N
N

N

HAL

open science

A Probabilistic Analysis of the Reduction Ratio in the
Suffix-Array IS-Algorithm
Cyril Nicaud

» To cite this version:

Cyril Nicaud. A Probabilistic Analysis of the Reduction Ratio in the Suffix-Array IS-Algorithm. CPM
2015, Jun 2015, Ischia Island, Italy. pp.374-384, 10.1007/978-3-319-19929-0_32 . hal-01719172

HAL Id: hal-01719172
https://hal.science/hal-01719172v1
Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01719172v1
https://hal.archives-ouvertes.fr

A Probabilistic Analysis of the Reduction Ratio
in the Suffix-Array IS-Algorithm

Cyril Nicaud

LIGM, Université Paris-Est & CNRS, 77454 Marne-la-Vallée Cedex 2, France.
cyril.nicaud@u-pem.fr

Abstract. We show that there are asymptotically yn LMS-factors in a
random word of length n, for some explicit v that depends on the model
of randomness under consideration. Our results hold for uniform distri-
butions, memoryless sources and Markovian sources. From this analysis,
we give new insight on the typical behavior of the IS-algorithm [9], which
is one of the most efficient algorithms available for computing the suffix
array.

1 Introduction

The suffix array of a word, is a permutation of its suffixes that orders them for
the lexicographic order. Since their introduction by Manber and Meyers [8,7]
in 1990, suffix arrays have been intensively studied in the literature. Nowadays,
they are a fundamental, space efficient, alternative to suffix trees. They are
used in many applications such as pattern matching, plagiarism detection, data
compression, etc.

The first linear suffix array algorithms that do not use the suffix tree con-
struction were proposed by Ko and Aluru [5], Kim et al. [4] and Kérkkéinen
and Sanders [3] in 2003. Since then, a lot of variations or heuristics have been
developed [12], motivated by the various practical uses of this fundamental data
structure.

A few years ago, Ge Nong, Sen Zhang and Wai Hong Chan proposed such a
linear suffix array algorithm [9], which is particularly efficient in practice. This
algorithm, called the IS-algorithm, is a recursive algorithm, where the suffix array
of a word u is deduced from the suffix array of a shorter word v. This shorter
word is built using the LMS-factors of u: an LMS-position i in u is an integer
such that the suffix of uw that starts at position ¢ is smaller, for the lexicographic
order, than both the one that starts at position ¢ — 1 and the one that starts
at position 7 + 1; LMS-factors are the factors of u delimited by two consecutive
LMS-positions. Once the suffix array of v is recursively calculated, the suffix
array of u can be computed in linear time.

In this article we are interested in the typical reduction ratio % obtained
when making this recursive call. We propose a probabilistic analysis of the num-
ber of LMS-factors in a random word of length n, for classical models of random
words: uniform distributions, memoryless sources and Markovian sources. We

prove that the reduction ratio is concentrated around a constant -, which can
be explicitly computed from the parameters that describe the source.

In this extended abstract, we chose to focus on memoryless sources. After
recalling the basics on words and suffix arrays in Section 2, we explain in Section 3
the steps that lead to our main statement (Theorem 2). In Section 4, we briefly
explain how this result can be generalized to Markovian sources, and give the
explicit formula for the typical reduction ratio under this model (Theorem 3). We
conclude this article with some experiments, that are just intended to illustrate
our theoretical results, and with a short discussion in Section 5.

2 Preliminaries

2.1 Definitions and notations

Let A be a non-empty totally ordered finite alphabet. For given n > 0, we denote
by A™ the set of words of length n on A. Let A* be the set of all words on A.

Ifu € A™ is a word of length n > 1, let ug be its first letter, let u; be its second
letter, ...and let u,_1 be its last letter. The reverse of a word u = ug - - - Uy, _1 is
the word @ = w,,—1 - - - ug. For given 7 and j such that 0 <14 < j < n—1, let u[i, j]
be the factor of u that starts at position ¢ and ends at position j: it is the unique
word w of length j — i + 1 such that there exists a word v of length 4 such that
vw is a prefix of u. For given ¢ such that 0 <1i < n—1, let suff(u,i) = ufi,n—1]
be the suffix of u that starts at position 4.

