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Abstract—Principal component analysis (PCA) is an ubiquitous
data compression and feature extraction technique in signal
processing and machine learning. As compared with the classical
L2-norm PCA, its L1-norm version offers increased robustness
to outliers that are usually present in faulty data. Recently, L1-
PCA was shown to perform source recovery when the observed
data follow an independent component analysis (ICA) model.
However, proof of this result requires the data to be sphered,
i.e., to be preprocessed to constrain their covariance matrix to
be the identity. The present contribution extends this result by
relaxing the sphering assumption and allowing the data to have
arbitrary covariance matrix. We prove that L1-PCA is indeed
able to identify the mixing matrix columns associated with the
strongest independent sources, thus performing signal subspace
identification with improved robustness to outliers. Numerical
experiments illustrate and confirm the theoretical findings.

I. INTRODUCTION

Principal Component Analysis (PCA) is probably the most
popular multivariate data analysis technique [4], as it consti-
tutes the basis for a variety of dimensionality reduction and
noise filtering approaches. Multivariate data can be considered
as vectors in a high-dimensional vector space, say Rp. The
primary goal of PCA, as defined originally by Pearson, is to
find the direction of the line that best fits the data in the
p-dimensional space. In the traditional approach, this goal
is obtained by maximizing the sum of the squares of the
data projections onto the sought direction. Actually, several
best fitting directions, or principal axes, can be computed by
solving repeatedly the above optimization problem under the
constraint that the nth principal axis has to be orthogonal to
the previous (n � 1) axes. The subspace V ⇢ Rp spanned
by the orthogonal basis vectors pointing in the main principal
directions is called the signal subspace, another fundamental
concept in multivariate signal processing.

It is intuitive that the principal axes reveal much of the
structure of the data. In the context of the processing of
faulty data, PCA is mostly useful when the data of interest
is concentrated around only a few principal axes, so that the
dimension of the signal subspace V is much lower than p,
whereas the noise is distributed isotropically through all Rp. In
this case, a significant reduction of the noise, while preserving
the information content of the original data, can be obtained
by projecting the faulty data onto the signal subspace.

Recently, L1-norm PCA has been proposed in an attempt
to increase robustness to outliers of classical PCA. Experi-

mentally, the L1-PCA approach has proven to be effective
for restoration of faulty data in, e.g., the reconstruction of
occluded images [6], [10], [11], as well as in pattern recog-
nition and dimensionality reduction [1], [6]–[10], [13], [14],
[16]–[18]. Although fast yet suboptimal algorithms for L1-
PCA exist [5], [6], one of the most attractive features of this
approach is that it can be also performed by optimal algorithms
with guaranteed global convergence, as recently shown in [10].

The link between L1-PCA and independent component
analysis (ICA), another popular multivariate data processing
technique [3], [15], is carried out in [12], thus opening the
possibility to perform ICA using globally optimal algorithms
for L1-PCA. L1-PCA is shown to extract the independent
sources under the ICA model in the case where the data are
sphered, i.e., they have been whitened to present an identity
covariance matrix. The present contribution extends this result
by relaxing the assumption that the data be sphered, which
defines a more general framework. A theoretical analysis
supported by experimental results shows that L1-PCA is able
to identify the dominant signal subspace under the ICA model,
thus enabling source recovery via beamforming in a further
processing stage.

II. PROBLEM FORMULATION

Let us suppose that we observe N samples
{x1,x2, . . . ,xN} of a p-dimensional zero-mean random
vector x, which can be arranged into the (p⇥N) matrix

X = [x1, . . . ,xN ].

Let w 2 Rp, kwk2 = 1, define a projection direction. As
mentioned above, the goal of classical PCA is to find the
random variable y = wTx with the largest empirical variance.
The first principal component vector solves the following
problem:

max

kwk2=1

NX

n=1

(wTxn)
2

or, in matrix form:

max

kwk2=1

��wTX
��
2
. (1)

Though mathematically appealing, the L2-norm is rather
sensitive to impulsive noise or outliers since squaring the
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projections overemphasizes the effects of far-off data points,
which is a serious drawback.

