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We give a presentation of the plane Cremona group over an algebraically closed field with respect to the generators given by the Theorem of Noether and Castelnuovo. This presentation is particularly simple and can be used for explicit calculations.

1. Introduction 1.1. Main result. Let k be an algebraically closed field. The plane Cremona group Bir(P 2 ) is the group of birational transformations of the projective plane P 2 = P 2 k . It was intensely studied by classical algebraic geometers and has attracted again considerable attention in the last decades.

If we fix homogeneous coordinates [x : y : z] of P 2 , every element f ∈ Bir(P 2 ) is given by f : [x : y : z] [f 0 (x, y, z) : f 1 (x, y, z) : f 2 (x, y, z)],

where the f i are homogeneous polynomials without common factors and of the same degree, which we call the degree of f . We will write f = [f 0 (x, y, z) : f 1 (x, y, z) : f 2 (x, y, z)]. One of the main classical results is the Theorem of Noether and Castelnuovo ([C1901]), which states that Bir(P 2 ) is generated by the linear group Aut(P 2 ) = PGL 3 (k) and the standard quadratic involution σ := [yz : xz : xy].

Throughout the last century, various presentations of the plane Cremona group have been given (see Section 1.2). Each one of these displays a particularly interesting and beautiful aspect of the Cremona group. The aim of this article is to give a presentation of the plane Cremona group that uses the generators given by the Theorem of Noether and Castelnuovo. Another advantage of our presentation is that it is particularly simple and in many cases easy to use for specific calculations. We will illustrate this in Section 1.3 with an example that is due to Gizatullin.

Denote by D 2 ⊂ PGL 3 (k) the subgroup of diagonal automorphisms and by S 3 ⊂ PGL 3 (k) the symmetric group of order 6 acting on P 2 by coordinate permutations.

Main Theorem. Let k be an algebraically closed field. The Cremona group Bir(P 2 ) is isomorphic to

Bir(P 2 ) σ, PGL 3 (k) | (1) - (5) 
(1) g 1 g 2 g -1 3 = id for all g 1 , g 2 , g 3 ∈ PGL 3 (k) such that g 1 g 2 = g 3 . (2) σ 2 = id, (3) στ (τ σ) -1 = id for all τ ∈ S 3 , (4) σdσd = id for all diagonal automorphisms d ∈ D 2 , (5) (σh) 3 = id, where h = [z -x : z -y : z].

Observe that the relations (2) to (4) occur in the group Aut(k * × k * ), which is given by the group of monomial transformations GL 2 (Z) D 2 . Relation (5) is a relation from the group Aut(P 1 × P 1 ) 0 PGL 2 (k) × PGL 2 (k) which we consider as a subgroup of Bir(P 2 ) by conjugation with the birational equivalence : P 1 × P 1 P 2 , given by ([u 0 :

u 1 ], [v 0 : v 1 ]) [u 1 v 0 : u 0 v 1 : u 1 v 1 ].
The idea of the proof of the Main Theorem is the same as in [I1984, B2012, Z2016]. We study linear systems of compositions of birational transformations and use the presentation of the Cremona group given by Blanc in [B2012].

1.2. Previous presentations. The aim of this section is to give an overview over previous presentations of the plane Cremona group. The first presentation was given by [START_REF] Gizatullin | Defining relations for the Cremona group of the plane (Russian)[END_REF], see also [G1990]): G1982, Theorem 10.7]). The Cremona group Bir(P 2 ) is generated by the set Q of all quadratic transformations and the relations in Bir(P 2 ) are consequences of relations of the form q 1 q 2 q 3 = id, where q 1 , q 2 , q 3 are quadratic transformations, i.e. we have the presentation:

Theorem 1.1 ([
Bir(P 2 ) = Q | q 1 q 2 q 3 =
id for all q 1 , q 2 , q 3 ∈ Q such that q 1 q 2 q 3 = id in Bir(P 2 ) . Definition 1.2. We denote by J ⊂ Bir(P 2 ) the group of transformations preserving the pencil of lines through [1 : 0 : 0] and call it the de Jonquières group.

With respect to affine coordinates (x, y), the de Jonquières can be described by:

J = (x, y) ax + b cx + d , α(x)y + β(x) γ(x)y + δ(x) a b c d ∈ PGL 2 (k), α(x) β(x) γ(x) δ(x) ∈ PGL 2 (k(x)) PGL 2 (k) PGL 2 (k(x))
By the Theorem of Noether-Castelnuovo, Bir(P 2 ) is generated by J and PGL 3 (k), since σ is an element of J . The following theorem shows that, in a certain way, most of the relations in Bir(P 2 ) are consequences of relations within these groups: B2012]). The Cremona group Bir(P 2 ) over an algebraically closed field is the amalgamated product of PGL 3 (k) and J along their intersection, divided by the relation

Theorem 1.3 ([
στ = τ σ,
where σ is the standard involution and τ ∈ PGL 3 (k) the transposition [y : x : z].

