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THE REAL PLANE CREMONA GROUP IS A NON-TRIVIAL
AMALGAM

SUSANNA ZIMMERMANN

Abstract. We show that the real Cremona group of the plane is a non-trivial amalgam of
two groups amalgamated along their intersection.

1. Intoduction

The plane Cremona group is the group Birk(P2) of birational transformations of P2 defined
over a field k. [CL2013, Appendix by Y. de Cornulier] shows that Birk(P2) is not isomor-
phic to a non-trivial amalgam of two groups if k is algebraically closed. The best one can
obtain is that Birk(P2) is isomorphic to a non-trivial amalgam modulo one simple relation
[B2012, L2010, I1984] or that is isomorphic to a generalised amalgamated product of three
groups, amalgamated along all pairwise intersections [W1992]. The world looks different for
k = R. We show that BirR(P2) is indeed isomorphic to a non-trivial amalgamated product of
two groups.

The group BirR(P2) contains two groups of Jonquières transformations:

J∗ = {f ∈ BirR(P2) | f preserves the pencil of lines through [1 : 0 : 0] }
J◦ = {f ∈ BirR(P2) | f preserves the pencil of conics through p1, p̄1, p2, p̄2 }

where p1, p2 ∈ P2 are two non-real points such that p1, p̄1, p2, p̄2 are not collinear. The group
BirR(P2) is generated by AutR(P2),J∗,J◦ [BM2014], and the groups J∗,J◦ are not conjugate
in BirR(P2) [Z2015, Proposition 5.3]. Over the field C, we can send the pencil of conics through
four points, no three collinear, onto a pencil of lines through a point, so the complex versions
of the two groups are conjugate in BirC(P2).

We write A := AutR(P2) and denote by G◦ ⊂ BirR(P2) the subgroup generated by A and
J◦, and by G∗ ⊂ BirR(P2) the subgroup generated by A and J∗.

Theorem 1.1. The group BirR(P2) is the non-trivial amalgamated product of G∗ and G◦
along their intersection.

Proposition 1.2. Both G∗ and G◦ have uncountable index in BirR(P2)

The intersection G∗ ∩ G◦ contains all elements of J∗ with only one real base-point (see
remark after Definition 3.2).

The decomposition of BirR(P2) into an amalgam follows from the structure theorem [Z2015,
Theorem 4.4] (Theorem 2.3 below). The task is to prove that G∗ and G◦ are both proper sub-
groups; this is not straightforward since their complex analogues both coincide with BirC(P2).
Many of the ingredients of the proof will be similar to the proof of [Z2015, Theorem 4.4].
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Corollary 1.3. The group BirR(P2) acts on a tree, and all its algebraic subgroups are con-
jugate to a subgroup of G∗ or of G◦.

For the subgroups of odd order Corollary 1.3 can also be verified by checking their classi-
fication in [Y2016].

Acknowledgement: I would like thank Anne Lonjou for asking me whether the real plane
Cremona group is isomorphic to a generalised amalgamated product of several groups, and
the interesting discussions that followed. I would also like to thank Jérémy Blanc and Yves
de Cornulier for helpful remarks, questions and discussions.

2. The real Cremona group is an amalgam

In this section we show that BirR(P2) is isomorphic to the amalgamated product of G∗ and
G◦ along their intersection. Non-triviality will be proven in the next section.

Definition 2.1. A standard quintic transformation is an element of BirR(P2) of degree 5
whose base-points are three pairs of non-real conjugate base-points in P2. (See [BM2014,
Example 3.1] for a definition via blow-ups.)

Remark 2.2. For any standard or special quintic transformation f there exist α, β ∈ A such
that βfα ∈ J◦ [Z2015, Lemma 3.10]. In particular, all standard quintic transformations are
contained in G◦.

We make use of the following structure theorem. Let G be the free group A ∗ J∗ ∗ J◦
amalgamated along all pairwise intersections, and let w : A ∪ J∗ ∪ J◦ → G be the canonical
word map.

Theorem 2.3 ([Z2015, Theorem 4.4]). The group BirR(P2) is isomorphic to G modulo the
following relations:

(rel. 1) Let θ1, θ2 ∈ J◦ be standard quintic transformations and α1, α2 ∈ A.
w(α2)w(θ1)w(α1) = w(θ2) if α2θ1α1 = θ2.

(rel. 2) Let τ1, τ2 ∈ J∗ ∪ J◦ be both of degree 2 or of degree 3 and α1, α2 ∈ A.
w(τ1)w(α1) = w(α2)w(τ2) if τ1α1 = α2τ2.

