori in-
dependent auxiliary variables, following a Gamma distribution

Gas, Bs):
(1)

Due to this separability, although f(z|v.,8) (the marginal
law with respect to 8) is non-Gaussian, it remains separable.
Here it has a Student's t form, hence (8) becomes:

P
f(m|71'707as7/68) o8 H |:]‘ + M|§:P|2
L B,

f(splas, Bs) sgfl expl—7s5p)

—as—1

(12)

3) Variance: To individually evaluate the impact of each fea-
ture (A, scale parameter, Fourier coefficient pdf), we chose to
keep the same marginal variance of the Fourier coefficients for
the two models. In this manner, it is possible to compare tex-
tures with the same A, but different pdfs, or reversely, with the
same pdf, but different forms for A.

The variances of the Fourier coefficients, conditionally on 8
and ~,, are given by:

o fBS 1
varsmMGrF(Tp| e, 0] = 2005 — 1 7 Ap(0)
s TP
R 1
var Lplve, 0l = ——
arr[Tplye, 0] Y2 Ap (8)

Thus, the equality of these variances imposes a constraint on the
parameters of the prior for s,: 5, = 2a5 — 1, with oy > 0.5.
Then, the Fourier coefficients for the two types of textures have
the same A, but different pdfs.
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Fig. 4. Examples of texture pairs with the same PSD, but different law for the
Fourier coefficients. On the first row, the SMGRF textures and on the second
row the corresponding GRF textures.

Fig. 5. Examples of shapes for A that can be used with our GRF and SMGRF
texture models. The representation is done in the Fourier domain on the reduced
frequency domain [—0.5,0.5] x [—0.5,0.5].

Due to these common aspects, both models yield stochastic
textures, however, the SMGREF is able to generate more com-
plex patterns. Fig. 4 shows pairs of textures with the same X, but
different pdfs. The A that were used to generate these textures
have parametric forms, such as those depicted in Fig. 5, and will
be analytically described in the next section (see Table I). The
spectral content that is modeled using these forms consists in
highlighting a cluster of spatially connected frequency compo-
nents. For this reason, we can notice in Fig. 4 the strongly sto-
chastic appearance of the GRF textures, with a dominant type of
spectral components. The SMGREF textures present a spectrum
(corresponding to the same parametric form of A) with a more
diverse range of frequencies and thus can represent more com-
plex textures than the GRF. This is due to the presence of the
auxiliary variables which increase the spectral complexity by
increasing the amplitude of certain frequencies in the A. These
supplementary components in addition to the grouped together
high amplitude frequency components of the A will represent
the new, richer PSD.

Remark: The SMGREF textures could also be obtained via the
GRF model, however, for a non-parametric A. The Agrr = 8-A,
which does not have a form that can be easily represented using
a small number of parameters (is not compressible).

B. Power Spectral Density Models

The form of the PSD actually encodes an important part of the
textural content information. It must be stressed that there is vir-
tually no constraint on the form of the PSD: it can be constant,
corresponding to a white noise, or contain a single frequency.
It can have a pulse-like form, this resulting in deterministic-like
textures, or a more blobby shape, with one or several compo-
nents, which would correspond to stochastic-like textures.
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TABLE I
EXAMPLES OF PSD MODELS USED IN THE SEQUEL OF THE PAPER

Gauss

M ‘ Model k& ‘ Expression of )\k’(um, vy, 0r) ‘ 0,
1 ‘ Lorentz ‘ [1 + (A + %] ‘ Vigs Vyos Oz, Oy
Y
3 ‘ Exponential ‘ exp 5 {w + %] ‘ Vg Vyos Oay Oy
4 ‘ Generalized ‘ X % [‘U"' ;’;::n . + Ity ;‘éwn . } Vigy Vyos Oy Oy, 4

From an algorithmic point of view, it is advantageous to use
shapes encoded through a small number of parameters. For this
reason, this paper focuses on parametric, unimodal functions,
with a relatively reduced number of parameters: Lorentz (M =
1), Generalized Lorentz (M = 2), Exponential (M = 3) and
Generalized Gaussian (M = 4). Each model % is driven by the
corresponding 85, and Table I explicitly shows the A" (8;,).

The parameters of these functions are the central frequencies
Vao, Vy,, the widths o, o, and the positive shape parameter g,
specific to models M = 2 and M = 4.

We have chosen to include embedded models, for instance
M =1and M = 3 arenestedin M = 2 and M = 4, re-
spectively, for ¢ = 1. This enables an analysis of the method
capacity to penalize model complexity when the extra parame-
ters do not trigger a significant model fit increase.

The textured images are spatially discrete, thus the PSD is de-
fined on the reduced frequency domain [39], [40], i.e., the vari-
ables (v, v,,) € [—0.5,0.5]%. Furthermore, let us consider that
the Fourier coefficient p has the (v.,,, v, )} position in the discrete
reduced frequency domain. The A, from (10) and (12) are the
elements of the PSD field at these discrete positions and depend
on the model, M = k, and on the parameters 8. From this
point forward, to explicitly show this dependency, the notation
)\’Ij (8},) is used and, more precisely: /\’; (8;) = )\k(um, U, 01).

The use of parametric models has the advantage of reducing
the number of unknowns. On the other hand, this model defines
a highly non-linear dependency of A% (6;) with respect to 8y,
as shown in Table I. This complicated dependency means that
there is no conjugate form for this law.

Moreover, the prior information about the texture parameters
01 = {Vay, Vyy, 0z, 0y, g} is very reduced, thus, uninformative
priors will be used. Consequently, a uniform prior is employed:

m(0c M = k) = Ugn o] (8),), where 87" and 82" are the
vectors containing the mrnrma respectively maxima, allowed
values for the texture parameters. These values were chosen to
ensure the coherence of the parameter values with their physical
interpretation: ;" = {—0.5, —0.5,102,102,0.1} and 8} =
{0.5,0.5,1,1,5}.

This section devoted to the texture models has concluded
the problem specification part of this paper. Based on the
chosen observation model and the SMGRF image model,
Section IV will present considerations regarding the problem
difficulty and Section V will give the mathematical develop-
ments required to determine the most probable model.

IV. INFORMATION QUANTITATIVE ASSESSMENT

The data can be more or less informative and this is directly
reflected in the problem difficulty. In order to evaluate this diffi-
culty, this section presents a series of theoretical considerations
regarding the available information, quantified by the Fisher in-
formation matrix.

Let us now focus on the information regarding any compo-
nent of ¥, denoted by +/, by analyzing the diagonal elements
of the information matrix, i.e., the expectation of the second
derivative of the co-log-likelihood:

10) = gy [ boef0®)] 03
Y

Due to the separability and Gaussianity of the noise model
and the form of (1), the law f (§|\II) is also separable, Gaussian,
zero-mean and of variance:

rp(E) = gp [ve8pAp (0)] (14)

+y
where g, = |h,|?. Equation (13) contains first and second order
derivatives of , (¥) with respect to ¢). When calculating the ex-
pectation, knowing that E g [|¥,[?] = r,(¥), the second order
derivatives cancel out. Then:

P 1 / 2
(¥) ; [rp(q,) rp(\I')] (15)
where r;,(¥) is the derivative of 7, (¥) with respect to /.
For the noise parameter,
l —2
Iim) = Y [yt + 2 g 52 (0] (16)

p=1

is a decreasing function, thus, the smaller the +,,, i.e., the larger
the noise level, the easier its estimation.
For a texture coefficient 4, element of 4,

— gp * Ap(0)
0 =2 [/\p(ﬂ) [9p + Yo/ - Sp

p=1

wn] (7

depends on the values of the other texture parameters. For in-
stance, the information regarding the central frequency v
higher if the frequency V is close to 0 and decreases symmetrr-
cally with the absolute value of 1/ (see Fig. 6(a)). Z(¥°) also
increases when the width ¢ decreases i.e., the characteristic
is more concentrated, as in Fig. 6(b). Moreover, the amount
of information available for estimating the texture parameters
also varies according to the PSD model. Finally, concerning the
signal and noise levels, the lower the SNR, the smaller Z(8) in
(17) and, thus, the less information on 8.

Remark: The higher information around the null frequency
is due to the low pass character of the PSF. This becomes ob-
vious in Fig. 6(d) where the amount of information for the high
frequencies drops significantly when the filter becomes more se-
lective (the inverse width is higher).

Another interesting case is the noiseless scenario (7y, = 00):

5 =R A;w)r

p=1

7(0) = (18)
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—+Gen Lorentz|
—*-Gen Gauss

1el

-5
—+1e3

—-1e4

(b)

-10

0.5 -0.5 0 0.5 -0.5 0 0.5

) (e)

Fig. 6. Variation of the Fisher information for 22, as a function of various factors. Only one parameter is varied at a time in order to quantify its effect on the
amount of information for £/ (in logarithmic scale). (a) 1/2 sweep; (b) o1 sweep; (c) model sweep; (d) OTF inverse width; (e) y» sweep.

(a)

100 0 50 100

50
(b) (©

Fig. 7. Fisher information for w, for various values of the observation system parameters wy and -y, (in logarithmic scale). (a) v, sweep; (b) wy sweep-high

Yn; (€) wy sweep-low v, .

0.8

0.6

0.4

0.2

Fig. 8. Different cases emerging from the relative positioning and widths of the TF and PSD. (a) Total overlap; (b) partial overlap; (c) no overlap.

The Fisher information regarding 8 depends only on the PSD
(as in [26]). This has multiple implications on the amount of
information for the texture parameters:

* it does not depend on the form of the TF (known TF),

* it is the same, whether the texture is Gaussian or not.

Fig. 7 illustrates the amount of information concerning one
width of the PSD for various levels of noise and widths of the
PSF. In Fig. 7(a), the variation of the Fisher information with
the noise precision shows a significant difference in the amount
of information. Situations with SNR < 20 dB are challenging,
since the available information is reduced. Figs. 7(b) and 7(c) il-
lustrate the Fisher information variation for a PSD width as a
function of the TF width wy, the SNR being fixed at 30 dB in
Fig. 7(b) and at 10 dB in Fig. 7(c). These plots show that the
Fisher information does not strongly depend on the wg, espe-
cially in the low noise case (high +,,) from Fig. 7(b).

Last, but not least, for the auxiliary variables s,

2
Yp
I(sp) = { } (19)
P [3p (9p + Va /Y - $pAp(6))]
the information depends on the corresponding coefficient of the
PSD, TF and +y,,. Moreover, for the noiseless case, Z(s,) = s]jz,
i.e., the smaller the value, the more the information.

Fig. 8 illustrates various scenarios for a Gaussian TF and a
Laplacian texture PSD. Their product plus the noise, of variance
1/4y, yields the observation's PSD. The extreme cases are either
simplifications:

» PSD centered near the null frequency and narrower than

the TF, the effect of the convolution being negligible,

* noiseless case (v, — o0),

e asd
or cases with signal alterations so severe that information on the
original PSD is no longer present in the data:

 the PSD is positioned in a region with strong TF attenua-

tion, the original image information being lost,

* highnoise case {(y,, — 0). This corresponds to a low Signal

to Noise Ratio (SNR) #,, /..
This section offers a prior performance analysis based on the
Fisher information matrix. The amount of available information
is directly related to the estimation performances, allowing us to
predict these performances in various situations.