Note that the Cremona group does not have the structure of an amalgamated product [C2013]. Theorem 1.3 was preceded by the following statement shown by Iskovskikh in [I1984]: I1984]). The Cremona group Bir(P 1 × P 1 ) is generated by τ : (x, y) → (y, x) and the group B of birational transformations preserving the fibration given by the first projection and the following relations form a complete system of relations:

Theorem 1.4 ([
• relations inside the groups Aut(P 1 × P 1 ) and B,

• (τ • ( 1 y , y x )) 3 = id, • (τ • (-x, y -x)) 3 = id.
A gap in the original proof of Theorem 1.4 had been detected and closed by Lamy ([L2010]). A presentation of Bir(P 2 ) in the form of a generalised amalgam was given in the following statement: W1992]). The group Bir(P 2 ) is the free product of PGL 3 (k), Aut(P 1 × P 1 ) and J amalgamated along their pairwise intersections in Bir(P 2 ).

Theorem 1.5 ([
In [BF2013] the authors introduced the Euclidean topology on the Cremona group over a locally compact local field. With respect to this topology, Bir(P 2 ) is a Hausdorff topological group and the restriction of the Euclidean topology to any algebraic subgroup is the classical Euclidean topology. In order to show that Bir(P 2 ) is compactly presentable with respect to the Euclidean topology, Zimmermann proved the following: Theorem 1.6 ([Z2016]). The Cremona group Bir(P 2 ) is isomorphic to the amalgamated product of Aut(P 2 ), Aut(F 2 ), Aut(P 1 × P 1 ) along their pairwise intersection in Bir(P 2 ) modulo the relation τ στ σ, where τ ∈ Aut(P 2 ) is the coordinate permutation τ : [x :

y : z] → [z : y : x].
We would also like to mention the paper [START_REF] Iskovskikh | Relationsin the two dimensional Cremona group over a perfect field[END_REF] by Iskovskikh, Kabdykairov and Tregub, in which the authors present a list of generators and relations of Bir(P 2 ) over arbitrary perfect fields.

1.3. Gizatullin-homomorphisms between Cremona groups. In this section we recall a result of Gizatullin in order to illustrate how our presentation can be used for explicit calculations. Throughout Section 1.3 we assume k to be algebraically closed and of characteristic = 2. In [G1990], Gizatullin considers the following question: Can a given group-homomorphism ϕ : PGL 3 (k) → PGL n+1 (k) be extended to a group-homomorphism Φ : Cr 2 (k) → Cr n (k)? He answers this question positively if ϕ is the projective representation induced by the regular action of PGL 3 (k) on the space of plane conics, plane cubics or plane quartics. In order to construct these homomorphisms he uses the following construction. Let Sym n be the k-algebra of symmetric n × n-matrices and define the variety S 2 (n) to be the quotient (Sym n ) 3 // GL n (k) where the regular action of GL n (k) is given by C

• (A 1 , A 2 , A 3 ) = (CA 1 C T , CA 2 C T , CA 3 C T ). Lemma 1.7. The variety S 2 (n) is a rational variety of dimension (n + 1)(n + 2)/2 -1 = n(n + 3)/2. Proof. The dimension of (Sym n ) 3 is 3n(n + 1)/2. Since the dimension of GL n (k) is n 2 and the action of GL n (k) on (Sym n ) 3 has finite kernel, the dimension of S 2 (n) is (n + 1)(n + 2)/2 -1.
Define the subvariety X ⊂ (Sym n ) 3 given by triplets of the form (id, d, A), where d ∈ D 2 and consider the following maps:

X → (Sym n ) 3 π -→ S 2 (n).
Let U ⊂ (Sym n ) 3 be the open dense subset of triplets of the form (A 1 , A 2 , A 3 ) such that A 1 and A 2 are invertible. We note that π(X) = π(U ). Indeed, every symmetric element F1915]) states that the quotient of A N by G is a rational variety. The image π(V ) is still dense in S 2 (n) and the restriction of π to V is the quotient map of the action of G on V given by conjugation. The theorem of Fischer therefore implies that S 2 (n) is rational.

A 1 ∈ GL n (k) is of the form CC T for some C ∈ GL n (k)
Note that Lemma 1.7 implies that S 2 (n) has the same dimension as the projective space of all plane curves of degree n.

A linear transformation g = [g 1 : g

2 : g 3 ] ∈ PGL 3 (k) induces an automorphism on (Sym n ) 3 //(k * ) by g(A 1 , A 2 , A 3 ) := (g 1 (A 1 , A 2 , A 3 ), g 2 (A 1 , A 2 , A 3 ), g 3 (A 1 , A 2 , A 3 ))
. This automorphism commutes with the action of GL n (k), so we obtain a regular action of PGL 3 (k) on S 2 (n). Our main theorem allows now to give a short proof of the following result of Gizatullin: G1990]). This regular action of PGL 3 (k) extends to a rational action of Bir(P 2 ) on S 2 (n).

