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SIGNATURE MORPHISMS FROM THE CREMONA GROUP OVER
A NON-CLOSED FIELD

STÉPHANE LAMY AND SUSANNA ZIMMERMANN

Abstract. We prove that the plane Cremona group over a perfect field with at
least one Galois extension of degree 8 is a non-trivial amalgam, and that it admits a
surjective morphism to a free product of groups of order two.

Introduction

The Cremona group BirkpP2q is the group of birational symmetries of the projective
plane defined over a field k. Its elements are of the form

rx : y : zs Þ99K rf0px, y, zq : f1px, y, zq : f2px, y, zqs

where f0, f1, f2 P krx, y, zs are homogeneous polynomials of equal degree with no com-
mon factor, and such that there exists an inverse of the same form. Equivalently,
working in an affine chart one can define the Cremona group as the group of birational
selfmaps of the affine plane, which is also (anti-)isomorphic to the group Autk kpx, yq of
k-automorphisms of the fraction field kpx, yq. The Cremona group contains the group
of polynomial automorphisms of the affine plane over the field k. In particular it is a
rather huge group. It is neither finitely generated (see [Can17, Proposition 3.6]), nor
finite dimensional, even when working over a finite base field. It was recently shown
that BirkpP2q is not a simple group, over any base field k [CL13, Lon16]. Then it
is natural to ask for nice quotients of BirkpP2q, for instance abelian ones. Over an
algebraically closed field, it is known (see also §4.3) that the automorphism group
AutkpP2q “ PGL3pkq, or the Jonquières group PGL2pkpT qq ¸ PGL2pkq, both embed
in any quotient of the Cremona group. In particular in this situation any morphism
from BirkpP2q to an abelian group, or to a finite group, is trivial. On the other hand
it was shown by the second author in [Zim15] that the situation is drastically different
over the field R of real numbers. The real Cremona group admits an uncountable
collection of morphisms to Z{2Z, and precisely we have the following result about the
abelianization of BirRpP2q:

BirRpP2q{rBirRpP2q,BirRpP2qs »
à

p0,1s
Z{2Z. (:)

In this paper we explore a similar question, over any perfect base field k that admits
at least one Galois extension of degree 8. Observe that this condition corresponds to a
large collection of fields, which includes the case of all number fields and finite fields.

The special role of degree 8 extensions is explained by their relation to Bertini invo-
lutions. Indeed, given a point of degree 8 on P2, that is, an orbit of cardinal 8 under
the natural action of the absolute Galois group of the base field k, we can consider
the surface S obtained by blowing-up this orbit. If the point is sufficiently general, the
surface S is del Pezzo and admits another birational morphism to P2, and the induced
birational selfmap of P2 is an example of a Bertini involution. Let B Ă BirkpP2q be a
set of representatives of such Bertini involutions with a base point of degree 8, up to
conjugacy by automorphisms. We prove that as soon as k admits at least one Galois
extension of degree 8, then the set B is quite large. Namely B has at least the same
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SIGNATURE MORPHISMS FROM THE CREMONA GROUP 2

cardinality than k, and in the case of a finite field Fq one can be more precise and give
a lower bound for the cardinal of B which is polynomial in q (see §4.2).

These Bertini involutions are part of a system of elementary generators E for the
group BirkpP2q which was found by Iskovskikh [Isk91]. The set E is always a huge
set, because for instance it contains all Jonquières maps (up to left-right composi-
tion by automorphisms). Before stating our results we introduce a bit more notation.
For each Bertini involution b P B, we set Gb “ xAutkpP2q, by. Moreover, we denote
Ge “ xAutkpP2q, E rBy the subgroup generated by automorphisms and all non-Bertini
elementary generators. Our first result gives an amalgamated product structure for
BirkpP2q, in terms of these subgroups.

Theorem A. Let k be a perfect field admitting at least one Galois extension of degree
8. Consider the subgroups Gi as defined above, for i P B Y teu. Then for all i ‰ j we
have Gi XGj “ AutkpP2q, and we have an amalgamated product structure

BirkpP2q » ˚
AutkpP2q

Gi.

Moreover, BirkpP2q acts faithfully on the corresponding Bass-Serre tree.

It was shown by Cornulier (appendix of [CL13]) that the Cremona group over an
algebraically closed field is not a non-trivial amalgam of two groups. In contrast,
we deduce from the above theorem the following structure result, where we denote
GB “ xAutkpP2q,By the subgroup generated by all Gb:

Corollary B. Let k be a perfect field admitting at least one Galois extension of degree
8. Then Ge XGB “ AutkpP2q, and

BirkpP2q » GB ˚AutkpP2q Ge,

and it acts faithfully on its Bass-Serre tree.

It turns out that each subgroup Gb admits a structure of free product, and this allows
to obtain a lot of morphisms from the Cremona group to Z{2Z:

Theorem C. Let k be a perfect field with at least one Galois extension of degree 8.
Then:

(1) For each b P B we have Gb » AutkpP2q ˚ Z{2Z.
(2) There is a surjective morphism

BirkpP2q Ñ ˚
B

Z{2Z

whose kernel is the smallest normal subgroup containing Ge, and which sends
each b P B to the corresponding generator on the right-hand side.

(3) In particular, the abelianization of the Cremona group over k contains a sub-
group isomorphic to

À

B Z{2Z.

We see that even if there was no Bertini involutions involved in the paper [Zim15],
we obtain a similar looking (even if less precise) result. In particular, the Z{2Z in the
target group in (:) have nothing to do with the fact that the absolute Galois group
of R has order 2, but rather with the fact that we are able to produce a natural set
of generators for the Cremona group that contains involutions. In this sense, we like
to think of the above morphisms BirkpP2q Ñ Z{2Z as some analogues of the classical
signature morphism on the symmetric group. The huge collection of such morphisms
corresponds to the existence of a system of generators with a lot of non-conjugate
involutions. In this paper, we focus on Bertini involutions associated to a base point
of degree 8 because they seem to be the easiest to handle technically. When the base
field is R, a similar role was played by the so-called “standard quintic involutions”. It
seems quite plausible that other “signature morphisms” exist on the Cremona group,
associated to other type of involutions, such as the Geiser involution associated to a



SIGNATURE MORPHISMS FROM THE CREMONA GROUP 3

base point of degree 7. Also, we mention that we see no obvious obstruction why such
morphisms could not exist in higher dimension, even over the field of complex numbers.

The strategy to prove the above results is to use the Sarkisov Program. The Sarkisov
Program is a way to factorize a given birational map between Mori fiber spaces into
elementary links. We recall that even if the starting map is a birational selfmap of
a given variety X (for instance X “ P2), the elementary links are not in general
elements of the group BirpXq. In other words, even if one is primarily interested in
the group BirpXq, the Sarkisov Program naturally produces generators for the pseudo-
group of birational maps Y 99K Z, where Y,Z can be any Mori fiber spaces birational
to X. Nevertheless the Sarkisov Program turns out to be an efficient tool to produce
some systems of generators for BirkpP2q, and also to describe relations between them
[Isk91, IKT93, Isk96]. The Sarkisov Program was revisited recently in light of the
progresses in the theory of the Minimal Model Program, and is now established in
any dimension (over C) [HM13]. Moreover the relations between Sarkisov links were
described by Kaloghiros [Kal13].

In Section 2 we encode Sarkisov links and relations between them in a square complex
X on which the group BirkpP2q acts naturally. Then in Section 3 we give an account
of the proof of the Sarkisov Program in the simpler case of surfaces, but working over
an arbitrary perfect field. This allows to prove that the square complex X is connected
and simply connected.

In Section 4 we recall the notion of elementary generators for the group BirkpP2q,
following the work of Iskovskikh. Among the elementary generators we discuss in par-
ticular the Bertini involutions and prove their existence (and in fact, their abundance).
We also discuss the Jonquières maps, and in any dimension we recall the following
basic dichotomy: given a morphism ϕ from the Cremona group to another group H,
either the subgroup generated by the Jonquières maps lies in the kernel, or ϕ induces
an embedding of this subgroup into H.

Finally in Section 5 we use Bass-Serre theory to prove our results. The general idea
is that the Bass-Serre trees of the various amalgams appearing in Theorem A, Corollary
B and Theorem C are realized either as a quotient or as a subcomplex of the square
complex X .

When one encounters a cube complex in geometric group theory, a natural question
is whether this complex has non-positive curvature. It turns out that this is not the
case for our square complex X , however we should mention that X is essentially a sub-
complex of an infinite dimensional CATp0q cube complex associated with the Cremona
group that was constructed by Lonjou in her PhD thesis. We thank Anne Lonjou for
many useful discussions at an early stage of this project, Anne-Sophie Kaloghiros for
clarifying to us some fine points in her work [Kal13], and Jérémy Blanc and Andrea
Fanelli for discussions on issues with birational maps over non-perfect fields.

1. Birational maps between surfaces over an arbitrary field

In this section we review some results about the birational geometry of surfaces, with
a focus on the case of an arbitrary perfect base field.

1.1. Factorization into blow-ups. Let k be a perfect field, and ka an algebraic
closure. All field extensions of k that we shall consider will be supposed to lie in
ka. By a surface (over k) we shall mean a smooth projective surface defined over k.
We denote by Spkq the set of k-rational points on S. The Galois group Galpka{kq
acts on S ˆSpec k Spec ka through the second factor. In particular, Galpka{kq acts on
the set Spkaq of ka-rational points. By a point of degree d on S we mean an orbit
p “ tp1, . . . , pdu Ă Spkaq of cardinal d under the action of Galpka{kq. Observe that
the points in Spkq are exactly the fixed points for the action of Galpka{kq on Spkaq,
or in other words the points of degree 1. Let L{k be a field extension such that the pi
are L-rational points. We call blow-up of p the blow-up of these d points, which is a
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morphism π : S1 Ñ S defined over k, with exceptional divisor E “ C1`¨ ¨ ¨`Cd, where
the Ci are disjoint p´1q-curves defined over L, and E2 “ ´d. We shall refer to this
situation by saying that E is an exceptional divisor of degree d.

We recall the following classical factorization results (see e.g. [Liu02, Theorems 9.2.2
and 9.2.7]).
Proposition 1.1. Let π : S1 Ñ S be a birational morphism between smooth projective
surfaces defined over k. Then π “ π1 ˝ ¨ ¨ ¨ ˝ πn, where each πi : Si Ñ Si´1 is the blow-
up of a point of degree di ě 1 on Si´1, with exceptional divisor Ei on Si satisfying
E2
i “ ´di (in particular S “ S0, and S1 “ Sn).

Proposition 1.2. Let ϕ : S 99K S1 be a birational map between smooth surfaces over
k. Then there exists Z a smooth surface over k, and sequence of blow-ups π : Z Ñ S,
π1 : Z 1 Ñ S1 of orbits of points under Galpka{kq, such that π1 “ ϕ ˝ π.

We should mention that even if the Cremona group was explicitly defined in the
introduction in terms of homogeneous polynomials, in practice we almost always think
of an element of BirkpP2q as given by two sequences of blow-ups defined over k, as
provided by Proposition 1.2.
Remark 1.3. Over a non-perfect field k, there is no reason why the base points of a
birational map should be defined over a separable closure of k, and so we can no longer
identify closed points with Galois orbits as we did in the statements of Propositions 1.1
and 1.2. As a simple example of this phenomenon, consider k “ F2ptq, and denote by
t

1
2 the unique square root of t in ka. Then kpt

1
2 q{k is a non separable extension. Now

consider the birational involution f P BirkpP2q given by
f : rx0 : x1 : x2s Þ99K rx0x2 : x1x2 : x2

0 ` tx
2
1s

As a quadratic birational map, f admits 3 base points defined over ka, which are

p1 “ r0 : 0 : 1s, p2 “ rt
1
2 : 1 : 0s,

and p3 a point infinitely near to p2. In particular p2 is not defined over a separable
extension of k.
1.2. Negative maps, minimal and ample models, scaling. Let S be a surface
defined over k, and Sa the same surface over ka. We define the Néron-Severi space
N1pSaq as the space of numerical classes of R-divisors:

N1pSaq :“ DivpSaq bR{ ” .

The action of Galpka{kq on N1pSaq factors through a finite group, and we denote by
N1pSq the subspace of invariant classes. Since we only consider surfaces with Spkq ‰ H
and karSas˚ “ pkaq˚, N1pSq is also the space of classes of divisors defined over k (see
[San81, Lemma 6.3(iii)]). The dimension of this finite dimensional R-vector space is
called the Picard number of S over k, and denoted by ρpSq.
Remark 1.4. When working on a surface S, we can identify the space N1pSq of
divisors and the space N1pSq of 1-cycles, and similarly the subspaces EffpSq or NEpSq
of effective divisors or 1-cycles. In the sequel we shall use the notation which seem
most natural in view of the extension of the results in higher dimension. For instance
the Cone Theorem 1.7 is about 1-cycles, so there we use the notation NEpSq.