V. EVIDENCE CALCULATION

The full description of our Bayesian model choice method re-
lies (i) on the data model and (ii) on the priors for the unknowns.
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The hierarchical direct model is shown in Fig. 2, while the tex-
ture model specificities are shown in Fig. 3. In the following,
the emphasis is on the SMGRF, which encompasses the GRF.
By writing (6) as:

o

.Yz Vn,0k,8

(8| M = k)ds df), dv, dy, dz (20)

and plugging in (2) and (8), the intractability of the integral is
obvious. For this reason, it must be calculated numerically and
the solution chosen here is sampling.

A natural idea is to straightforwardly determine the
evidence ¢, from samples of the prior (M = k):
o) — (m(t) 7(t) %g &) o(t))

1y (1)
eszt—zlf(yhlf ,Mzk)

It consists in sampling the priors and computing the arithmetic
mean of the corresponding likelihood values—Arithmetic Mean
Approximation (AMA). Evidence computation based on prior
samples can also be done by nested sampling [41].

Nevertheless, when the likelihood is very peaked, as in the
current case, most of these samples have weak likelihood, i.e.,
an insignificant contribution and thus, the algorithm is slow to
converge. For this reason, it is more suitable to compute (20) by
sampling the posterior 7(¥|y, M = k).

.. T as follows:

€2y

A. Posterior Sampling

The posterior law is proportional to the joint law:
fy. ¥, M =k)

P
T Z 1Yp — hpxpﬁ]

p=1

=C-exp [

y

P+a,—

“Yn *exp[—Bnm] H

vy T exp—faa] exp[ Vo Z\&p\ SpAE ]

Y
g 00 T 5o [—ss o e
) p=1 p=1

where the normalization constantis C = K 1. (27) 3F . q,ﬁf" ‘
“Haw) - B3 T Hay)-BE - Tlay) P (8" — 67
However this law cannot be directly sampled, thus MCMC
methods will be employed, more precisely, Gibbs sampling.
This can be performed via two types of algorithms.

* Across-model approach—joint sampling of the model
index and its parameters. The algorithm jumps from one
model to another and explores the joint model index plus
parameter space, yielding a joint chain of model indexes
and parameter values. The most representative algorithm
of this type is Reversible Jump MCMC (RIMCMC) [42].

* Within-model approach—consists in exhaustively visiting
the candidate models and parameter sampling condition-
ally on the model. It provides K chains of parameter
values, one for each model. For a detailed description see
[43], [44] and the more recent survey [45].

Despite the conceptual differences, for a finite candidate
models set, the two approaches yield the same result (provided
they have reached convergence) but, under two different forms.

The RIMCMC algorithm is especially interesting for a
very large number of models, when an exhaustive sequential
sampling of all the models may be prohibitively expensive.
However, in our problem, the number of concurrent models is
rather reduced. In this case, the within-model strategy is better,
avoiding the non-trivial RIMCMC problems concerning the
parameter transformation when switching models. Moreover,
the within-model approach guarantees that all models have
been thoroughly explored and the model selection is not af-
fected by the sampling algorithm. For this reason, our model
choice method is based on within-model posterior sampling.

B. Evidence Approximations Based on Posterior Samples

Our model selection method is based on evidence approxi-
mation from posterior samples and the proposed method will be
referred to as the Classifier based on Evidence Approximation
from Posterior Samples (CEAPS). This method can be formu-
lated using two different approximations of the evidence, which
we present in the following: the Harmonic Mean Approxima-
tion (HMA) [44] and the Laplace-Metropolis Approximation
(LMA) [16].

1) Harmonic Mean fyproximation: We consider that &) =
(&®, 0 A5 s®) H(t ,t = 1...T are samples of the a pos-
teriori law. Then the ev1dence can be computed as:

o B SN I

t=1

i.e., the harmonic mean of the likelihood values for the o,

Although € converges almost surely to the true value ey
when 7' — oo [46], it does not generally satisfy the central
limit theorem [45]. Occasionally, a ¥ with significant a priori
probability, but very low likelihood, may occur. Its contribu-
tion in the harmonic mean is high and this may trigger infinite
variances [44]. Solutions to stabilize this approximation have
been provided in [47]. Nevertheless, we have not encountered
this difficulty neither in our previous work [28], nor in the cur-
rent one, where the priors are uniform on a finite interval and
the likelihood is very peaked. Hence, the posterior samples are
distributed in the regions where the likelihood has significant
values. Consequently, the situations where the HMA may di-
verge or converge too slowly are avoided.

2) Laplace-Metropolis Approximation: The evidence (20)
can also be expressed as:

ek:/exp{log [/ (y|®, M=Fk) - m(¥M=Fk)]} d¥ (24)
v Fr(¥,y)

with Fy, (¥, y) the log-posterior computed for observation y.



Remark: Fi(¥,y) is called the observed information and in-
dicates the amount of available information, for the given ob-
servation y. Fi (¥, y) is related to the Fisher information Zj, in-
troduced in Section IV through (13) as follows:

Ti(¥) = —Ey [F{/(¥,9)] (25)
Under the hypothesis that Fy (¥, ) is twice differentiable with
a unique maximum in ¥*, the Laplace approximation of a
quadratic function (also used for the derivation of BIC) can be
applied to evaluate the integral (24):

2T

Dy
&, ~exp [PFy (B2, y)]- (?> J-F (8L, 26)

where ¥}, represents the MAP value for model k, F}' (¥, ) is
the Hessian of the log-posterior, evaluated at ¥}, and Dy, is the
dimension of model k. The last factor in (26) is the determinant
of the observed information matrix. In fact, computing the ev-
idence in this manner consists in determining the MAP value,
¥* i.e., the value for which F'(¥, y) is maximum, and replacing
this value in (26). [48] reviews the Laplace based methods for
evidence computation. These approximation methods have rel-
ative errors of order O(P~1).

This approximation can also be performed based on MCMC
samples from the posterior. In this case the method is called
Laplace Metropolis Approximation (LMA) [16]. The LMA can
be based in the MAP, the Posterior Mean (PM), or the Median
a Posteriori (MedAP) and the Hessian can be approximated by
the covariance matrix of the samples. In our case, this approxi-
mation is performed using the PM and the value of the Hessian
computed for the PM.

Remark: The LMA explicitly penalizes complex models due
to the second factor that decreases exponentially with model di-
mension, while for the HMA the model complexity penalization
is implicit.

C. Gibbs Within-Model Posterior Sampling

The samples from the posterior law are obtained using Gibbs
sampling. Among the various strategies, we have chosen to
sample Yy, Vs, &, 8 and 8. The advantage of this approach
is that we obtain rather standard targets and we can perform
parallel sampling for 2 and 8. Then, the a posteriori conditional
laws for the parameters are the following:

2~ [Texw [~ (mlilp — hodpl? + 712, 25,25 00)) |
p

o Q0
= L N(mp,vp), with my, = ¥Yphpv, and
Up = (Yngp + VaSpAL (Bk))fl—separable in the Fourier
domain, i.e., parallel sampling is possible; computation
cost equivalent to sampling the a priori law;

s~ JT {507 exp—sp 213, 2\568) + 8. |
4
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= Hpg(as,bsp) with a;, = oy + 1 and by, = 85 +
VaSp \;%p | 2/\’; (@), )—separable, independent on the observa-
tions, allowing for parallel sampling;

Yo ~Eren T exp <5n + Z Yp — hp$p|2>

P

G(any bn)a with ap = Qp + P and bn - /Bn + Ep |§p -

o
p*T'p‘Q;

>0

Yo~ vy T exp =, (/31 + Z lmp‘Qsp)‘I; (3;;))

P

= G(az,b,), with a, = a, + P and b, =
Ba + 3, 15, X5 (81);

P
81 ~ UBK) - TT Xo(0n) - ex | —vas, 7,2 X5(01)]

p=1

f(0klz, 8,7, M = k)—very complicated dependency.
Since # has a non-standard law, more complex sampling
strategies must be used. We chose to include an MH step [49]
in the Gibbs loop. This Metropolis within Gibbs strategy is
convergent, as proven in [50], i.e., provides a chain of values
\If(t), t = 1...T that has the posterior as limit probability
distribution (when the number of iteration tends to infinity).

Remark: The alternative to sampling all the unknowns is to

integrate a part of them, in order to avoid their sampling steps.
This strategy is similar to the collapsed Gibbs sampler method
used in [1]. Some of the options are the following:

* 2 marginalization and sampling the rest of the unknowns,
thus no texture sampling, but even more cumbersome de-
pendency on -y, 8, 8 and v,,. Regarding s, it remains sepa-
rable, thus parallel sampling is feasible, but not of Gamma
laws. Furthermore, the posterior for 7,, and v, no longer
have Gamma forms either:

1 Wyl
’ n:e‘ * - £ >
f(sp J L' ) X exp [Tp ’Yg;SpAp(Ok)

o*o 2

o 1 Dk |
- exXD — [FpYnYaSpAp(03)] 12, — — —BF
D — [7pVn Ve SpAp (Ok)] [ P r ’Yxsp)\p(ok)J

» s marginalization, resulting in a complicated law for 2 (loss
of the advantage of the SMGRF texture model—the con-
ditional Gaussianity for i’p). However, i*p remain indepen-
dent, thus can be sampled in parallel, but by more sophis-
ticated samplers. The new conditional laws are:

—agz—1
o z/\k 0 o . :
f(@pl) o 1+7 p( k)|rp|zl

s

o[l ]

- integrate both # and 8 and sample only 7,, ¥, and 8,
which will be distributed under complicated laws.
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Moreover, by marginalization, the resulting law is more diluted,
thus what is gained by eliminating sampling steps, may be lost in
terms of speed of convergence. We have chosen not to integrate
any of them since, although this implies more sampling steps,
the sampled laws are easier to handle.

D. Efficient Metropolis-Hastings for 8

A Random Walk MH (RWMH) step consists in formu-
lating a proposal 8, based on a proposition law of the form
q(8::10.) = 0. + ¢, evaluating the acceptance probability
£(8.,0,,), which is a function of the current value and the
proposal, and then acce(pting or rejecting the proposal. If the
proposal is accepted, 8 R 0., otherwise 8 — 8.. The
algorithm is known to be convergent [51]: the samples are
asymptotically distributed under the posterior law.

There are numerous options for formulating the proposal and
both the convergence speed and mixing properties are directly
influenced by the adequacy between the proposal law and the
target. Thus, choosing a ¢ that embeds information about the
shape of the target can significantly enhance the algorithm per-
formances. In this context, the RWMH algorithm formulates the
proposal based on a stochastic component and, in some cases, a
component based on the target. This can contain first or second
order derivatives of the target, so as to ensure a convenient ex-
ploration of the parameter space.

In [26] we have developed an efficient sampler called the
FRWMH. This algorithm is based on the idea of quasi-Newton
proposals [23] for a fast exploration of the parameter space and
superior mixing properties. In this context, the Hessian used in
the quasi-Newton approach is replaced by the Fisher informa-
tion matrix. The FRWMH algorithm formulates the proposal:

By =0.+c T 1(8,) VoLl(8.)+ /T 1(0.) - 2.

where £(8) = log (8|y) is the log-posterior, z. ~ N(0,I)
is an isotopic displacement and Z(8) is the Fisher information
matrix, already defined in Section IV by (13).

In this case, the acceptance probability £(8., 8, ) becomes:

. 7(0p:) - 9(0pr, 8.)
€0, O] = min {1’ SICARPION }

27

(28)

with
q(0p:,0.) =N (ﬂpr ~8, - %48,)- Vgﬁ(ﬂc),I*1(0c))

The use of this proposal proved advantageous from multiple
points of view. Firstly, this exploits the target curvature similarly
to the Newton step from the optimization theory. Secondly, this
made way for a series of algorithmic simplifications and perfor-
mance enhancements:

e for our GRF textures, the second order derivatives van-
ished under the expectation. Thus, the efficient proposal
was formulated only based on first order derivatives,

+ the Fisher matrix is positive definite, hence when it is well-
conditioned there are no instabilities when taking the in-
verse, such as those mentioned in [23] for the Hessian,

+ also due to the positive definite Fisher matrix, the Newton
term always has the direction of gradient ascent, thus the
algorithm only makes efficient steps.

