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Spectroscopy is a unique experimental tool for measuring the fundamental Casimir-Polder in-
teraction between excited state atoms, or other polarisable quantum objects, and a macroscopic
surface. Spectroscopic measurements probe atoms at nanometric distances away from the surface
where QED retardation is usually negligeable and the atom-surface interaction is proportional to
the inverse cube of the separation distance, otherwise known as the van der Waals regime. Here we
focus on selective reflection, one of the main spectroscopic probes of Casimir-Polder interactions. We
calculate for the first time selective reflection spectra using the full, distance dependent, Casimir-
Polder energy shift and linewidth. We demonstrate that retardation can have significant effects, in
particular for experiments with low lying energy states. We also show that the effective probing
depth of selective reflection spectroscopy depends on the transition linewidth. Our analysis allows
us to calculate selective reflection spectra with composite surfaces, such as metasurfaces, dielectric
stacks, or even bi-dimensional materials.

I. INTRODUCTION

The Casimir-Polder interaction of polarisable quantum
objects, such as atoms or molecules, with a macroscopic
surface is a fundamental problem of quantum electro-
dynamics. Spectroscopic measurement of atomic energy
level shifts has been one of the main experimental meth-
ods for probing atom-surface interactions. Spectroscopy
of Rydberg atoms flying through metallic cavities was the
first precision measurement of the van der Waals law [1],
demonstrating that atom-surface potentials scale as z−3,
where z is the atom-surface separation. Selective reflec-
tion (SR), a technique used in conventional vapor cells,
is also sensitive to atom surface interaction in the nano-
metric scale, probing atoms at distances on the order of
100 nm away from dielectric windows [2, 3]. Selective
reflection has been used to demonstrate atom-surface re-
pulsion of excited state atoms due to resonant coupling
with surface polaritons [4], as well as to demonstrate a
strong temperature dependence of the Casimir-Polder in-
teraction due to thermal excitation of polariton modes
[5, 6]. Thin cell transmission and reflection have been
used to measure atom-surface interactions [7] and more
recently evidence of van der Waals interactions was also
observed on thin cell fluorescence spectra [8].

Spectroscopic probing of the Casimir-Polder interac-
tion has been so far seemingly faithful to the z−3, van
der Waals law, whereas retardation effects, that were fa-
mously first predicted by Casimir and Polder [9], have
been demonstrated only with ground state atoms. This
was either done by measuring the deflection of ground
state sodium atoms [10], or by using cold atom trapping
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in the vicinity of surfaces [11–13]. Nevertheless retarda-
tion effects for excited state atoms have remained elu-
sive in most spectroscopic experiments, with a notable
exception of experiments performed with ions placed ex-
tremely far away (on the order of 20 cm) from a surface
[14]. These experiments have shown QED oscillations of
the Casimir-Polder force, similar to the ones predicted
for a classical antenna, due to the influence of sponta-
neous emission. The intermediate regime of interaction
has not been studied with excited state atoms. In fact,
analysis of spectroscopic measurements, in particular se-
lective reflection or thin cell spectroscopy, has only been
performed under the prism of a pure van der Waals law
[3]. However, recent experimental and theoretical studies
[15] suggest that retardation could have measurable ef-
fects for spectroscopic experiments with low-lying atomic
energy states.

Here we theoretically investigate the effects of Casimir-
Polder retardation on selective reflection spectra. In sec-
tion II we outline the principles of the calculation of se-
lective reflection spectra accounting for a fully retarded
Casimir-Polder potential. In section III, we calculate
the Casimir-Polder potential of Cesium low lying energy
states and we present the theoretically predicted spec-
tra of the corresponding selective reflection experiments.
We show that retardation effects have an impact on pre-
dicted spectra and experimental measurements of the van
der Waals coefficient. Finally, section IV, we discuss
how our analysis is imperative for interpreting spectro-
scopic measurements with more complex geometries such
as meta-surfaces that now offer an attractive way for tun-
ing the Casimir-Polder interaction via tuning of surface
plasmon or polariton resonances [16]. Our approach al-
lows us to account for a distance dependent shift and
linewidth. This can be important in the quest for identi-
fying more delicate effects such as quantum friction [17]
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in spectroscopic experiments.