Recall that the suffiz array of a word u of length n > 1 is the unique permu-
tation o of {0,...,n — 1} such that, for the lexicographic order, we have

suff(u,o0(0)) < suff(u,o(l)) < ... < suff(u,o(n—1)).

See [12] for a more detailed account on suffix arrays and their applications.

2.2 LMS-factors of a word

The first step of the IS-algorithm [9] consists in marking every position in v = u$,
where $ ¢ A is an added letter that is smaller than every letter of A. The
mark of each position in v is either the letter S or the letter L. A position
i €{0,...,n—1} is marked by an S or by an L when suff(v,i) < suff(v,i+1)
or suff(v,7) > suff(v,i+ 1), respectively. We also say that the position is of
type S or L. By convention, the last position n of v always is of type S.

A leftmost type S position in v = u$ (LMS-position for short) is a position
i € {1,...,n} such that ¢ is of type S and i — 1 is of type L. Note that with this
definition, the last position of v is always an LMS-position, for a non-empty wu.
An LMS-factor of v is a factor v[i, j] where i < j are both LMS-positions and
such that there is no LMS-position between ¢ and j. By convention, the factor
v[n,n] = $ is also an LMS-factor of v.

The following notations and definitions will be used throughout this article.
They are reformulations of what we just defined.

Definition 1. Let A be a finite totally ordered non-empty alphabet. The alphabet
LS(A) is defined by LS(A) = (Ax{L,S})U{($,S)}. For simplification, elements
of LS(A) are written aX instead of (o, X). A letter aS of LS(A) is said to be
of type S, and a letter aL is said to be of type L.

Definition 2. Let u € A™ for some n > 1. The LS-extension Ext(u) of u, is
the word v € LS(A)"T! that ends with the letter $S and such that for every
i€{0,...,n—1}, v; = w; X; with X; = S if and only if u; < u;y1 or (u; = uit1
and X;y1 = S), with the convention that u, = $.

Observe that from its definition, Ext(u) is exactly the word u with an added
$ at its end, and whose positions have been marked. Thus, an LMS-position in
v = Ext(u) is a position ¢ > 1 such that v; = «S and v;_; = L, for some
a,f € AU{$}. We extend this definition to all words of LS(A)*.

Definition 3. For any u € LS(A)"™, an LMS-position of u is a position i €
{1,...,n — 1} such that u; is of type S and u;—1 is of type L.

Example. Consider the word u = bacbcaab on A = {a,b,c}. We have:

letter‘bacbcaab$
Ext =bL L L L
type ‘LSLSLSSLS xt(u) =bLaScLbScLaSaSbL$s,

where the LMS-positions have been underlined.

2.3 Brief overview of the IS-algorithm

The IS-algorithm [9] first computes the type of each position. This can be done
in linear time, by scanning the word once from right to left. From this, the
LMS-positions can be directly computed.

The LMS-factors are then numbered in increasing order using a radix sort
(the types are kept and used for the lexicographic comparisons of these factors).
This yields an array of numbers, the numbers associated with the LMS-factors,
which is viewed as a word and whose suffix array ¢’ is recursively calculated.

The key observation is that once ¢’ is known, the suffixes of type L can be
sorted by scanning the word once from left to right, then the suffixes of type
S can be sorted by a scan from right to left. Therefore, the suffix array can be
computed in linear time, once o’ is given.

For the running time analysis, if T'(n) is the worst case cost of the algorithm
applied to a word of length n, then we have the inequality T'(n) < T'(m)+©(n),
where m denote the number of LMS-factors. Since we always have m < %,
the running time of the IS-algorithm is ©(n). The quotient m/n is called the
reduction ratio and it is the main focus of this article.

2.4 Distributions on words

The uniform distribution on a finite set E is the probability p defined for all
e € E by p(e) = ﬁ By a slight abuse of notation, we will speak of the uniform

distribution on A* to denote the sequence (py)n>o of uniform distributions on
A™. For instance, if A = {a,b,c}, then each element of A™ has probability 3~
under this distribution.

