Solving determinantal systems using homotopy techniques - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2021

Solving determinantal systems using homotopy techniques

Résumé

Let $\K$ be a field of characteristic zero and $\Kbar$ be an algebraic closure of $\K$. Consider a sequence of polynomials $G=(g_1,\dots,g_s)$ in $\K[X_1,\dots,X_n]$, a polynomial matrix $\F=[f_{i,j}] \in \K[X_1,\dots,X_n]^{p \times q}$, with $p \leq q$, and the algebraic set $V_p(F, G)$ of points in $\KKbar$ at which all polynomials in $\G$ and all $p$-minors of $\F$ vanish. Such polynomial systems appear naturally in e.g. polynomial optimization, computational geometry. We provide bounds on the number of isolated points in $V_p(F, G)$ depending on the maxima of the degrees in rows (resp. columns) of $\F$. Next, we design homotopy algorithms for computing those points. These algorithms take advantage of the determinantal structure of the system defining $V_p(F, G)$. In particular, the algorithms run in time that is polynomial in the bound on the number of isolated points.
Fichier principal
Vignette du fichier
all.pdf (606.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01719170 , version 1 (28-02-2018)

Identifiants

Citer

Jonathan D. Hauenstein, Mohab Safey El Din, Éric Schost, Thi Xuan Vu. Solving determinantal systems using homotopy techniques. Journal of Symbolic Computation, In press, 104, pp.754-804. ⟨10.1016/j.jsc.2020.09.008⟩. ⟨hal-01719170⟩
585 Consultations
282 Téléchargements

Altmetric

Partager

More