II. INFLUENCE OF CASIMIR-POLDER
INTERACTION ON SELECTIVE REFLECTION

SPECTRUM

The Casimir-Polder interaction has been theoretically
investigated in numerous studies. Here, we follow the
formalism introduced by Wylie and Sipe [18, 19], since
our emphasis will be on excited state atoms. The same
formalism has been used to analyze a temperature depen-
dent Casimir-Polder interaction [20] and later to demon-
strate that the temperature dependent Casimir-Polder
interaction is equivalent to a shift induced by near field
thermal emission [15].

For a given atomic state |a〉 the free energy shift δFa
due to the atom-surface interaction can be expressed as
the sum of contributions resulting from all dipole allowed

couplings, δFa→b,

(
δFa =

∑
b

δFa→b

)
which can in turn

be decomposed in a resonant δF ra→b and non-resonant
δFnra→b contribution. The resonant term of the interac-
tion is reminiscent of a classical interaction between an
oscillating dipole and its image [21]. The non-resonant
term originates from the QED picture of an atom in-
teracting with the fluctuating vacuum at non-zero tem-
perature [19–21]. It can be viewed as a distance depen-
dent Lamb shift [18–20]. The resonant and non-resonant
terms of the Casimir-Polder interaction are given by the
following expressions:

δFnra→b = −2
kBT

h̄

∞∑
p=0

′

µabα µ
ba
β Gαβ(z, iξp)

ωab
ξ2
p + ω2

ab

(1)

δF ra→b = n(ωab, T )µabα µ
ba
β Re [Gαβ(z, |ωab|)] (2)

Here, ωab is the transition frequency that can be either
positive or negative depending on the coupling, ξp =

2π kBTh̄ p are the Matsubara frequencies and n(ωab, T ) is
the Bose-Einstein factor. The prime symbol signifies that
the first term of the sum should be multiplied by 1/2. We
use the Einstein notation, implying a summation over the
index variables α and β that denote the Cartesian coor-
dinate components. Finally, µabα and µbaβ are the dipole

moment matrix elements and Gαβ(z, iξp) are the compo-
nents of the linear susceptibility matrix of the reflected
field defined in [18, 19]. The linear susceptibility matrix
gives the reflected displacement field at a point ~r due to
a dipole ~µ(ω), oscillating at a frequency ω, positioned at

~r ′, via the relation ~D(~r, ~r ′, ω) =
↔
G (~r, ~r ′, ω)~µ(ω). In our

case
↔
G is evaluated for ~r = ~r ′, because we’re interested

in dipoles interacting with their own reflected field. Due

to the cylindrical symmetry
↔
G is only a function of fre-

quency and distance z of the dipole from the reflecting

wall. More details on the calculation of the elements of
the linear susceptibility matrix are given in [15, 18–20].

The distance dependent linewidth, δγa(z), is also a
summation of contributions, δγa→b, given by:

δγa→b = 2n(ωab, T )µabα µ
ba
β Im [Gαβ(z, |ωab|)] (3)

The far field limit (z � λab

4π ) of the free energy shift
δFa→b and linewidth δγa→b are given by :

δFa→b = n(ωab, T )µabα µ
ba
β

k2
ab

z
|r(ωab)| cos(2kabz + φ(ωab))

(4)

δγa→b = 2n(ωab, T )µabα µ
ba
β

k2
ab

z
|r(ωab)| sin(2kabz+φ(ωab))

(5)
where λab, kab are the transition wavelength and

wavevector, and r(ωab) = |r(ωab)|eiφ(ωab) is the surface

reflection coefficient. In the near field (z � λab

4π ), the
free energy shift follows the well known van der Waals

law that writes δFa→b = −Re[C3]
z3 . In the case of a dissi-

pative surface (non-zero imaginary part of the dielectric
constant), the distance dependent linewidth also follows

the inverse cube law: δγa→b = − 2Im[C3]
z3 , where C3 is the

complex van der Waals coefficient.
Using the above definitions we can proceed to the cal-