Let π : S1 Ñ S be a birational morphism between smooth surfaces over k, and D1

a Q-divisor on S1 with push-forward D “ π˚pD
1q. By Proposition 1.1, we can write

π “ π1 ˝ . . . πn, where πi : Si Ñ Si´1 is the blow-up of a point of degree di, with S “ S0
and S1 “ Sn. For any i, we denote by Ei the exceptional divisor of πi, and by Di the
push-forward of D1 on Si. We say that π is D1-negative if Di ¨Ei ă 0 for all i. Observe
also that on S1 we can write

D1 “ π˚D `
ÿ

aiEi

for some ai P Q, where here the Ei denote strict transforms on S1.
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Lemma 1.5. With the above notation, the morphism π is D1-negative if and only if
ai ą 0 for all i.

Proof. On Si, we have Di “ π˚i Di´1 ` aiEi, so that

0 “ π˚Di´1 ¨ Ei “ Di ¨ Ei ´ aiE
2
i .

Since E2
i “ ´di, where di ě 1 is the degree of the point blown-up by πi, we get

ai “ ´
Di¨Ei
di

, so that ai and Di ¨ Ei have opposite signs as expected. �

If π : S1 Ñ S is a D1-negative birational morphism, and D “ π˚pD
1q is nef, we call S

a D1-minimal model of S1. Such a model, if it exists, is unique:

Lemma 1.6 ([Mat02, p. 94]). Let S1, S2 be two D1-minimal models of S1, then the
induced map S1 99K S2 is an isomorphism.

We shall use the above setting for divisors D1 of the form D1 “ KS1 `A, with A an
ample Q-divisor (or A “ 0). Observe that a pKS1 `Aq-negative birational morphism is
also a KS1-negative morphism, hence simply a sequence of inverse of blow-ups. There
exist surfaces with infinitely many p´1q-curves: a classical example is given by P2

blown-up at (sufficiently general) 9 points. This gives a countable collection of curves
Ci withKS1 ¨Ci ă 0 and C2

i ă 0. However, after perturbingKS1 by adding any Q-ample
divisor, we get a finite collection:

Theorem 1.7 ([Rei97, Cone Theorem D.3.2]). Let S be a smooth surface defined over
ka. Then if ρpSq ě 3, all KS-negative extremal rays of the cone NEpSq are of the form
Rą0C with C a p´1q-curve. Moreover, for any ample Q-divisor A on S, there are only
finitely many p´1q-curves Ci such that pKS `Aq ¨ Ci ă 0.

Comments on the proof. In the Cone Theorem, the main delicate point to check when
working in arbitrary characteristic is vanishing. If A is ample, by Serre duality we have
H2pS,KS `Aq “ H0pS,´Aq˚ “ 0. So by Riemann-Roch on a surface we have, for the
divisor D “ K `A:

h0pS,Dq ě h0pS,Dq ´ h1pS,Dq “
1
2DpD ´KSq ` χpOSq. (1)

In fact when S is rational, we even have H1pS,KS ` Aq “ 0 (Kodaira vanishing in
positive characteristic can only fail for surfaces of Kodaira dimension ě 1, see [Ter99,
Theorem 1.6]). But this extra information is not necessary in the argument given by
Reid, as Inequality (1) is enough. �

Remark 1.8. (1) Over an arbitrary perfect field k, we have an equivariant version
of the Cone Theorem with respect to the action of Galpka{kq, see [KM98, p. 48].
Essentially we only have to change “p´1q-curve” by “orbit of pairwise disjoint p´1q-
curves under the action of Galpka{kq”. By Castelnuovo Contraction Theorem, we can
contract such an orbit and obtain a new smooth projective surface. Thus by running
the Minimal Model Program with respect to the canonical divisor K, or more generally
with respect to K ` A with A ample, we stay in the category of smooth surfaces, and
at posteriori this justifies that we restrict ourselves to this setting.

(2) In the case where the Picard number ρpSq is equal to 2, NEpSq is a convex cone
in a real 2-dimensional vector space, thus we have at most two extremal rays, which
correspond either to the contraction of an exceptional divisor or to a Mori fibration.
This case is particularly interesting in a relative setting, and is then often referred to
as a two rays game. Precisely, we start with a morphism π : S Ñ Y from a surface S,
with relative Picard number equal to 2. We assume that any curve C contracted by π
satisfies KS ¨C ă 0. Then there exist exactly two morphisms of relative Picard number
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1, πi : S Ñ Yi, i “ 1, 2, such that π factors through each of the πi:

S
π1
~~

π2
  

π

��

Y1
  

Y2
~~

Y

Theorem 1.9 (Base Point Free Theorem, see [Rei97, D.4.1]). Let S be a smooth pro-
jective surface, and let D be a nef divisor on S such that D ´ εKS is ample for some
ε ą 0. Then the linear system |mD| is base point free for all sufficiently large m.

If D is nef and of the form D “ K`A with A ample, we denote by ϕD the morphism
from S associated to the linear system |mD| for m " 0. This morphism has connected
fibers, and it contracts precisely the curves C such that pK ` Aq ¨ C “ 0. Now we
extend the definition of ϕD to any pseudo-effective divisor D “ K ` A, by using the
notion of scaling.

Let S be a smooth surface, and A, ∆ ample Q-divisors on S (we also admit the
case A “ 0). The pK ` Aq minimal model program with scaling ∆ is a sequence of
birational morphisms πi : Si´1 Ñ Si defined iteratively as follows. We set S0 “ S. If
Si is constructed, we denote Ai and ∆i the direct images of A and ∆ on Si, and we
consider ti such that Di “ KSi ` Ai ` ti∆i is nef but not ample on Si. Then the
morphism πi`1 from Si is obtained by applying Theorem 1.9 to Di. If πi`1pSiq “ Si`1
is a surface, we repeat the construction. At some point πi`1 is a fibration to a curve
or a point, in which case we reached a Mori fiber space and the program stops. In
particular this process gives a finite sequence of rational numbers

t0 ą t1 ą ¨ ¨ ¨ ą tn

such that KSi ` Ai ` t∆i is ample on Si for any t ą ti. We shall say that a birational
morphism π : S Ñ S1 is pK ` Aq-negative with scaling ∆ if S1 is one of the Si in the
above process.

Now assume that D is a pseudo-effective Q-divisor on S of the form D “ K ` ∆,
with ∆ ample. We run the K minimal model program with scaling ∆, and we look
where the coefficient t “ 1 corresponding to D fits into the sequence t0 ą t1 ą ¨ ¨ ¨ ą tn.
Precisely, we set j “ maxti | ti ě 1u and we denote ϕD “ πj ˝ ¨ ¨ ¨ ˝π1. Observe that the
morphism ϕD is birational if and only if j ď n ´ 1, and in any case ϕDpDq is ample.
We say that ϕD is the ample model of D.

Remark 1.10. (1) The above construction only depends on the numerical class of
D, which would not be the case for more general D (that is, not of the form K ` ∆
with ∆ ample), see [KKL14, Example 4.8].

(2) The morphism ϕD coincides with the morphism from S to Projp
À

H0pZ,mDqq,
see [KKL14, Remark 2.4]. In particular, if we write D “ K ` ∆1 ` ∆2 with ∆1,∆2
ample, and run the K `∆1 minimal model program with scaling ∆2, we will get the
same morphism ϕD, but possibly by another sequence of contractions.

2. A square complex associated to the Cremona group

In this section we construct a square complex that encodes Sarkisov links and rela-
tions between them. First we introduce the key notion of rank r fibration.

2.1. Rank r fibrations. If not stated otherwise, all varieties and morphisms are de-
fined over k. Let S be a smooth surface, and r ě 1 an integer. We say that S is a
rank r fibration if there exists a morphism π : S Ñ B, where B is a point or a smooth
curve, with relative Picard number equal to r, and such that the anticanonical divisor
´KS is π-ample. The last condition means that for any curve C contracted to a point
by π, we have KS ¨ C ă 0. Observe that the condition on the Picard number is that
ρpSq “ r if B is a point, and ρpSq “ r ` 1 if B is isomorphic to P1. If S is a rank r
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fibration, we will write S{B if we want to emphasize the basis of the fibration, and Sr
when we want to emphasize the rank. An isomorphism between two fibrations S{B and
S1{B1 (necessarily of the same rank r) is an isomorphism S

»
Ñ S1 such that there exists

an isomorphism on the bases (necessarily uniquely defined) that makes the following
diagram commute:

S
» //

π
��

S1

π1
��

B
» // B1

As the following examples make it clear, there are sometimes several choices for a
structure of rank r fibration on a given surface, that may even correspond to distinct
ranks.

Example 2.1. (1) P2 with the morphism P2 Ñ pt, or the Hirzebruch surface Fn
with the morphism Fn Ñ P1, are rank 1 fibrations.

(2) F1 with the morphism F1 Ñ pt is a rank 2 fibration. Idem for F0 Ñ pt. The
blow-up S2 Ñ Fn Ñ P1 of a Hirzebruch surface along a point of degree d, such that
each point of the orbit is in a distinct fiber, is a rank 2 fibration over P1.

(3) The blow-up of two distinct points on P2, or of two points of Fn not lying on the
same fiber, gives examples of rank 3 fibrations, with morphisms to the point or to P1

respectively.

Remark 2.2. Observe that the definition of a rank r fibration puts together several
well-known notions. If B is a point, then S is just a del Pezzo surface of Picard rank r
(over the base field k). If B is a curve, then S is just a conic bundle of relative Picard
rank r: a general fiber is isomorphic to P1, and (over ka) any singular fiber is the union
of two p´1q-curves secant at one point. Remark also that rank 1 fibrations are exactly
the usual 2-dimensional Mori fiber spaces.

We will be interested only in rational surfaces, and we call marking on a rank r
fibration S{B a choice of a birational map ϕ : S 99K P2. Observe that if S is rational
and B is a curve, then B is isomorphic to P1. We say that two marked fibrations
ϕ : S{B 99K P2 and ϕ1 : S1{B1 99K P2 are equivalent if ϕ1´1 ˝ ϕ : S{B Ñ S1{B1 is an
isomorphism of fibrations. We denote by pS{B,ϕq an equivalence class under this
relation. The Cremona group BirkpP2q acts on the set of equivalence classes of marked
fibrations by post-composition:

f ¨ pS{B,ϕq :“ pS{B, f ˝ ϕq.
If S1{B1 and S{B are marked fibrations of respective rank r1 ą r ě 1, we say that

S1{B1 factorizes through S{B if the birational map S1 Ñ S induced by the markings
is a morphism, and moreover there exists a (uniquely defined) morphism B Ñ B1 such
that the following diagram commutes:

S1
π1 //

!!

B1

S
π // B

<<

(2)

In fact if B1 “ pt the last condition is empty, and if B1 » P1 it means that S1 Ñ S is a
morphism of fibration over a common basis P1.

2.2. Square complex. We define a 2-dimensional complex X as follows. Vertices are
equivalence classes of marked rank r fibrations, with 3 ě r ě 1. We put an oriented
edge from pS1{B1, ϕ1q to pS{B,ϕq if S1{B1 factorizes through S{B. If r1 ą r are the
respective ranks of S1{B1 and S{B, we say that the edge has type r1, r. For each triplets
of pairwise linked vertices pS23{B2, ϕ2q, pS12{B1, ϕ1q, pS1{B,ϕq, we glue a triangle. In
this way we obtain a 2-dimensional simplicial complex on which the Cremona group
acts.
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Lemma 2.3. For each edge of type 3, 1 from S2{B2 to S{B, there exist exactly two
triangles that admit this edge as a side.
Proof. In short, the proof is a two rays game (see Remark 1.8). By assumption S2{B2
factorizes through S{B, so by setting Y “ S (if B » B1) or Y “ B (if B » P1 and
B1 “ pt), we obtain via Diagram (2) a morphism π : S2 Ñ Y with relative Picard
number ρpS2{Y q equal to 2. We have exactly two extremal rays in the cone NEpS2{Y q,
and since ρpS2q “ 3 or 4, both correspond to divisorial contractions. Denote by S2 Ñ S1

and S2 Ñ S̃1 these two contractions. Then the two expected triangles are S2{B2, S1{B1,
S{B and S2{B2, S̃1{B1, S{B. �

In view of the lemma, by gluing all the pairs of triangles along edges of type 3,1,
and keeping only edges of types 3,2 and 2,1, we obtain a square complex that we still
denote X . We call vertices of type P2 the vertices in the orbit of the vertex pP2{pt, idq
under the action of BirkpP2q. When drawing subcomplexes of X we will often drop
part of the information which is clear by context, about the markings, the equivalence
classes and/or the fibration. For instance S{B must be understood as pS{B,ϕq for an
implicit marking ϕ, and pP2, ϕq as pP2{pt, ϕq.
Example 2.4. Let S be the surface obtained by blowing-up P2 in two distinct points a
and b of degree 1. Denote by F1,a{P1

a, F1,b{P1
b the two intermediate Hirzebruch surfaces

with their fibrations to P1. Finally, denote by F0 the surface obtained by contracting
the strict transform on S of the line through a and b. All these surfaces fit into the
subcomplex of X pictured on Figure 1, where the dotted arrows are the edges of type 3,1
that we need to remove from the simplicial complex in order to get a square complex.