Proposition 1.8 ([
Proof. We define the birational action of the element σ on S 2 (n) by

(A 1 , A 2 , A 3 ) (A -1 1 , A -1 2 , A -1
3 ). In order to see that this indeed defines a rational action of Cr 2 (k) on S 2 (n) it is enough, by our main theorem, to check that the relations (1) to (5) are satisfied. The relations (1) to (4) are straightforward to check. For relation (5) we calculate for general

A 1 , A 2 , A 3 ∈ Sym n : σhσ(A 1 , A 2 , A 3 ) = ((A -1 3 -A -1 1 ) -1 , (A -1 3 -A -1 2 ) -1 , A 3 ) and hσh(A 1 , A 2 , A 3 ) = (A -1 3 -(A 3 -A 1 ) -1 , A -1 3 -(A 3 -A 2 ) -1 , A -1 3 ) = (A 3 -A 3 (A 3 -A 1 ) -1 A 3 , A 3 -A 3 (A 3 -A 2 ) -1 A 3 , A 3 )
One calculates that the two expressions are the same. Hence relation ( 5) is satisfied.

Lemma 1.7 and Proposition 1.8 imply that there is a rational Cr 2 (k)-action on P N for all N = (n + 1)(n + 2)/2 -1. In [G1990] Gizatullin shows using classical geometry that, for n = 2, 3 and 4, the PGL 3 (k)-action on S 2 (n) is conjugate to the PGL 3 (k)-action on the space of plane conics, plane cubics and plane quartics. It is an interesting question whether the PGL 3 (k)-actions on S 2 (n) are conjugate to the PGL 3 (k)-actions on the space of plane curves of degree n. A positive answer would give a rational action of Cr 2 (k) on the space of all plane curves preserving degrees. It would also be interesting to look at the geometrical properties of these rational actions. The case of the rational action of Cr 2 (k) on the space of plane conics has been studied in [U2016].
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Useful relations

Throughout all the sections we work over an algebraically closed field k.

2.1.

Preliminaries. There is a general formula for the degree of a composition of two Cremona transformations [A2002, Corollary 4.2.12], but the multiplicities of the base-points of the composition are hard to compute in general. However, if we compose an arbitrary birational map with a map of degree 2 it is a rather straight forward calculation [A2002, Proposition 4.2.5]. We will only use the formula for de Jonquières maps. For a given transformation f ∈ Bir(P 2 ), we denote by m p (f ) the multiplicity of f in the point p.

Lemma 2.1. Let τ, f ∈ J be transformations of degree 2 and d respectively. Let p 1 , p 2 be the basepoints of τ different from [1 : 0 : 0] and q 1 , q 2 the base-points of τ -1 different from [1 : 0 : 0] such that the pencil of lines through p i is sent by τ onto the pencil of lines through q i . Then

deg(f τ ) = d + 1 -m q1 (f ) -m q2 (f ) m [1:0:0] (f τ ) = d -m q1 (f ) -m q2 (f ) = deg(f τ ) -1 m pi (f τ ) = 1 -m qj (f ), i = j.
Proof. A de Jonquières map of degree d has multiplicity d -1 in [1 : 0 : 0] and multiplicity 1 in every other of its base-points. The claim now follows from [A2002, Proposition 4.2.5].

Remark 2.2. Keep the notation of Lemma 2.1. Let Λ be the linear system of f . Then Lemma 2.1 translates to:

deg(f τ ) = deg((τ -1 )(Λ)) = d + 1 -m q1 (Λ) -m q2 (Λ) m [1:0:0] ((τ -1 )(Λ)) = d -m q1 (Λ) -m q2 (Λ) = deg((τ -1 )(Λ)) -1 m pi ((τ -1 )(Λ)) = 1 -m qj (Λ), i = j.
In particular, as the multiplicity of Λ in a point different from [1 : 0 : 0] is zero or one, we obtain

deg((τ -1 )(Λ)) =        deg(Λ) + 1, m q1 (Λ) = m q2 (Λ) = 0 deg(Λ), {m q1 (Λ), m q2 (Λ)} = {0, 1} deg(Λ) -1, m q1 (Λ) = m q2 (Λ) = 1.
Note as well that Bézout theorem implies that [1 : 0 : 0] and any two other base-points of f are not collinear since [1 : 0 : 0] is a base-point of multiplicity d -1 all other base-points are of multiplicity 1 and a general member of Λ intersects a line in d points counted with multiplicity.

Notation 2.3. We use the following picture to work with relations.

If f 1 , . . . , f n ∈ {σ} ∪ PGL 3 (k) and f 1 • • • f n = 1 in the group σ, PGL 3 (k) | (1) -(5) , we say that the commutative diagram fn / / Id 5 5 fn-1 / / / / f1 / / or fn / / f -1 1 5 5 fn-1 / / / / f2 / /
is generated by relations (1)-( 5) and that the expression

f 1 • • • f n = 1 is generated by relations (1)-(5).
2.2. Relations. When dealing with quadratic maps, some relations among them appear quite naturally. We now take a closer look at a few of them and show that they are in fact generated by relations (1)-( 5).

Lemma 2.4. Let g ∈ PGL 3 (k) ∩ J and suppose that the map g := σgσ is linear. Then g = σgσ is generated by relations (1)-( 4). In other words, the commutative diagram

σ / / g 7 7 g / / σ / /
is generated by relations (1)-( 4).