An element u € A™ taken uniformly at random can also be seen as built
letter by letter, from left to right or from right to left, by choosing each letter
uniformly and independently in A. This is a suitable way to consider random
words, which can easily be generalized to more interesting distributions. Indeed,
if p is a probability on A, one can extend p to A™ by generating each letter inde-
pendently following the probability p. This is called a memoryless distribution of
probability p, and the probability of an element v = ug---u,—1 € A™ is defined
by Pp(u) = p(uo)p(ui) - - - p(un—1).

A further classical generalization consists in allowing some (limited) depen-
dency from the past when generating the word. This leads to the notion of
Markov chain, which we describe now. Let Q be a non-empty finite set, called
the set of states. A sequence of Q)-valued random variables (X,,),>0 is a homo-
geneous Markov chain (or just Markov chain for short in this article) when for
every n, every «, 8 € @ and every qo,...qn—1 € @,

]P(Xn+1 =« | Xn :57Xn—1 = Qn—la'-'aXO :qO) :]P(Xl =« | XO :B)

In the sequel, we will use the classical representation of a Markov chain by
its 4nitial probability (row) vector my € [0,1]9 and its transition matriz M €
[0,1]9%9 defined for every 7,5 € Q by M(i,j) = P(X; = j | Xo = 7). In this
settings, the probability of a word u = ug---u,_1 on A =Q is

Pasry (w) = mo(uo) M (ug, ur) M(ur,ug) -+ - M(tp_2, tn_1).

Such a Markov chain for generating words of A* is also called a first order Markov
chain, since the probability of a new letter only depends on the last letter. One
can easily use Markov chains to allow larger dependencies from the past. For
instance, a second order Markov chain can be defined by setting @ = A x A.
The probability of a word u = wug---up_1, with n > 2, is now defined, for an
initial probability vector my € [0, 1]9, by

Pt (u) = mo(uour) M (uor, urus) M (uiug, ugus) - - - M (Up—3Un—2, Up—2Un_1).

Higher order Markov chain are defined similarly. More general sources, such as
dynamical sources [13], are also considered in the literature, but they are beyond
the scope of this article.

2.5 About the probabilistic analysis of the original article

In their article [9], the authors proposed a brief analysis of the expected reduction
ratio. This analysis is done under the simplistic assumption that the marks of
the positions are independent and of type S or L with probability % each.

We first observe that if A = {a,b} consists of exactly two letters and if we
consider the uniform distribution on A™, then, up to the very end of the word,

every a is of type S and every b is of type L. Hence, we are mostly in the model
proposed in [9]. Unfortunately, if there are three or more letters, then uniform
distributions, memoryless distributions and Markovian distributions failed to
produce types that are i.i.d. in {L, S}. It is also the case for a binary alphabet,
when the distribution under consideration is not the uniform distribution.

Their result, Theorem 3.15 page 1477, also contains a miscalculation. The
average reduction ratio when the types are i.i.d. S and L with probability %
tends to % and not to % as stated. This can easily be obtained the following way:
in this model, a position ¢ > 1 is such that i is of type S and i — 1 is of type L
with probability %. The result follows by linearity of the expectation.!

In the sequel we give formulas for the reduction ratio for alphabets of any
size, and for uniform, memoryless and Markovian distributions.

3 Probabilistic analysis for memoryless sources

If instead of generating a word letter by letter from left to right, we choose to
perform the generation from right to left, then it is easy to compute, on the
fly, the type of each position. This is a direct consequence of Definition 1. In
probabilistic terms, we just defined a Markov chain, built as an extension of our
random source. This is the idea developed in this section, and we will use it to
compute the typical reduction ratio of the IS-algorithm.

3.1 A Markov chain for the LS-extension

Let A be a totally ordered alphabet, with at least two letters, and let p be a
probability on A such that for every a € A, p(a) > 0. In this section we consider
the memoryless distributions on A* of probability p, as defined in Section 2.4.
To simplify the writing, we will use p, instead of p(a) in the sequel.

