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A Probabilistic Analysis of the Reduction Ratio in the Suffix-Array IS-Algorithm

We show that there are asymptotically γn LMS-factors in a random word of length n, for some explicit γ that depends on the model of randomness under consideration. Our results hold for uniform distributions, memoryless sources and Markovian sources. From this analysis, we give new insight on the typical behavior of the IS-algorithm [9], which is one of the most efficient algorithms available for computing the suffix array.

Introduction

The suffix array of a word, is a permutation of its suffixes that orders them for the lexicographic order. Since their introduction by Manber and Meyers [START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF][START_REF] Manber | Suffix Arrays: A New Method for On-Line String Searches[END_REF] in 1990, suffix arrays have been intensively studied in the literature. Nowadays, they are a fundamental, space efficient, alternative to suffix trees. They are used in many applications such as pattern matching, plagiarism detection, data compression, etc.

The first linear suffix array algorithms that do not use the suffix tree construction were proposed by Ko and Aluru [START_REF] Ko | Space efficient linear time construction of suffix arrays[END_REF], Kim et al. [START_REF] Kim | Linear-time construction of suffix arrays[END_REF] and Kärkkäinen and Sanders [START_REF] Kärkkäinen | Simple linear work suffix array construction[END_REF] in 2003. Since then, a lot of variations or heuristics have been developed [START_REF] Puglisi | A taxonomy of suffix array construction algorithms[END_REF], motivated by the various practical uses of this fundamental data structure.

A few years ago, Ge Nong, Sen Zhang and Wai Hong Chan proposed such a linear suffix array algorithm [START_REF] Nong | Two efficient algorithms for linear time suffix array construction[END_REF], which is particularly efficient in practice. This algorithm, called the IS-algorithm, is a recursive algorithm, where the suffix array of a word u is deduced from the suffix array of a shorter word v. This shorter word is built using the LMS-factors of u: an LMS-position i in u is an integer such that the suffix of u that starts at position i is smaller, for the lexicographic order, than both the one that starts at position i -1 and the one that starts at position i + 1; LMS-factors are the factors of u delimited by two consecutive LMS-positions. Once the suffix array of v is recursively calculated, the suffix array of u can be computed in linear time.

In this article we are interested in the typical reduction ratio |v| |u| obtained when making this recursive call. We propose a probabilistic analysis of the number of LMS-factors in a random word of length n, for classical models of random words: uniform distributions, memoryless sources and Markovian sources. We prove that the reduction ratio is concentrated around a constant γ, which can be explicitly computed from the parameters that describe the source.

In this extended abstract, we chose to focus on memoryless sources. After recalling the basics on words and suffix arrays in Section 2, we explain in Section 3 the steps that lead to our main statement (Theorem 2). In Section 4, we briefly explain how this result can be generalized to Markovian sources, and give the explicit formula for the typical reduction ratio under this model (Theorem 3). We conclude this article with some experiments, that are just intended to illustrate our theoretical results, and with a short discussion in Section 5.

Preliminaries

Definitions and notations

Let A be a non-empty totally ordered finite alphabet. For given n ≥ 0, we denote by A n the set of words of length n on A. Let A * be the set of all words on A.

If u ∈ A n is a word of length n ≥ 1, let u 0 be its first letter, let u 1 be its second letter, . . . and let u n-1 be its last letter. The reverse of a word

u = u 0 • • • u n-1 is the word u = u n-1 • • • u 0 . For given i and j such that 0 ≤ i ≤ j ≤ n-1, let u[i, j]
be the factor of u that starts at position i and ends at position j: it is the unique word w of length ji + 1 such that there exists a word v of length i such that vw is a prefix of u. For given i such that 0

≤ i ≤ n -1, let suff(u, i) = u[i, n -1]
be the suffix of u that starts at position i.

Recall that the suffix array of a word u of length n ≥ 1 is the unique permutation σ of {0, . . . , n -1} such that, for the lexicographic order, we have suff(u, σ(0)) < suff(u, σ(1)) < . . . < suff(u, σ(n -1)).

See [START_REF] Puglisi | A taxonomy of suffix array construction algorithms[END_REF] for a more detailed account on suffix arrays and their applications.

LMS-factors of a word

The first step of the IS-algorithm [START_REF] Nong | Two efficient algorithms for linear time suffix array construction[END_REF] consists in marking every position in v = u$, where $ / ∈ A is an added letter that is smaller than every letter of A. The mark of each position in v is either the letter S or the letter L. A position i ∈ {0, . . . , n -1} is marked by an S or by an L when suff(v, i) < suff(v, i + 1) or suff(v, i) > suff(v, i + 1), respectively. We also say that the position is of type S or L. By convention, the last position n of v always is of type S.