Proof. The map σgσ being linear means by Lemma 2.1 that the base points of σg are the same as the base points of σ, which are {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. As g ∈ J , it fixes [1 : 0 : 0] and thus permutes the points [0 : 1 : 0], [0 : 0 : 1]. Hence g = dτ for some τ ∈ S 3 ∩ J and d ∈ D 2 . Using our relations we obtain σgσ

= σdτ σ

(3),(4)

= d -1 τ = g . Lemma 2.5. Let g ∈ PGL 3 (k)∩J such that deg(σgσ) = 2.
Suppose that no three points in the union of the base-points of σ and the base-points of σg are collinear. Then there exist g , g ∈ PGL 3 (k) ∩ J such that σgσ = g σg and this expression is generated by relations (1)-( 5). In other words, the commutative diagram g / / σ σ ? ?

g / / σ / / g / / is generated by relations (1)-( 5).

Proof.

The assumption deg(σgσ) = 2 implies by Lemma 2.1 that σ and σg have exactly two common base-points, among them [1 : 0 : 0] because σg and σ are de Jonquières maps. Up to coordinate permutations, the second point is [0 : 1 : 0]. More precisely, there exist two coordinate permutations τ 1 , τ 2 ∈ S 3 ∩J such that τ 1 gτ 2 fixes the points [1 : 0 : 0] and [0 :

1 : 0]. Hence there are a 1 , a 2 , b 1 , b 2 , c ∈ k such that τ 1 gτ 2 = [a 1 x + a 2 z : b 1 y + b 2 z : cz].
The assumption that no three of the base-points of σ and σg are collinear implies that a 2 b 2 = 0. So there exist two elements d 1 , d 2 ∈ D 2 such that τ 1 gτ 2 = d 1 hd 2 . Using relations (1)-( 5) we obtain

σgσ = στ -1 1 τ 1 gτ 2 τ -1 2 σ (1) = στ -1 1 d 1 hd 2 τ -1 2 σ (3),(4) = τ -1 1 d -1 1 σhσd -1 2 τ -1 2 (5) = τ -1 1 d -1 1 hσhd -1 2 τ -1 2 . The claim follows with g := τ -1 1 d -1 1 h and g := hd -1 2 τ -1 2 .
Lemma 2.6. Let g 1 , . . . , g 4 ∈ PGL 3 (k) ∩ J such that σg 2 σg 1 = g 4 σg 3 σ is of degree 3 and

• no three of the base-points of σg 2 and σ are collinear • no three of the base-points of σg 1 and σ are collinear.

Then the relation σg 2 σg 1 = g 4 σg 3 σ is generated by relations (1)-( 5).

Proof. Let p 0 := [0 : 0 : 1]. The maps g 1 , . . . , g 4 ∈ PGL 3 (k) ∩ J fix it. By Lemma 2.1, the assumption deg(σg 2 σg 1 ) = 3 is equivalent to the maps σg 2 and g -1 1 σ having exactly one common base-point, namely p 0 . For the same reason, the maps g 4 σ and σg -1 3 have only p 0 as a common base-point. The assumptions on the base-points imply that the maps σg 2 σg 1 and g 3 σg -1 1 σ have only proper base-points. Therefore, the maps g 4 σg 3 σ and σg -1 4 σg 2 have only proper base-points and we obtain that for (f, g) ∈ {(g -1 1 σ, σg 2 ), (σg 1 , g 3 σ), (σg -1 3 , g 4 σ), (g -1 2 σ, σg -1 4 )} no three base-points of the maps f and g are collinear. Hence there exists a quadratic map τ 1 that has exactly two base-points in common with σg 1 and with g 3 σ. We write τ 1 = h 1 σh 2 for some h 1 , h 2 ∈ PGL 3 (k) ∩ J . Then σg 1 τ -1 1 and g 3 στ -1 1 are quadratic again. Let h 3 , . . . , h 8 ∈ PGL 3 (k) ∩ J and define the quadratic maps

τ i := h 2i σh 2i-1 ∈ J , i = 2, . . . , 4. We can chose h 3 , h 4 such that τ -1 2 τ 1 = h -1 3 σh -1 4 h 2 σh 3 = σg 1 .
Analogously we chose h 4 , . . . , h 8 such that: • the diagram below commutes • each of the τ i has exactly two common base-points (one of them p 0 ) with each of the two other maps departing from the same corner. Lemma 2.5 applied to the triangles yields that each of them is generated by relations (1)-( 5). In particular, the above commutative diagram is generated by relations (1)-( 5).

Remark 2.7. Let a 1 , a 2 , b 1 , b 2 , c ∈ k. The map g = [a 1 x + a 2 z : b 1 y + b 2 z : cz] ∈ PGL 3 (k) ∩ J
is a de Jonquières map. Furthermore, observe that if a 2 = b 2 = 0, then σgσ is linear. Otherwise, σgσ is a quadratic map. In fact, if a 2 b 2 = 0, all its base-points are in P 2 ; this corresponds to the case that is treated in Lemma 2.5. If a 2 = 0, the map σgσ has a base-point infinitely near to [1 : 0 : 0], and if b 2 = 0 it has a base-point infinitely near to [0 : 1 : 0]. Figure 1 displays the constellation of the base-points of σg and σ.

g -1 ([0 : 0 : 1]) [1 : 0 : 0] [0 : 1 : 0] [0 : 0 : 1] [1 : 0 : 0] [0 : 1 : 0] [0 : 0 : 1] g -1 ([0 : 0 : 1]) = [0 : -b2 b1c : 1 c ] = [-a2 a1c : 0 : 1 c ] Figure 1. The base-points of σg if a 2 = 0, b 2 = 0 (left) and if a 2 = 0, b 2 = 0 (right).
The following two lemmas provide a solution of how to treat these two cases.