culation of the selective reflection spectrum using a fully
retarded Casimir-Polder shift and linewidth. Selective
reflection is a linear spectroscopic technique that mea-
sures the reflection of a laser beam, near resonant with
an atomic transition, at the interface of an atomic va-
por and a dielectric surface (transparent at the laser fre-
quency). Due to collisions with the dielectric surface the
interaction of the atoms with the laser field is interrupted.
As such a correct description of selective reflection takes
into account the transient regime of atom-laser interac-
tion [3, 22]. In its FM (Frequency Modulation) version
selective reflection is linear (with respect to laser power),
has a sub-Doppler resolution and is essentially sensitive
to atoms that are at distances on the order of λ/2π
away from the dielectric surface, where λ is the wave-
length of optical excitation. The combination of high
frequency resolution and detection of atoms at nanomet-
ric distances from the surface makes selective reflection a
major experimental method for probing Casimir-Polder
interactions of excited state atoms. Additionally selec-
tive reflection has been used for measuring the collisional
broadening (broadening due to inter-atomic collisions) of
atomic transitions [22, 23]. The possibility of measur-
ing local-field corrections (Lorentz-Lorenz shift) at high
vapor densities with strong laser attenuation inside the
atomic vapor has also been considered [24].

In our study we usually consider transitions between
the fundamental electronic state of the atom |g〉 and an
excited state |e〉. The details of the calculation have been
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outlined in [3]. Here we briefly remind that the calcula-
tion considers the transient atomic response to correctly
describe the effective linear susceptibility of the atomic
vapour. When a frequency modulation (FM) is applied
to the laser probe beam the observable signal is in fact
the derivative of the reflectivity as a function of laser fre-
quency ω which according to [3] is given by the following
formula:

SFM = Im

[∫ ∞
0

dz

∫ ∞
0

dz′
(z′ − z)eik(z+z′)

L(z′)− L(z)

]
(6)

The integral inside the brackets will be denoted as I.
Here, k is the laser wavevector and L defined as the fol-
lowing indefinite integral:

L(z) =

∫ [
γ + δγ(z)

2
− i (ω − ωo − δF (z))

]
dz (7)

where ω, ωo are the laser and transition frequencies and
δF (z) = δFe(z) − δFg(z) is the difference between the
free energies between the probed states, which is the rel-
evant quantity in selective reflection spectroscopy. γ is
the transition linewidth in the volume (away from the
surface), defined as the natural linewidth plus any addi-
tional collisional broadening, and δγ(z) = δγe(z)+δγg(z)
is the distant dependent transition linewidth that essen-
tially contains all surface effects. We can also write Eq.
(7) as:

L(z) = Loz − iξ(z) (8)

where Lo = γ
2 − i(ω − ωo). The effects of the surface

on the atomic properties are essentially contained in the

indefinite integral ξ(z) =
∫ (
−δF (z) + i δγ(z)

2

)
dz. Here

the shift −δF (z) and the linewidth δγ(z)
2 appear as a

real and imaginary parts of the Casimir-Polder potential
respectively. The integration constant has been omitted
as we are only interested in the differenceL(z′)− L(z).

In most spectroscopic experiments one fits the exper-
imental data with a theoretical model to extract infor-
mation about the Casimir-Polder interaction [1, 2, 4–8].
Here, however, ξ(z) is a numerically calculated function
that uses the theoretically estimated Casimir-Polder po-
tential, without accounting for any adjustable parame-
ters. For this purpose we rewrite Eq. (8) using a dimen-
sionless multiplicative constant, η, that is applied equally
to both the free energy shift and linewidth :

L(z) = Loz − iηξ(z) (9)

η changes the strength of the potential, and provides an
adjustable parameter that can be used to fit the theoret-
ical model to experimental data. For the purposes of this
manuscript, selective reflection spectra are calculated us-
ing strictly the theoretical predictions for atom-surface
potential (i.e η = 1).

After a change of variables and some tedious algebra
the selective reflection integral is written as:

I =
2

(1− i∆)γok2

[
1

(−i+ α)2

]
+

2

(1− i∆)γok2
×[∫ ∞

0

dseise−αs
∫ s

0

dt
iAΞ(s, t)

(1− i∆)− iAΞ(s, t)

] (10)

The details of the calculation and the definition of
Ξ(s, t) are given in appendix A (see Eq. (A3)). Here
we define the normalized frequency (detuning parameter)

∆ = 2(ω−ωo)
γ and the parameter A = 2ηk

γ . The param-

eter α is the attenuation coefficient due to the exponen-
tial laser absorption inside the resonant vapor (see also
[3, 24]). In normalized frequency units the shape of the
spectrum depends exclusively on the parameter A, which
is essentially the ratio of the strength of the potential η
over γ, that defines the resolution of the experiment.

The result of Eq. (10) displays many similarities with
the selective reflection spectrum assuming a pure van der
Waals potential [3]. However, here the curves are not
universal, since the distance dependence of the poten-
tial depends on the probed transition. Additionally, the
calculation of the integrals is significantly more difficult.