The same principle of using the Fisher matrix to formulate
an efficient proposal is exploited in the manifold Metropolis ad-
justed Langevin algorithm (mMALA) [20].

E. Implementation Issues

The implementation has raised two numerical problems:

1) Since the likelihood has an exponential form for each
Fourier coefficient and consists in a product over all the
coefficients, this quantity often exceeds Matlab’s rep-
resentation capabilities. To overcome this obstacle, the
co-log-likelihood (CLL), i.e., the negative log-likelihood
is computed instead of the likelihood.

2) The problem is again encountered when computing the ev-
idence from the CLL. The employed solution is to deter-
mine the minimum value of each CLL chain, subtract it
from all the CLL chains and compute the evidences based
on the “offset” values, in a logsumexp manner. The nor-
malization is reversed in the final stage of posterior prob-
ability computation.

The resulting CEAPS procedure is given in Algorithm 1, where
the “ComputeEvidence” routine can be based on either of the
two aforementioned approximations.

These previous sections have presented theoretical aspects re-
garding the employed method, its mathematical formulation and
the corresponding implementation issues. The following section
will present a series of tests that evaluate the method perfor-
mances.

VI. EXPERIMENTAL RESULTS

This section is devoted to the description and interpretation
the performances of our CEAPS model selection method from
blurred and noisy textured images. Several experiments are pre-
sented.

A. The first study compares the two MH samplers: the stan-
dard RWMH and the FRWMH.

B. The second test compares the two evidence approxima-
tions based on posterior samples, i.e., HMA and LMA.

C. The evaluation of our CEAPS classifier represents the
third test. The classification performances for the CEAPS
are first presented for various PSDs and then compared to
those of the GMLE classifier.

D. The classification performances are linked with the Fisher
information analysis of Section I'V.

E. Results concerning the deconvolution are given in a visual
form, by presenting the original textures, the observations
and the deconvolved images.

Algorithm 1 proceeds as follows: a sampler is launched for
each of the K concurrent models. These samplers compute at
every iteration the evidence, based on the samples that have
been drawn so far. When the difference between two consecu-
tive values of the evidence is smaller than a threshold, the sam-
pling is stopped. The first 10% of the samples are discarded as
burn-in and the evidence is recomputed based only on the re-
maining 90% of the samples. Since the sampling is the most time
consuming operation, it determines the duration of the overall
algorithm and thus it is important to use efficient samplers.



Algorithm 1: Classifier based on Evidence Approximation
from Posterior Samples (CEAPS) Algorithm

input : Data y, models dictionary for
M=k k=1.K

output: Evidences é;, + samples for texture (*), noise
parameter 'yff), texture parameters OEJ) t=1.17)

% prior model probabilities:
pr =1/K;
% generate samples of (0, x, s, vy, M = k)

for k =1 to K do

% Gibbs sampler for (v, s, 0y, x), M =k fixed:
t=1;

initialization OS), x®) =y, st);

CLL,(t) = CoLogL(z®, s(*), 0,(:));

m(k) = min(CLLy,);

nCLL; = CLL; — m(k);

% compute the evidence using HMA or LMA

L = ComputeEvidence(nCLLy);
erec(t) = 0;
while |e,..(t) — é;| > € do

t=t+1;

W~ Oy, 2D an, B,)
'Y;E;t> ~ f(,ym‘m(t—l)70§€t—1)’ S(t_l)., am[)}m)
s ~ f(s|a:(t*1)7Bg_l).,asﬁs)
6\") — FRWMH with target f(0)]a~1,s®)
2 ~ f(aly A5, 0))

CLLy(t) = CoLogL(2"), s, 6;");

m(k) = min(CLLg);

nCLL; = CLL; — m(k);

ek = ComputeEvidence(nCLLy);

erec(t) = RecursiveEvidence(e,c.(t — 1), €x);
end

end

% determine the posterior model probabilities
for £ < 1 to K do

Pr(M = kly) = pi.- €/ sz -€r-exp[m(k) —m(l)]

% Compute the parametel7 estimates by PM
Gk = PM(Bk);
end

A. RWMH vs FRWMH

The first tests investigate the speed performances of two
sampling algorithms, the isotropic RWMH and our efficient
FRWMH, in the context of the complicated laws for 8.

Our tests indicate that the use of the FRWMH yields an algo-
rithmic speed increase by a factor of at least 10 as compared
to the RWMH. This is due to the FRWMH directional form
of the proposal, which permits the algorithm to attain the high
probability region in a very small number of iterations. Once in
this region, the directional component exhibits negligible values
and the algorithm explores this high probability area of the pa-
rameter space due to the stochastic component of its proposal.
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Fig. 9. CLL evolution—posterior sampling starting from the same initializa-
tion, using RWMH and FRWMH.

This translates into a very short burn-in period, as opposed to
the isotropic RWHM, which has a significantly longer burn-in
period, depending on the initialization. This efficiency is illus-
trated in Fig. 9 where the CLL chains for the two samplers are
represented.

Using the efficient FRWMH sampler for the  parameters, the
overall sampling process takes roughly? 1 minute/model, thus
the full run takes 8 minutes (the number of candidate models:
K = 4 shapes of A for the GRF type and K = 4 shapes of A
for the SMGRF).

B. LMA and HMA

The posterior samples drawn by FRWMH within Gibbs sam-
pling are used to compute the evidences. This is achieved via
two approximations: the PM-based LMA and the HMA.

These approximations are computed using the same set of
posterior samples in order to evaluate their accuracy in the same
conditions. The numerical results show that the difference be-
tween the two evidence approximations is less than 0.1%, thus
confirming that both approximations are viable for the problem
in question.

Moreover, since the sampling is the most costly part of the ev-
idence computation, the choice of approximation does not affect
the overall speed performance. Consequently, the two evidence
approximations imply a similar computational load.

In the tests presented in the following section, the CEAPS is
based on the HMA.

C. CEAPS Performances

Let us now present the performances of the selection method
itself. The experimental setup consists in testing our method
on synthetic textures, using 20 sets of parameter values for the
PSD. Each set was used for each PSD model to generate both
GRF and SMGRF texture realizations. The observations are ob-
tained in a scenario with Gaussian blur of standard deviation w
= (0.3 and SNR = 20 dB. This corresponds to a partial overlap
configuration, such as the one depicted in Fig. 8(b).

2Algorithms have been implemented using the computing environment
Matlab on a Personal Computer, with a Intel Xeon 2 GHz and 1 GB of RAM.
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(a) (b)

(c)

@ (e)

Fig. 10. Selection problem when the true model is not among the candidates. (a) True A; (b) Observed PSD; (c) A candidate 1; (d) A candidate 2; (¢) A candidate 3.

TABLE II
CEAPS MODEL SELECTION PERFORMANCE FOR GRF TEXTURES (CORRECT
CLASSIFICATIONS RATE IN %) FOR A PARTIAL OVERLAP CASE

Estimated model

True model Lo GL Exp GG
Lo 10 1 4
GL 21 3 7
La 2 4 7
GG 4 8 16
TABLE III

CEAPS MODEL SELECTION PERFORMANCE FOR SMGRF TEXTURES (CORRECT
CLASSIFICATIONS RATE IN %) FOR A PARTIAL OVERLAP CASE

True model Estimated model

Lo GL Exp GG
Lo 9 1 3
GL 19 2 6
La 1 7 9
GG 3 6 20

1) CEAPS: The algorithm was run on each texture realiza-
tion and Tables II and III summarize the classification results
for GRF and SMGREF textures, respectively. We observe on the
main diagonal of both tables the percentages of correct clas-
sifications. As expected, the CEAPS chooses the correct PSD
model in most cases. There are, however, situations where the
method chooses another model.

As anticipated by the Fisher information analysis, in the ma-
jority of cases, there is enough available information on the cen-
tral frequencies to ensure the samples are distributed under the
correct law and have a finite variance. Nevertheless, the infor-
mation concerning the widths is more sensitive to the noise level
and the PSD model and thus more prone to errors. These errors
are important for the method behavior, since they trigger mis-
classifications. The majority of missclassification cases are due
to high noise levels and consist in mistakenly considering a PSD
with thicker tails as the most adequate model. In this situation,
the thicker tails account for the noise and the noise level is un-
derestimated.

Nevertheless, in the context of our model choice problem,
where the nested models help testing the method's ability to pe-
nalize model complexity, choosing another model can be re-
garded as not necessarily a failure. In this setting, the under-
lined percentages from Tables II and III represent the “good”
miss-classifications, for instance, a Generalized Gaussian with
¢ = 1 that is classified as an exponential. This illustrates the

method's capacity to penalize model dimension, i.e., eliminate
the parameters that do not significantly increase the model fit.

The method is not only able to distinguish between the dif-
ferent PSD forms, but also between the laws for the Fourier co-
efficients. More specifically, in 82% of the cases the algorithm
correctly determined if the texture was from the GRF or the
SMGREF class. This means that, on the one hand, the method
has the ability to discriminate among a GRF and a SMGRF
having the same form for the parametric part of the PSD. On the
other hand, the PSD models themselves are structured enough to
allow the algorithm to simultaneously identify the PSD model
and whether all the PSD coefficients are identically scaled or
not.

In the case where the real model that generated the data is not
among the candidates, for each candidate model & = 1... K,
the chain of samples for 8 converges to the values that make
model k& best resemble the true model. Then, the evidences are
computed based on these estimates and the model with the MAP
probability is selected.

For instance, if the true model was an SMGRF with a cer-
tain shape for A and the candidate models are only GRFs with
various shapes for A, an important remark is that the estimated
widths for A will be overestimated (i.e., 0, and o, will be un-
derestimated), since the new X will have to fit a wider range
of frequencies (due to the presence of the auxiliary variables).
Then, the method will choose the shape of A that best fits the fre-
quency components of the test image. Such a case is depicted
in Fig. 10, where we show the true A, the PSD of the observed
texture (product among the true A and auxiliary variables) and
the PSDs of some of the candidate models (PSD is equivalent
to A in this case since the candidate models are GRFs).

2) CEAPS vs GMLE: A crucial point is that the GMLE
cannot solve the problem of interest. This is due to the presence
of indirect data introduced by the:

a) non-Gaussian texture model,

b) blurred and noisy observations.

Although the comparison cannot be performed on our problem,
it is done on a simplified version of the problem dealing with
direct observations (no noise, no convolution) of GRF textures.

Table IV lists the average classification success rate for the
CEAPS and the GMLE, every method being tested on 20 tex-
ture realizations, with various parameter values for each type of
PSD shape. More specifically, this represents an averaging over
the PSD models and PSD parameters. The lower classification
performance of the GMLE is due to the fact that it does not
have any mechanism of model complexity penalization, thus it
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Fig. 11. CLL chains to illustrate a typical situation where GMLE fails to select the good model. (a) CLL chains for candidate models; (b) zoom on the CLL chains

for the most likely models.