Definition 2.8. For a de Jonquières transformation f ∈ J and a line l ⊂ P 2 we define the discrepancy N (f, l) as follows: If f (l) is a line, we set N (f, l) := 0. If f (l) = {p} is a point, then there exists a sequence of K blow-ups π : S → P 2 and an induced birational map f : P 2 S, such that the following diagram commutes:

S π P 2 f / / f > > P 2
and such that the strict transform f (l) ⊂ S is a curve. We define N (f, l) to be the least number K of blow-ups necessary for this construction.

Remark 2.9. Let f ∈ J and let l ⊂ P 2 be a line. If N (f, l) ≥ 1, then the point P := f (l) is a basepoint of f -1 . More precisely, if π and f are as above, then f -1 has a base-point in the (N (f, l) -1)-th neighbourhood of f (l) and the exceptional divisor of this base-point is f (l).

Lemma 2.10. Let f ∈ J be a de Jonquières transformation and l ⊂ P 2 a line such that N (f, l) ≥ 1, and let g ∈ PGL 3 (k) ∩ J . Denote by η : S → P 2 the blow-up of the base-points of σg. Then

(1) N (σgf, l) = N (f, l) + 1 if and only if the point f (l) ∈ P 2 is not a base-point of σg but is on a line contracted by σg.

(2) N (σgf, l) = N (f, l) -1 if and only if the point f (l) ∈ P 2 is a base-point of σg and (η -1 f )(l)
is a curve or is a point not on the strict transform of a line contracted by σg.

(3) N (σgf, l) = N otherwise.

Proof. If p := f (l) is not a base-point of σg, then its image by σg is a base-point of (σgf ) -1 with N (σgf, l) ≥ N (f, l). The inequality is strict if and only if p is on a line contracted by σg.

If p is a base-point of σg the discrepancy decreases strictly unless η -1 f contracts l onto an intersection point of the exceptional divisor of p and the strict transform of a line contracted by σg.

Lemma 2.11. Let g 1 , . . . , g m ∈ PGL 3 (k)∩J such that g m σg m-1 σ • • • σg 1 = id. Then there exist linear maps h 1 , . . . , h m ∈ PGL 3 (k) ∩ J and a de Jonquières transformation ϕ ∈ J such that

ϕg m σg m-1 σ • • • σg 1 ϕ -1 = h m σh m-1 σ • • • h 1 σ,
and such that the following properties are satisfied:

(1) the above relation is generated by relations (1)-( 5), (2) deg(σh

i σh i-1 • • • σh 1 ) = deg(σg i σg i-1 • • • σg 1 ) for all i = 1, . . . , m, (3) (σh i σh i-1 • • • σh 1 ) -1
does not have any infinitely near base-points above [1 : 0 : 0] for all i = 1, . . . , m.

Proof. Define f i := σg i • • • σg 1 for i = 1, . . . , m -1. We will construct the h i such that (3) is satisfied and then show that the other properties hold as well. If none of the f i has a base-point that is infinitely near to [1 : 0 : 0], we set h i := g i for all i and all the claims are trivially satisfied. Otherwise, there exist k ≥ 1 such that f i has a base-point in the k-th neigbourhood of [1 : 0 : 0] for some i. Assume k to be maximal with this property. We will lower k and then proceed by induction. For this we pick two general points s 0 , t 0 ∈ P 2 and define

s i := f i (s 0 ) = σg i σ • • • σg 1 (s 0 ), t i := f i (t 0 ) = σg i σ • • • σg 1 (t 0 ), for i = 1, . . . , m -2, s m-1 := g m σg m-1 (s m-2 ), t m-1 := g m σg m-1 (t m-2 ).
Since s 0 and t 0 are general points of P 2 , the s i and t i are general as well. For all i = 1, . . . , m -1, there exist α i ∈ PGL 3 (k) ∩ J that send p 0 , p 1 , p 2 onto p 0 , s i , t i respectively. The map

τ i := α i σα -1 i ∈ J
is a quadratic involution with base-points p 0 , s i , t i . The assumption g m σ • • • σg 1 = Id implies that s m-1 = s 0 and t m-1 = t 0 , so we may choose α m-1 = α 0 and obtain τ m-1 = τ 0 . We define

θ i := τ i σg i τ -1 i-1 ∈ J , i = 1, . . . , m -2, θ m-1 := τ m-1 (g m σg m-1 )τ -1 m-2 ∈ J
and consider the sequence

Id = τ 0 g m σg m-1 σ • • • σg 1 τ -1 0 = τ 0 g m τ -1 m-1 τ m-1 σg m-1 τ -1 m-2 τ m-2 σg m-2 . . . σg 1 τ -1 0 = θ m-1 θ m-2 • • • θ 1
The situation is visualised in the following commutative diagram:

σg1 / / τ0 σg2 / / τ1 τ2 / / σgn-1 / / τn-2 σgn / / τn-1 τn / / gmσgm-1 / / τm-2 τm-1=τ0 θ1 / / θ2 / / / / θn-1 / / θn / / / / θm-1 / /
We claim that for each i = 1, . . . , m -1, the map θ i ∈ J is a quadratic map with only proper basepoints in P 2 . The only common base-point of the transformations σg i and τ i is p 0 , hence by Lemma 2.1 the map τ i-1 g -1 i σ is of degree 3 and has p 0 , p 1 , p 2 , s i+1 , t i+1 as base-points. The common base-points of the two transformations τ i-1 g -1 i σ and τ i are the points p 0 , s i+1 , t i+1 . Therefore, the composition

θ i = τ i σg i τ -1
i-1 is quadratic and its base-points are p 0 and the image under τ i-1 of the two base-points of

σg i different from p 0 . σgi [p0,p1,p2] / / τi-1 [p0,si-1,ti-1] τi [p0,si,ti] [p0,p1,p2,si,ti] t t θi / /
Since s i-1 and t i-1 are general points, these images are proper points of P 2 . So for each i = 1, . . . , m-1, we find

β i , γ i ∈ PGL 3 (k) ∩ such that θ i = β i σγ i . σg1 / / τ0 σg2 / / τ1 τ2 / / σgn-1 / / τn-2 σgn / / τn-1 τn / / gmσgm-1 / / τm-1 τm=τ0 β1σγ1 / / β2σγ2 / / / / βn-1σγn-1 / / βnσγn / / / / βm-1σγm-1 / / We write h1 := γ 1 , hm := β m-1 , hi := γ i β i-1 , i = 2, . . . , m -1. By Remark 2.2, we have deg(τ i σg i • • • σg 1 ) = deg(σg i • • • σg 1 ) + 1 and therefore deg(θ i • • • θ 1 ) = deg(τ i σg i • • • σg 1 τ -1 0 ) = deg(σg i • • • σg 1 ). Hence we finally obtain deg(σ hi σ • • • σ h1 ) = deg(β -1 i+1 θ i • • • θ 1 ) = deg(σg i • • • σg 1 ).
This is part (2) of the lemma. By Lemma 2.6, all squares in the above diagram are generated by relations (1)-( 5), hence the whole diagram is generated by these relations. This is part (1).

Let us look at part (3). The base-points of (θ i • • • θ 1 ) -1 are [1 : 0 : 0] and the proper images of the base-points of (σg i • • • σg 1 ) -1 different from [1 : 0 : 0]. By construction of the τ i , none of the base-points of (σg i • • • σg 1 ) -1 different from [1 : 0 : 0] are on a line contracted by τ i . Moreover, the base-points of (σg i • • • σg 1 ) -1 in the first neighbourhood of [1 : 0 : 0] are sent by τ i onto proper points of P 2 . In conclusion, (θ i • • • θ 1 ) -1 has less base-points infinitely near [1 : 0 : 0]. Induction step done. The same argument yields part (4).

Lemma 2.12. Let g 1 , . . . , g m ∈ PGL 3 (k)∩J be linear de Jonquières transformations. Then there exist linear de Jonquières transformations h 1 , . . . , h m ∈ PGL 3 (k) ∩ J , and a de Jonquières transformation ϕ ∈ J such that

ϕg m σg m-1 σ • • • σg 1 ϕ -1 = h m σh m-1 σ • • • σh 1
and such that the following properties hold:

(1) the above relation is generated by relations (1)-( 5),

(2) deg(σh i • • • σh 1 ) = deg(σg i • • • σg 1 ) for all i = 1, . . . , m, (3) (σh i σh i-1 • • • σh 1 ) -1
does not have any infinitely near base-points for all i = 1, . . . , m.

Proof. Define f i := σg i σg i-1 • • • σg 1 for i = 1, . . . , m. After applying Lemma 2.11 we may assume that none of the transformations f -1 i has base-points infinitely near to [1 : 0 : 0]. We define

N := max{N (f i , l) | i = 1, . . . , m, l ⊂ P 2 line} k := max{i | N (f i , l) = N }, # := number of lines l ⊂ P 2 with N (f k , l) = N
In other words, N is the maximal discrepancy, k is the maximal number of all i such that f i has N as a discrepancy and # ≥ 1 is the number of lines contracted by f k with discrepancy N . We do induction over the lexicographically ordered triple (N, k, #).