A leftmost type S position in v = u$ (LMS-position for short) is a position i ∈ {1, . . . , n} such that i is of type S and i -1 is of type L. Note that with this definition, the last position of v is always an LMS-position, for a non-empty u. An LMS-factor of v is a factor v[i, j] where i < j are both LMS-positions and such that there is no LMS-position between i and j. By convention, the factor v[n, n] = $ is also an LMS-factor of v.

The following notations and definitions will be used throughout this article. They are reformulations of what we just defined. Definition 1. Let A be a finite totally ordered non-empty alphabet. The alphabet LS(A) is defined by LS(A) = (A×{L, S})∪{($, S)}. For simplification, elements of LS(A) are written αX instead of (α, X). A letter αS of LS(A) is said to be of type S, and a letter αL is said to be of type L. Definition 2. Let u ∈ A n for some n ≥ 1. The LS-extension Ext(u) of u, is the word v ∈ LS(A) n+1 that ends with the letter $S and such that for every i ∈ {0, . . . , n -1}, v i = u i X i with X i = S if and only if u i < u i+1 or (u i = u i+1 and X i+1 = S), with the convention that u n = $.

Observe that from its definition, Ext(u) is exactly the word u with an added $ at its end, and whose positions have been marked. Thus, an LMS-position in v = Ext(u) is a position i ≥ 1 such that v i = αS and v i-1 = βL, for some α, β ∈ A ∪ {$}. We extend this definition to all words of LS(A) * . Definition 3. For any u ∈ LS(A) n , an LMS-position of u is a position i ∈ {1, . . . , n -1} such that u i is of type S and u i-1 is of type L. where the LMS-positions have been underlined.

Brief overview of the IS-algorithm

The IS-algorithm [START_REF] Nong | Two efficient algorithms for linear time suffix array construction[END_REF] first computes the type of each position. This can be done in linear time, by scanning the word once from right to left. From this, the LMS-positions can be directly computed.

The LMS-factors are then numbered in increasing order using a radix sort (the types are kept and used for the lexicographic comparisons of these factors). This yields an array of numbers, the numbers associated with the LMS-factors, which is viewed as a word and whose suffix array σ is recursively calculated.

The key observation is that once σ is known, the suffixes of type L can be sorted by scanning the word once from left to right, then the suffixes of type S can be sorted by a scan from right to left. Therefore, the suffix array can be computed in linear time, once σ is given.

For the running time analysis, if T (n) is the worst case cost of the algorithm applied to a word of length n, then we have the inequality

T (n) ≤ T (m) + Θ(n),
where m denote the number of LMS-factors. Since we always have m ≤ n 2 , the running time of the IS-algorithm is Θ(n). The quotient m/n is called the reduction ratio and it is the main focus of this article.

Distributions on words

The uniform distribution on a finite set E is the probability p defined for all e ∈ E by p(e) = 1 |E| . By a slight abuse of notation, we will speak of the uniform distribution on A * to denote the sequence (p n ) n≥0 of uniform distributions on A n . For instance, if A = {a, b, c}, then each element of A n has probability 3 -n under this distribution. An element u ∈ A n taken uniformly at random can also be seen as built letter by letter, from left to right or from right to left, by choosing each letter uniformly and independently in A. This is a suitable way to consider random words, which can easily be generalized to more interesting distributions. Indeed, if p is a probability on A, one can extend p to A n by generating each letter independently following the probability p. This is called a memoryless distribution of probability p, and the probability of an element

u = u 0 • • • u n-1 ∈ A n is defined by P p (u) = p(u 0 )p(u 1 ) • • • p(u n-1 ).
A further classical generalization consists in allowing some (limited) dependency from the past when generating the word. This leads to the notion of Markov chain, which we describe now. Let Q be a non-empty finite set, called the set of states. A sequence of Q-valued random variables (X n ) n≥0 is a homogeneous Markov chain (or just Markov chain for short in this article) when for every n, every α, β ∈ Q and every q 0 , . . . q n-1 ∈ Q,

P(X n+1 = α | X n = β, X n-1 = q n-1 , . . . , X 0 = q 0 ) = P(X 1 = α | X 0 = β).
In the sequel, we will use the classical representation of a Markov chain by its initial probability (row) vector