S{pt

S{P1
a S{P1

b

F0{P1
a F0{P1

b

F0{pt

F1,a{pt F1,b{pt

F1,a{P1
a F1,b{P1

b

P2{pt

yy

��

%%

��

��

yy %%

ee
yy

99
%%

99 ee

ee 99

oo //

�� ��

OO

Figure 1

Sa,b{pt

Sb,c{ptSa,c{pt

F1,a{pt F1,b{pt

F1,c{pt

P2{pt

ff 88

��

88 ff

��
OO

&& xx

88 ff

��

Figure 2

Example 2.5. Consider the blow-ups of 3 points a, b, c on P2. These gives three squares
around the corresponding vertex of type P2 (see Figure 2). In particular the square
complex X is not CATp0q, as mentioned in the introduction.
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2.3. Sarkisov links and elementary relations. In this section we show that the
complex X encodes the notion of Sarkisov links, and of elementary relation between
them.

First we rephrase the usual notion of Sarkisov links between 2-dimensional Mori fiber
spaces. Let pS{B,ϕq, pS1{B1, ϕ1q be two marked rank 1 fibrations. We say that the
induced birational map S 99K S1 is a Sarkisov link if there exists a marked rank 2
fibration S2{B2 that factorizes through both S{B and S1{B1. Equivalently, the vertices
corresponding to S{B and S1{B1 are at distance 2 in the complex X , with middle vertex
S2{B2:

S2{B2

ww ((

S{B S1{B1

This definition is in fact equivalent to the usual definition of a link of type I, II, III
or IV from S{B to S1{B1 (see [Kal13, Definition 2.14] for the definition in arbitrary
dimension). Below we recall these definitions in the context of surfaces, in terms of
commutative diagrams where each morphism has relative Picard number 1 (such a
diagram corresponds to a “two rays game”), and we give some examples. Remark
that these diagrams are not part of the complex X : in each case, the corresponding
subcomplex of X is just a path of two edges, as described above.

‚ Type I: B is a point, B1 » P1, and S1 Ñ S is the blow-up of a point of degree
d ě 1 such that we have a diagram

S1

��   

S

��

P1

~~

pt

Then we take S2{B2 :“ S1{pt.
Examples are given by the blow-up of a point of degree 1 or 4 on S “ P2. The

fibration S1{P1 corresponds respectively to the lines through the point of degree 1, or
to the conics through the point of degree 4.

‚ Type II: B “ B1, and there exist two blow-ups S2 Ñ S and S2 Ñ S1 that fit into
a diagram of the form:

S2

~~ !!

S
  

S1

}}

B

Then we take S2{B2 :“ S2{B.
An example is given by blowing-up a point of degree 2 on S “ P2, and then by

contracting the transform of the unique line through this point. The resulting surface
S1 is a del Pezzo surface of degree 8, which has rank 1 over k, but has rank 2 over
ka (being isomorphic to P1

ka ˆ P1
ka). Other examples, important for this paper, are

provided by blowing-up a point of degree 8 on P2: see §4.2.
‚ Type III: symmetric situation of a link of type I.
‚ Type IV: pS, ϕq and pS1, ϕ1q are equal as marked surfaces, but the fibrations to B

and B1 are distinct. In this situation B and B1 must be isomorphic to P1, and we have
a diagram

S
~~ !!

B

  

B1

~~

pt
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Then we take S2{B2 :“ S{pt.
For rational surfaces, a type IV link always corresponds to the two rulings on F0 “

P1 ˆ P1, that is, S{B “ F0{P1 is one of the rulings, S1{B1 “ F0{P1 the other one, and
S2{B2 “ F0{pt. See [Isk96, Theorem 2.6 (iv)] for other examples in the context of
non-rational surfaces.

A path of Sarkisov links is a finite sequence of marked rank 1 fibrations
pS0{B0, ϕ0q, . . . , pSn{Bn, ϕnq,

such that for all 0 ď i ď n´ 1, the induced map gi : Si{Bi 99K Si`1{Bi`1 is a Sarkisov
link.

Proposition 2.6. Let pS1{B,ϕq be a marked rank 3 fibration. Then there exist finitely
many squares in X with S1 as a corner, and the union of these squares is a subcomplex
of X homeomorphic to a disk with center corresponding to S1.

Proof. Since ρpS1q “ 3 or 4, we can factorize the fibration S1{B into
S1 Ñ S Ñ Y Ñ B,

where S1 Ñ S is a divisorial contraction, and Y is either a surface of a rational curve.
By playing the two rays game on S1{Y (see Remark 1.8), we obtain another surface S̃
and a divisorial contraction S1 Ñ S̃ that fits into a commutative diagram:

S
''

S1

77

''

Y // B

S̃

77

If Y is a surface, we obtain the following square in X :

S1{B

{{ ##

S{B

##

S̃{B

{{

Y {B

On the other hand if Y » P1 is a curve (and so B is a point), then we obtain the
following two squares in X :

S1{pt
ww ''

��

S{pt

��

S̃{pt

��

S1{P1

ww ''

S{P1 S̃{P1

Now in both cases we consider the two rays game on S̃{B: this produces Ỹ , which is
either a surface or a curve, and which fits into a diagram:

S
''

S1

77

''

Y
''

S̃

77

''

B

Ỹ

77

Then by considering the two rays game on S1{Ỹ , we produce one or two new squares in
X that are adjacent to the previous ones. After finitely many such steps, the process
must stop and produce the expected disk, because by Theorem 1.7 there are only finitely
many divisorial contractions that we can use to factor S1{B. �
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Remark 2.7. If B » P1, then at each step Y is a surface, and in this case the disk
produced by the proof consists of exactly four squares in X . On the other hand if B
is a point the number of squares might vary: for instance in Example 2.4 we saw a
situation with 5 squares.

In the situation of Proposition 2.6, by going around the boundary of the disk we
obtain a path of Sarkisov links whose composition is the identity (or strictly speaking,
an automorphism). We say that this path is an elementary relation between Sarkisov
links, coming from S13{B. More generally, any composition of Sarkisov links that
corresponds to a loop in the complex X is called a relation between Sarkisov links.

3. Relations in the Sarkisov program in dimension 2

In this section we prove that the complex X is connected and simply connected,
which will be the key in proving Theorem A. These connectedness results will follow
from the Sarkisov program, and more precisely from the study of relations in the
Sarkisov program, that we can state as follows:
Theorem 3.1 (Sarkisov Program).

(1) Any birational map f : S 99K S1 between rank 1 fibrations is a composition of
Sarkisov links.

(2) Any relation between Sarkisov links is a composition of elementary relations.

In arbitrary dimension over C, these results correspond to [HM13, Theorem 1.1] and
[Kal13, Theorem 1.3]. We give an account of the proof of these results in the simpler
case of surfaces, but working over an arbitrary perfect base field.

3.1. Polyhedral decomposition. Let tpS1{B1, ϕ1q, . . . , pSr{Br, ϕrqu be a finite col-
lection of marked rank 1 fibrations. In the context of Theorem 3.1, we will take r “ 2,
S1 “ S, S2 “ S1 when proving (1), or the entire collection of rank 1 fibrations visited
by a relation of Sarkisov links when proving (2).

By repetitively applying Proposition 1.2, we produce a marked surface Z dominating
all the Si, that is, such that all induced birational maps fi : Z Ñ Si are morphisms.
We pick a sufficiently small ample Q-divisor A on Z such that for all i, fi is pK `Aq-
negative, and ´KSi ´ fi˚pAq is relatively ample over Bi. The point of choosing such
an ample divisor A is to ensure that there exist only finitely many pK ` Aq-negative
birational morphisms from Z (up to post-composition by an isomorphism). Indeed this
follows from Theorem 1.7, which says that at each step there are only finitely possible
divisorial contractions. If there are only finitely many birational morphisms from Z
(for instance if Z is a del Pezzo surface), we also admit the choice A “ 0.

For each i “ 1, . . . , r, applying the following two steps we construct an (effective)
ample divisor ∆i on Z such that fi : Z Ñ Si is pK ` Aq-negative with scaling ∆i, and
more precisely fi will be a pK `A`∆iq-ample model of Z:

(1) If Bi » P1, pick Gi a large multiple of the fiber of Si{Bi such that ´KSi ´

fi˚pAq `Gi is ample on Si. If Bi “ tptu, then ´KSi ´ fi˚pAq is already ample, so we
just set Gi “ 0. In both cases Gi is a nef divisor on Si.

(2) Now pick Pi an effective Q-divisor on Si, equivalent to the ample divisor ´KSi´

fi˚pAq ` Gi, and set ∆i “ A ` f˚i pPiq, which is ample as the sum of ample and nef
divisors. One checks that

fi˚pK `A`∆iq “ KSi ` fi˚pAq ` fi˚pAq ´KSi ´ fi˚pAq `Gi

“ fi˚pAq `Gi,

which is an ample divisor on Si as expected.
We can assume that the ∆i generate N1pZq (throw in more ample divisors if neces-

sary). We choose some rationals ri ą 0 such that K `A` ri∆i is ample. We say that
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a Q-divisor ∆ is a subconvex combination of the ri∆i if

∆ “
ÿ

tiri∆i with ti ě 0,
ÿ

ti ď 1.

Let tgjusj“1 be the finite collection of pK `A`∆q-negative birational morphisms (up
to isomorphism on the range), for all choices of a subconvex combination ∆ as above.
Observe that this collection is indeed finite because of Theorem 1.7. Remark also that
the initial fi are part of this collection by construction, and also the identity id : Z Ñ Z
(corresponding for instance to taking one of the ti equal to 1, and all the other equal
to 0, because then D “ K ` A` ri∆i is ample by assumption, and the corresponding
embedding ϕD is equivalent to the identity morphism).

Now in the vector space N1pZq we consider the cone over the convex hull

ConvpK `A,K `A` r1∆1, . . . ,K `A` rs∆sq,

that we intersect with the pseudo-effective cone EffpZq to get a cone C˝. Explicitly:

C˝ “
!

D “ λ
´

K `A`
ÿ

tiri∆i

¯

; λ, ti ě 0,
ÿ

ti ď 1, D pseudo-effective
)

Ď N1pZq.

We denote by C the intersection of C˝ with an affine hyperplane defined by K `A:

C :“ tD P C˝; pK `Aq ¨D “ ´1u.

Recall from Proposition 1.1 that each gj : Z Ñ Sj is a finite sequence of contractions
of exceptional divisors, that is, orbits under Galpka{kq of pairwise disjoint p´1q-curves.
We denote tCiuiPI the finite collection of classes in N1pZq obtained as pull-back of such
exceptional divisors contracted by gj , for all j “ 1, . . . , s. We introduce a notation for
the hyperplane and half-spaces defined by Ci in N1pZq:

CKi “ tD P N
1pZq;D ¨ Ci “ 0u,

Cěi “ tD P N
1pZq;D ¨ Ci ě 0u,

and similarly for Cąi , C
ď
i , Căi .

Let D P C be a big divisor. Then we get a partition I “ I` Y I´ such that

D P
č

iPI`

Cąi X
č

iPI´

Cďi .

There exists j such that the morphism ϕD associated with D (see discussion after
Theorem 1.9) coincides with gj : Z Ñ Sj . The classes Ci, i P I´, correspond to the
curves contracted by ϕD “ gj .

Lemma 3.2. The cone C˝ Ă N1pZq is rational polyhedral, hence also the affine section
C.