TABLE IV
AVERAGE MODEL SELECTION PERFORMANCE (CLASSIFICATION SUCCESS
RATE IN %) COMPARISON BETWEEN CEAPS AND GMLE. THE AVERAGING IS
DONE OVER PSD MODEL AND PSD PARAMETERS

Algorithm | Classification accuracy (%)

CEAPS 89
GMLE 86

chooses in 100% of the cases the most complex among the em-
bedded models. On the contrary, as previously explained, the
CEAPS penalizes model dimension and selects the less com-
plex model that fits the data.

Table IV shows that the GMLE has a lower success rate and
the reason for this is illustrated in Fig. 11. In this figure, we
plotted a case where GMLE selects the Generalized Gaussian
model, since its minimum CLL is the global CLL minimum
among all models. However, the minimum co-log PM is that
of the Laplacian model, which is indeed the true model. This is
a typical failure situation for GMLE.

As already stated in Section II, the evidence based classifier
is optimal from the risk point of view, property that can be seen
in this table through the CEAPS performances.

D. Results and Fisher Information

The experiments show that high noise scenarios, SNR <
20 dB, are challenging since the samples for the widths have a
too strong variance (this variance is high when the Fisher infor-
mation is low). Furthermore, these samples, used to compute the
evidences, have a direct impact on the model selection process.

In practice, above a certain noise level, the method tends to
favor the thicker tailed PSDs, by considering that these tails ac-
count for the noise. We have seen in the informational analysis,
summarized in Fig. 7, that for high noise levels there is a smaller
amount of information, thus more uncertainty in the estimation,
which eventually triggers estimation errors for the PSD widths
and even miss-classifications. More specifically, the noise level
is underevaluated and either the PSD widths are overevaluated,
or a model with thicker tails is selected.

E. Image Reconstructions

Using the samples employed to compute the evidences, we
can also compute PM estimates for the texture parameters,
the noise precision and the unknown image. Consequently,

as an additional result, our algorithm provides a PM estimate
of the original image, conditionally on the selected model.
Fig. 12 shows examples of the reconstruction. We can ob-
serve situations (Figs. 12(c), 12(f) and 12(i)) where CEAPS
successfully restores the texture even if the observations are
severely degraded. This illustrates the method's high capacity
to handle the blur and the noise. This is due to the strength
of the information given by the structure of the PSD and to
the method's optimality from the classification and estimation
risk point of view. Nevertheless, there are also situations, such
as Fig. 12(1), where the image is degraded to an extent that
impairs a reconstruction, in most cases, this being due to a low
information scenario.

VII. CONCLUSION AND PERSPECTIVES

This paper presents a method for texture model choice from
blurred and noisy observations. The textured images are mod-
eled by Scale Mixture of Gaussian Fields with parametric power
spectral density and parametric probability density for the scale
variables. In a Bayesian framework, we are able to determine the
posterior model probabilities based on the evidences, this ap-
proach being optimal from the classification risk point of view.

The employed within-model simulation technique consists
in a sweep of all possible models and the computation of the
evidence for each model. This quantity can be determined only
by numerical methods, since the required integral is intractable.
We have compared two methods for numerically computing
the evidence based on samples from the a posteriori law, the
Laplace Metropolis Approximation and the Harmonic Mean
Approximation, which yield the same results in the context
of our problem. We have presented the performances of our
Classifier based on Evidence Approximation from Posterior
Samples, which is the optimal model choice strategy from the
mean classification error point of view. This is reflected in the
classification results that show the method's ability to select the
true model.

As a secondary result, this approach provides chains of sam-
ples for the parameters, conditionally on each model M = k.
These samples can be used to obtain estimates that are optimal
from the mean square error point of view, by using the Poste-
rior Mean estimator. Moreover, using these estimates and the
selected model, the original image can be reconstructed.
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Fig. 12. Reconstruction results—4 cases to be read from left to right, on the
first column the original, unobserved texture, /6", M = k*, in the center the
distorted observations, y, and on the right column the results of the deconvolu-
tion, for the selected model, |6, M = k.

Further developments include, but are not limited to, ex-
tending the SMGRF texture model to dependent Fourier
coefficients, which would make it more versatile. Another idea
is the use of multi-modal power spectral densities, in order to
obtain more structured or quasi-periodic textures. From another
standpoint, the method can be coupled with a beforehand
learning step to enrich the set of possible texture model. From
a different perspective, the method can be adapted to deal with
unknown point spread functions (blind or semi-blind approach)
and the estimation of their parameters [52]-[54].
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Bayesian Texture Classification From Indirect
Observations Using Fast Sampling

Cornelia Vacar, Jean-Frangois Giovannelli, and Yannick Berthoumieu

Abstract—A Bayesian method for texture model choice from
blurred and noisy (i.e., indirect) observations is presented. The
textures are modeled by stationary Random Fields, with various
distribution laws, either Gaussian or Scale Mixtures of Gaus-
sians. The power spectral densities of the fields are modeled
by parametric functions and the aim is to select the most ap-
propriate model among a set of candidates. This is achieved by
computing the a posteriori model probabilities through parameter
marginalization. The marginalization is done by sampling and
harmonic mean approach, considering separately each model,
in a within-model sampling strategy. The highly nonlinear de-
pendency with respect to the parameters imposes the use of
the Metropolis-Hastings sampler. Moreover, to achieve efficient
sampling, the paper proposes a new fast algorithm based on the
Fisher information matrix, the Fisher Metropolis-Hastings.

Index Terms—Bayes, harmonic mean, Metropolis-Hastings,
model choice, texture modeling and analysis.

I. TEXTURE AND MODEL CHOICE

HE central problem in this work is selecting a texture
model from a blurred and noisy image. It is solved in a
Bayesian framework, where the posterior probability for each
model is determined from the model evidences. The classifica-
tion method is optimal from the risk point of view, however,
these evidences are intractable and thus are numerically com-
puted by Monte Carlo Markov Chain (MCMC) methods.
Texture represents a central aspect in image processing. A
desirable feature of a texture model is to provide a large capa-
bility of description, while being relatively easy to handle and
numerically efficient. The literature devoted to texture modeling
is fairly rich, covering various classes of models that can be an-
alyzed from different points of view. The representation domain
can be spatial [1], [2], Fourier [3], [4], wavelet [5], [6] and the
model can be deterministic (pseudo-periodic, based on struc-
tural elements), or probabilistic (stochastic-like), as for instance
the random field-based model [4], [7]-[11].
In this work, the textured images are modeled by Random
Fields (RF), with different parametric forms for the pixel inter-

Manuscript received April 30, 2014; revised August 27, 2014, June 20, 2015,
and August 26, 2015; accepted August 26, 2015. Date of publication September
17, 2015. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Animashree Anandkumar.

The authors are with IMS (Univ. Bordeaux, CNRS, B-INP), UMR 5218,
F-33400 Talence, France.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2015.2480040

action and probability distributions. This type of model is very
tractable, equally adapted to synthesis and analysis tasks and
known to exhibit good performances for stochastic-like texture
processing. Nevertheless, it can also be used in the case of more
deterministic or pseudo-periodic textures, through specific pixel
interactions. From the texture modeling point of view, the con-
tribution of this paper is to introduce a new non-Gaussian model,
fully adapted to analysis and synthesis tasks. The particularities
of this model are the following:

+ Independent Fourier coefficients for the textured image.
These coefficients are marginally non-Gaussian, but con-
ditionally Gaussian, to ensure model tractability. This is
achieved using Scale Mixtures of GRFs (SMGRF).

* Formulation in the Fourier domain in order to exploit the
multiplicative form of the blur in the frequency domain.

Model choice has applications in a wide range of fields, for
instance microbiology, proteomics, genomics, economics, sta-
tistics, signal and image analysis. The Generalized Maximum
Likelihood Estimator (GMLE) method for model selection
consists in determining the model with the highest likelihood
for the MLEs of the parameters. However, this estimator is
not applicable for indirect observations or the non-Gaussian
texture model. Among the most frequently used model selec-
tion methods are the well-known Akaike Information Criterion
(AIC) [12], Deviance Information Criterion (DIC) [13] and the
Bayesian Information Criterion (BIC) [14]. Nevertheless, all
these criteria are based on two levels of approximations. First,
a second order Taylor approximation of the likelihood around
its maximum is done in order to derive the form of the criteria.
On a second level, except for very simple cases, the maximum
likelihood value cannot be computed analytically and, thus,
numerical methods (such as optimization) are employed for
its computation. In this context, the evidence based methods
represent an alternative Bayesian approach [15] that does not
rely on an approximation at the first level. Nevertheless, since
the evidences are intractable, numerical methods are employed
for their computation, this corresponding to an approximation
on the aforementioned second level, the numerical one. The
evidence-based classification can take the form of Bayes fac-
tors or the posterior model probabilities computation method
presented in this work.

The latter relies on the formulation of an optimal decision
function from the risk viewpoint. Practically, it consists in com-
puting the a posteriori model probabilities, based on (i) the joint
law for the model, the data, the model parameters and on (ii)
computing the evidence for each model. This computation is
done by marginalizing the parameters from the joint law. Since
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this law is complicated, the integral is intractable and it is ap-
proximated either using MCMC sampling, or the Laplace ap-
proximation [16].

In the context of evidence computation using MCMC, some
of the parameters have very complicated laws and their sam-
pling can be costly, thus requiring the use of efficient solutions.
The recent literature regarding efficient sampling is mainly fo-
cused on two types of algorithms: optimal tuning of the standard
Metropolis Hastings (MH) samplers [17], or adapted proposi-
tion laws [18]. The adapted proposals exploit the information
encoded in the target law in order to achieve an efficient explo-
ration. They can be based on first order derivatives of the target,
this being the case of the Metropolis Adjusted Langevin Algo-
rithm (MALA) [19], [20] and of the Hamiltonian methods [21].
Another class of algorithms takes advantage of the target cur-
vature through Hessian-based (Newton-like) proposals. Such
terms have first been employed in optimization algorithms [22],
but they have recently been successfully adapted to sampling
[23]-[25]. From this stand point, our contribution is algorithmic
and consists in integrating an improved Newton-like proposal
[26] using the Fisher matrix instead of the inverse Hessian, i.e.,
the Fisher Random Walk MH (FRWMH), presented in [26]. In
this manner, an important performance increase is achieved, due
to the specific nature of our problem: there is no need for com-
puting second order derivatives and thus a Newton type pro-
posal is built using only first order derivatives.

To summarize, the main contributions are: (i) addressing the
problem of texture model choice from indirect observations, (ii)
tackling this problem in an optimal manner, (iii) introducing a
new non-Gaussian model for the texture, tractable and efficient
and (iv) enhancing the speed performances of the MCMC sam-
pling phase, by using the FRWMH algorithm.

The paper is structured as follows: Section II presents the
problem and the evidence-based model choice, Section III de-
tails the texture models and Section IV gives a Fisher informa-
tion analysis of the problem. Section V is devoted to evidence
computation and sampling, while Section VI presents the re-
sults. Section VII concludes the paper with comments on the
method and perspectives for future work.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us now present the method to choose the texture model,
say M = k, among K possible models. This is carried out
starting from indirect observations, i.e., blurred and noisy data.
The observation model is:

y=Hz+n (1)

where y, & and n € C are the lexicographically ordered ob-
servations, unobserved textured image and noise, respectively.
The images are of size N x N and P = N? denotes the number
of pixels. The point spread function (PSF) is represented by the
convolution matrix H, of size P x P. The Fourier transform
of the PSF is referred to as the Transfer Function (TF) and its

o
coefficients are denoted h,,.
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Fig. 1. Texture realizations of the employed image model.

M
)
O,

Fig. 2. Observation model graph and variable dependency.