Recall that if P is a property, then [P] is equal to 1 if P is true and to 0 if it
is false. Let 7o be the row vector of [0, 1]*5(4) defined by mp(aX) = [aX = $5].
Let M, be the matrix of [0, 1|ES(AXLS(A) defined for every a, 3 € A by

My(aS,8S) = M,(aL,$S) = M,(8S,5S) = 0; M, (85, BL) = pgs;
My(aS, BS) = ps - [B < a; My(aS, BL) = pg - [B > af;
My(aL, BS) = pg - [B < af; My(aL,BL) = pg - [B > a].

We first establish that the reverse of the LS-extension of a random word gener-
ated by a memoryless source is Markov (M, mo):

Proposition 1. Let A be a totally ordered alphabet, with at least two letters,
and let p be a probability on A such that for every a € A, pg > 0. If u is a word
on LS(A) such that Pag, ~,(u) # 0, then the reverse of u is the LS-extension of
a word v of A* and Py, x,(u) = Pp(v).

! In their proof, they compute the mean length of an LMS-factor. The types of such
a factor form a word of SS*LL*S. For the considered model, the mean length of an
element of S* (and of L*) is one. Hence, the average length of an LMS-factor is 5
(and not the announced 4).

aS bS bL ¢S cL dL
aS|pa 0 pp 0 pc pa
bS|pa pv 0 0 pe pa
bL|pa 0 p»b 0 pc pa
eS|pa pp 0 pe 0 pa
cLips pp 0 0 pc pa
dL|pa po» 0 pc 0 pg

The matrix M,

Fig. 1. On the left, the underlying graph of the Markov chain for A = {a,b,c,d}. The
state dS is not depicted, as it is not reachable. Every state but $S also has a loop on
itself, which is not depicted for readability. The thin states are the transient states,
and the bold states are the recurrent states. For the memoryless source of probability
p, the probability of each edge aX — BY is pg. If we start on $S with probability 1,
then this chain generates the marked words from right to left. On the right is presented
the matrix M, which is the restriction of M, to its recurrent part.

In other words, generating v using a memoryless source of probability p is the
same as generating the reverse of LS(v) using the Markov chain (M, o).

Proposition 1 is the key observation of this article. It described a purely
probabilistic way to work on LS-extensions of random words: the deterministic
algorithm used to mark each position with its type is encoded into the Markov
chain (M, m). We now aim at using the classical results on Markov chains to
obtain some information on the number of LMS-factors.

3.2 Properties of the Markov chain

From now on, except for the examples, we fix A = {a1,...,ax}, with £ > 2, and
we consider the total strict order < on A defined by a1 < as ... < ag.

The underlying graph Gy of a Markov chain (M,) of set of states @ is
the directed graph whose vertices are the elements of () and with an edge s — ¢
whenever M (s,t) > 0. A state ¢ € @ is transient when it is not in a terminal
strongly connected component of G;: if we start in state ¢, there is a non-zero
probability that we will never return to ¢. Transient states play a minor role in
our settings as with high probability they are only used during the generation
of the very first letters. A state that is not transient is called recurrent.

Lemma 1. The Markov chain (M,,mo) has three transient states: $S, a1 L and
arS. All other states are in the same terminal strongly connected component of
its underlying graph.

Remark 1. From the definition of M, and 7, a path of positive probability in
the chain always starts on the state $5, may pass through the state a;L, but

never reaches the state axS. This property is obvious if one remember that a
word generated by the chain is the reverse of the LS-extension of a word on A.

Recall that a Markov chain is ¢rreducible when its underlying graph is strongly
connected, and that it is aperiodic when the ged of its cycles is equal to 1. Most
useful theorems are stated for Markov chains that are either irreducible, or both
irreducible and aperiodic. Since the chain (M, 7o) is not irreducible, we propose
to “approximate” it with an irreducible and aperiodic one. This new Markov
chain produces reversed LS-extensions where some of the types can be wrong,
for a limited number of positions at the beginning. However, we will see that
it does not change significantly the number of LMS-factors, the statistic we are
interested in.