Proof. First we prove that

nefpZq X C˝ “
č

iPI

Cěi X ConvpK `A,K `A` r1∆1, . . . ,K `A` rs∆sq,

from which it follows that nefpZq X C˝ is a rational polyhedral cone.
If D “ K `A`∆ P C˝ is not nef, then by construction of ϕD there exists i P I such

that the exceptional divisor Ci is contracted by ϕD, and D ¨Ci ă 0. On the other hand
if D P C˝ is nef, then for any irreducible component C in the support of one of the Ci
we have D ¨ C ě 0, hence D ¨ Ci ě 0 for all i.

Now we show that C˝ is a rational polyhedral cone. Let D P C˝ be a big divisor,
and ϕD : Z Ñ S the associated birational morphism. Up to reordering the Ci, we can
assume that C1, . . . , Cr are the classes contracted by ϕD, where r is the relative Picard
number of Z over S. Then we can write

D “ ϕD
˚pϕD˚pDqq `

r
ÿ

i“1
aiCi,
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where ϕD˚pϕD˚pDqq P nefpZq X C˝, and the ai are positive by Lemma 1.5. Together
with K `A` ri∆i P nefpZq X C˝ this gives

C˝ Ď ConvpnefpZq X C˝,K `Aq
č

ConvpnefpZq X C˝, Ci | i P Iq

This inclusion is in fact an equality because the first cone on the right-hand side is
just ConvpK ` A,K ` A ` r1∆1, . . . ,K ` A ` rs∆sq and the second cone consists of
pseudo-effective divisors, so the right hand side is contained in C˝. It follows that C˝ is
rational polyhedral, as expected. �

We set
Aj :“

č

iPI`

Cąi X
č

iPI´

Cďi X C.

In particular, Aj is a rational polyhedral subset of C, and is equal to the set of divisors
D P C such that ϕD “ gj . Observe that the chamber A of ample divisors in C is one
of the Aj , associated to gj “ id, and to the partition I` “ I, I´ “ H. Clearly the Aj

form a partition of the interior of C.
We just reproved [KKL14, Theorem 4.2] (which is stated in arbitrary dimension, but

over C):

Theorem 3.3. The interior of the cone C admits a finite partition in polyhedral cham-
bers IntpCq “

Ť

jPJ Aj.

For further reference we sum-up the above discussion:

Set-Up 3.4.
‚ We start with a finite collection tpS1{B1, ϕ1q, . . . , pSr{Br, ϕrqu of marked rank
1 fibrations.

‚ We pick Z a common resolution with Picard number ρpZq ě 4.
‚ We choose A an ample Q-divisor on Z such that each map Z Ñ Si is pK `

Aq-negative with scaling by an ample divisor ∆i. If there are finitely many
birational morphisms from Z, we allow A “ 0.

‚ We construct a convex cone C˝ in N1pZq, by considering the union of all seg-
ments r∆,K`AsXEffpZq, for all convex combinations ∆ of the ample divisors
K `A` ri∆i, and by taking the cone over these. In practice, we work with C,
the section of C˝ by the affine hyperplane corresponding to classes D such that
pK `Aq ¨D “ ´1.

‚ Each class D in the interior of C corresponds to a pK`Aq-birational morphism
ϕD : Z Ñ SD.

‚ Conversely, given gj : Z Ñ Sj a pK `Aq-negative birational morphism, the set
Aj of divisors D in C such that gj “ ϕD form a polyhedral chamber Aj with
non-empty interior.

Remark 3.5. In higher dimension several complications arise that we avoided in the
above discussion. In particular in dimension ě 3 it is not true anymore that each Aj

spans N1pZq, because of the appearance of small contractions.
We should also mention that in dimension 2, the decomposition of Theorem 3.3

can be phrased in terms of Zariski decompositions (see [BKS04]). Namely, in each
chamber Aj the support of the negative part of the Zariski decomposition is constant,
and corresponds to the support of the classes Ci with i P I´.

Finally, as already noticed in Remark 1.10, since we only consider adjoint divisors of
the form K `∆ with ∆ ample, we can work directly in the Néron-Severi space N1pZq
instead of choosing a subspace of the space of Weil divisors, as in [HM13, Kal13].

Example 3.6. In [Kal13, Figures 1 and 6] the above construction is illustrated by the
case of P2 blown up at 2 or 3 distinct points. Here we consider the case of P2 blown up
at two points (of degree 1), with one infinitely near the other. Precisely, let Z be the
surface obtained from P2 by blowing-up a point p “ L X L1 intersection of two lines,
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producing an exceptional divisor E, and then p1 “ E X L1, producing an exceptional
divisor E1 (see Figure 3, where the numbers in bracket denote self-intersection, and
where we use the same notation for a curve and its strict transforms).

L r`1s

L1 r`1s

H

L1 r0s

L r0s

H H
r´1s E

E r´2s

L1 r´1s

L r0s
p

p1 E1 r´1s

Figure 3. P2 blown up at p and p1.

On Z, the curves E,E1, L1 are the only irreducible divisors with negative self-intersection,
and they generate the pseudo-effective cone EffpSq. We also denote by H the class of
a generic line from P2, and as usual K is the canonical divisor. On Z we have

H “ L1 ` E ` 2E1, ´K “ 3L1 ` 2E ` 4E1.

The classes Ci of contracted curves are

C1 “ L1, C2 “ E1, C3 “ E ` E1.

In this simple example, it turns out that any class D in the pseudo-effective cone
EffpZq corresponds to a birational morphism ϕD. There are 6 possibilities for this
morphism ϕD, and we have the following chamber decomposition for the whole EffpZq:

‚ ‚

‚

‚

‚

‚

‚

As
E,L1

As
E

H

E

L

E1

E`E1

L1

‚
´K

Figure 4

However, Set-Up 3.4 only guaranties the chamber decomposition for classes in C,
which is pictured on Figure 5 (where we work with the choice A “ 0). Observe in
particular that chambers As

E and As
E,L1 in Figure 4 corresponds to singular surfaces,

namely the blow-down of E, or the blow-down of E,L1. Equivalently, a wall between
chambers in Figure 4 does not always correspond to the contraction of a p´1q-curve.
In contrast, chambers A1, . . . ,A4 in Figure 5 correspond to smooth surfaces, and the
chambers are delimited by the hyperplanes CKi .

The following two propositions correspond to [HM13, Theorem 3.3], in the case of
surfaces.

Proposition 3.7. Assume Set-Up 3.4, let Aj be one of the polyhedral chambers given by
Theorem 3.3, and gj : Z Ñ Sj the associated birational morphism. If D P Āj rAj with
associated morphisms ϕD : Z Ñ Y , then there exists a unique morphism f : Sj Ñ Y
such that ϕD “ f ˝ gj.
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C1 “ L1 C2 “ E1

H

´K

L

K ` r2∆2

K ` r1∆1

CK1

CK3

CK2
A3

A2

A4
A1

C

Figure 5. The partition IntpCq “
Ť4
i“1 Ai (in gray).

Proof. Set D0 “ D P Āj r Aj , and pick D1 P Aj . Then for all t Ps0, 1s, we have
Dt :“ tD1 ` p1´ tqD0 P Aj . The curves contracted by gj “ ϕDt are the curves C such
that Dt ¨ C ď 0 for t Ps0, 1s, and so also for t “ 0. Hence NEpϕDq Ă NEpgjq, and the
Rigidity Lemma below gives the expected morphism f : Sj Ñ Y . �

Lemma 3.8 (Rigidity Lemma, see [Deb01, Proposition 1.14]). Let X,Y, Y 1 be projective
varieties and let π : X Ñ Y , π1 : X Ñ Y 1 be morphisms with connected fibers. If
NEpπq Ă NEpπ1q, there is a unique morphism f : Y Ñ Y 1 such that π1 “ f ˝ π.

Proposition 3.9. Assume Set-Up 3.4. Let j, k be two indexes such that ĀjXAk ‰ H,
and let gj,k : Sj Ñ Sk be the morphism (given by Proposition 3.7) such that gk “ gj,k˝gj.
Then the relative Picard number of gj,k : Sj Ñ Sk is equal to the codimension of ĀjXĀk

in Āj.

Proof. By definition there exist two partitions of the set of indexes I “ I`j Y I´j “

I`k Y I
´
k such that

Aj “
č

iPI`j

Cąi X
č

iPI´j

Cďi X C,

Ak “
č

iPI`
k

Cąi X
č

iPI´
k

Cďi X C.

The condition Āj XAk ‰ H means that I´j Ĺ I´k . Let ti1, . . . , itu “ I`j X I
´
k . Then

Āj X Āk “
č

iPI`
k

Cěi X
č

iPti1,...,itu

CKi X
č

iPI´j

Cďi X C.

The morphism gj,k corresponds to the contraction of the classes Ci1 , . . . , Cit , and t is
by construction the codimension of Āj X Āk in Āj . �

3.2. Boundary of C. Assuming Set-up 3.4, we define B`C as the intersection of C with
the boundary of the pseudo-effective cone in N1pZq, or equivalently, as the classes in
C that are not big. If ρ “ ρpZq is the Picard number of Z, then by assumption C˝ is a
cone of full dimension ρ, hence the affine section C is homeomorphic to a ball Bρ´1 and
B`C is homeomorphic either to a ball Bρ´2, or to a sphere Sρ´2, depending whether
the pseudo-effective cone is contained in C or not. For instance the sphere situation
arises if Z is del Pezzo, A “ 0, and the initial collection of rank 1 fibrations Si{Bi is
the full (finite) collection of such fibrations dominated by Z.

Now we put a structure of polyhedral complex on B`C. We consider the set of
chambers Aj such that ĀjXB

`C contains a codimension 1 face W of the closed polytope
Āj . We call such a face W a window of Aj . Then the collection of such W uniquely
defines a structure of polyhedral complex on B`C, such that the W are the codimension
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0 faces of the complex. More generally we shall denote Fk a (closed) codimension k
face of B`C. We say that Fk is an inner face if it intersects the relative interior of B`C.
Equivalently, Fk is inner if it can be written as the intersection of k ` 1 windows.

For a window W of the chamber Aj , D in the relative interior of W, and sufficiently
small ε ą 0, the divisor D1 :“ D ´ εpK `Aq is in Aj , and the images S “ ϕD1pZq and
B “ ϕDpZq correspond to a Mori fibration S{B that depends only on W (and not on
the particular choice of D or ε).

We see that the codimension 0 faces of B`C are in bijection with the rank 1 fibrations
S1{B dominated by a pK`Aq-negative map from Z, and such that S1{B is p´K´Aq-
ample. More generally, we have:

Proposition 3.10. (1) Let Fk be an inner codimension k face of the polyhedral
complex B`C. Then there exists a uniquely defined rank k ` 1 fibration Sk`1{B such
that:

‚ Sk`1{B is p´K ´Aq-ample;
‚ The induced map Z Ñ Sk`1 is equal to gj for some g P t1, ¨ ¨ ¨ , su, in particular

this is a pK `Aq-negative birational morphism;
‚ The chamber Aj associated with gj satisfies Āj X B

`C “ Fk.
(2) If moreover Fk Ă F j is contained in a codimension j face F j, then the rank

j ` 1 fibration associated to F j factorizes through the rank k` 1 fibration associated to
Fk.

Proof. (1) Let D be a class in the relative interior of Fk. By definition, there exists
an ample class ∆ P C˝ such that D lies in the segment r∆,K ` As. Moreover for
sufficiently small ε, D1 “ D ´ εpK ` Aq lies in a chamber AS (in fact in the interior
of AS , since K ` A is negative against the exceptional curves Ci), where S does not
depend on D nor ε. Let Z Ñ B be the morphism associated to D, and Z Ñ S the
morphism associated to D´εpK`Aq. The induced morphism (Proposition 3.7) S Ñ B
admits a factorization (obtained by running a relative MMP over B)

Sr`1 Ñ Sr Ñ ¨ ¨ ¨ Ñ S1 Ñ B,

where each Si`1 Ñ Si is the contraction of one exceptional curve. By Proposition 3.9,
ASr`1 and AS1 share a codimension r face, and the intersection of this face with B`C
has codimension r in B`C.

(2) With the same notation as above, there exists a small ball Bp∆, δq inside the
ample chambers, such that if D1 “ p1 ´ t1q∆ ` t1pK ` Aq, then all divisors of the
form p1 ´ t1qBp∆, δq ` t1pK ` Aq Ă AS . Now there exists 1 ě t ě t1 such that
D “ p1 ´ tq∆ ` tpK ` Aq. The open set p1 ´ tqBp∆, δq ` tpK ` Aq meets F j by
assumption, hence also the associated chamber Aj . So we can pick ∆1 P Bp∆, δq such
that the segment r∆1,K `As meets successively AS and Aj . �

Corollary 3.11. If the intersection WiXWj of two windows has codimension 1 in Wi

(hence also in Wj), then there is a Sarkisov link between the corresponding Mori fiber
spaces.