A. Distributions

The noise n is zero-mean stationary Gaussian, with covari-
ance matrix R, (), driven by the unknown parameter set 4.
From this model, the conditional law for ¢ writes:

S, v) o det [Rn ()] ' exp |~ lly ~ Halh, )| @

The method is equally adapted to any type of noise correlation,
however, our numerical study focuses on the white noise case,
i.e., R, (y) = v, 11, with vy, the precision (inverse variance).

The texture models are parametric and driven by the param-
eter set ¢. Thus, for each model, k, we have the corresponding
law f(2|¢,, M = k) and its associated parameter set {;. The
exact form of these laws and the structure of the parameter sets
will be specified in Section III. Typical realizations of such tex-
tures are shown in Fig. 1.

In this context, our model selection method relies on a
Bayesian hierarchical framework and Fig. 2 illustrates the
variable interdependency. We are considering a case where
the prior information about the parameters is very reduced,
consequently, uninformative priors [27] are used. For ~,,, the
conjugate form with respect to the likelihood (2) is a Gamma
law:

an
7T(’Yn) - ﬁn ’7an71 exp [_Bn’YH]
['(a)

- g(anaﬁn) (3)

This law becomes an uninformative Jeffreys prior in the limit
case (a, — 0,8, — 0).

The a priori distribution for the model is fully described by
the pr, = Pr(M = k) probabilities. Our numerical study re-
lies on an uninformative prior, i.e., equiprobable models: p,, =
1/K,k=1...K.

The priors for the texture parameters §,, will be defined in
accordance with the employed texture models, in Section III.

B. Decision Function

A decision function, denoted A, associates a model k& to the
data gy, i.e., A(y) = k. Moreover, a cost function quantifies
the decision error. Let this function be C(k, k*), where k is the
chosen model and k* represents the true model. This cost has
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the properties C'(k, k*) > 0 and C'(k*, k*) < C(k, k*), when
k #£ k*. Based on the cost, the risk is defined as:

P(A) = Eay [C(A®Y), R)]

and the optimal decision function is A, = argmina p(A). The
optimality is achieved because the cost is averaged over all pos-
sible data, models and parameter values. Moreover, for a binary
cost function C'(k, k*) = 1 — §(k, k*), the method implicitly
selects the model with the Maximum a Posteriori (MAP) prob-
ability:

M = arg max;, Pr(M = kly) 4)

Using Bayes' rule, the posterior model probabilities are:

Pr(M = kly) = W

and require the two following quantities.

1) The probability distribution of the data, f(y). Fortunately,
it does not depend on the model, thus can be calculated by
normalization.

2) The evidence/marginal likelihood, e, = f(y|M = k),
obtained from the joint law of data and unknowns, given
the model, by marginalizing the unobserved texture, the
noise and the texture parameters:

(&)

o= [ M= b)aw ©)
¥

where ¥ = {v,,,z, {, } gathers all the unknowns.
This law is written using the conditioning rule and the hier-
archy shown in Fig. 2:

f(y7‘I’|~/’\/l = k) = f(y|m:’7n) : f(w‘Ck’M = k)
T(pIM = k) - m(va) (7)

It now becomes clear that (6) is intractable due to the nu-
merous layers of non-linearity and must be computed numeri-
cally. In this work, this is done by an MCMC algorithm.

A similar problem has been addressed in our previous work
[28], in the context of direct observations, ¥ = #, and for
Gaussian textures. In that case, (6) reduced to a single integral
with respect to the texture parameters.

III. TEXTURE MODELING

From a theoretical standpoint, the proposed method can
handle any texture model driven by the parameter set ¢. In this
context, the Gaussian RFs (GRF) model is simple and tractable.
Its extension to a scale mixture of Gaussians (SMG) expands
the representation capabilities without particularly affecting the
algorithm efficiency. This model is based on a set of auxiliary
variables 8 such that, conditionally on these variables, the field
x|s is Gaussian, but marginally 2 is no longer Gaussian.

This idea, originating from statistics, has been exploited in
problems of deconvolution and denoising [29]-[33] to formu-
late heavier tailed regularization terms and for modeling natural
images [34]-[36]. The SMGs have been used so far to model the
sparse character of the differences between neighboring pixels

(in the spatial domain) and of the wavelet coefficients (in the
wavelet domain).

This is where our work is different. Here, we take into ac-
count that the blur introduced by the observation model is easily
written as a multiplication in the Fourier domain. Moreover, the
Fourier domain is well adapted for representing textural charac-
teristics. Consequently, our SMG model is defined in the Fourier
domain.

Hence the originality since, although the SMG model has
been previously employed in image analysis, to the best of our
knowledge, it has not been used so far to model the Fourier co-
efficients of a textured image.

For the sake of computational efficiency, we have made the
assumption that the textures are zero-mean and stationary, thus
the covariance matrix has a Toeplitz-block-Toeplitz structure.
For general models,! the exact likelihood cannot be computed
due to the huge dimension of the covariance to be inverted. But,
by Whittle's approximation, this matrix has a Circulant-block-
Circulant form, therefore is diagonalizable by discrete Fourier
transform. The reader is invited to refer to [37], [38] for approx-
imation properties and asymptotic behavior. Consequently, the
Fourier coefficients, denoted by :%p, p = 1...P, are decorre-
lated, conditionally on the power spectral density (PSD). The
conditional law of the image is separable in the Fourier domain
and writes:

P P
f@[¢) o H Cp - exp l_ Z<p|§p‘2
p=1 p=1

Each Fourier coefficient follows a zero-mean Gaussian distri-
bution, of variance given by the corresponding PSD element:

‘%pr ~N (0>Cp—1) ©)

Due to the fact that the law for 2|{ is Gaussian, the Fourier
coefficients are independent, conditionally on (.

The model complexity and thus its representation capabilities
can be enhanced, while keeping the limitation to independent
Fourier coefficients, by changing 1) the law of the Fourier coef-
ficients and ii) the form of the PSD.

®

A. Fourier Coefficient Distributions

This work focuses on two models for the Fourier coefficient
law, between which only the form of {,, changes:

* Gaussian texture (GRF) - ¢, = v, A,(0)

+ non-Gaussian texture (SMGRF) - {, = v, 5,A,(0)
where A,(8) are the shape elements of the parametric PSD,
driven by the parameter set 8. We will denote by A the para-
metric component of the PSD, i.e., the collection of all A,(8).
7. 18 a global scale parameter for the PSD and s, is a local scale
parameter.

The scale parameter pdf determines whether the textures
follow a GRF or a SMGRF model and these parameters allow
us to switch between the two laws, without changing the
parametric part of the PSD, A.

In this context, Fig. 3 completes the problem description from
Fig. 2 by showing the variable hierarchy for the two types of
texture models.

IThis is not the case if the field is defined through its precision matrix (inverse
covariance), e.g. for Markov field.



o Non-Gaussian texture:

02 (6) () (M
(@)

$= {Sl)}pzl...P

Sp ~ g(O‘Sa /86)
o Gaussian texture:
sp=1,p=1..P

Fig. 3. SMGREF texture model.

1) Gaussian Model: Inthe GRF case, the scales are identical:
5p=5=1,forp=1...P, thus (8) and (9) become:

P

F(@le 8. 5) x AF [H An(0)

p=1

P

exp [me)%ﬂ Zpl7,0 ~ N (0, 12, (0)] ")
p=1

(10)

This is the model used in our previous papers [26], [28] for fast
parameter sampling and pixel interaction model choice.

2) Non-Gaussian Model: In this case, a prior is assigned to
5, auxiliary variables and they are included in the estimation
framework. Theoretically, any prior with positive support can be
used. Some immediate examples are Markov or Wishart. Nev-
ertheless, for numerical efficiency, it is essential for this prior to
allow for parallel posterior processing (i.e., the s, should be sep-
arable a posteriori) and to have some conjugacy property with
respect to (8). For this reason, the paper is limited to a priori in-
dependent auxiliary variables, following a Gamma distribution

Gas, Bs):
(1)

Due to this separability, although f(z|v.,8) (the marginal
law with respect to 8) is non-Gaussian, it remains separable.
Here it has a Student's t form, hence (8) becomes:

P
f(m|71'707as7/68) o8 H |:]‘ + M|§:P|2
L B,

f(splas, Bs) sgfl expl—7s5p)

—as—1

(12)

3) Variance: To individually evaluate the impact of each fea-
ture (A, scale parameter, Fourier coefficient pdf), we chose to
keep the same marginal variance of the Fourier coefficients for
the two models. In this manner, it is possible to compare tex-
tures with the same A, but different pdfs, or reversely, with the
same pdf, but different forms for A.

The variances of the Fourier coefficients, conditionally on 8
and ~,, are given by:

o fBS 1
varsmMGrF(Tp| e, 0] = 200, — 1 7y hp(0)
s TP
R 1
var Lplve, 0l = ——
arr[Tplye, 0] Y2 Ap (8)

Thus, the equality of these variances imposes a constraint on the
parameters of the prior for s,: 5, = 2a5 — 1, with oy > 0.5.
Then, the Fourier coefficients for the two types of textures have
the same A, but different pdfs.
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Fig. 4. Examples of texture pairs with the same PSD, but different law for the
Fourier coefficients. On the first row, the SMGRF textures and on the second
row the corresponding GRF textures.

Fig. 5. Examples of shapes for A that can be used with our GRF and SMGRF
texture models. The representation is done in the Fourier domain on the reduced
frequency domain [—0.5,0.5] x [—0.5,0.5].

Due to these common aspects, both models yield stochastic
textures, however, the SMGREF is able to generate more com-
plex patterns. Fig. 4 shows pairs of textures with the same X, but
different pdfs. The A that were used to generate these textures
have parametric forms, such as those depicted in Fig. 5, and will
be analytically described in the next section (see Table I). The
spectral content that is modeled using these forms consists in
highlighting a cluster of spatially connected frequency compo-
nents. For this reason, we can notice in Fig. 4 the strongly sto-
chastic appearance of the GRF textures, with a dominant type of
spectral components. The SMGREF textures present a spectrum
(corresponding to the same parametric form of A) with a more
diverse range of frequencies and thus can represent more com-
plex textures than the GRF. This is due to the presence of the
auxiliary variables which increase the spectral complexity by
increasing the amplitude of certain frequencies in the A. These
supplementary components in addition to the grouped together
high amplitude frequency components of the A will represent
the new, richer PSD.

Remark: The SMGREF textures could also be obtained via the
GRF model, however, for a non-parametric A. The Agrr = 8-A,
which does not have a form that can be easily represented using
a small number of parameters (is not compressible).

B. Power Spectral Density Models

The form of the PSD actually encodes an important part of the
textural content information. It must be stressed that there is vir-
tually no constraint on the form of the PSD: it can be constant,
corresponding to a white noise, or contain a single frequency.
It can have a pulse-like form, this resulting in deterministic-like
textures, or a more blobby shape, with one or several compo-
nents, which would correspond to stochastic-like textures.
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TABLE I
EXAMPLES OF PSD MODELS USED IN THE SEQUEL OF THE PAPER

Gauss

M ‘ Model k& ‘ Expression of )\k’(um, vy, 0r) ‘ 0,
1 ‘ Lorentz ‘ [1 + (A + %] ‘ Vigs Vyos Oz, Oy
Y
3 ‘ Exponential ‘ exp 5 {w + %] ‘ Vg Vyos Oay Oy
4 ‘ Generalized ‘ X % [‘U"' ;’;::n . + Ity ;‘éwn . } Vigy Vyos Oy Oy, 4

From an algorithmic point of view, it is advantageous to use
shapes encoded through a small number of parameters. For this
reason, this paper focuses on parametric, unimodal functions,
with a relatively reduced number of parameters: Lorentz (M =
1), Generalized Lorentz (M = 2), Exponential (M = 3) and
Generalized Gaussian (M = 4). Each model % is driven by the
corresponding 85, and Table I explicitly shows the A" (8;,).