π 0 ∈ [0, 1] Q and its transition matrix M ∈ [0, 1] Q×Q , defined for every i, j ∈ Q by M (i, j) = P(X 1 = j | X 0 = i). In this settings, the probability of a word u = u 0 • • • u n-1 on A = Q is P M,π0 (u) = π 0 (u 0 ) M (u 0 , u 1 ) M (u 1 , u 2 ) • • • M (u n-2 , u n-1 ).
Such a Markov chain for generating words of A * is also called a first order Markov chain, since the probability of a new letter only depends on the last letter. One can easily use Markov chains to allow larger dependencies from the past. For instance, a second order Markov chain can be defined by setting

Q = A × A. The probability of a word u = u 0 • • • u n-1 , with n ≥ 2, is now defined, for an initial probability vector π 0 ∈ [0, 1] Q , by P M,π0 (u) = π 0 (u 0 u 1 )M (u 0 u 1 , u 1 u 2 )M (u 1 u 2 , u 2 u 3 ) • • • M (u n-3 u n-2 , u n-2 u n-1 ).
Higher order Markov chain are defined similarly. More general sources, such as dynamical sources [START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF], are also considered in the literature, but they are beyond the scope of this article.

About the probabilistic analysis of the original article

In their article [START_REF] Nong | Two efficient algorithms for linear time suffix array construction[END_REF], the authors proposed a brief analysis of the expected reduction ratio. This analysis is done under the simplistic assumption that the marks of the positions are independent and of type S or L with probability 1 2 each. We first observe that if A = {a, b} consists of exactly two letters and if we consider the uniform distribution on A n , then, up to the very end of the word, every a is of type S and every b is of type L. Hence, we are mostly in the model proposed in [START_REF] Nong | Two efficient algorithms for linear time suffix array construction[END_REF]. Unfortunately, if there are three or more letters, then uniform distributions, memoryless distributions and Markovian distributions failed to produce types that are i.i.d. in {L, S}. It is also the case for a binary alphabet, when the distribution under consideration is not the uniform distribution.

Their result, Theorem 3.15 page 1477, also contains a miscalculation. The average reduction ratio when the types are i.i.d. S and L with probability1 2 tends to 1 4 and not to 1 3 as stated. This can easily be obtained the following way: in this model, a position i ≥ 1 is such that i is of type S and i -1 is of type L with probability 1 4 . The result follows by linearity of the expectation. 1 In the sequel we give formulas for the reduction ratio for alphabets of any size, and for uniform, memoryless and Markovian distributions.

Probabilistic analysis for memoryless sources

If instead of generating a word letter by letter from left to right, we choose to perform the generation from right to left, then it is easy to compute, on the fly, the type of each position. This is a direct consequence of Definition 1. In probabilistic terms, we just defined a Markov chain, built as an extension of our random source. This is the idea developed in this section, and we will use it to compute the typical reduction ratio of the IS-algorithm.

A Markov chain for the LS-extension

Let A be a totally ordered alphabet, with at least two letters, and let p be a probability on A such that for every a ∈ A, p(a) > 0. In this section we consider the memoryless distributions on A * of probability p, as defined in Section 2.4. To simplify the writing, we will use p a instead of p(a) in the sequel.

Recall that if P is a property, then P is equal to 1 if P is true and to 0 if it is false. Let π 0 be the row vector of [0, 1] LS(A) defined by π 0 (αX) = αX = $S . Let M p be the matrix of [0, 1] LS(A)×LS(A) defined for every α, β ∈ A by

M p (αS, $S) = M p (αL, $S) = M p ($S, βS) = 0; M p ($S, βL) = p β ; M p (αS, βS) = p β • β ≤ α ; M p (αS, βL) = p β • β > α ; M p (αL, βS) = p β • β < α ; M p (αL, βL) = p β • β ≥ α .
We first establish that the reverse of the LS-extension of a random word generated by a memoryless source is Markov (M p , π 0 ):

Proposition 1.
Let A be a totally ordered alphabet, with at least two letters, and let p be a probability on A such that for every a ∈ A, p a > 0. If u is a word on LS(A) such that P Mp,π0 (u) = 0, then the reverse of u is the LS-extension of a word v of A * and P Mp,π0 (u) = P p (v). The matrix M p Fig. 1. On the left, the underlying graph of the Markov chain for A = {a, b, c, d}. The state dS is not depicted, as it is not reachable. Every state but $S also has a loop on itself, which is not depicted for readability. The thin states are the transient states, and the bold states are the recurrent states. For the memoryless source of probability p, the probability of each edge αX → βY is p β . If we start on $S with probability 1, then this chain generates the marked words from right to left. On the right is presented the matrix M p , which is the restriction of Mp to its recurrent part.