Proof. By Proposition 3.10, there exists a rank 2 fibration corresponding to the codi-
mension 1 face F1 “ WiXWj , that factorizes through the rank 1 fibrations associated
respectively to Wi and Wj . This is exactly our definition of a Sarkisov link. �

Remark 3.12. The above corollary corresponds to [Kal13, Lemma 3.17], but the
situation for surfaces is simpler (see Figure 6). Let Ai, Aj be the two chambers with
window Wi, Wj , and Si{Bi, Sj{Bj the corresponding rank 1 fibrations. We write
F1 “ Wi XWj . We distinguish 3 cases in term of the codimension of the intersection
Ai XAj .
paq If Ai “ Aj , that is, Wi and Wj are two windows of a same chamber, then we

have a link of type IV. In the case of a rational surface, the only possibility is the
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change of ruling on F0 “ P1 ˆ P1. The fibrations Si{Bi and Sj{Bj correspond to the
two rulings on F0, and the codimension 1 cell F1 to the rank 2 fibration F0{pt.
pbq If Ai and Aj share a codimension 1 face, then we have a link of type I or III.

Up to reordering we can assume that we have a blow-up map Sj Ñ Si. Then Bj “ P1,
Bi “ pt, and F1 corresponds to the rank 2 fibration Sj{pt.
pcq Otherwise, let S2{B be the rank 2 fibration associated to F1, as given by Propo-

sition 3.10. The chamber AS2 is distinct from Ai and Aj , otherwise we would be in
one of the two previous cases. Then AS2 shares a codimension 1 face with Ai and with
Aj , and we have a link of type II.

Si “ Sj » P1 ˆ P1

P1 P1

Si Sj

pt P1

paq : type IV pbq : type I or III

Si Sj
S2

B“P1

Si SjS2

B“pt

pcq : type II over P1 pcq : type II over pt

Figure 6. Adjacent windows and Sarkisov links

Corollary 3.13. Let F2 be an inner codimension 2 cell in B`C. Let S3{B be the
associated rank 3 fibration, as given by Proposition 3.10. Then the elementary relation
associated to S3{B correspond to the finite collection of windows W1, . . . ,Wk containing
F2 in their closure, and ordered such that Wj and Wj`1 share a codimension 1 face
for all j (where indexes are in Z{kZ).

The following two propositions correspond to the two assertions in Theorem 3.1.

Proposition 3.14. Any birational map f : S 99K S1 between rank 1 fibrations is a
composition of Sarkisov links, and in particular the complex X is connected.

Proof. We want to prove that two vertices in X corresponding to two rank 1 fibrations
are connected by a path. Let S1{B1 and S2{B2 be these two fibrations, and apply Set-
Up 3.4 to this collection of two fibrations. Let ∆1, ∆2 be ample divisors in C such that
for i “ 1, 2, the fibration Si{Bi corresponds to a pK ` Aq-negative map with scaling
∆i. Up to a small perturbation of ∆1 and ∆2, we can assume that the 2 dimensional
affine plane containing ∆1,∆2 and K`A intersects transversally the faces of B`C. This
means that the windows W1 and W2 corresponding to S1{B1 and S2{B2 are connected
by a finite sequence of windows, where two successive windows share a codimension 1
face. By Corollary 3.11, this corresponds to a sequence of Sarkisov links, hence the
expected path in the complex X . �

Proposition 3.15. Any relation between Sarkisov links is a composition of elementary
relations, and in particular the complex X is simply connected.

Proof. Let γ be a loop in X . Without loss in generality, we can assume that the image of
γ lies in the 1-skeleton of X . We can also assume that the loop visits only vertices of rank
1 or 2. Indeed, using elementary relations, that is, moving around the boundary of disks
as provided by Proposition 2.6, we can avoid all vertices of rank 3. Moreover, we can
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assume that the base point is a vertex of rank 1, S1{B1. Now the sequence of vertices of
rank 1 visited by the loop corresponds to a sequence S1{B1, S2{B2, . . . , Sr{Br “ S1{B1,
where for each i, the map from Si{Bi to Si`1{Bi`1 is a Sarkisov link. Consider the
surface Z and the complex C associated to this collection, as in Set-Up 3.4, and denote
as above B`C the non-big boundary with its induced structure of polyhedral complex.

Now we consider the barycentric subdivision BB`C of the polyhedral complex B`C,
which is defined as follows (see e.g. [Mun84, p. 83]). For each face Fk of codimension
k (ρ ´ 2 ě k ě 0), we denote by ppFkq the barycenter of the vertices of Fk. The
d-simplexes of BB`C are defined as the convex hulls of the ppFkq, for each sequence of
nested faces F id Ă F id´1 Ă ¨ ¨ ¨ Ă F i1 Ă F i0 , where id ą ¨ ¨ ¨ ą i1 ą i0. If F id is an
inner face (hence also all other faces of the sequence), we say that the corresponding
simplex is an inner simplex of BB`C. The inner simplexes form a subcomplex IB`C Ă
BB`C, and IB`C is a deformation retract of the interior of BB`C: this follows from
Lemma 3.16 below, with X “ BB`C, A “ IB`C and C the boundary of BB`C. Since
BB`C is homeomorphic to a ball or a sphere of dimension ρpZq ´ 2 ě 2, it is simply
connected, so that IB`C also is simply connected. By Corollaries 3.11 and 3.13, the 2-
skeleton of the complex IB`C is exactly the (simplicial version) of the subcomplex of X
generated by the Si{Bi (see §2.2). Being the 2-skeleton of a simply connected complex,
this 2-complex also is simply connected (see [Hat02, Corollary 4.12]). Moreover, by
Proposition 2.6, each face F2 of codimension 2 in IB`C is the center of a disk whose
boundary corresponds to an elementary relation. By construction, the interiors of these
disks are pairwise disjoint, and any triangle of IB`C belongs to one of the disks. In
conclusion, we can perform the required homotopy of our initial loop to a constant loop
inside this subcomplex of X by using elementary relations. �

B`C BB`C IB`C

Figure 7. The complexes B`C, BB`C and IB`C.

Lemma 3.16 ([Mun84, Lemma 70.1]). Let A be a full subcomplex of a finite simplicial
complex X. Let C consist of all simplices of X that are disjoint from A. Then A is a
deformation retract of X r C.

4. Elementary generators

4.1. Definition. As in the previous section we consider a path of Sarkisov links

pS0{B0, ϕ0q . . . , pSn{Bn, ϕnq,

that is, for each 0 ď i ď n´1, there is a Sarkisov link gi : Si{Bi 99K Si`1{Bi`1. If in such
a path S0, Sn are both isomorphic to P2, but no intermediate vertex Si is isomorphic
to P2, we say that ϕngn´1 ¨ ¨ ¨ g1g0ϕ

´1
0 P BirkpP2q is an elementary generator.

We denote by E a choice of representatives of elementary generators in BirkpP2q, up
to right and left composition by elements of AutkpP2q. From the Sarkisov program in
dimension 2 it directly follows:

Proposition 4.1. Any f P BirkpP2q is a composition of elementary generators, up to
an automorphism. In particular, BirkpP2q “ xAutkpP2q, Ey.
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Proof. By Theorem 3.1(1), there exists a sequence of Sarkisov links decomposing f .
Then we can cut this sequence at each intermediate surface isomorphic to P2. �

Remark 4.2. The set E contains the list of generators given in [IKT93], which contains
all Jonquières transformations. The set E is really huge: over an algebraically closed
field, in fact every element of BirkpP2q is in E , which does not seem a very clever choice
of generators. However, when working over a non-closed field, and since we never
try to work with an explicit presentation of BirkpP2q by generators and relations, the
immensity of E is not a draw-back.

In the following sections we study two particular examples of elementary generators.

4.2. Bertini involutions. Let p “ tp1, . . . , p8u P P2 a point of degree 8. We say that
p is general, or equivalently that the pi are in general position, if the blow-up of p is a
del Pezzo surface of degree 1, that is, if no line (defined over ka) contains 3 of the pi,
no conic contains six of them, and no cubic is singular at one of them and contains all
the others.

Let S be the surface obtained by blowing-up such a general point p of degree 8.
Then S is a rank 2 fibration with exactly two outgoing arrows, and there exists another
contraction S Ñ P2 that fits into a diagram

S

����

P2
b

// P2

(3)

where b is a Bertini involution (this link is noted χ8 in [IKT93]). Recall that geomet-
rically, b is defined as follows. Since p is general, the linear system Γ of cubics through
p is a pencil whose general member is smooth. The base locus of the pencil is equal to
pY q, where q is a point of degree 1. For x P P2 a general point, the unique member of
Γ through x is a smooth cubic, that we can see as an elliptic curve with neutral element
q. Then bpxq “ ´x, where ´x means the opposite of x with respect to the group law
on the elliptic curve.

In particular, such a link b is an elementary generator as defined above. Now the
crucial but easy observation is:
Lemma 4.3. In diagram (3), each contraction S Ñ P2 corresponds to an edge in X
which is not contained in any square.
Proof. If S{pt Ñ P2{pt corresponds to an edge of a square, we would have a rank 3
fibration S1{pt that factorizes through S{pt. But such a surface S1 would be a del Pezzo
surface, and would be a blow-up of S which is already a del Pezzo surface of degree 1;
contradiction. �

Up to changing the initial choice of representatives E , we can assume that a rep-
resentive of a Bertini involution is an involution. We denote by B Ď E the subset of
representatives of Bertini involutions.
Example 4.4. Since the above construction relies on the existence of a Galois extension
of degree 8, we recall a few examples of such extensions:

(1) Qp
?

2,
?

3,
?

5q{Q is Galois with Galois group isomorphic to pZ{2Zq3. This is
the splitting field of pX2 ´ 2qpX2 ´ 3qpX2 ´ 5q.

(2) The cyclotomic extension Qpe2iπ{15q{Q has degree ϕp15q “ 8 and Galois group
isomorphic to pZ{15Zq˚ » Z{2ZˆZ{4Z. This is the splitting field of the 15th cyclotomic
polynomial Φ15pXq P ZrXs ([Mor96, Corollary 7.8]).

(3) Qp 4
?

2, iq{Q is Galois with Galois group isomorphic to the dihedral group D8.
This is the splitting field of pX4 ´ 2qpX2 ` 1q. Generators for the Galois group are r, s
where

rp
4?2q “ i

4?2, rpiq “ i and sp 4?2q “ 4?2, spiq “ ´i.
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(4) Let α “ eiπ{4, and set k “ Qpαq. Then pick β P k which is not a square in k:
for instance β “ 3 is a possible choice, but β “ 2 is not because α ` α7 “

?
2. Then

kp 8
?
βq{k is a cyclic extension of degree 8, that is, Galois with Galois group isomorphic

to Z{8Z ([Mor96, Corollary 9.6]).
(5) Qpθq{Q with θ2 “ p2 `

?
2qp2 `

?
3qp3 `

?
6q is Galois with Galois group iso-

morphic to the quaternionic group. This is the splitting field of X8´ 72X6` 180X4´
144X2 ` 36 ([Dea81]).

(6) Let Fq be a finite field, and Fqn{Fq the (essentially unique) extension of degree
n (in particular one can take n “ 8). Then this extension is Galois, with Galois
group isomorphic to Z{nZ, generated by the Frobenius automorphism x ÞÑ xq ([Mor96,
Corollary 6.7]).

Now we turn to the problem of proving that the set B is large, that is, there exist
many Bertini involutions, even modulo the action of PGL3pkq. We shall produce points
of degree 8 in general position by using nodal cubics. The following set-up about the
group structure on the smooth locus of a nodal cubic is classical, see for instance [Sil09,
§III.2, Proposition 2.5], and also Remark 4.8. However since we want to work over an
arbitrary field (typically non-algebraically closed), we find convenient to make a slightly
different choice of normal form.

Set-Up 4.5. Consider the plane nodal cubic curve CP defined over k, given by the
equation

xyz “ P px, zq,

where P px, zq “ c0x
3 ´ c0z

3, c0 P k˚. In the affine chart z “ 1, the equation becomes

y “
P px, 1q
x

ˆ

“
c0x

3 ´ c0
x

˙

.

Observe also that the singular point r0 : 1 : 0s is the only intersection point between
CP and the line at infinity z “ 0.