To increase the robustness of PCA when processing faulty
data, we can try to eliminate the outliers from the data or,
alternatively, replace the L2-norm cost function by a more
robust criterion. The following L1-norm based variant of
traditional PCA is proposed in [6]:

max

kwk2=1

��wTX
��
1

(2)

where kyk1 =

PN
n=1|yi| represents the sum of the absolute

entries of vector y = wTX. The above two PCA criteria
are generally not equivalent, even when the data contain no
outliers. A key problem is to determine under which conditions
the solutions of (1) and (2) are the same, or at least similar,
in the absence of outliers. When the data are sphered, i.e., the
covariance matrix R

x

=

1
NXXT equals the identity matrix,

it follows that
��wTX

��
2
= kwk2 and therefore no principal

axis can be defined or identified according to (1). This is no
surprising as sphering is often performed by classical PCA,
so that the information that the L2 criterion can extract from
sphered data is somewhat exhausted. By contrast, L1-PCA can
yield interesting directions even for sphered data. A generative
model that can provide useful insights is the case where each
data point xi is made up of the linear superposition

xi =

qX

j=1

aj sij (3)

where sij represents the degree to which aj 2 Rp is present
in observation xi and q is the actual dimension of the data.
The assumption that coefficients sij are mutually independent
for different values of j is physically plausible in many real-
world problems, and gives rise to the independent component
analysis (ICA) model [3]. The solutions of L1-PCA under the
ICA model when p = q and the data are sphered are analyzed
in depth in [12], showing that projections associated with
independent components are locally stable stationary points
of the L1-PCA criterion.

The remaining of this paper explores the extension of this
result to the more general case of non-sphered data, where
R

x

6= I, and proves that L1-PCA yields principal directions
in a similar sense to L2-PCA but with the benefit of increased
robustness to outliers.

III. THEORETICAL ANALYSIS

We conduct a preliminary study for the case q = 2, implying
that the data points can be described by only two independent
components. This case is simple enough to allow a theoretical
analysis, while still retaining the important features of the
problem. Results are stated without proof for lack of space.

A. General Analysis for q = 2

We start by adopting a distributional viewpoint so that,
according to model (3), the observed data vector x can be
expressed as

x = a1s1 + a2s2 = As (4)

with A = [a1,a2] and s = [s1, s2]T. Components s1 and s2
represent zero-mean, mutually statistically independent ran-
dom variables, which are also assumed to have unit variance.
If this is not the case, the power of the variables can always
be incorporated into the length of the vectors ai without loss
of generality.

Given a projection unit-norm vector w, the projected data
are defined by y = wTx = g1 s1 + g2 s2, where gi = wTai.
Denoting by aji the jth entry of ai, we can also write

gi =
pX

j=1

wj aji.

Observe that, assuming ergodicity conditions, the L1-norm
criterion in (2) becomes (up to an irrelevant scale factor)
proportional to E{|y|} for large enough sample size:

kyk1 �!
N!+1

NE{|y|}

where y = wTX. For this reason, instead of (2), let us
consider here the equivalent problem

max

w

E{|y|} subject to kwk2 = 1

whose Lagrangian is given by

L(w,�) =
1

2

E{|y|}+ �(kwk22 � 1) (5)

where � is the Lagrange multiplier. Differentiating with respect
to the components of w by the chain rule, and using some
formulas in [12], it can be proven that

@L
@wn

=

2X

i=1

aniGi + 2�wn

where

Gi = �
Z 1

�1
sfi(s)Fj

✓
� gi
gj

s

◆
ds (6)

with i, j 2 {1, 2}, i 6= j,. Symbols fi(·) and Fj(·) denote
the probability density function and the distribution function,
respectively, of sj . This equation can be rewritten in matrix
form as

@L
@w

= Ab+ 2�w

where b = [G1,G2]
T. Finally, the stationary points of the

criterion must verify:

@L
@w

= 0 ) Ab = �2�w. (7)

This equation is difficult to solve because b depends nonlin-
early on w through g in (6). Hence, rather than searching for
a general solution, we will consider a simple yet significant
particular problem for now.