It is also worth mentioning that, while in the near field
the distance dependent linewidth is usually significantly
smaller than the atomic energy shift and in most cases
can be safely ignored, this is not the case when one con-
siders the complete Casimir Polder potential. It can be
seen from Eq.(4,5) that in the far-field, linewidth (δγ/2)
and shift (δF ) oscillate with the same amplitude and fre-
quency and a phase shift of π/2. As such, ignoring the
distance dependent linewidth in a fully retarded calcu-
lation has no realistic justification and can lead to erro-
neous results or even, in some cases, to divergent selective
reflection integrals.

III. RESULTS

We now turn our attention to some specific cases, fo-
cusing mainly on Cesium which is widely used in spec-
troscopic SR experiments (see [5, 6, 16, 25] and refer-
ences therein). In particular we examine the low lying
excited states where dipole moment fluctuations remain
relatively small, and comparable to those of the ground
state. Here we also take into account the modification
of the spontaneous emission rate near the surface [26]
due to the reflection of the emitted field on the surface,
or due to emission in the forbiden cone of the dielectric
[27] and in evanescent plasmon-polariton modes. Within
the near-field approximation the transition linewidth can

be written as: δγa→b ∝ 1
z3 Im

[
ε(|ωab|)−1
ε(|ωab|)+1

]
, which diverges

close to the surface, if the surface dissipation is non-zero
at the transition frequency (Im(ε(|ωab|) 6= 0). This rep-
resents an increase in the spontaneous emission rate of
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the atom due to the existence of evanescent, plasmon-
polariton type, modes [28]. In the cases considered here
this contribution is small for experimentally meaningful
distances. Therefore, we consider the surface dissipation
equal to zero (Im(ε(|ωab|) = 0), thus avoiding any diver-
gence of the atomic linewidth very close to the surface
(see also relevant discussion in [18]).

FIG. 1. (a) Effective van der Waals coefficient Ceff
3 (as defined

in the main text)for the Cesium levels 6S1/2 (black dashed
line), 6P1/2 and 6P3/2 (black and grey dash-dotted lines re-
spectively) as well as 5D5/2 (black solid line) against a sap-
phire surface. The inset shows the difference of the effective
van der Waals coefficients for the 6S1/2 → 5D5/2 (black solid
line) and the 6S1/2 → 6P1/2 (red solid line) transitions. (b)
Distance dependent linewidth for three principal transitions
6S1/2 → 6P1/2 (black dash-dotted line), 6S1/2 → 6P3/2 (grey
dash-dotted line), 6S1/2 → 5D5/2 (black solid line).

In Fig.1(a) we show the energy level shifts for the Ce-
sium levels 6S1/2, 6P1/2, 6P3/2, and 5D5/2 against a sap-
phire surface, multiplied by the cube of the atom-surface
distance z (−δF (z) z3). For simplicity, we call the quan-
tity −δF (z) z3 an effective van der Waals coefficient Ceff

3 .

Our calculation is performed for a sapphire surface whose
dielectric constant is given in [29, 30]. From Fig.1(a) we
can see that for the excited states of Cesium, the Ceff

3 (z)
is practically constant within a few hundred of nanome-
ters from the surface, whereas the ground state of Ce-
sium 6S1/2 decays much more rapidly, towards an asymp-

totic z−4 regime. This is partly because excited states
present many dipole couplings at near and mid-infrared
wavelengths but also because these couplings are both
in absorption (positive transition frequencies) as well as
in emission (negative transition frequencies). As such,
excited states are sensitive to the distance dependence
of the resonant term of the Casimir-Polder interaction
whose distance dependence is very different from that of
the non-resonant term.

We will examine here in more detail the spectra of
selective reflection at the 6S1/2 → 6P1/2 and 6S1/2 →
5D5/2 transitions. The difference of the effective van der
Waals coefficients for these experiments, representing the
spectroscopically relevant quantity is shown as an inset of
Fig.1(a). The first transition, the D1 line of Cesium, was
already investigated experimentally , albeit with a cell
containing significant quantities of buffer gas impurities
[31]. The D2 line of cesium ( 6S1/2 → 6P3/2 ), exper-
imentally investigated in [2, 23], exhibits a very similar
behavior to the D1 line.