The parameters of these functions are the central frequencies
Vao, Vy,, the widths o, o, and the positive shape parameter g,
specific to models M = 2 and M = 4.

We have chosen to include embedded models, for instance
M =1and M = 3 arenestedin M = 2 and M = 4, re-
spectively, for ¢ = 1. This enables an analysis of the method
capacity to penalize model complexity when the extra parame-
ters do not trigger a significant model fit increase.

The textured images are spatially discrete, thus the PSD is de-
fined on the reduced frequency domain [39], [40], i.e., the vari-
ables (v, v,,) € [—0.5,0.5]%. Furthermore, let us consider that
the Fourier coefficient p has the (v.,,, v, )} position in the discrete
reduced frequency domain. The A, from (10) and (12) are the
elements of the PSD field at these discrete positions and depend
on the model, M = k, and on the parameters 8. From this
point forward, to explicitly show this dependency, the notation
)\’Ij (8},) is used and, more precisely: /\’; (8;) = )\k(um, U, 01).

The use of parametric models has the advantage of reducing
the number of unknowns. On the other hand, this model defines
a highly non-linear dependency of A% (6;) with respect to 8y,
as shown in Table I. This complicated dependency means that
there is no conjugate form for this law.

Moreover, the prior information about the texture parameters
01 = {Vay, Vyy, 0z, 0y, g} is very reduced, thus, uninformative
priors will be used. Consequently, a uniform prior is employed:

m(0c M = k) = Ugn o] (8),), where 87" and 87" are the
vectors containing the mrnrma respectively maxima, allowed
values for the texture parameters. These values were chosen to
ensure the coherence of the parameter values with their physical
interpretation: ;" = {—0.5, —0.5,1072,1072,0.1} and ;" =
{0.5,0.5,1,1,5}.

This section devoted to the texture models has concluded
the problem specification part of this paper. Based on the
chosen observation model and the SMGRF image model,
Section IV will present considerations regarding the problem
difficulty and Section V will give the mathematical develop-
ments required to determine the most probable model.

IV. INFORMATION QUANTITATIVE ASSESSMENT

The data can be more or less informative and this is directly
reflected in the problem difficulty. In order to evaluate this diffi-
culty, this section presents a series of theoretical considerations
regarding the available information, quantified by the Fisher in-
formation matrix.

Let us now focus on the information regarding any compo-
nent of ¥, denoted by +/, by analyzing the diagonal elements
of the information matrix, i.e., the expectation of the second
derivative of the co-log-likelihood:

10) = gy [ boef0®)] 03
Y

Due to the separability and Gaussianity of the noise model
and the form of (1), the law f (§|\II) is also separable, Gaussian,
zero-mean and of variance:

rp(E) = gp [ve8pAp (0)] (14)

+y
where g, = |hyp|?. Equation (13) contains first and second order
derivatives of , (¥) with respect to ¢). When calculating the ex-
pectation, knowing that E g [|¥,[?] = r,(¥), the second order
derivatives cancel out. Then:

P 1 / 2
(¥) ; [rp(q,) rp(\I')] (15)
where r;,(¥) is the derivative of 7, (¥) with respect to /.
For the noise parameter,
l —2
Iim) = Y [yt + 2 g 52 (0] (16)

p=1

is a decreasing function, thus, the smaller the +,,, i.e., the larger
the noise level, the easier its estimation.
For a texture coefficient 4, element of 4,

— gp * Ap(0)
0 =2 [/\p(ﬂ) [9p + Yo/ - Sp

p=1

wn] (7

depends on the values of the other texture parameters. For in-
stance, the information regarding the central frequency v
higher if the frequency V is close to 0 and decreases symmetrr-
cally with the absolute value of 1/ (see Fig. 6(a)). Z(¥°) also
increases when the width ¢ decreases i.e., the characteristic
is more concentrated, as in Fig. 6(b). Moreover, the amount
of information available for estimating the texture parameters
also varies according to the PSD model. Finally, concerning the
signal and noise levels, the lower the SNR, the smaller Z(8) in
(17) and, thus, the less information on 8.

Remark: The higher information around the null frequency
is due to the low pass character of the PSF. This becomes ob-
vious in Fig. 6(d) where the amount of information for the high
frequencies drops significantly when the filter becomes more se-
lective (the inverse width is higher).

Another interesting case is the noiseless scenario (7y, = 00):

5 =R A;w)r

p=1

7(0) = (18)
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Fig. 6. Variation of the Fisher information for 22, as a function of various factors. Only one parameter is varied at a time in order to quantify its effect on the
amount of information for £/ (in logarithmic scale). (a) 1/2 sweep; (b) o1 sweep; (c) model sweep; (d) OTF inverse width; (e) y» sweep.
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Fig. 7. Fisher information for w, for various values of the observation system parameters w; and -y, (in logarithmic scale). (a) v, sweep; (b) wy sweep-high

Yn; (€) wy sweep-low v, .
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Fig. 8. Different cases emerging from the relative positioning and widths of the TF and PSD. (a) Total overlap; (b) partial overlap; (c) no overlap.

The Fisher information regarding 8 depends only on the PSD
(as in [26]). This has multiple implications on the amount of
information for the texture parameters:

* it does not depend on the form of the TF (known TF),

* it is the same, whether the texture is Gaussian or not.

Fig. 7 illustrates the amount of information concerning one
width of the PSD for various levels of noise and widths of the
PSF. In Fig. 7(a), the variation of the Fisher information with
the noise precision shows a significant difference in the amount
of information. Situations with SNR < 20 dB are challenging,
since the available information is reduced. Figs. 7(b) and 7(c) il-
lustrate the Fisher information variation for a PSD width as a
function of the TF width wy, the SNR being fixed at 30 dB in
Fig. 7(b) and at 10 dB in Fig. 7(c). These plots show that the
Fisher information does not strongly depend on the wg, espe-
cially in the low noise case (high +,,) from Fig. 7(b).

Last, but not least, for the auxiliary variables s,

2
Yp
I(sp) = { } (19)
P [3p (9p + Ya /Y - $pAp(6))]
the information depends on the corresponding coefficient of the
PSD, TF and +y,,. Moreover, for the noiseless case, Z(s,) = s]jz,
i.e., the smaller the value, the more the information.

Fig. 8 illustrates various scenarios for a Gaussian TF and a
Laplacian texture PSD. Their product plus the noise, of variance
1/4y, yields the observation's PSD. The extreme cases are either
simplifications:

* PSD centered near the null frequency and narrower than

the TF, the effect of the convolution being negligible,

* noiseless case (v, — o0),

+ asd
or cases with signal alterations so severe that information on the
original PSD is no longer present in the data:

+ the PSD is positioned in a region with strong TF attenua-

tion, the original image information being lost,

* highnoise case {(y,, — 0). This corresponds to a low Signal

to Noise Ratio (SNR) #,, /..
This section offers a prior performance analysis based on the
Fisher information matrix. The amount of available information
is directly related to the estimation performances, allowing us to
predict these performances in various situations.

V. EVIDENCE CALCULATION

The full description of our Bayesian model choice method re-
lies (i) on the data model and (ii) on the priors for the unknowns.
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The hierarchical direct model is shown in Fig. 2, while the tex-
ture model specificities are shown in Fig. 3. In the following,
the emphasis is on the SMGRF, which encompasses the GRF.
By writing (6) as:

o

.Yz Vn,0k,8

(8| M = k)ds df), dv, dy, dz (20)

and plugging in (2) and (8), the intractability of the integral is
obvious. For this reason, it must be calculated numerically and
the solution chosen here is sampling.

A natural idea is to straightforwardly determine the
evidence ¢, from samples of the prior (M = k):
o) — (m(t) 7(t) %g &) o(t))

1y (1)
eszt—zlf(yhlf ,Mzk)

It consists in sampling the priors and computing the arithmetic
mean of the corresponding likelihood values—Arithmetic Mean
Approximation (AMA). Evidence computation based on prior
samples can also be done by nested sampling [41].

Nevertheless, when the likelihood is very peaked, as in the
current case, most of these samples have weak likelihood, i.e.,
an insignificant contribution and thus, the algorithm is slow to
converge. For this reason, it is more suitable to compute (20) by
sampling the posterior 7(¥|y, M = k).

.. T as follows:

€2y

A. Posterior Sampling

The posterior law is proportional to the joint law:
fy. ¥, M =k)

P
T Z 1Yp — hpxpﬁ]

p=1

=C-exp [

y

P+a,—

“Yn *exp[—Bnm] H

vy T exp—faa] exp[ Vo Z\&p\ SpAE ]

Y
g 00 T 5o [—ss o e
) p=1 p=1

where the normalization constantis C = K 1. (27) 3F . q,ﬁf" ‘
) - B3 T Hay)-BE - Tlay) P (8" — 67
However this law cannot be directly sampled, thus MCMC
methods will be employed, more precisely, Gibbs sampling.
This can be performed via two types of algorithms.

+ Across-model approach—joint sampling of the model
index and its parameters. The algorithm jumps from one
model to another and explores the joint model index plus
parameter space, yielding a joint chain of model indexes
and parameter values. The most representative algorithm
of this type is Reversible Jump MCMC (RIMCMC) [42].

* Within-model approach—consists in exhaustively visiting
the candidate models and parameter sampling condition-
ally on the model. It provides K chains of parameter
values, one for each model. For a detailed description see
[43], [44] and the more recent survey [45].

Despite the conceptual differences, for a finite candidate
models set, the two approaches yield the same result (provided
they have reached convergence) but, under two different forms.

The RIMCMC algorithm is especially interesting for a
very large number of models, when an exhaustive sequential
sampling of all the models may be prohibitively expensive.
However, in our problem, the number of concurrent models is
rather reduced. In this case, the within-model strategy is better,
avoiding the non-trivial RIMCMC problems concerning the
parameter transformation when switching models. Moreover,
the within-model approach guarantees that all models have
been thoroughly explored and the model selection is not af-
fected by the sampling algorithm. For this reason, our model
choice method is based on within-model posterior sampling.

B. Evidence Approximations Based on Posterior Samples

Our model selection method is based on evidence approxi-
mation from posterior samples and the proposed method will be
referred to as the Classifier based on Evidence Approximation
from Posterior Samples (CEAPS). This method can be formu-
lated using two different approximations of the evidence, which
we present in the following: the Harmonic Mean Approxima-
tion (HMA) [44] and the Laplace-Metropolis Approximation
(LMA) [16].

1) Harmonic Mean fyproximation: We consider that &) =
(&®, 0 A5 s®) H(t ,t = 1...T are samples of the a pos-
teriori law. Then the ev1dence can be computed as:

o B SN I

t=1

i.e., the harmonic mean of the likelihood values for the o,

Although € converges almost surely to the true value ey
when T — oo [46], it does not generally satisfy the central
limit theorem [45]. Occasionally, a ¥ with significant a priori
probability, but very low likelihood, may occur. Its contribu-
tion in the harmonic mean is high and this may trigger infinite
variances [44]. Solutions to stabilize this approximation have
been provided in [47]. Nevertheless, we have not encountered
this difficulty neither in our previous work [28], nor in the cur-
rent one, where the priors are uniform on a finite interval and
the likelihood is very peaked. Hence, the posterior samples are
distributed in the regions where the likelihood has significant
values. Consequently, the situations where the HMA may di-
verge or converge too slowly are avoided.