3.3 An irreducible and aperiodic Markov chain

Let LS(A) denote the alphabet LS(A) restricted to the recurrent states of My:
LS(A) = LS(A) \ {$S,a1L,arS}. We first formalize the notion of LS-extension
with errors.

Definition 4. Let u be a word of A™, with n > 1, and let w = Ext(u) be the
LS-extension of u. The pseudo LS-extension Ext(u) of u is the word v € LS(A)™
defined by v; = a1S if w; = a1 L for all j € {i,...n—1}, and v; = w; otherwise.

The pseudo LS-extension of u is therefore obtained from the LS-extension w of
u by first removing the last character $5, and then by changing the (possibly
empty) sequence of a;L’s at the end into a sequence of a1S. For instance, if
u = asaiasaiaiay, then we have Ext(u) = azLaiSasLaiLaiLa;L$S and
Ext(u) =azLaiSasLa;Sa;SarS.

Lemma 2. Let u € A™, with n > 1. If u contains at least two different letters
and ends with the letter aq, then Ext(u) and Ext(u) have the same number of
LMS-positions. Otherwise, there is exactly one more LMS-position in Ext(u).

Let M, denote the restriction of the matrix M, to [0, 1]ES(A)XLS(A) - Thig
defines a stochastic matrix, since by Lemma 1, the states of LS(A) form a stable
subset. By construction, M, is irreducible. It is also aperiodic, as there is a loop
on every vertex of M ,. Let m, be the probability row vector on LS(A) defined
for every v € A\ {a1} by w(aL) = p, and w(aS) = 0, and by m(a1.5) = p,,. We
now restate Proposition 1 using the Markov chain (M, 7).

Proposition 2. Let A be a totally ordered alphabet, with at least two letters,
and let p be a probability on A such that for every a € A, p, > 0. If u is a
non-empty word on LS(A) such that Pay () # 0, then the reverse of u is the
pseudo LS-extension of a word v of A* and Py« (u) = Pp(v).

Recall that a stationary vector of a Markov chain (M, m) is a probability
row vector 7 that satisfies the equation m x M = 7. If the chain is irreducible and
aperiodic, a classical theorem [10] states that there exists a unique stationary

vector. Moreover, after ¢ steps, the probability that we are on a given state ¢ is
7(q) + O(\), for some A € (0,1) and for any choice of 7.

For every a € A, let pcy = Y, coPa € Psa = D o oo Pa- The following
theorem gives an explicit expression for the stationary vector of M,,.

Theorem 1. Let A be a totally ordered alphabet, with at least two letters, and let
p be a probability on A such that for every a € A, p, > 0. The unique stationary
vector of M., is the vector m defined on LS(A) by

Pa P>a PaP<a
m(aS) = and m(al) = .
() 1—pa () 1—pa

3.4 Main statements

Using Theorem 1 and the classical Ergodic Theorem for Markov chains (Theorem
4.16 page 58 of [6]), we get a precise estimation of the number of LMS-factors,
which is also the number of LMS-positions, in a random word for the memoryless
distribution of probability p. It is obtained by analyzing the number of LMS-
positions in Ext(u). Indeed, by Lemma 2, counting the number of LMS-positions
in w is almost the same as counting the number of LMS-positions in Ext(u).

Theorem 2. Let A be a totally ordered alphabet, with at least two letters, and
let p be a probability on A such that for every a € A, p, > 0. Let F, be the
random variable that counts the number of LMS-factors in a random word of
length n, generated by the memoryless source of probability p. There exists a
sequence (€n)n>0 that tends to 0 such that:

B, (!

P
—Fn = pl, (1)

1_pa

> €n> m 0, with Yp = Z
a€A

Corollary 1. When the input of the IS-algorithm is a random word of length n
generated by the memoryless source of probability p, the expected reduction ratio
tends to .

Remark 2. The statement of Theorem 2 is more precise than a result for the
expectation of F),, (as in Corollary 1). For instance, Equation (1) also implies
that the random variable %Fn is concentrated around its mean.