We shall be interested in nodal cubics up to the action of PGL3pkq, and we shall use
the above set-up as a normal form. Observe that we cannot assume c0 “ 1 even after
applying a diagonal element of PGL3pkq, because c0 might not be a cube in k.

Lemma 4.6. Let C Ă P2 be an irreducible nodal cubic with singular point at r0 : 1 : 0s,
and tangent cone at this point given by xz “ 0. Then C admits an equation of the form

xyz “ c0x
3 ` c1x

2z ` c2xz
2 ` c3z

3, c0, c3 P k˚, c1, c2 P k,

and C is equivalent under the action of PGL3pkq to a cubic from Set-Up 4.5 if and only
if ´ c0

c3
is a cube in k.

Proof. The assumption on the singular point implies that C admits an equation of
the form xyz “ P px, zq with P a homogeneous polynomial of degree 3. Moreover
P p0, 1q ‰ 0 and P p1, 0q ‰ 0, otherwise C would be reducible. So P px, zq “ c0x

3 `
c1x

2z ` c2xz
2 ` c3z

3, with c0, c3 P k˚, and no condition on c1, c2.
By applying px, y, zq ÞÑ px, y ` c1x ` c2z, zq we can assume c1 “ c2 “ 0. Then, if

´ c0
c3
“ a3 for some a P k˚, by applying px, y, zq ÞÑ px, a´1y, azq we get c0 “ ´c3. �

Lemma 4.7. Assume Set-up 4.5, and consider a collection of three or six pairwise
distinct ai P k˚. Then:

(1) The points pi “
´

ai,
P pai,1q
ai

¯

P CP , i “ 1, 2, 3, are on a same line if and only if
a1a2a3 “ 1.

(2) The points pi “
´

ai,
P pai,1q
ai

¯

P CP , i “ 1, . . . , 6, are on a same conic if and
only if a1 . . . a6 “ 1.
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Proof. (1) The general equation of a line that does not intersect the cubic CP at
infinity is y`Ax`B “ 0. If the pi are on a same line, then replacing y “ P px,1q

x in the
equation of the line we get

P px, 1q `Ax2 `Bx “ c0px´ a1qpx´ a2qpx´ a3q,

hence, by comparing the constant terms and dividing by ´c0, we get 1 “ a1a2a3 as
expected. Conversely, if a1a2a3 “ 1, then the above relation allows to define A,B in
function of the ai such that the line y `Ax`B “ 0 contains the three points pi.

(2) The proof is similar, working with the general equation of a conic that does not
intersect the cubic at infinity:

y2 `Ayx`By ` Cx2 `Dx` E “ 0.

Replacing y “ P px,1q
x we get

P px, 1q2 `Ax2P px, 1q `BxP px, 1q ` Cx4 `Dx3 ` Ex2

“ c2
0x

6 ` ¨ ¨ ¨ ` c2
0 “ c2

0

6
ź

i“1
px´ aiq,

and we conclude as in the previous case. �

Remark 4.8. On the smooth locus Csm of a nodal cubic C, with a choice of e a flex
point, recall that there exists a group law defined similarly as in the case of an elliptic
curve. Given p, q P Csm, define p ˝ q as the third point of intersection of C with the
line through p and q (or the tangent by p if p “ q). Then by setting p ¨ q :“ pp ˝ qq ˝ e,
we get a group law ¨ with neutral element e. The previous lemma shows that in the
case of CP given by Set-Up 4.5, where one can check that e “ p1, 0q is a flex point, the
map x ÞÑ px, P px,1qx q is a group morphism from k˚ to CsmP .

We shall need the following result about singular fibers of a pencil of cubic curves:

Lemma 4.9. Let Γ be a pencil of plane cubic curves. Then Γ contains at most 12
nodal cubics.

Proof. Consider the surface S obtained by blowing-up P2 at the nine base points of the
pencil. Then S admits an elliptic fibration and has Euler number c2pSq “ 12, which by
Ogg’s formula is equal to the sum over the singular fibers of the valuation vp∆q of the
minimal discriminant. Independently of the characteristic of the base field, each nodal
cubic contributes by 1 to this sum, hence the result (see e.g. [Lie13, §5.3]). �

Now we apply this set-up to the case of a field which admits a Galois extension of
degree 8.

Proposition 4.10. Assume Set-Up 4.5. Let L{k be a Galois field extension of degree
8, b1, . . . , b8 P L be an orbit under GalpL{kq, and λ P k˚. Set ai “ λbi, so that
a1, . . . , a8 P L also is a Galois orbit. Then, except for at most 6 values of λ, the points
pi “ pai,

P pai,1q
ai

q Ă A2 Ă P2 are in general position.

Before giving the proof we establish a corollary.

Corollary 4.11. Let k be an infinite field that admits at least one Galois extension of
degree 8. Then the set B of representatives of Bertini involutions up to conjugacy by
PGL3pkq has at least the same cardinality than the field k.

Proof. Assume that a1, . . . , a8 is a Galois orbit such that the points pi “
`

ai,
P pai,1q
ai

˘

are in general position. It is sufficient to prove that for any λ P k˚ except finitely many,
the points qi “

`

λai,
P pλai,1q
λai

˘

also are in general position and are not equivalent to the
pi under the action of PGL3pkq. First by Proposition 4.10, by avoiding 6 values of λ
we can assume that the qi are in general position. Assume that g P PGL3pkq sends
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the pi on the qi. By assumption the nodal cubic CP from Set-Up 4.5 contains both the
pi and the qi. Then g´1pCP q is a nodal cubic through the pi, and by Lemma 4.9 we
know that there are at most 12 of them. Moreover a given nodal cubic is stabilized by
finitely many elements of PGL3pkq, hence the result. �

We separate the proof of Proposition 4.10 into the next three lemmas, where we
always assume Set-Up 4.5.

Lemma 4.12. There is no singular irreducible cubic passing through all the pi, with
one of them the double point.

Proof. If C is such a cubic, and C 1 “ σpCq is the image of C under a non trivial element
σ P GalpL{kq, then C ¨ C 1 “ 2` 2` 1` ¨ ¨ ¨ ` 1

looooomooooon

6

“ 10, a contradiction. �

Lemma 4.13. Any three points among the pi “
`

ai,
P pai,1q
ai

˘

are not on a line.

Proof. Assume the contrary, and denote by L a line containing three of the pi. Since
the pi lie on a nodal cubic, the line L contains exactly three points among the pi. Then
taking the Galois orbit of L we obtain a configuration of 8 lines, each line containing
3 of the pi, and with 3 lines through each pi. This is the classical Möbius-Kantor
configuration 83, see figure 8, where 7 of the lines are represented as lines of the plane,
and the label of a vertex indicates the first coordinate of the corresponding point in
A2. Precisely, a, b, c are among the ai, and the other labels are expressed in terms of
a, b, c using Lemma 4.7.

Multiplying the labels of the bottom line we find c3 “ 1. But a cubic root of the unity
either lives in k or in a quadratic extension of k, in contradiction with the assumption
that c, being any one of the ai, should satisfy kpcq “ L. �

‚

‚ ‚

‚ ‚

‚ ‚ ‚

1
bc

ac
b

1
ac

bc
a

c

a

b
a2c“

a
b2c

b

Figure 8. The Möbius-Kantor configuration 83

Lemma 4.14. Except for at most 6 values of λ, any 6 points among the points pi
associated to the orbit λbi are not on a conic.

Proof. Assume C is a conic through 6 of the pi. Since the pi lie on the cubic CP , Bézout
Theorem implies that the 2 remaining points pi are not on the conic C. Consider σ
in the Galois group GalpL{kq. Then σpCq is either equal to C, or shares exactly 4
intersection points with C. The only possibility is that the Galois orbit of C consists of
4 conics, and we can group the pi into 4 pairs, such that each conic passes through three
of the four pairs of points. Then the combinatorics is a configuration 43: by each pair
pass 3 conics, and each conic contains three pairs of points. Denote by π1, π2, π3, π4
the product of the first coordinates of each pair of points. By Lemma 4.7 we have

π1π2π3 “ 1, π1π2π4 “ 1,
π1π3π4 “ 1, π2π3π4 “ 1.
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It follows that π1 “ π2 “ π3 “ π4, and then π3
i “ 1 for all i. Finally pick an element

λ P k˚, such that λ6 ‰ 1. Now if we replace ai by λai, and the corresponding points
on CP are still in non-general position, then the same argument gives

λ6 “ λ6π3
i “ pλaiτpλaiqq

3 “ 1,
a contradiction. We conclude that if there is a bad point of degree 8 associated to an
orbit ai, then for all λ P k˚ except maybe the 6th roots of unity, the point of degree 8
associated with the orbit λai is in general position with respect to conics. �

In the case of finite fields, for small cardinal the previous statements are empty, and
anyways for arbitrary cardinal one would like an estimate of the cardinality of B. We
adapt the previous argument as follows.

Lemma 4.15. Assume Set-Up 4.5 for a finite field k “ Fq. Let a1, . . . , a8 P Fq8 be an
orbit under GalpFq8{Fqq, and assume that the points pi “ pai, P pai,1q

ai
q Ă A2 Ă P2 are

in non-general position. For β P F˚q4, set bi “ βq
i´1
ai, so that b1, . . . , b8 P Fq8 is also a

Galois orbit.
If β R tx P F˚q4 ; x6 “ 1, x2 P Fqu, then the points qi “ pbi,

P pbi,1q
bi

q are in general
position.

Proof. Lemmas 4.12 and 4.13 are valid for any β, so the delicate point is only the
general position with respect to conics. With the same notation as in the proof of
Lemma 4.14, since 6 among the pi lie on a conic C then we obtain that the products
πi are all equal to a same 3rd root of unity. Now we use the fact that over a finite
field, τ : x ÞÑ xq

4 is the only element of order 2 in GalpFq8{Fqq. In particular, τ is the
element of order 2 that fixes C. It also fixes all conjugates of C and hence interchanges
the two elements in each pair of pi. Then the product πi is invariant under the Galois
group GalpFq8{Fqq, so we have πi P Fq. Pick β P Fq4 r tx P F˚q4 ; x6 “ 1, x2 P Fqu, and
replace the orbit of a1 by the orbit of b1 “ βa1, which still has cardinal 8. Then π1 P Fq
is replaced by β2π1, which either is not a 3rd root of the unity anymore, or is not an
element of Fq. Thus for each such choice of β the points qi “ pbi, P pbi,1q

bi
q are in general

position with respect to conics. �

Lemma 4.16. Let x, x1 be two conjugate elements in Fq8rFq4, that are also in the same
orbit under the action of F˚q4 by left multiplication. Assume that one of the following
conditions holds:

(i) x is a generator of Fq8;
(ii) q “ 2.

Then x “ x1.

Proof. Assume x ‰ x1. We have x1 “ xq
i , for some 1 ď i ď 7, and x1{x “ xq

i´1 P F˚q4 .
In particular xpqi´1qpq4´1q “ 1, so that pqi´1qpq4´1q is a non-zero multiple of orderpxq.

If x is a generator of Fq8 , we get pqi ´ 1qpq4 ´ 1q “ dpq8 ´ 1q for some d ą 0. This
implies 5 ď i ď 7, and reducing modulo q4 we find d ” ´1 mod q4, hence d ě q4 ´ 1
which gives a contradiction.

If q “ 2, the group F˚28 is cyclic of order 255 “ 3 ¨ 5 ¨ 17. Observe that an element
x P F˚28 is in F28 rF24 if and only if orderpxq is a multiple of 17 (namely, the possibilities
are 17, 51, 85 and 255). Then one checks that for 1 ď j ď 7, 2j ´ 1 is not a multiple of
17, which gives the expected contradiction. �

Proposition 4.17. Let Fq be a finite field. Then the number of Bertini involutions with
a base point of degree 8, up to conjugacy by PGL3pFqq, is at least Mq, where M2 “ 2,
M3 “ 12, and for q ě 4,

Mq “
1

640pq
6 ´ 1q.

In particular, Mq ě q for all q ě 2.
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Proof. First we count the number of nodal cubics equivalent to the ones from Set-Up
4.5.

We need to choose a point in P2pFqq, and then two distinct lines defined over Fq
through this point. The number of such choices is:

N1 “ pq
2 ` q ` 1qqpq ` 1q

2 .

Using the action of PGL3pkq, we can assume that the two lines are x “ 0 and z “ 0,
and by Lemma 4.6 we need to count nodal cubics with equation of the form

xyz “ c0x
3 ` c1x

2z ` c2xz
2 ` c3z

3, c0, c3 P k˚, c1, c2 P k,
and ´c0{c3 a cube in Fq. The number of choices is at least

N2 “
pq ´ 1q2q2

3 .