2) Laplace-Metropolis Approximation: The evidence (20)
can also be expressed as:

ek:/exp{log [/ (y|®, M=Fk) - m(¥M=Fk)]} d¥ (24)
v Fr(¥,y)

with Fy, (¥, y) the log-posterior computed for observation y.



Remark: Fi(¥,y) is called the observed information and in-
dicates the amount of available information, for the given ob-
servation y. Fi (¥, y) is related to the Fisher information Zj, in-
troduced in Section IV through (13) as follows:

Ti(¥) = —Ey [F{/(¥,9)] (25)
Under the hypothesis that Fy (¥, ) is twice differentiable with
a unique maximum in ¥*, the Laplace approximation of a
quadratic function (also used for the derivation of BIC) can be
applied to evaluate the integral (24):

2T

Dy
&, ~exp [PFy (B2, y)]- (?> J-F (8L, 26)

where ¥}, represents the MAP value for model k, F}' (¥, ) is
the Hessian of the log-posterior, evaluated at ¥}, and Dy, is the
dimension of model k. The last factor in (26) is the determinant
of the observed information matrix. In fact, computing the ev-
idence in this manner consists in determining the MAP value,
¥* i.e., the value for which F'(¥, y) is maximum, and replacing
this value in (26). [48] reviews the Laplace based methods for
evidence computation. These approximation methods have rel-
ative errors of order O(P~1).

This approximation can also be performed based on MCMC
samples from the posterior. In this case the method is called
Laplace Metropolis Approximation (LMA) [16]. The LMA can
be based in the MAP, the Posterior Mean (PM), or the Median
a Posteriori (MedAP) and the Hessian can be approximated by
the covariance matrix of the samples. In our case, this approxi-
mation is performed using the PM and the value of the Hessian
computed for the PM.

Remark: The LMA explicitly penalizes complex models due
to the second factor that decreases exponentially with model di-
mension, while for the HMA the model complexity penalization
is implicit.

C. Gibbs Within-Model Posterior Sampling

The samples from the posterior law are obtained using Gibbs
sampling. Among the various strategies, we have chosen to
sample Yy, Ve, &, 85 and 8. The advantage of this approach
is that we obtain rather standard targets and we can perform
parallel sampling for 2 and 8. Then, the a posteriori conditional
laws for the parameters are the following:

2~ [Texw [~ (mlilp — hodpl? + 712, 5,25 000) ) |
p

[olNe]
= L N(mp,vp), with my = ¥¥phpv, and
Up = (Yngp + VaSpAL (Bk))fl—separable in the Fourier
domain, i.e., parallel sampling is possible; computation
cost equivalent to sampling the a priori law;

s~ JT {507 exp—sp 213, 2\568) + 8. |
4
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= Hpg(as,bsp) with a;, = oy + 1 and by, = 85 +
VaSp \;%p | 2/\’; (@), )—separable, independent on the observa-
tions, allowing for parallel sampling;

Yo ~Eren T exp <5n + Z Yp — hp$p|2>

P

G(any bn)a with ap = Qp + P and bn - /Bn + Ep |§p -

o
p*T'p‘Q;

>0

Yo~ vy T exp =, (/31 + Z lmp‘Qsp)‘I; (3;;))

P

= G(az,b,), with a, = a, + P and b, =
Ba + 3, 15, X5 (81);

P
81 ~ UBK) - TT Xo(0n) - ex | —vas, |7, PX5(01)]

p=1

f(0klz, 8,7, M = k)—very complicated dependency.
Since # has a non-standard law, more complex sampling
strategies must be used. We chose to include an MH step [49]
in the Gibbs loop. This Metropolis within Gibbs strategy is
convergent, as proven in [50], i.e., provides a chain of values
\If(t), t = 1...T that has the posterior as limit probability
distribution (when the number of iteration tends to infinity).

Remark: The alternative to sampling all the unknowns is to

integrate a part of them, in order to avoid their sampling steps.
This strategy is similar to the collapsed Gibbs sampler method
used in [1]. Some of the options are the following:

* 2 marginalization and sampling the rest of the unknowns,
thus no texture sampling, but even more cumbersome de-
pendency on -y, 8, 8 and v,,. Regarding s, it remains sepa-
rable, thus parallel sampling is feasible, but not of Gamma
laws. Furthermore, the posterior for 7,, and v, no longer
have Gamma forms either:

1 Wyl
’ n:e‘ * - £ >
f(sp Y. L' ) X exp [Tp ’Yg;SpAp(Ok)

o*o 2

o 1 Dk |
- exXp — [FpYnYaSpAp(03)] 12p — — —BF
D — [7pVn Ve SpAp (Ok)] [ P r ’Yxsp)\p(ok)J

s marginalization, resulting in a complicated law for 2 (loss
of the advantage of the SMGRF texture model—the con-
ditional Gaussianity for i’p). However, i*p remain indepen-
dent, thus can be sampled in parallel, but by more sophis-
ticated samplers. The new conditional laws are:

—agz—1
o z/\k 0 o . :
f(@pl) o 1+7 p( k)|rp|zl

s

o[l ]

- integrate both # and 8 and sample only 7,, ¥, and 8,
which will be distributed under complicated laws.
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Moreover, by marginalization, the resulting law is more diluted,
thus what is gained by eliminating sampling steps, may be lost in
terms of speed of convergence. We have chosen not to integrate
any of them since, although this implies more sampling steps,
the sampled laws are easier to handle.

D. Efficient Metropolis-Hastings for 8

A Random Walk MH (RWMH) step consists in formu-
lating a proposal 8, based on a proposition law of the form
q(8::10.) = 0. + ¢, evaluating the acceptance probability
£(8.,0,,), which is a function of the current value and the
proposal, and then acce(pting or rejecting the proposal. If the
proposal is accepted, 8 R 0., otherwise 8 — 8.. The
algorithm is known to be convergent [51]: the samples are
asymptotically distributed under the posterior law.

There are numerous options for formulating the proposal and
both the convergence speed and mixing properties are directly
influenced by the adequacy between the proposal law and the
target. Thus, choosing a ¢ that embeds information about the
shape of the target can significantly enhance the algorithm per-
formances. In this context, the RWMH algorithm formulates the
proposal based on a stochastic component and, in some cases, a
component based on the target. This can contain first or second
order derivatives of the target, so as to ensure a convenient ex-
ploration of the parameter space.

In [26] we have developed an efficient sampler called the
FRWMH. This algorithm is based on the idea of quasi-Newton
proposals [23] for a fast exploration of the parameter space and
superior mixing properties. In this context, the Hessian used in
the quasi-Newton approach is replaced by the Fisher informa-
tion matrix. The FRWMH algorithm formulates the proposal:

By =0.+c T 1(8,) VoLl(8.)+ /T 1(0.) - 2.

where £(8) = log (8|y) is the log-posterior, z. ~ N(0,I)
is an isotopic displacement and Z(8) is the Fisher information
matrix, already defined in Section IV by (13).

In this case, the acceptance probability £(8., 8, ) becomes:

. 7(0p:) - 9(0pr, 8.)
€0, O] = min {1’ SICARPION }

27

(28)

with
q(0p:,0.) =N (ﬂpr ~8, - %48,)- Vgﬁ(ﬂc),I*1(0c))

The use of this proposal proved advantageous from multiple
points of view. Firstly, this exploits the target curvature similarly
to the Newton step from the optimization theory. Secondly, this
made way for a series of algorithmic simplifications and perfor-
mance enhancements:

e for our GRF textures, the second order derivatives van-
ished under the expectation. Thus, the efficient proposal
was formulated only based on first order derivatives,

+ the Fisher matrix is positive definite, hence when it is well-
conditioned there are no instabilities when taking the in-
verse, such as those mentioned in [23] for the Hessian,

+ also due to the positive definite Fisher matrix, the Newton
term always has the direction of gradient ascent, thus the
algorithm only makes efficient steps.

The same principle of using the Fisher matrix to formulate
an efficient proposal is exploited in the manifold Metropolis ad-
justed Langevin algorithm (mMALA) [20].

E. Implementation Issues

The implementation has raised two numerical problems:

1) Since the likelihood has an exponential form for each
Fourier coefficient and consists in a product over all the
coefficients, this quantity often exceeds Matlab’s rep-
resentation capabilities. To overcome this obstacle, the
co-log-likelihood (CLL), i.e., the negative log-likelihood
is computed instead of the likelihood.

2) The problem is again encountered when computing the ev-
idence from the CLL. The employed solution is to deter-
mine the minimum value of each CLL chain, subtract it
from all the CLL chains and compute the evidences based
on the “offset” values, in a logsumexp manner. The nor-
malization is reversed in the final stage of posterior prob-
ability computation.

The resulting CEAPS procedure is given in Algorithm 1, where
the “ComputeEvidence” routine can be based on either of the
two aforementioned approximations.

These previous sections have presented theoretical aspects re-
garding the employed method, its mathematical formulation and
the corresponding implementation issues. The following section
will present a series of tests that evaluate the method perfor-
mances.

VI. EXPERIMENTAL RESULTS

This section is devoted to the description and interpretation
the performances of our CEAPS model selection method from
blurred and noisy textured images. Several experiments are pre-
sented.

A. The first study compares the two MH samplers: the stan-
dard RWMH and the FRWMH.

B. The second test compares the two evidence approxima-
tions based on posterior samples, i.e., HMA and LMA.

C. The evaluation of our CEAPS classifier represents the
third test. The classification performances for the CEAPS
are first presented for various PSDs and then compared to
those of the GMLE classifier.

D. The classification performances are linked with the Fisher
information analysis of Section I'V.

E. Results concerning the deconvolution are given in a visual
form, by presenting the original textures, the observations
and the deconvolved images.

Algorithm 1 proceeds as follows: a sampler is launched for
each of the K concurrent models. These samplers compute at
every iteration the evidence, based on the samples that have
been drawn so far. When the difference between two consecu-
tive values of the evidence is smaller than a threshold, the sam-
pling is stopped. The first 10% of the samples are discarded as
burn-in and the evidence is recomputed based only on the re-
maining 90% of the samples. Since the sampling is the most time
consuming operation, it determines the duration of the overall
algorithm and thus it is important to use efficient samplers.



Algorithm 1: Classifier based on Evidence Approximation
from Posterior Samples (CEAPS) Algorithm

input : Data y, models dictionary for
M=k k=1.K

output: Evidences é;, + samples for texture (*), noise
parameter 'yff), texture parameters Off) t=1.17)

% prior model probabilities:

pr =1/K;
% generate samples of (0, x, s, vy, M = k)
for k=1 to K do
% Gibbs sampler for (v, 8,0, x), M =k fixed:
t=1;
initialization OS), x®) =y, st);
CLL,(t) = CoLogL(z®, s(*), 0,(:));
m(k) = min(CLLy);
nCLL; = CLL; — m(k);
% compute the evidence using HMA or LMA
L = ComputeEvidence(nCLLy);
erec(t) - 0;

while |e,..(t) — é;| > € do

W~ Oy, 2D an, B,)

'Y;E;t> ~ f(,ym‘m(t—l)70§€t—1)’ S(t_l)., awﬁ,’;)
s~ f(sl2D, 07V, au 8,)

6\") — FRWMH with target f(0)]a~1,s®)
2 ~ f(aly. 1.7, 5, 60)

CLLy(t) = CoLogL(2"), s, 6;");

m(k) = min(CLLg);

nCLL; = CLL; — m(k);

ek = ComputeEvidence(nCLLy);

erec(t) = RecursiveEvidence(e,c.(t — 1), €x);
end

end

% determine the posterior model probabilities
for £ < 1 to K do

Pr(M = kly) = pr-€x/ sz -€-exp [m(k) —m(l)]

% Compute the parametel7 estimates by PM
Gk = PM(Bk);
end

A. RWMH vs FRWMH

The first tests investigate the speed performances of two
sampling algorithms, the isotropic RWMH and our efficient
FRWMH, in the context of the complicated laws for 8.

