Fast Synchronization of Random Automata - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Fast Synchronization of Random Automata

Cyril Nicaud

Résumé

A synchronizing word for an automaton is a word that brings that automaton into one and the same state, regardless of the starting position. Černý conjectured in 1964 that if a n-state deterministic automaton has a synchronizing word, then it has a synchronizing word of length at most (n − 1)². Berlinkov recently made a breakthrough in the probabilistic analysis of synchronization: he proved that, for the uniform distribution on deterministic automata with n states, an automaton admits a synchronizing word with high probability. In this article, we are interested in the typical length of the smallest synchronizing word, when such a word exists: we prove that a random automaton admits a synchronizing word of length O(n log3 n) with high probability. As a consequence, this proves that most automata satisfy the Černý conjecture.
Fichier principal
Vignette du fichier
random16.pdf (566.49 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01719171 , version 1 (28-02-2018)

Identifiants

Citer

Cyril Nicaud. Fast Synchronization of Random Automata. APPROX/RANDOM 2016, Sep 2016, Paris, France. pp.43.1-12, ⟨10.4230/LIPIcs.APPROX-RANDOM.2016.43⟩. ⟨hal-01719171⟩
64 Consultations
74 Téléchargements

Altmetric

Partager

More