If N = 1 there are no infinitely near base-points and we are done. Suppose that N ≥ 2. We denote by l k ⊂ P 2 a line such that N = N (f k , l k ) and define p k := f k (l k ) ∈ P 2 . Let s ∈ P 2 be a general point. Then there exists a linear de Jonquières map h ∈ PGL 3 (k) ∩ J such that σh has [1 : 0 : 0], p k and s as base-points. By definition of k and N we have N > N (f k+1 , l k ). Since f k+1 = σg k+1 f k , Lemma 2.10 implies that p k is also a base-point of σg k+1 . It follows from Lemma 2.1 that deg(σg k+1 (σh) -1 ) = 2. Since s is a general point, we find a 1 , a 2 ∈ PGL 3 (k) ∩ J such that σg k+1 (σh) -1 = a 2 σa 1 . Note that

N (σhσg k • • • σg 1 , l k ) = N -1 by Lemma 2.10. If N (σg k-1 • • • σg 1 , l k ) < N , we find, by similar arguments as above, b 1 , b 2 ∈ PGL 3 (k) ∩ J such that σhσg k = b 2 σb 1 σg1 / / σg2 / / • • • • • • σg k-1 / / b2σb1 σg k / / σh σg k+1 / / σg k+2 / / • • • a2σa1 @ @
The new sequence

g m σg m-1 • • • σg k+2 a 2 σ(a 1 b 2 )σ(b 1 g k-1 )σg k-2 • • • σg 1 has maximal discrepancy at most N .
If it is N , that means that there is either another line l ⊂ P 2 such that N (σg k • • • σg 1 , l) = N , in which case # has decreased. Or that N (σg k • • • σg 1 , l) < N for all lines l and N (σg i • • • σg 1 , l i ) = N for some i < k and some line l i . In any case, the triple (N, k, #) decreases. Note as well that

deg(σhσg k • • • σg 1 ) = deg(σg k • • • σg 1 ). If N (σg k-1 • • • σg 1 , l k ) = N
, there are two options by Lemma 2.10:

(a) The point p k is a base-point of (σg k ) -1 and, if η : S → P 2 is the blow-up of the base-points of (σg k ) -1 , then (η -1 f k ) -1 (l k ) is the intersection point of an exceptional divisor and the strict transform of a line contracted by (σg k ) -1 . (b) The point p k is not a base-point of (σg k ) -1 and is not on its contracted lines.

In case (a) we can proceed analogously as in the case above, where N (σg k-1 • • • σg 1 , l k ) < N . So assume now that we are in case (b). The image p k of p k by (σg k ) -1 is a proper point of P 2 . The point s ∈ P 2 is general, hence also its image s by (σg k ) -1 is a general point of P 2 . In particular, there exists h ∈ PGL 3 (k) ∩ J such that σh has base-points [1 : 0 : 0], p k and s . The map σhσg k (σh ) -1 is of degree 2, and since the points s and s are in general position, we find c

1 , c 2 ∈ PGL 3 (k) ∩ J such that σhσg k (σh ) -1 = c 2 σc 1 . Moreover, we have N (σh σg k-1 • • • σg 1 , l k ) = N -1. Also note that deg(σh σg k-1 • • • σg 1 ) = deg(σg k-1 • • • σg 1 ).
We proceed like this until we find an index i < k such that N (σg i • • • σg 1 , l k ) < N . Such an index has to exist because σg m • • • σg 1 = id. There, the preimage of p k is a base-point of (σg i • • • σg 1 ) -1 , and we repeat the construction of the former case. It yields a new sequence with maximal discrepancy at most N . If it is equal to N then either at the index k and another line or at an index smaller than k. In other words, the triple (N, k, #) has decreased.

In particular, we have

m q (Λ n ) = 1
Since it is not a base-point of σ, it is not a base-point of (σg n-1 ) -1 . Hence its proper image by (σg n-1 ) -1 is a base-point of Λ n-1 . Because of a 2 b 2 = 0, this point is an infinitely near point, a contradiction to our assumption that the Λ i do not have any infinitely near base-points.

(c) Assume that deg(σg n σ) = 3, so σ and σg n have one common base point, which is [1 : 0 : 0]. Denote by p 0 = [1 : 0 : 0], p 1 = [0 : 1 : 0], p 2 = [0 : 0 : 1] the base-points of σ and by p 0 , q 1 , q 2 the base-points of σg n . Remark 2.2 implies

δ n ≥ deg(Λ n-1 ) = deg((σg n-1 ) -1 (Λ n )) = δ n + 1 -m p1 (Λ n ) -m p2 (Λ n ) δ n > deg(Λ n+1 ) = deg(σg n (Λ n )) = δ n + 1 -m q1 (Λ n ) -m q2 (Λ n ).
Therefore, we obtain

1 = m q1 (Λ n ) = m q2 (Λ n ), 1 ≤ m p1 (Λ n ) + m p2 (Λ n ) Choose i ∈ {1, 2} such that m pi (Λ n ) = 1. Then the points [1 : 0 : 0], p i and q 1 are not collinear (because m p0 (Λ n ) + m p1 (Λ n ) + m q1 (Λ n ) > δ n
) and there exists a g ∈ PGL 3 (k) ∩ J * such that σg has base-points [1 : 0 : 0], p i and q 1 . Consider Figure 2; we claim that the left pair and the right pair of maps satisfy the assumptions of case (b1), which implies that σg(σg n-1 ) -1 and σg n σg can be replaced by maps of the form hσh and h σh respectively for some linear maps h, h , h , h and the pair (D, n) decreases.

Λ

n [p0,p1,p2] (σgn-1) -1 z z [p0,pi,q1] σg [p0,q1,q2] σgn ( ( Λ n-1 σg (Λ n ) Λ n+1
Figure 2. The two maps on the left and the two maps on the right satisfy the assumptions of case (b1).