Our tests indicate that the use of the FRWMH yields an algo-
rithmic speed increase by a factor of at least 10 as compared
to the RWMH. This is due to the FRWMH directional form
of the proposal, which permits the algorithm to attain the high
probability region in a very small number of iterations. Once in
this region, the directional component exhibits negligible values
and the algorithm explores this high probability area of the pa-
rameter space due to the stochastic component of its proposal.
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Fig. 9. CLL evolution—posterior sampling starting from the same initializa-
tion, using RWMH and FRWMH.

This translates into a very short burn-in period, as opposed to
the isotropic RWHM, which has a significantly longer burn-in
period, depending on the initialization. This efficiency is illus-
trated in Fig. 9 where the CLL chains for the two samplers are
represented.

Using the efficient FRWMH sampler for the  parameters, the
overall sampling process takes roughly? 1 minute/model, thus
the full run takes 8 minutes (the number of candidate models:
K = 4 shapes of A for the GRF type and K = 4 shapes of A
for the SMGRF).

B. LMA and HMA

The posterior samples drawn by FRWMH within Gibbs sam-
pling are used to compute the evidences. This is achieved via
two approximations: the PM-based LMA and the HMA.

These approximations are computed using the same set of
posterior samples in order to evaluate their accuracy in the same
conditions. The numerical results show that the difference be-
tween the two evidence approximations is less than 0.1%, thus
confirming that both approximations are viable for the problem
in question.

Moreover, since the sampling is the most costly part of the ev-
idence computation, the choice of approximation does not affect
the overall speed performance. Consequently, the two evidence
approximations imply a similar computational load.

In the tests presented in the following section, the CEAPS is
based on the HMA.

C. CEAPS Performances

Let us now present the performances of the selection method
itself. The experimental setup consists in testing our method
on synthetic textures, using 20 sets of parameter values for the
PSD. Each set was used for each PSD model to generate both
GRF and SMGRF texture realizations. The observations are ob-
tained in a scenario with Gaussian blur of standard deviation w
= (0.3 and SNR = 20 dB. This corresponds to a partial overlap
configuration, such as the one depicted in Fig. 8(b).

2Algorithms have been implemented using the computing environment
Matlab on a Personal Computer, with a Intel Xeon 2 GHz and 1 GB of RAM.
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Fig. 10. Selection problem when the true model is not among the candidates. (a) True A; (b) Observed PSD; (c) A candidate 1; (d) A candidate 2; (¢) A candidate 3.

TABLE II
CEAPS MODEL SELECTION PERFORMANCE FOR GRF TEXTURES (CORRECT
CLASSIFICATIONS RATE IN %) FOR A PARTIAL OVERLAP CASE

Estimated model

True model Lo GL Exp GG
Lo 10 1 4
GL 21 3 7
La 2 4 7
GG 4 8 16
TABLE III

CEAPS MODEL SELECTION PERFORMANCE FOR SMGRF TEXTURES (CORRECT
CLASSIFICATIONS RATE IN %) FOR A PARTIAL OVERLAP CASE

True model Estimated model

Lo GL Exp GG
Lo 9 1 3
GL 19 2 6
La 1 7 9
GG 3 6 20

1) CEAPS: The algorithm was run on each texture realiza-
tion and Tables II and III summarize the classification results
for GRF and SMGREF textures, respectively. We observe on the
main diagonal of both tables the percentages of correct clas-
sifications. As expected, the CEAPS chooses the correct PSD
model in most cases. There are, however, situations where the
method chooses another model.

As anticipated by the Fisher information analysis, in the ma-
jority of cases, there is enough available information on the cen-
tral frequencies to ensure the samples are distributed under the
correct law and have a finite variance. Nevertheless, the infor-
mation concerning the widths is more sensitive to the noise level
and the PSD model and thus more prone to errors. These errors
are important for the method behavior, since they trigger mis-
classifications. The majority of missclassification cases are due
to high noise levels and consist in mistakenly considering a PSD
with thicker tails as the most adequate model. In this situation,
the thicker tails account for the noise and the noise level is un-
derestimated.

Nevertheless, in the context of our model choice problem,
where the nested models help testing the method's ability to pe-
nalize model complexity, choosing another model can be re-
garded as not necessarily a failure. In this setting, the under-
lined percentages from Tables II and III represent the “good”
miss-classifications, for instance, a Generalized Gaussian with
¢ = 1 that is classified as an exponential. This illustrates the

method's capacity to penalize model dimension, i.e., eliminate
the parameters that do not significantly increase the model fit.

The method is not only able to distinguish between the dif-
ferent PSD forms, but also between the laws for the Fourier co-
efficients. More specifically, in 82% of the cases the algorithm
correctly determined if the texture was from the GRF or the
SMGREF class. This means that, on the one hand, the method
has the ability to discriminate among a GRF and a SMGRF
having the same form for the parametric part of the PSD. On the
other hand, the PSD models themselves are structured enough to
allow the algorithm to simultaneously identify the PSD model
and whether all the PSD coefficients are identically scaled or
not.

In the case where the real model that generated the data is not
among the candidates, for each candidate model & = 1... K,
the chain of samples for 8 converges to the values that make
model k& best resemble the true model. Then, the evidences are
computed based on these estimates and the model with the MAP
probability is selected.

For instance, if the true model was an SMGRF with a cer-
tain shape for A and the candidate models are only GRFs with
various shapes for A, an important remark is that the estimated
widths for A will be overestimated (i.e., 0, and o, will be un-
derestimated), since the new A will have to fit a wider range
of frequencies (due to the presence of the auxiliary variables).
Then, the method will choose the shape of A that best fits the fre-
quency components of the test image. Such a case is depicted
in Fig. 10, where we show the true A, the PSD of the observed
texture (product among the true A and auxiliary variables) and
the PSDs of some of the candidate models (PSD is equivalent
to A in this case since the candidate models are GRFs).

2) CEAPS vs GMLE: A crucial point is that the GMLE
cannot solve the problem of interest. This is due to the presence
of indirect data introduced by the:

a) non-Gaussian texture model,

b) blurred and noisy observations.

Although the comparison cannot be performed on our problem,
it is done on a simplified version of the problem dealing with
direct observations (no noise, no convolution) of GRF textures.

Table IV lists the average classification success rate for the
CEAPS and the GMLE, every method being tested on 20 tex-
ture realizations, with various parameter values for each type of
PSD shape. More specifically, this represents an averaging over
the PSD models and PSD parameters. The lower classification
performance of the GMLE is due to the fact that it does not
have any mechanism of model complexity penalization, thus it
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Fig. 11. CLL chains to illustrate a typical situation where GMLE fails to select the good model. (a) CLL chains for candidate models; (b) zoom on the CLL chains

for the most likely models.

TABLE IV
AVERAGE MODEL SELECTION PERFORMANCE (CLASSIFICATION SUCCESS
RATE IN %) COMPARISON BETWEEN CEAPS AND GMLE. THE AVERAGING IS
DONE OVER PSD MODEL AND PSD PARAMETERS

Algorithm | Classification accuracy (%)

CEAPS 89
GMLE 86

chooses in 100% of the cases the most complex among the em-
bedded models. On the contrary, as previously explained, the
CEAPS penalizes model dimension and selects the less com-
plex model that fits the data.

Table IV shows that the GMLE has a lower success rate and
the reason for this is illustrated in Fig. 11. In this figure, we
plotted a case where GMLE selects the Generalized Gaussian
model, since its minimum CLL is the global CLL minimum
among all models. However, the minimum co-log PM is that
of the Laplacian model, which is indeed the true model. This is
a typical failure situation for GMLE.

As already stated in Section II, the evidence based classifier
is optimal from the risk point of view, property that can be seen
in this table through the CEAPS performances.

D. Results and Fisher Information

The experiments show that high noise scenarios, SNR <
20 dB, are challenging since the samples for the widths have a
too strong variance (this variance is high when the Fisher infor-
mation is low). Furthermore, these samples, used to compute the
evidences, have a direct impact on the model selection process.

In practice, above a certain noise level, the method tends to
favor the thicker tailed PSDs, by considering that these tails ac-
count for the noise. We have seen in the informational analysis,
summarized in Fig. 7, that for high noise levels there is a smaller
amount of information, thus more uncertainty in the estimation,
which eventually triggers estimation errors for the PSD widths
and even miss-classifications. More specifically, the noise level
is underevaluated and either the PSD widths are overevaluated,
or a model with thicker tails is selected.

E. Image Reconstructions

Using the samples employed to compute the evidences, we
can also compute PM estimates for the texture parameters,
the noise precision and the unknown image. Consequently,

as an additional result, our algorithm provides a PM estimate
of the original image, conditionally on the selected model.
Fig. 12 shows examples of the reconstruction. We can ob-
serve situations (Figs. 12(c), 12(f) and 12(i)) where CEAPS
successfully restores the texture even if the observations are
severely degraded. This illustrates the method's high capacity
to handle the blur and the noise. This is due to the strength
of the information given by the structure of the PSD and to
the method's optimality from the classification and estimation
risk point of view. Nevertheless, there are also situations, such
as Fig. 12(1), where the image is degraded to an extent that
impairs a reconstruction, in most cases, this being due to a low
information scenario.

VII. CONCLUSION AND PERSPECTIVES

This paper presents a method for texture model choice from
blurred and noisy observations. The textured images are mod-
eled by Scale Mixture of Gaussian Fields with parametric power
spectral density and parametric probability density for the scale
variables. In a Bayesian framework, we are able to determine the
posterior model probabilities based on the evidences, this ap-
proach being optimal from the classification risk point of view.

The employed within-model simulation technique consists
in a sweep of all possible models and the computation of the
evidence for each model. This quantity can be determined only
by numerical methods, since the required integral is intractable.
We have compared two methods for numerically computing
the evidence based on samples from the a posteriori law, the
Laplace Metropolis Approximation and the Harmonic Mean
Approximation, which yield the same results in the context
of our problem. We have presented the performances of our
Classifier based on Evidence Approximation from Posterior
Samples, which is the optimal model choice strategy from the
mean classification error point of view. This is reflected in the
classification results that show the method's ability to select the
true model.

As a secondary result, this approach provides chains of sam-
ples for the parameters, conditionally on each model M = k.
These samples can be used to obtain estimates that are optimal
from the mean square error point of view, by using the Poste-
rior Mean estimator. Moreover, using these estimates and the
selected model, the original image can be reconstructed.
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Fig. 12. Reconstruction results—4 cases to be read from left to right, on the
first column the original, unobserved texture, /6", M = k*, in the center the
distorted observations, y, and on the right column the results of the deconvolu-
tion, for the selected model, |6, M = k.

Further developments include, but are not limited to, ex-
tending the SMGRF texture model to dependent Fourier
coefficients, which would make it more versatile. Another idea
is the use of multi-modal power spectral densities, in order to
obtain more structured or quasi-periodic textures. From another
standpoint, the method can be coupled with a beforehand
learning step to enrich the set of possible texture model. From
a different perspective, the method can be adapted to deal with
unknown point spread functions (blind or semi-blind approach)
and the estimation of their parameters [52]-[54].
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