In fact, if 3 does not divides q ´ 1, then any element of Fq is a cube, and we do not
need to divide by 3 in the above formula (we shall use this remark below, for q “ 2 or
3).

Consider a Galois orbit a1, . . . , a8, and the associated points pi “
`

ai,
P pai,1q
ai

˘

. If
the pi are in non-general position, then Lemma 4.15 says that by multiplying by β P
F˚q4 rtx; x6 “ 1, x2 P Fqu we can produce Galois orbits in general position. Moreover if
ai is a generator of F˚q8 , by Lemma 4.16 these orbits are pairwise disjoint. The number
of such orbits in general position is at least pq4´7q{pq4´1q, which is greater than 9{10
for q ě 3. In fact, for q “ 2 the only third root of unity with square in F2 is 1, so again
we get the ratio p24 ´ 2q{p24 ´ 1q ą 9{10.

The number of generators for F˚q8 is equal to ϕpq8´1q, where ϕ is the Euler function.
We have the following lower bound for the Euler function [RS62, Theorem 15]:

ϕpnq ě
n

eγ logplognq ` 3
logplognq

,

where γ is the Euler constant. On can check that for q ě 3, this implies ϕpq8 ´ 1q ě
q6 ´ 1. So we get at least

N3 “
9
10
q6 ´ 1

8
Galois orbits of cardinal 8 in general position on a given nodal cubic. Finally by Lemma
4.9, a given orbit belongs to at most 12 nodal cubics, and we also have to mod out by
the action of PGL3pFqq whose cardinal is:

|PGL3pFqq| “
1

q ´ 1pq
3 ´ 1qpq3 ´ qqpq3 ´ q2q “ q3pq3 ´ 1qpq2 ´ 1q.

Finally:

Mq “
N1 ¨N2 ¨N3

12|PGL3pFqq|

“
9

2 ¨ 3 ¨ 80 ¨ 12
pq2 ` q ` 1qqpq ` 1q ¨ pq ´ 1q2q2 ¨ pq6 ´ 1q

q3pq3 ´ 1qpq2 ´ 1q

“
1

640pq
6 ´ 1q.

For q “ 3, we do not need the 3 in the denominator of N2, and we can replace the
coarse estimate 36 ´ 1 in the formula of N3 by the exact number ϕp38 ´ 1q “ 2560, so
that we get the better bound:

M3 “
9 ¨ 2560

2 ¨ 80 ¨ 12
p32 ` 3` 1q3p3` 1q ¨ p3´ 1q232

33p33 ´ 1qp32 ´ 1q
“ 12
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Finally for q “ 2, by Lemma 4.16 we can use all 240 elements of F28 r F24 in the
estimate for N3, and not only the generators of F˚28 . Moreover as above we can discard
the 3 in the denominator of N2, and we find:

N1 “ 21, N2 “ 4, N3 “ 27, |PGL3pF2q| “ 168,
and

M2 “
21 ¨ 4 ¨ 27
12 ¨ 168 “

9
8 ą 1,

which we can round-up to M2 “ 2. �

4.3. Jonquières maps. Let k be any field, n ě 2 any dimension. We define the
Jonquières subgroup J Ă BirkpPnq as the subgroup isomorphic to PGL2pkpx2, . . . , xnqq,
via the choice of an affine chart An Ă Pn and the formula

px1, . . . , xnq 99K

ˆ

Apx2, . . . , xnqx1 `Bpx2, . . . , xnq

Cpx2, . . . , xnqx1 `Dpx2, . . . , xnq
, x2, . . . , xn

˙

.

Recall that a group G is called perfect if it is equal to its commutator subgroup Gp1q.
We define the special Jonquières subgroup as the commutator subgroup of J ; this is a
group isomorphic to PSL2pkpx2, . . . , xnqq. Let G be the subgroup of BirkpPnq generated
by the special Jonquières subgroup J p1q and AutkpPnqp1q “ PSLn`1pkq.

Proposition 4.18. (1) If g ‰ id is an element in the special Jonquières subgroup
or in PSLnpkq, then the normal subgroup !g" generated by g in G is equal to
G;

(2) G is a perfect group.

Proof. (1) The groups PSL2pkpx2, . . . , xnqq and PSLn`1pkq are simple (recall that
we assume n ě 2, so we avoid the non simple groups PSL2pF2q and PSL2pF3q), and they
have a non trivial intersection, as they both contain for instance the translation px1 `
1, x2, . . . , xnq. From these facts it follows that !g" contains both PSL2pkpx2, . . . , xnqq
and PSLn`1pkq, hence G.

(2) Follows from the fact that PSL2pkpx2, . . . , xnqq and PSLn`1pkq are both perfect
groups (because simple and non-abelian). �

Corollary 4.19. (1) If ϕ : BirkpPnq Ñ A is a morphism to an abelian group A,
then G “ xPSL2pkpx2, . . . , xnqq,PSLn`1pkqy Ă kerϕ.

(2) If a morphism ϕ : BirkpPnq Ñ H sends a non-trivial element g P G onto 1H ,
then G Ă kerϕ.

Now we come back to the case of dimension 2. An equivalent definition of Jonquières
map is that f P BirpP2

kq is Jonquières if it admits a base point q of degree 1 and f
preserves a general member of the pencil of lines through q. For instance a quadratic
map with one base point of degree 1 and one base point of degree 2 is Jonquières, but
a quadratic map with a unique base point of degree 3 is not Jonquières. With the
identification px, yq P A2 ÞÑ rx : y : 1s P P2, a Jonquières map is written px, yq Þ99K
´

Apyqx`Bpyq
Cpyqx`Dpyq , y

¯

and admits the degree 1 point q “ r1 : 0 : 0s as a base point. Over a
perfect field k one can factorize such a map into Sarkisov links by first blowing-up q to
get a surface F1, then performing a sequence of type II links over P1 between Hirzebruch
surfaces, and a last contraction to come back to P2. In particular, any Jonquières map
f is an elementary generator, so that E contains a representative equivalent to f .

Recall that by Noether-Castelnuovo Theorem, over an algebraically closed field k
the Jonquières group J and the automorphism group PGL3pkq generate the Cremona
group BirkpP2q. In this context Corollary 4.19 implies that J and PGL3pkq embed into
any non-trivial quotient of BirkpP2q, in particular such a quotient cannot be finite, nor
abelian. Observe also that there exist some non-algebraically closed field k such that
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BirpP2
kq “ xJ,PGL3pkqy, so that the same remark applies: by [Isk91], it is sufficient

that k does not admit any extension of degree ď 8. For instance, one can take k to be
the composite (which in this case is also the union) of all towers of extensions of Q of
degree at most 8.

Finally, remark that a Jonquières map can have base points of arbitrary degree, and
in particular of degree 8. For instance, over a suitable field k let p, q P P2 be points of
respective degree 8 and 1. Then blowing-up the point q, and performing an elementary
link from F1 to F1 by blowing up p and contracting the orbit of 8 fibers through p,
we get a Jonquières map j P BirkpP2q, that we can choose to be an involution (up to
composing by an automorphism of P2). On the other hand, by blowing up only p, we
construct a Bertini involution which has nothing to do with j. In fact it follows from
Theorem A that b and j generate an infinite dihedral group Z{2Z ˚ Z{2Z.

5. Amalgamated structure and morphism to a free product

5.1. Bass-Serre tree of an amalgam. Our reference for this section is [Ser03]. Let
G be a group, A a subgroup, and pGiqiPI a collection of (proper) subgroups generating
G and such that A Ă Gi for all i.

One constructs a graph G on which G acts as follows. The vertices are left cosets
gA and gGi in G{A and G{Gi. Then for each g P G and each i P I, we put an edge
between the vertices gA and gGi. The group G acts on the resulting graph G by

f ¨ gA :“ pfgqA, f ¨ gGi :“ pfgqGi.

One says that G is the amalgamated product of the Gi over A, denoted G “ ˚AGi,
if it satisfies the following universal property: for any group H, and any collection
of morphisms ϕi : Gi Ñ H that coincide on A, there exists a (necessarily unique)
morphism ϕ : G Ñ H that extends all the ϕi. In this case, one can show that A “

Gi XGj for all i ‰ j (see [Ser03, Remark after Theorem 1 p.3]).
Recall that a star graph is a tree of diameter 2. We call central vertex the unique

center of a star graph, and peripheral vertices the other vertices. When the group G is
the amalgamated product of the Gi over A then the graph G is a tree, and a fundamental
domain with respect to the action of G is the star graph pictured on Figure 9, where
we label each vertex by its stabilizer. Conversely we have the following basic result
from Bass-Serre Theory:

Theorem 5.1 ([Ser03, §4, Theorem 10]). With the notation above, suppose that G acts
on a tree T with fundamental domain as in Figure 9, such that

‚ A is the stabilizer of the central vertex in the fundamental domain
‚ the Gi are the stabilizers of the peripheral vertices in the fundamental domain.

Then G “ ˚AGi is the amalgamated product of the Gi along A, and the graph G
constructed above is isometric to T .

Gi1

Gik

Gi3

Gi2

A

Figure 9. Fundamental domain for the Bass-Serre tree of the amalgam ˚AGi.
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Remark 5.2. In the case where there are only two subgroups G1 and G2 with inter-
section A “ G1XG2, it is customary to remove the vertices of valence 2 corresponding
to the left cosets modulo A, and to consider that the fundamental domain is a single
edge with the following stabilizers:

‚ ‚
G1 A G2

5.2. Subcomplexes. First we define two subcomplexes of the complex X constructed
in §2.2. Recall that we say that a vertex in X has type P2 is it is of the form pP2, ϕq
for some ϕ P BirkpP2q.

Let XB Ă X be the subgraph whose edges correspond to blow-ups of degree 8 points
in P2. If b P B, we denote ηb : Sb Ñ P2 the blow-up of the base point of degree 8 of b.
In particular, for any ϕ P BirkpP2q and any α P AutkpP2q, we obtain the following two
edges in XB:

pSb, ϕαηbq
ηb
ss ++

pP2, ϕq “ pP2, ϕαq pP2, ϕαbq “ pP2, ϕαbα´1q

Conversely, any edge in XB has this form, and any two vertices of type P2 at distance
2 in XB differ by a Bertini involution αbα´1, for some b P B and α P AutkpP2q.

We define another subcomplex Xe Ă X , by taking the closure of the complement of
XB in X .

Lemma 5.3. The intersection of the two subcomplexes XB and Xe is exactly the set of
vertices of type P2:

XB X Xe “ tpP2, ϕq | ϕ P BirpP2qu

Proof. Lemma 4.3 states that an edge in X corresponding to the blow-up of a point
in P2 of degree 8 is not contained in any square. Therefore, XB X Xe contains only
vertices. Now as observed before, there are two types of vertices in XB. A vertex of
the form pSb, ϕαηbq belongs to exactly two edges of X , which by definition are edges
of the graph XB, therefore such a vertex does not belong to Xe. On the other hand,
any vertex of type P2 belongs to edges from both XB and Xe, associated to blow-up of
points of respective degree 8 or distinct from 8. �

We denote respectively X ˝
B Ă XB and X ˝

e Ă Xe the connected components containing
pP2, idq.

Lemma 5.4. (1) Both Xe and XB are invariant under the action of BirkpP2q.
(2) The graph X ˝

B is a tree.

Proof. (1) An edge in XB has the form pS, ϕηq Ñ pP2, ϕq for some ϕ P BirkpP2q and
η a blow-up of a point of degree 8. Now g P BirkpP2q sends this edge to pS, gϕηq Ñ
pP2, gϕq, which is again an edge of the same form, hence in XB. This gives that XB
is invariant under the action of BirkpP2q, thus the same is true for the closure of its
complement.

(2) Assume that the graph X ˝
B is not a tree. Then there exists a sequence of edges

e1, . . . , er in X ˝
B that form an embedded loop. Recall that by Proposition 3.15 the

complex X is simply connected. By collapsing in X all edges of this loop except e1,
we obtain a space which is still simply connected, and which is the connected sum of a
circle (corresponding to e1) and another space. By van Kampen theorem such a space
should have fundamental group of the form Z ˚G for some G, contradiction. �

We recall the following definitions of subgroups of BirkpP2q that were given in the
introduction:
Ge :“ xAutkpP2q, E r By Gb :“ xAutkpP2q, by, b P B, GB :“ xAutkpP2q,By.