B. Particular Case: Data Clustered Around 1D Subspace

Now let us focus on the important situation where the
data appear approximately clustered around a one-dimensional
subspace, a straight line. Without loss of generality, we assume
that this line is in the direction of a1, the case of a2 being
treated in a totally analogous manner. A necessary condition
for the observed data clustering is that ka1k2 � ka2k2
under the unit-variance source assumption. Vector a1 defines
a principal axis in the sense of the dominant signal subspace,
while the term a2 s2 is interpreted here as a small amount of
added noise defining a noise subspace. We are going to study
whether L1-PCA is able to identify the signal subspace. This
is tantamount to verifying whether

w ⇡ ± a1
ka1k2

(8)

is a solution to (7). Since, by definition,

g = wTA ⇡ ±
h
1,aT1 a2/ka1k2

i

we can assume that g2
g1

' 0. Then, the following Maclaurin-
based approximation of (6) holds for i = 2:

G2 ⇡ �
Z 1

�1
sf2(s)


F1(0)� s f1 (0)

g2
g1

�
ds = �f1(0)

g2
g1

where we have exploited the assumption that s2 has zero mean
and unit variance. Clearly, g2

g1
' 0 implies G2 ' 0. Substituting

G2 = 0 in (7), we readily arrive at (8): this proves that a1 is a
stationary point of the L1-norm criterion. We know check its
stability.

C. Local Stability Analysis

Let L
w

be the Hessian matrix associated to (5), L
w

=

F
w

+ �H
w

, where

H
w

=

"
@2

@wi@wj

pX

n=1

w2
n

#

i,j

i, j = 1, . . . , p

� is the Lagrange multiplier and F
w

is the Hessian of 1
2E{|y|},

F
w

def
=


@2

@wi@wj

1

2

E{|y|}
�

i,j

i, j = 1, . . . , p.

Assuming the solution (8), it can be shown that

L
w

=

f1(0)

ka1k2
a2a

T
2 � ka1k2

✓Z 1

0
sf1(s) ds

◆
I.

Let v be any vector orthogonal to w. Geometry shows that

vTa2 = ⌥kvk2ka2k2 sin(\a1a2)
where \a1a2 is the angle between a1 and a2. Then,

vTL
w

v

kvk22
=

ka2k22
ka1k2

sin

2
(\a1a2)f1(0)� ka1k2

Z 1

0
sf1(s) ds.

When ka1k2 is greater enough than ka2k2, it follows that
vTL

w

v < 0. According to [2], this ensures that (8) maximizes

the criterion. Otherwise, if f1(0) �
R1
0 sf1(s) ds, as in a

supergaussian distribution [12], then vTL
w

v may be positive:

in this case, we have to minimize, not maximize, the L1-norm
to recover a1.

According to this theoretical analysis, L1-PCA determines
the signal subspace in a way similar to L2-PCA. This result,
combined with the fact that L1-PCA is more robust against
outliers than L2-PCA, provides additional support for the use
of L1-PCA in the analysis of faulty data.

IV. NUMERICAL EXPERIMENTS

Some computer experiments are carried out to support the
validity and generality of the theoretical development of the
previous section. For simplicity we will assume that p = q,
i.e., the observations have the same dimensionality as the
underlying independent components generating the data.

A. Case q = 2

Let a1 =

↵p
2
[1, 1]T and a2 =

1
2 [
p
3,�1]

T. These vectors
make an angle of 45

� and �30

�, respectively, with the
horizontal axis so that R

x

= AAT 6= I. Assuming that
w ⇡ ± a1

ka1k2
as in (8), it follows that ka1k2 � ka2k2, as

required, when ↵ ! 1. We generate N = 200 samples of the
random variable x using model (4), where s1 and s2 are drawn
from independent zero-mean unit-variance uniform distribu-
tions. L1-PCA is then applied on the data using the iterative
algorithm presented in [6]. First, Figure 1 (top) shows vector
a1 for ↵ = 1.5 (solid-line arrow), the vector wL1 obtained
by L1-PCA (bold solid line), the first principal component
wL2 generated by traditional L2-PCA (dashed line) and the
scatter plot of the observations of x. In the figure, vectors
a1,wL1 and wL2 have been shifted and scaled differently
for clarity. In this particular experiment, observe that L1-PCA
estimates a1, the vector pointing in the main direction of the
data, better than L2-PCA: the angle between wL1 and a1
equals 3.2�, whereas the angle between wL2 and a1 is 6.3�.
Next, we repeat the experiment after adding several outliers
to the same data. Results are shown in Figure 1 (bottom). As
expected, the estimation is negatively affected by the presence
of outliers: the angle between wL1 and a1 now becomes 3.6�.
Yet L1-PCA proves more robust than L2-PCA, since the angle
between wL2 and a1 is now equal to 12.5�.