The maps σ and σg have two common base-points, namely p 0 and p i . The maps σg and σg n have the base-points p 0 and q 1 in common. Remark 2.2 tells us that

deg(σg (Λ n )) = δ n + 1 -m pi (Λ n ) -m q1 (Λ n ) < δ n = D.
It remains to check that no three of the four points p 0 , p 1 , p 2 , q 1 are collinear and that no three of the four points p 0 , p i , q 1 , q 2 are collinear. Indeed, in the latter case all four points are base-points of Λ n and the image of p i by σg n is a base-point of Λ n+1 , which does not have any infinitely near base-points. Therefore, no three of p 0 , p i , q 1 , q 2 are collinear. In the first case, at least p 0 , p i , q 1 are base-points of Λ n and therefore not collinear by Remark 2.2. The points p 1 , p 2 , q 1 and the points p 0 , p 2 , q 1 are not collinear because Λ n-1 has no infinitely near base-points. Thus, we can apply case (b1) to the maps σ and σg and to the maps σ and σg n g -1 . The pair (D, n) decreases.

So far we have been working with de Jonquières maps only. Now we will use the structure of the plane Cremona group as an almost amalgamated product from Theorem 1.3 to prove the Main Theorem:

Proof of Main Theorem. Let G = σ, PGL 3 (k) | (1) -(5) be the group generated by σ and PGL 3 (k) divided by the relations (1)-( 5), and let π : G → Bir(P 2 ) be the canonical homomorphism that sends generators onto generators. It follows from Proposition 3.1 that sending an element of J onto its corresponding word in G is well defined. This yields a homomorphism w : J -→ G that satisfies Hence φ and π are isomorphisms that are inverse to each other.

π

  • w = Id J and is therefore injective. Consider the commutative diagram homomorphisms are the canonical inclusions. The universal property of the amalgamated product implies that there exists a unique homomorphismϕ : PGL 3 (k) * PGL3(k)∩J J → G such that the following diagram commutes: G PGL 3 (k) * PGL3(k)∩J JBy Theorem 1.3, the group Bir(P 2 ) is isomorphic to PGL 3 (k) * PGL3(k)∩J J divided by the relation τ στ σ, where τ = [y : x : z], which is a relation that holds as well in G. So ϕ factors through the quotient PGL 3 (k) * PGL3(k)∩J J / τ στ σ and we thus obtain a homomorphism φ : Bir(P 2 ) → G. In fact, the homomorphisms π and φ both send generators to generators:G π -→ Bir(P 2 ), σ -→ σ, α -→ α ∀ α ∈ PGL 3 Bir(P 2 ) φ -→ G, σ -→ σ, α -→ α ∀ α ∈ PGL 3 .

  and for every symmetric matrix A 2 ∈ GL n (k) there exists an orthogonal matrix S ∈ O n (k) such that SA 2 S T is diagonal. Consider the open dense subset V ⊂ X of elements of the form (id, d, A), where A ∈ Sym n and d = (d ij ) is a diagonal element of GL n (k) such that d ii = d jj for all i = j. This condition ensures that the centralizer G of d in the orthogonal group O n (k) consists only of diagonal elements. The group G is therefore an abelian group of exponent 2. A Theorem of Fischer ([
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The commutative diagram below illustrates the procedure if

It remains to remark that all the squares and triangles are generated by relations (1)-( 5) by Lemma 2.5 and Lemma 2.6.

Then this expression is generated by relations (1)-(5).

Proof. Let Λ 0 be the complete linear system of lines in P 2 and define

We do induction on the lexicographically ordered set of pairs of positive integers (D, n).

If D = 1, then m = 1 and there is nothing to prove. Let D > 1. By Lemma 2.12, we can suppose that for each i = 1, . . . , m the transformation

does not have any infinitely near base-points, and we can do this without increasing the pair (D, n). Equivalently, each Λ i does not have any infinitely near base-points.

All the g i are de Jonquières maps and therefore fix [1 : 0 : 0], the maps σg i and σ always have [1 : 0 : 0] as common base-point. In particular, Lemma 2.1 yields deg(σg i σ) ≤ 3 for all i = 1, . . . , m. We will look at the three distinct cases deg(σg n σ) = 1, 2 and 3. 

Using relations (1) and (3) we get

This replacement does not change the pair (D, n). So, we may assume that

By assumption, for i = 1, . . . , n, the maps g i σg i-1 σ • • • σg 1 have no infinitely near base-points. It follows that Λ n has no infinitely near base-points.

(b1) If a 2 b 2 = 0, then no three of the base-points of σ and σg n are collinear. By Lemma 2.5 there exist g , g ∈ PGL 3 (k) such that we can replace the word σg n σ with the word g σg using relations (1)-( 5). This yields a new pair (D , n ) where D ≤ D and if D = D then n < n.

(b2) We want to see that a 2 b 2 = 0 is impossible. Suppose that a 2 b 2 = 0. Then q := g -1 n ([0 : 0 : 1]) is a base-point of σg n on a line that is contracted by (σg n-1 ) -1 (see Remark 2.7). Remark 2.2 implies that D -1 = δ n+1 = D + 1 -m [0:1:0] (Λ n ) -m q (Λ n )