Observe that GB “ xGb | b P By.
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Lemma 5.5. Let g P BirkpP2q. Then
(1) gpX ˝

e q “ X ˝
e if and only if g P Ge.

(2) gpX ˝
Bq “ X ˝

B if and only if g P GB.

Proof. (1) Let g P BirkpP2q such that gpX ˝
e q “ X ˝

e , and in particular g ¨ pP2, idq “
pP2, gq P X ˝

e . Pick a path γ of edges connecting pP2, gq and pP2, idq inside X ˝
e . By

Lemma 5.3, the path γ does not involve any edge from XB. By cutting at each inter-
mediate vertex of type P2, we write γ as a composition of paths γi, where each γi links
two vertices of type P2 whose markings differ by an element of E r B. It follows that
g P Ge.

Conversely if g P Ge we write g “ g1 ¨ ¨ ¨ gn for some g1, . . . , gn P AutkpP2q Y E r B.
Then for each i, there exists a path from pP2, g1 ¨ ¨ ¨ giq to pP2, g1 ¨ ¨ ¨ gi`1q inside X ˝

e .
By joining them we obtain a path in X ˝

e starting at pP2, idq and ending at pP2, gq “
g ¨ pP2, idq, so that the connected component gpX ˝

e q coincides with X ˝
e .

(2) The proof is entirely similar, and left to the reader. �

For each b P B, we define Tb to be the subgraph of X ˝
B obtained as the orbit of the

edge between pP2, idq and pSb, ηbq, under the action of Gb “ xAutkpP2q, by. Since b
stabilizes pSb, ηbq and AutkpP2q stabilizes pP2, idq, we obtain that Tb is connected, that
is, Tb is a subtree of X ˝

B.

Lemma 5.6. Let b, b1 be two elements in B, and g, g1 P BirkpP2q. If gpTbq and g1pTb1q
are distinct, then the intersection gpTbq X g1pTb1q is either empty or equal to a single
vertex of type P2.

Proof. By using the action of BirkpP2q, we can assume that g1 “ id. If g R GB, then
by Lemma 5.5(2) gpTbq and Tb1 are in distinct connected components of XB, and so are
disjoint. Now we assume g P GB, so that gpTbq and Tb1 are two subtrees of X ˝

B.
‚ First we consider the case b ‰ b1.
Suppose that gpTbq and Tb1 contain a common edge. Then in particular they contain a

vertex of the form pSb, ϕηbq, and the two edges from this vertex. But then the markings
of the two corresponding vertices of type P2 should differ by composition by an element
of the form αbα´1 “ α1b1α1´1 for some α, α1 P AutkpP2q, and this contradicts our
assumption that b, b1 are two distinct representatives of Bertini involutions. Now, since
gpTbq, Tb1 are two subtrees of X ˝

B without a common edge, they cannot have more than
one common vertex, which has to be of type P2.
‚ Now we assume b “ b1.
By definition of Tb, we have Tb “ gpTbq if and only if g P Gb. So we can assume

that g P GB r Gb. Now if gpTbq X Tb contains a vertex of the form pSb, ϕηbq, then it
also contains the two neighbor vertices of type P2. But if pP2, ϕq P gpTbq X Tb, then
we should have ϕ “ gf1 “ f2 with f1, f2 P Gb, in contradiction with g R Gb. So we
conclude that gpTbq X Tb is empty. �

5.3. Quotients. Let Y be any connected subcomplex of X . We define a star graph
starpYq associated with Y, by requiring that the peripheral vertices of starpYq are in
one-to-one correspondence with the vertices of Y of type P2. Then we have a uniquely
defined simplicial map from Y to starpYq, which is a bijection in restriction to the
vertices of type P2, and which sends any other vertex to the central vertex of starpYq.
We call starpYq together with the map Y Ñ starpYq the star quotient of Y.

Now assume that pYiq is a collection of connected subcomplexes of X , such that
X “

Ť

i Yi, and for any i, j either Yi “ Yj or Yi XYj contains only vertices of type P2.
Then we can put together all star quotients Yi Ñ starpYiq in order to get a map from
X to a well defined connected graph.

Now we check that we can apply this construction to the family of subcomplexes

pYiqi “ tgpX ˝
e q; g P BirkpP2qu Y tgpTbq; g P BirkpP2q, b P Bu.
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First, the gpTbq, g P GB, b P B, form a cover of X ˝
B: any vertex in X ˝

B at distance 2
from pP2, idq has the form pP2, αbq for some b P B and α P AutkpP2q, and any edge of
X ˝

B can be mapped to an edge issued from pP2, idq by applying an element of GB. This
implies that the family of complexes pYiqi is a cover of X . Observe that the gpX ˝

e q

are exactly the connected components of Xe, and in particular they are pairwise equal
or disjoint. Moreover, by Lemma 5.3, any intersection gpX ˝

e q X g1pTbq contains only
vertices of type P2. Finally, by Lemma 5.6, any intersection gpTbq X g1pTb1q between
distinct subcomplexes is either empty or is equal to a single vertex of type P2.

We denote by TQ the resulting quotient graph, and σ : X Ñ TQ the associated
simplicial map. By a slight abuse of notation we shall use the same notation pP2, ϕq
either for a vertex of type P2 in X , or for the corresponding vertex in TQ.

pP2, idq

pP2, bq

pP2, α1bα
´1
1 q

pP2, α2bα
´1
2 q

pP2, bα1bα
´1
1 q

pP2, bα2bα
´1
2 q

pP2, bα2bα
´1
1 q

pP2, bα3bα2bα
´1
1 q

pP2, e2q

pP2, e1q

pP2, e3q

pP2, e4q

pP2, e5q

pP2, e6q

pP2, e7q

pP2, e1bq

pP2, e1α1bα
´1
1 q

pP2, e1α3bα2bα
´1
1 q

pP2, e1α2bα
´1
2 q

pP2, e1bα1bα
´1
1 q

pP2, e1bα2bα
´1
2 q

pP2, e1bα2bα1q

starpTbq

starpe1pTbqq

starpXeq

Figure 10. A few vertices of the tree TQ, where ei P Ge, b P B and αi P AutkpP2q.

Lemma 5.7. The connected graph TQ is a tree.
Proof. Let γ be a loop in TQ. We can assume that γ is parametrized by arc length, with
base point a vertex of the form pP2, ϕq. For each even i, rγpiq, γpi ` 2qs is a segment
connecting two peripheral vertices in starpYq for some connected subcomplex Y Ă X .
In particular, we can lift this segment as a path in Y. Thus we obtain a lift γ̃ of the
entire path γ, and this lift is also a closed loop because the map π is a bijection in
restriction to vertices of the form pP2, ϕq. Now by Proposition 3.15 the loop γ̃ is trivial
in π1pX q, hence the push-forward σ˚pγ̃q “ γ is trivial in π1pTQq. �

Lemma 5.8. The tree TQ inherits the action of BirkpP2q on X , and
(1) the group AutkpP2q is the stabilizer of pP2, idq,
(2) the group Ge is the stabilizer of the central vertex of starpX ˝

e q,
(3) for each b P B, the group Gb is the stabilizer of the central vertex of starpTbq.

Proof. By construction, the family
pYiqi “ tgpX ˝

e q; g P BirkpP2qu Y tgpTbq; g P BirkpP2q, b P Bu
of subcomplexes involved in the construction of TQ is invariant under the action of
BirkpP2q, hence the action descends to TQ. Since the quotient map σ : X Ñ TQ is a
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bijection in restriction to vertices of type P2, the stabilizers of these vertices remain the
same in TQ: this gives (1). The stabilizer of the central vertex of starpYiq corresponds
to the stabilizer of the subcomplex Yi for the initial action on X . So the two remaining
assertions follow from Lemma 5.5(1) and the definition of Tb. �

Observe that each vertex of TQ is either of the form pP2, ϕq, or is the central vertex of
starpYq for some subcomplex Y in the family. These two types of vertices are preserved
by the action of BirkpP2q, so that TQ has a natural structure of a bicolored tree.

5.4. Structure of the Cremona group. In this last section we prove the results
stated in the introduction.

Proof of Theorem A. Since TQ is a bicolored tree, and the action of BirkpP2q on vertices
of type P2 is transitive, we can look for a fundamental domain of the action inside the
ball of center pP2, idq and radius 1. In fact the whole ball is a fundamental domain,
indeed AutkpP2q is the stabilizer of pP2, idq (see Lemma 5.8), and we now check that
AutkpP2q also fixes each neighbor vertex. First, for each b P B the central vertex of
starpTbq is a neighbor of pP2, idq, and by Lemma 5.8 the corresponding stabilizer is
Gb. Then the last remaining neighbor vertex is the central vertex of starpX ˝

e q, whose
stabilizer is Ge, by the same lemma.

By applying Theorem 5.1 to the action of BirkpP2q on the tree TQ, we get that
BirkpP2q is isomorphic to ˚AutkpP2qGi where I “ B Y teu.

Now we prove that the action of BirkpP2q on TQ is faithful, by proving that the
intersection of the stabilizers of pP2, idq and pP2, bq is trivial, for any b P B. If g P
StabpP2, idq X StabpP2, bq, we have g P AutkpP2q and bgb “ g1 P AutkpP2q, so that
bg “ g1b. But these two maps cannot have the same base points unless g “ id, because
any automorphism of P2 preserving 8 points in general position is the identity. �

Remark 5.9. If the field k does not have any Galois extension of degree 8, i.e. if B is
empty, we have XB “ H, X ˝

e “ Xe “ X and TQ “ starpX ˝
e q. This reflects the fact that

in this case BirkpP2q “ Ge. In fact, trivially we have BirkpP2q » AutkpP2q ˚AutkpP2qXGe

Ge “ Ge, and TQ is its Bass-Serre tree, whose fundamental domain is the edge between
pP2, idq and the central vertex of starpX ˝

e q.

Proof of Corollary B. Let I “ B Y teu. Then Theorem A gives

BirkpP2q “ ˚
AutkpP2q

Gi “

ˆ

˚
AutkpP2q

Gb

˙

˚AutkpP2q Ge.

Now we have
˚

AutkpP2q
Gb “ xAutkpP2q, Gb | b P By “ GB,

from which the claim follows. The reason why BirkpP2q acts faithfully on the Bass-Serre
tree of GB ˚AutkpP2q Ge is the same as in the proof of Theorem A. �

Proof of Theorem C. (1) Let b P B be a Bertini involution, and consider the edge in
the tree X ˝

B between the vertices pP2, idq and pSb, ηbq, where ηb : Sb Ñ P2 is the blow-up
of the base point of degree 8 of b. Recall from Lemma 5.5(2) that the group GB acts
on X ˝

B. The involution b fixes the vertex pSb, ηbq and exchanges the two edges attached
to it. In particular b does not fix the vertex pP2, idq. On the other hand, the subgroup
AutkpP2q stabilizes pP2, idq, and any α P AutkpP2q that also stabilizes pSb, ηbq must be
the identity, because any automorphism of P2 preserving 8 points in general position is
the identity. By definition the tree Tb is the orbit of the edge from pP2, idq to pSb, ηbq,
under the action of the subgroup Gb “ xAutkpP2q, by. Therefore the group Gb acts on
the tree Tb with fundamental domain a single edge, with stabilizer of vertices AutkpP2q
and xby, and trivial stabilizer for the entire edge. By Theorem 5.1 (or more precisely
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by using the special convention for two subgroups, see Remark 5.2), it follows that Gb
is the free product

Gb » AutkpP2q ˚ xby,

and Tb is the associated Bass-Serre tree.
(2) By applying the universal property of the free product to the two morphisms

AutkpP2q Ñ t0u Ă Z{2Z and xby »Ñ Z{2Z, we get a surjective morphism
ϕb : Gb Ñ Z{2Z.

By Theorem A, we have an isomorphism BirkpP2q » ˚AutkpP2qGi where I “ B Y
teu. By the universal property of the amalgamated product, applied to the trivial
morphism from Ge and the collection of morphisms Gb Ñ ˚bPB Z{2Z that send Gb
to the corresponding factor of the free product via ϕb, we get a surjective morphism
BirkpP2q Ñ ˚bPB Z{2Z.

(3) The result is immediate by composing the above morphism with the abelianiza-
tion morphism

˚
B

Z{2Z Ñ
à

B
Z{2Z. �

Remark 5.10. Another way to express point (2) of Theorem C is that we have iso-
morphisms

BirkpP2q{xxGeyy
»
ÝÑ ˚

bPB

`

Gb{xxAutkpP2qyy
˘ »
ÝÑ ˚

bPB
Z{2Z.
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