Figure 2 (left) shows the angle of vector wL1 determined
by L1-PCA with the horizontal axis as a function of ↵ after
convergence of the L1-PCA algorithm. As ↵ increases, this
angle tends to 45

� so that wL1 is parallel to a1 as expected. On
the other hand, if ↵ tends to zero, the angle approaches �30

�

and wL1 coincides with a2, which is also consistent with our
analysis as a2 now becomes dominant. Finally, when ↵ = 1,
so that a1 and a2 have the same length, wL1 points in the
direction of the sum of both vectors. In Figure 2 (right), as in
a previous experiment, data contain 5% of Gaussian outliers
and therefore the figure also compares the robustness of L1-
PCA and L2-PCA.

B. Case q > 2

We now generate N = 500 independent samples of x =P7
j=1 aj sj , x 2 R7. The coordinates of vectors aj are
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Fig. 1. Scatter plot of a two-dimensional observation (p = 2) composed of
two independent components (q = 2) and N = 200 samples. The independent
component direction a1 is represented by a solid line arrow. The L1-PCA
solution wL1 (bold solid-line arrow) is aligned with the main axis of the
data, as predicted by our analysis. For the purposes of comparison, the L2-
PCA solution wL2 is also shown (dashed-line arrow). Vectors are not drawn
to scale. Top plot: No outliers. Bottom plot: 5% of outliers. Outliers are drawn
at random from a normalized Gaussian distribution. It is apparent in this figure
that L1-PCA is more robust to outliers than L2-PCA.
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Fig. 2. Angle of L1-PCA solution wL1 with the horizontal axis as a function
of the dominant axis magnitude ↵. As ↵ increases, the angle tends to 45� and
wL1 points in the direction of a1. As ↵ tends to zero, a2 becomes dominant
and wL1 points it its direction, at an angle of �30�. For comparison, the angle
between the L2-PCA solution and the horizontal axis is also shown in the
dashed line. The curves represent the average of 100 independent experiments.
Left plot: no outliers. Right plot: data contain 5% of outliers.

drawn from a standardized Gaussian distribution, except for
a4, where the variance is set to 10, so that a4 defines the main
axis of the data. The variables sj are zero-mean and uniformly
distributed. Figure 3 shows the angle of vector wL1 recovered
by L1-PCA with each of the basis vectors ai, simply computed
as arccos

⇣
|wT

ai|
kwkkaik

⌘
, averaged over 100 independent Monte

Carlo realizations. A confidence interval is also depicted: the
total length of the vertical line equals twice the standard
deviation of the angle. As expected, wL1 is more aligned
with a4 than with any other vector ai, i 6= 4. This result
demonstrates that the theoretical analysis of Sec. III can be
generalized to the case of data with more than two dimensions
(q > 2). For comparison, we also show the results obtained
by L2-PCA.
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Fig. 3. Results with q = 7 random directions, where a4 has the strongest
magnitude, and N = 500 samples. Each pair of vertical lines represents
the confidence intervals of the angles formed by L1-PCA vector wL1 (left
line) and the L2-PCA vector wL2 (right line) with each data direction over
100 independent Monte Carlo realizations. L1-PCA succeeds in finding the
principal direction naturally defined by the dominant axis a4. The results are
also similar to those obtained by applying L2-PCA.

V. CONCLUSIONS

This work has found a relationship between L1-PCA and
the principal axes defining the dominant signal subspace when
the data are not sphered. This result is consistent with the fact
that the criterion seeks for projections with large amplitude.
The dominant source subspace identified by L1-PCA proves
more robust in the presence of outliers than classical L2-PCA.
Further work should aim at the theoretical characterization of
the influence of outliers and the extension of our analysis to
more than two underlying dimensions.

ACKNOWLEDGMENTS

This work is partially funded by the Spanish Ministry of
Economy and Competitiveness under project TEC2014-53103-
P CMANS.

V. Zarzoso is a member of the Institut Universitaire de

France.



REFERENCES
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