In other words, generating v using a memoryless source of probability p is the same as generating the reverse of LS(v) using the Markov chain (M p , π 0 ).

Proposition 1 is the key observation of this article. It described a purely probabilistic way to work on LS-extensions of random words: the deterministic algorithm used to mark each position with its type is encoded into the Markov chain (M p , π 0 ). We now aim at using the classical results on Markov chains to obtain some information on the number of LMS-factors.

Properties of the Markov chain

From now on, except for the examples, we fix A = {a 1 , . . . , a k }, with k ≥ 2, and we consider the total strict order < on A defined by a 1 < a 2 . . . < a k .

The underlying graph G M of a Markov chain (M, π 0 ) of set of states Q is the directed graph whose vertices are the elements of Q and with an edge s → t whenever M (s, t) > 0. A state q ∈ Q is transient when it is not in a terminal strongly connected component of G M : if we start in state q, there is a non-zero probability that we will never return to q. Transient states play a minor role in our settings as with high probability they are only used during the generation of the very first letters. A state that is not transient is called recurrent. Lemma 1. The Markov chain (M p , π 0 ) has three transient states: $S, a 1 L and a k S. All other states are in the same terminal strongly connected component of its underlying graph.

Remark 1. From the definition of M p and π 0 , a path of positive probability in the chain always starts on the state $S, may pass through the state a 1 L, but never reaches the state a k S. This property is obvious if one remember that a word generated by the chain is the reverse of the LS-extension of a word on A.

Recall that a Markov chain is irreducible when its underlying graph is strongly connected, and that it is aperiodic when the gcd of its cycles is equal to 1. Most useful theorems are stated for Markov chains that are either irreducible, or both irreducible and aperiodic. Since the chain (M p , π 0 ) is not irreducible, we propose to "approximate" it with an irreducible and aperiodic one. This new Markov chain produces reversed LS-extensions where some of the types can be wrong, for a limited number of positions at the beginning. However, we will see that it does not change significantly the number of LMS-factors, the statistic we are interested in.

An irreducible and aperiodic Markov chain

Let LS(A) denote the alphabet LS(A) restricted to the recurrent states of M p : LS(A) = LS(A) \ {$S, a 1 L, a k S}. We first formalize the notion of LS-extension with errors. Definition 4. Let u be a word of A n , with n ≥ 1, and let w = Ext(u) be the LS-extension of u. The pseudo LS-extension Ext(u) of u is the word v ∈ LS(A) n defined by v i = a 1 S if w j = a 1 L for all j ∈ {i, . . . n -1}, and v i = w i otherwise.

The pseudo LS-extension of u is therefore obtained from the LS-extension w of u by first removing the last character $S, and then by changing the (possibly empty) sequence of a 1 L's at the end into a sequence of a 1 S. For instance, if u = a 3 a 1 a 2 a 1 a 1 a 1 , then we have Ext(u) = a 3 L a 1 S a 2 L a 1 L a 1 L a 1 L $S and Ext(u) = a 3 L a 1 S a 2 L a 1 S a 1 S a 1 S. Lemma 2. Let u ∈ A n , with n ≥ 1. If u contains at least two different letters and ends with the letter a 1 , then Ext(u) and Ext(u) have the same number of LMS-positions. Otherwise, there is exactly one more LMS-position in Ext(u).

Let M p denote the restriction of the matrix M p to [0, 1] LS(A)×LS(A) . This defines a stochastic matrix, since by Lemma 1, the states of LS(A) form a stable subset. By construction, M p is irreducible. It is also aperiodic, as there is a loop on every vertex of M p . Let π 0 be the probability row vector on LS(A) defined for every α ∈ A \ {a 1 } by π(αL) = p α and π(αS) = 0, and by π(a 1 S) = p a1 . We now restate Proposition 1 using the Markov chain (M p , π 0 ). Proposition 2. Let A be a totally ordered alphabet, with at least two letters, and let p be a probability on A such that for every a ∈ A, p a > 0. If u is a non-empty word on LS(A) such that P M p ,π 0 (u) = 0, then the reverse of u is the pseudo LS-extension of a word v of A * and P M p ,π 0 (u) = P p (v).