In the case of the 6S1/2 → 5D5/2 transition SR is al-
most exclusively sensitive to retardation mostly because
the van der Waals coefficients of the two levels are very
similar in magnitude. The 6S1/2 → 5D5/2 transition
is an electric quadrupole coupling, with small transition
probability. Nevertheless, it has been experimentally
probed by reflection spectroscopy of evanescent waves
[32] and more lately with high resolution pump-probe
spectroscopy [33]. Additionaly the 5D5/2 level can be
reached with a two photon, or Raman-type transition
using two excitation lasers and appropriatly large detun-
ing to minimise the influence of the intermediate state.
Therefore the analysis that we will present here is much
more than a simple theoretical curiosity. In Fig.1(b) we
show the distance dependent linewidths for the 6P1/2

and 5D5/2 transitions (starting from the cesium ground
state). The increase in linewidth (decrease in lifetime)
observed close to the wall is a well known effect that de-
pends on the orientation of the atomic dipole [18, 26],
which is here considered to be random. A few hundreds
of nanometers away from the surface, we observe QED os-
cillations of the linewidth (see Eq. (5)) around its asymp-
totic value, which, for the purposes of Fig.1, is considered
to be equal to the natural transition linewidth assuming
zero collisional broadening.

We now use the theory developed in the previous sec-
tion to calculate SR spectra, of the electric quadrupole
transition 6S1/2 → 5D5/2 . In Fig.2(a) we show the cal-
culated SR spectra as black solid lines for different val-
ues of the collisional broadening. The grey lines show
the expected SR spectra, assuming a pure van der Waals
non-retarded law C3z

−3. The differences between spec-
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FIG. 2. (a) The black lines represent the simulated selec-
tive reflection spectra (SFM ) on the 6S1/2 → 5D5/2 transi-
tion, using a fully retarded Casimir-Polder potential (exact
SR lineshapes) with a transition linewidth of γ = 120 kHz
(natural linewidth) as well as γ = 1 MHz and γ = 10 MHz
(assuming a collisional broadening). The spectra are given
as a function of the normalized frequency ∆, as defined in
the text. The grey lines represent the expected SR lineshapes
assuming a pure van der Waals atom-surface potential (i.e
using the theoretical prediction of C3 = 0.15 kHzµm3). The
dashed curves are the best fits of the exact SR lineshapes us-
ing an ad hoc van der Waals coefficient Cfit

3 . (b) The ad hoc
van der Waals coefficient Cfit

3 as a function of the transition
linewidth. As the transition linewidth increases SR is more
sensitive to atoms that are close to the surface and the val-
ues of Cfit

3 approach the theoretical estimate of the van der
Waals coefficient (Fig.1). The inset shows the amplitude ratio
between the fully retarded SR spectra and the corresponding
fits.

tra are significant, especially for γ = 120 kHz (natural
transition linewidth) where differences are indeed strik-
ing. This confirms that retardation effects can play a
important role in this experiment. To strengthen our

FIG. 3. (a) The same as in Fig.2 but for the 6S1/2 → 6P1/2

transition. Black lines are the exact SR spectra, grey lines
SR spectra with a pure van der Waals potential and dashed
lines are fits of the exact SR spectra using an ad-hoc Cfit

3

coefficient. The linewidths investigated are γ = 4.6 MHz
(natural linewidth) as well as γ = 10 MHz and γ = 20 MHz,
giving a Cfit

3 of 1.7 kHzµm3, 1.5 kHzµm3 and 1.2 kHzµm3

respectively. The theoretical values of the van der Waals co-
efficient is C3 = 1.1 kHzµm3.(b) Cfit

3 coefficient as a function
of linewidth. As in Fig.2, the inset shows the amplitude ratio
between the exact SR spectra and the corresponding fits.

analysis we try to fit the fully retarded SR spectra us-
ing an ad hoc van der Waals coefficient, Cfit

3 . The fitting
methods have been detailed in numerous works (see for
example [23, 25]). We briefly remind that the fitting pro-

cess optimizes a dimensionless parameter A = 2C3k
3

γ , the

transition linewidth, and accounts for the amplitude of
the spectra as well as a small (pressure induced) shift of
the transition frequency. The best fits are shown with
dashed lines in Fig.2(a), whereas the values of Cfit