Remark 3. It is not completely obvious from its definition, but one can rewrite -,

p 2 e : /o
as) ,ca 5 P<ar As a consequence, if p’ is the reverse of p, that is, p;,. = pa,,,_,

for every 1 <i < k, then v, = .
We conclude this section by the analysis of some specific cases. First, we
simplify the formula of 7, for uniform distributions.

Lemma 3. If p is the uniform probability on A, i.e., p, = % for every a € A,
then vy, = 2%—;1. In particular, v, — % as the size of the alphabet tends to infinity.

Observe also that if p is not uniform, then ~, may change when one reorders
the probabilities values. For instance, if A = {a,b,c}, we obtain that v, = %
for (pa,py,pe) = (i, 1> 3) and v = for (pl,p},0L) = (5,3 1)-

For a binary alphabet A = {a, b}, we have p, =1 — p, and 7, = pa(1 — pa)-

4 Markovian sources

Let (N, 1) be a Markov chain on A. We say that it is a complete Markov chain
when for every a,8 € A, N(a,8) > 0. A complete Markov chain is always
irreducible and aperiodic. The construction of Section 3 can readily be extended
to words that are generated backward, i.e., from right to left, using a complete
Markov chain (N,). Let 7y be the probabilistic vector of [0, 1]X8(4) such that
my(a1S) = vy(ay) and for every a # a1, my(al) = vo(o) and w(aS) = 0. Let
M be the matrix of [0, 1]L3(A)*LS(4) defined for every a,3 € A by?

My(aS,8S) = N(a,B) - [B<a; My(aS,BL) = N(a, B) - [8 > al;
MN(QL7BS) = N(Q7B) ' [[5 < Oé]]; MN(aLvﬁL) = N(Oé,ﬁ) : [[/B > a]]'

Proposition 2 can be generalized to first order complete Markov chains the fol-
lowing way:

Proposition 3. Let A be a totally ordered alphabet, with at least two letters,
and let (N,vg) be a complete Markov chain on A. If u is a word on LS(A) such
that Pasy o (w) # 0, then the reverse of u is the pseudo LS-extension of a word
v of A* and Pyr x (u) = Py, (v).

Though more complicated than in the memoryless case, the stationary vector
of M can be calculated explicitly. This yields a computable formula for the
typical number of LMS-factors:

Theorem 3. Let A be a totally ordered alphabet, with at least two letters, and

let (N,vp) be a complete Markov chain on A of stationary vector v. Let F, be

the random variable that counts the number of LMS-factors in a random word

of length n generated backward by (N,vy). There exists a sequence (£,,)n>0 that
tends to 0 such that
1

IPN,V() (EFTL - ’YN‘ > 5n> m 07 with IN = GGZAE(GS) ZDZ@N(GJ))’

where T is the stationary vector of M 5, which satisfies

Y AN) S AN (B)
m(a) = 1— N(a,a) and m(al) = 1-N(a,a)

As a consequence, the expected reduction ratio in the first recursive call of the
IS-algorithm tends to vy, as n tends to infinity.

Remark 4. This can be generalized to Markov chains that are not complete
Markov chains, but by lack of place, we cannot describe how it works in this
extended abstract. The fact that the word is generated backward is usually not
an issue: if the initial distribution is equal to the stationary distribution, then
there exists a Markov chain that generates the words from left to right with the
same probability (see [10]). It is natural to start with the stationary distribution,
as it often coincides with the empirical frequencies of the letters.

2 The formulas below hold when the extended letters are in LS(A) only. For instance,
aL = a1L is not part of the definition, since it is not in LS(A).

File ‘\Aw size ‘red. ratio"uniform‘memoryless‘Markov‘

bible.txt 63 (4047392 | 0.3113 0.3307 0.3230 0.3251

world192.txt| 93| 2408281 | 0.2838 0.3315 0.3256 0.2997

Chr_22.fa 4 135033745| 0.2717 0.2917 0.2928 0.2715

Fig. 2. In these experiments we compare the real reduction ratio with the theoretical
ratios obtained when approximating the distributions by one of the models proposed in
this article. The first two files are from the Canterbury corpus [11], the last one is the
human chromosome 22 [2]. The real reduction ratio of the first recursive call is indicated
in the column “red. ratio”. The three last columns were obtained after computing a
model (either uniform, memoryless or Markovian) from the file. The different values are
the «’s given by Lemma 3, Theorem 2 and Theorem 3. The Markov chains of the first
two files are not complete, but our results still hold, as Theorem 3 can be generalized
to irreducible and aperiodic chains (see Section 5).