Recall that a stationary vector of a Markov chain (M, π 0 ) is a probability row vector π that satisfies the equation π ×M = π. If the chain is irreducible and aperiodic, a classical theorem [START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF] states that there exists a unique stationary vector. Moreover, after t steps, the probability that we are on a given state q is π(q) + O(λ t ), for some λ ∈ (0, 1) and for any choice of π 0 .

For every a ∈ A, let p <a = α<a p α et p >a = α>a p α . The following theorem gives an explicit expression for the stationary vector of M p . Theorem 1. Let A be a totally ordered alphabet, with at least two letters, and let p be a probability on A such that for every a ∈ A, p a > 0. The unique stationary vector of M p is the vector π defined on LS(A) by

π(αS) = p α p >α 1 -p α and π(αL) = p α p <α 1 -p α .

Main statements

Using Theorem 1 and the classical Ergodic Theorem for Markov chains (Theorem 4.16 page 58 of [START_REF] Levin | Markov chains and mixing times[END_REF]), we get a precise estimation of the number of LMS-factors, which is also the number of LMS-positions, in a random word for the memoryless distribution of probability p. It is obtained by analyzing the number of LMSpositions in Ext(u). Indeed, by Lemma 2, counting the number of LMS-positions in u is almost the same as counting the number of LMS-positions in Ext(u).

Theorem 2. Let A be a totally ordered alphabet, with at least two letters, and let p be a probability on A such that for every a ∈ A, p a > 0. Let F n be the random variable that counts the number of LMS-factors in a random word of length n, generated by the memoryless source of probability p. There exists a sequence (ε n ) n≥0 that tends to 0 such that:

P p 1 n F n -γ p > ε n ----→ n→∞ 0, with γ p = a∈A p a 1 -p a p 2 >a . (1) 
Corollary 1. When the input of the IS-algorithm is a random word of length n generated by the memoryless source of probability p, the expected reduction ratio tends to γ p .

Remark 2. The statement of Theorem 2 is more precise than a result for the expectation of F n (as in Corollary 1). For instance, Equation (1) also implies that the random variable 1 n F n is concentrated around its mean. Remark 3. It is not completely obvious from its definition, but one can rewrite γ p as a∈A pa 1-pa p 2 <a . As a consequence, if p is the reverse of p, that is, p ai = p a k+1-i for every 1 ≤ i ≤ k, then γ p = γ p .

We conclude this section by the analysis of some specific cases. First, we simplify the formula of γ p for uniform distributions. Lemma 3. If p is the uniform probability on A, i.e., p a = 1 k for every a ∈ A, then γ p = 2k-1 6k . In particular, γ p → 1 3 as the size of the alphabet tends to infinity. Observe also that if p is not uniform, then γ p may change when one reorders the probabilities values. For instance, if A = {a, b, c}, we obtain that γ p = 13 48 for (p a , p b , p c ) = ( 14 , 1 4 , 1 2 ) and γ p = 1 4 for (p a , p b , p c ) = ( 1 4 , 1 2 , 1 4 ). For a binary alphabet A = {a, b}, we have p b = 1 -p a and γ p = p a (1 -p a ).

Markovian sources

Let (N, ν 0 ) be a Markov chain on A. We say that it is a complete Markov chain when for every α, β ∈ A, N (α, β) > 0. A complete Markov chain is always irreducible and aperiodic. The construction of Section 3 can readily be extended to words that are generated backward, i.e., from right to left, using a complete Markov chain (N, ν 0 ). Let π 0 be the probabilistic vector of [0, 1] LS(A) such that π 0 (a 1 S) = ν 0 (a 1 ) and for every α = a 1 , π 0 (αL) = ν 0 (α) and π(αS) = 0. Let M N be the matrix of [0, 1] LS(A)×LS(A) defined for every α, β ∈ A by2 

M N (αS, βS) = N (α, β) • β ≤ α ; M N (αS, βL) = N (α, β) • β > α ; M N (αL, βS) = N (α, β) • β < α ; M N (αL, βL) = N (α, β) • β ≥ α .
Proposition 2 can be generalized to first order complete Markov chains the following way: Proposition 3. Let A be a totally ordered alphabet, with at least two letters, and let (N, ν 0 ) be a complete Markov chain on A. If u is a word on LS(A) such that P M N ,π0 (u) = 0, then the reverse of u is the pseudo LS-extension of a word v of A * and P M N ,π 0 (u) = P N,ν0 (v).