3 as a
function of transition linewidth are shown in Fig.2(b).
It is evident that an ad hoc van der Waals model can
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in most cases satisfactorily fit the fully retarded spec-
tra. It should nevertheless be noted that the quality of
the fits clearly degrades as the linewidth decreases (for
γ = 120 kHz the fit cannot reproduce very well the re-
tarded SR spectrum). Most importantly, the Cfit

3 is not
constant but displays a clear dependence on the transi-
tion linewidth γ, as can be seen in Fig.2(b). As γ in-
creases the ad hoc van der Waals coefficient approaches
its theoretical value Ceff

3 (z → 0), whereas for narrow
linewidths, SR seems to probe the Casimir-Polder inter-
action at a finite distance (more than 100 nm away from
the surface when γ = 120 kHz). This phenomenon has
a rather transparent interpretation: Due to big Casimir-
Polder shifts, atoms that are very close to the surface,
experience a large detuning parameter that reduces their
relative contribution to the SR spectrum. When the tran-
sition linewidth increases due to collisional broadening,
∆ decreases, thus enhancing the contribution of atoms
that are closer to the surface. In the inset of Fig. 2(b)
we plot the ratio of amplitudes between the exact SR
spectra and the van der Waals fits. Here, also we observe
a dependence as a function of linewidth. These variations
(about 20%) are much smaller than the Cfit

3 variations.
We also stress that the actual experimental amplitude of
the spectra would also depend on the atomic vapor den-
sity. As such an experimental study of amplitude effects
is more challenging.

The same analysis is repeated for the D1 transition of
Cesium and the results are summarized in Fig.3. Here,
the retarded SR lineshapes (solid black lines) can be al-
most exactly reproduced by an ad hoc van der Waals fit
(dashed lines). As previously, the values of Cfit

3 (Fig.3(b))
also decrease with increasing linewidth converging to-
wards the value of Cfit

3 = 1.35 kHzµm3. For γ close to
the natural linewidth (4.6 MHz), Cfit

3 = 1.7 kHzµm3 a
value that cannot be justified only by the Casimir-Polder
shift (see the inset in Fig.1(a)). In this case, in order to
account for the observed dependence of Cfit

3 as a func-
tion of linewidth one has to consider both the distance
dependent shift and linewidth. This is corroborated by
the fact that the fitting process gives an ad hoc linewidth
γfit which is slightly larger than the real values (by about
0.5 MHz), an effect also linked to the distance depen-
dent linewidth close to the surface (see Fig.1(b)). Small
variations of the amplitude of the fitted curves are also
observed and shown in the inset of Fig.3(b).

Contrary to the 6S1/2 → 5D5/2 transition, the D1

line of Cesium is a particularly strong line with a well
separated hyperfine structure, but the predicted retarda-
tion effects are smaller. Previous experiments [31], con-
ducted for large linewidths (γ > 20 MHz) give a value
of 1.4 kHzµm3 , with error bars of about 15%. These
results are in good agreement with the predictions of
Fig.3(b). A more conclusive experimental demonstation
of retardation requires measurements at small linewidths
and probably an improvement of the experimental error
bars. This regime was not attained in the experiment
presented in [31] mainly due to the existence of impuri-

ties in the cesium cell that limited the minimum observ-
able linewidth. When comparing experiment to theory
it’s also worth keeping in mind that the theoretical esti-
mates of the Casimir-Potential are sensitive to the exact
knowledge of the transition probabilities of all the rela-
tive dipole couplings as well as the dielectric constant of
sapphire (see [5] for a discussion on the error bars of the
theoretical predictions).

Our analysis also gives the possibility to fit experimen-
tal data with a fully retarded library of curves (values of
A), which would depend on the specific transition and
the specific dielectric investigated. In this case the fit-
ting process would adjust for the transition linewidth (γ)
and the dimensionless parameter (η) which measures the
strength of the Casimir-Polder potential (both shift and
linewidth) with respect to its theoretical values, assum-
ing that distance dependence is fixed.

IV. CONCLUSIONS

Here we have focused our analysis in spectroscopic ex-
periments performed with atoms in front of infinite plane
surfaces. However, our methodology can be easily ex-
tended to composite surfaces, assuming that the Casimir-
Polder potentials and propagation optics can be correctly
evaluated [34]. The simplest example of a composite sur-
face is the case where alkali adsorbants are deposited on
or even react with the surface. This is a common phe-
nomenon in vapour cells filled with alkali atoms that can
strongly depend on the nature of the surface [35]. In
this respect sapphire windows seem to be more favor-
able, with an additional benefit of allowing much higher
temperatures, than glass or calcium fluoride windows [6].
Although a theoretical analysis of the problem is chal-
lenging it is probable that a simple van der Waals ap-
proximation is not sufficient to analyze these effects.