5 Experiments and conclusions

Though we provide a theoretical analysis of the IS-algorithm for classical distri-
butions on words in this article, we thought it would be interesting to include
some experiments on real data, even if we are not pretending to demonstrate
anything with these few tests. These results are depicted in Fig. 2. It is also not
our purpose to provide a statistical analysis of this information here, but we can-
not help noticing that for the human chromosome 22, a Markov chain of order 1
seems to be an accurate model for analyzing the behavior of the IS-algorithm.?

The methodology presented in Section 4 can be extended to Markov chains
(N, v) that are only irreducible and aperiodic; the set of recurrent states may just
be strictly included in LS(A). It can also be extended to Markov chains of higher
order, but the formulas become more and more complicated. Lets consider, say,
a Markov chain of order 3 on A = {a,b,c,d}. Observe that in the recurrent part,
a state adb is necessarily of type S since b > d. In fact, we always know the
type of the last letter, except when the state is of the form aaa. We need two
different states for such words, one of type S and one of type L. Furthermore,
aaal is transient and dddS is not reachable. There are therefore |A|" + |A| — 2
recurrent states in the Markov chain M ,;, where t is the order.

A continuation this work would be to analyze the whole behavior of the
algorithm, when the reduction ratios of all the successive recursive calls are taken
into account. This is technically challenging, as the letters of a given recursive
call are the LMS-factors of the word at the previous stage. The precise analysis
of other algorithms that compute suffix arrays is another natural direction for
further investigations.

3 This may be a consequence of the well-known fact that in a vertebrate genome, a C

is very rarely followed by a G. This property is well captured by a Markov chain of
order 1, but invisible to a memoryless model.

10

References

1.

10.

11.

12.

13.

R. A. Baeza-Yates, E. Chévez, and M. Crochemore, editors. Combinatorial Pat-
tern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocan, Mezico,
June 25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science.
Springer, 2003.

I. Dunham, A. Hunt, J. Collins, R. Bruskiewich, D. Beare, M. Clamp, L. Smink,
R. Ainscough, J. Almeida, A. Babbage, et al. The DNA sequence of human chro-
mosome 22. Nature, 402(6761):489-495, 1999.

J. Kérkkéinen and P. Sanders. Simple linear work suffix array construction. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Automata,
Languages and Programming, 30th International Colloquium, ICALP 2003, Eind-
hoven, The Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lec-
ture Notes in Computer Science, pages 943-955. Springer, 2003.

D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Baeza-Yates et al. [1], pages 186-199.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In
Baeza-Yates et al. [1], pages 200-210.

D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. Amer-
ican Mathematical Soc., 2009.

U. Manber and E. W. Myers. Suffix Arrays: A New Method for On-Line String
Searches. SIAM J. Comput., 22(5):935-948, 1993.

U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String
Searches. In D. S. Johnson, editor, Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, 22-24 January 1990, San Francisco, Califor-
nia., pages 319-327. STAM, 1990.

G. Nong, S. Zhang, and W. H. Chan. Two efficient algorithms for linear time suffix
array construction. IEEE Trans. Computers, 60(10):1471-1484, 2011.

J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic
mathematics. Cambridge University Press, 1998.

M. Powell. The Canterbury Corpus. Accessed April, 25:2002, 2001. Available
online at http://www.corpus.canterbury.ac.nz/.

S. J. Puglisi, W. F. Smyth, and A. Turpin. A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39(2), 2007.

B. Vallée. Dynamical sources in information theory: Fundamental intervals and
word prefixes. Algorithmica, 29(1-2):262-306, 2001.

11