Though more complicated than in the memoryless case, the stationary vector of M N can be calculated explicitly. This yields a computable formula for the typical number of LMS-factors: Theorem 3. Let A be a totally ordered alphabet, with at least two letters, and let (N, ν 0 ) be a complete Markov chain on A of stationary vector ν. Let F n be the random variable that counts the number of LMS-factors in a random word of length n generated backward by (N, ν 0 ). There exists a sequence (ε n ) n≥0 that tends to 0 such that

P N,ν0 1 n F n -γ N > ε n ----→ n→∞ 0, with γ N = a∈A π(aS) b>a N (a, b),
where π is the stationary vector of M N , which satisfies

π(αS) = β>α ν(β)N (β, α) 1 -N (α, α) and π(αL) = β<α ν(β)N (β, α) 1 -N (α, α) .
As a consequence, the expected reduction ratio in the first recursive call of the IS-algorithm tends to γ N , as n tends to infinity.

Remark 4. This can be generalized to Markov chains that are not complete Markov chains, but by lack of place, we cannot describe how it works in this extended abstract. The fact that the word is generated backward is usually not an issue: if the initial distribution is equal to the stationary distribution, then there exists a Markov chain that generates the words from left to right with the same probability (see [START_REF] Norris | Markov chains. Cambridge series in statistical and probabilistic mathematics[END_REF]). It is natural to start with the stationary distribution, as it often coincides with the empirical frequencies of the letters. Fig. 2. In these experiments we compare the real reduction ratio with the theoretical ratios obtained when approximating the distributions by one of the models proposed in this article. The first two files are from the Canterbury corpus [START_REF] Powell | The Canterbury Corpus[END_REF], the last one is the human chromosome 22 [START_REF] Dunham | The DNA sequence of human chromosome 22[END_REF]. The real reduction ratio of the first recursive call is indicated in the column "red. ratio". The three last columns were obtained after computing a model (either uniform, memoryless or Markovian) from the file. The different values are the γ's given by Lemma 3, Theorem 2 and Theorem 3. The Markov chains of the first two files are not complete, but our results still hold, as Theorem 3 can be generalized to irreducible and aperiodic chains (see Section 5).

Experiments and conclusions

Though we provide a theoretical analysis of the IS-algorithm for classical distributions on words in this article, we thought it would be interesting to include some experiments on real data, even if we are not pretending to demonstrate anything with these few tests. These results are depicted in Fig. 2. It is also not our purpose to provide a statistical analysis of this information here, but we cannot help noticing that for the human chromosome 22, a Markov chain of order 1 seems to be an accurate model for analyzing the behavior of the IS-algorithm. 3The methodology presented in Section 4 can be extended to Markov chains (N, ν) that are only irreducible and aperiodic; the set of recurrent states may just be strictly included in LS(A). It can also be extended to Markov chains of higher order, but the formulas become more and more complicated. Lets consider, say, a Markov chain of order 3 on A = {a, b, c, d}. Observe that in the recurrent part, a state adb is necessarily of type S since b > d. In fact, we always know the type of the last letter, except when the state is of the form ααα. We need two different states for such words, one of type S and one of type L. Furthermore, aaaL is transient and dddS is not reachable. There are therefore |A| t + |A| -2 recurrent states in the Markov chain M N , where t is the order.

A continuation this work would be to analyze the whole behavior of the algorithm, when the reduction ratios of all the successive recursive calls are taken into account. This is technically challenging, as the letters of a given recursive call are the LMS-factors of the word at the previous stage. The precise analysis of other algorithms that compute suffix arrays is another natural direction for further investigations.

Example.

  Consider the word u = bacbcaab on A = {a, b, c}. We have: letter b a c b c a a b $ type L S L S L S S L S Ext(u) = bL aS cL bS cL aS aS bL $S,

  aS bS bL cS cL dL aS pa 0 p b 0 pc p d bS pa p b 0 0 pc p d bL pa 0 p b 0 pc p d cS pa p b 0 pc 0 p d cL pa p b 0 0 pc p d dL pa p b 0 pc 0 p d

In their proof, they compute the mean length of an LMS-factor. The types of such a factor form a word of SS * LL * S. For the considered model, the mean length of an element of S * (and of L * ) is one. Hence, the average length of an LMS-factor is 5 (and not the announced 4).

The formulas below hold when the extended letters are in LS(A) only. For instance, αL = a1L is not part of the definition, since it is not in LS(A).

This may be a consequence of the well-known fact that in a vertebrate genome, a C is very rarely followed by a G. This property is well captured by a Markov chain of order 1, but invisible to a memoryless model.