A more interesting scenario includes the controlled de-
position of bi-dimensional materials such as graphene on
a dielectric surface. Already, Casimir force measurements
have been performed on a composite dielectric-graphene
surface [36] and theoretical proposals exist for extending
such measurements to the Casimir-Polder domain (see
for example [37, 38]). Casimir and Casimir-Polder type
measurements allow us to get useful information on the
dielectric properties of bi-dimensional materials. More
importantly, stacking bi-dimensional layers may even-
tually allow engineering an effective dielectric constant
and the plasmon-polariton modes of the surface. Fi-
nally, non-trivial geometries, without cylindrical symme-
try, such as gratings [39] or metamaterials [40] have al-
ready been experimentally explored. In the case of the
atom-metamaterial interaction, initial selective reflection
measurements indicate that retardation effects are im-
portant for a correct interpretation of the experiment.

In conclusion, we have presented the theoretical back-
ground that allows us to take into account the effects of
Casmir-Polder retardation in spectroscopic experiments
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of the atom-surface interaction. We have proposed spe-
cific experiments, where retardation can have observ-
able effects. Unlike previous retardation measurements
[10, 11] the experiments investigated here are sensitive to
the difference of energy shifts between ground and excited
state atoms, and therefore sensitive to both non-resonant
and resonant components of the atom-surface potential.
Our analysis shows that although experimental measure-
ments can in most cases be fitted with a simple van der
Waals model, such an analysis will yield a linewidth de-
pendent van der Waals coefficient. This is because the
probing depth of the experiments increases with decreas-
ing linewidth. Finally we show that our analysis will be
useful when dealing with composite, non-trivial surfaces.

J.C. de Aquino Carvalho thanks the Brazilian program
Ciência Sem Fronteiras for financial support of his PhD
thesis. A. Laliotis and J.C. de Aquino Carvalho acknowl-
edge discussions with Daniel Bloch that led to an im-
provement of the manuscript. A. Laliotis and M. Ducloy
acknowledge discussions with David Wilkowski.

Appendix A

By applying the transformation s = k(z + z′) and t =
k(z − z′) Eq.(6) can be written as:

I =
1

k2

∫ ∞
0

ds

∫ s

0

dt
t
ke
is

L( s+t2k )− L( s−t2k )
(A1)

after some algebra the integral I can be written as

I =
2

γk2

∫ ∞
0

dseise−αs
∫ s

0

dt
1

(1− i∆)− iAΞ(s, t)
(A2)

where Ξ(s, t) is defined as :

Ξ(s, t) =

[
ξ( s+t2k )− ξ( s−t2k )

t

]
(A3)

whereas A = 2ηk
γ , ∆ = 2(ω−ωo)

γ and α is an attenua-

tion coefficient already defined in the main text. Further
algebra leads to the following:

I =
2

(1− i∆)γk2

[∫ ∞
0

seise−αsds

]
+

2

(1− i∆)γk2

[∫ ∞
0

dseise−αs
∫ s

0

dt
iAΞ(s, t))

(1− i∆)− iAΞ(s, t)

]
(A4)

The first integration can be performed analytically giv-
ing the final expression:

I =
2

(1− i∆)γk2

[
1

(−i+ α)2

]
+

2

(1− i∆)γk2

[∫ ∞
0

dseise−αs
∫ s

0

dt
iAΞ(s, t)

(1− i∆)− iAΞ(s, t)

]
(A5)

Solving numerically Eq. (A5) can be challenging. We
find that the introducing the laser field attenuation pa-
rameter helps convergence of the integrals without sig-
nificantly influencing the final results, so long as α � 1
(typically α < 0.1 is sufficient). Also, for large values of
s (s→∞) the last integral in Eq. (A5) converges to:

∫ s

0

dt
iAΞ(s, t)

(1− i∆)− iAΞ(s, t)
→

Ao√
s

+
Bo
s

[cos (s+ φ) + i sin (s+ φ)] +
B1 + iB2

s

(A6)

where Ao, Bo, B1, B2 are constants that depend on
the specific problem in question. The approximation of
Eq. (A6) greatly simplifies calculation of the SR integral
in the limiting case α→ 0.
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