(rel. 3) Let τ1, τ2, τ3 ∈ J∗ all be of degree 2, or τ1, τ2 of degree 2 and τ3 of degree 3, and
α1, α2, α3 ∈ A.

w(τ2)w(α1)w(τ1) = w(α3)w(τ3)w(α2) if τ2α1τ1 = α3τ3α2.

Corollary 2.4. The group BirR(P2) is the amalgamated product of G∗ and G◦ along their
intersection.

Proof. Let G be the amalgamated product of G∗ and G◦ along their intersection. By the
universal property of amalgamated products there exists a homomorphism ψ : G→ BirR(P2),
which is the identity map on A, J∗ and J◦. On the other hand, we have a canonical surjective
homomorphism A ∗ J∗ ∗ J◦ → G → G. We claim that G → G factors through BirR(P2). By
Theorem 2.3 it suffices to check that relations (rel. 1), (rel. 2) and (rel. 3) are satisfied in
G.

Relation (rel. 1): standard quintic transformations are contained in G◦ (Remark 2.2).
They are not contained G∗ because the kernel of the abelianisation of BirR(P2) contains G∗
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but does not contain any of the standard quintic transformations [Z2015, Remark 3.19(3),
Proposition 5.3].

Relation (rel. 2) and (rel. 3) are relations among linear, quadratic and cubic transfor-
mations. Any transformation of degree ≤ 3 is contained in G∗, some of them in G∗∩G◦, and
relations (rel. 2) and (rel. 3) hold in G∗.

So, the morphism G → G factors through BirR(P2), and the induced homomorphism
ϕ : BirR(P2)→ G is the identity on A,J∗,J◦. Thus ψ = ϕ−1. �

3. The group G◦ is a strict subgroup of BirR(P2)

This section is devoted to the proof that G◦ is a strict subgroup of BirR(P2) (Corollary 3.8).
The key idea is to show that it does not contain any elements of degree 2 having three
real base-points - for instance, it does not contain the standard quadratic transformation
[x : y : z] 799K [yz : xz : xy]. To show this, we prove that any element in G◦ is the composition
of elements in A ∪ J◦ ∪ H (see Definition 3.2 for the definition of H∗ ⊂ G◦ ∩ J∗) such that
the successive degree of the composition is non-decreasing (Proposition 3.7)

3.1. Properties of the groups J∗ and J◦. Before we run off to prove our claims, we
quickly review the groups J∗ and J◦ and some of their properties.

Remark 3.1. The characteristic of an element f ∈ BirR(P2) is the tuple (deg(f);me1
1 , . . . ,m

ek
k ),

where m1, . . . ,mk are the different multiplicities of the base-points of f and ei the number
of base-points of multiplicity mi.

An element of J◦ has characteristic(
d;

(
d− 1

2

)4

, 2
d−1
2

)
, if deg(f) is odd(

d;

(
d

2

)2

,

(
d− 2

2

)2

, 2
d−2
2 , 1

)
, if deg(f) is even

Moreover, if d ≥ 2, p1, p̄1, p2, p̄2 are base-points of multiplicity d−1
2

or d
2

and d−2
2

and all other
base-points are of multiplicity 2 or 1 [Z2015, Lemma 3.2].

In particular, J◦ contains only quadratic maps with one real and a pair of non-real conju-
gate base-points.

The group J∗ is isomorphic to PGL2(R(x)) o PGL2(R) because on the chart z = 1 all of
its elements are of the form

f : (x, y) 799K
(
α(y)x+ β(y)

γ(y)x+ δ(y)
,
ay + b

cy + d
,

)
with a, b, d, c ∈ R, ad− bc 6= 0 and α, β, δ, γ ∈ R[y], αδ − βγ 6= 0.

The characteristic of any element of J∗ is (d; d−1, 12d−2), where [1 : 0 : 0] is the base-point
of multiplicity d− 1.

Definition 3.2. We denote by H ⊂ J∗ the subgroup of elements having at most one real
base-point.

If an element of H is non-linear, all its base-points different from [1 : 0 : 0] are pairs of
non-real conjugate points. For any quadratic transformation f ∈ BirR(P2) with one real and
a pair of non-real conjugate base-points there exist α, β ∈ A such that βfα ∈ H. In fact, the
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group H is generated by its linear and quadratic elements and is hence contained in G◦ (we
can follow the argument of [AC2002, Theorem 8.4.3]).

Definition 3.3. A special quintic transformation is an element of BirR(P2) of degree 5 whose
base-points are three pairs of non-real conjugate base-points, two of them points in P2 and
one pair infinitely near one of the other two pairs. (See [BM2014, Example 3.2] for a definition
via blow-ups.)

Remark 3.4. (1) A standard (resp. special) quintic transformation f has multiplicity 2 in
each of its base-points. In particular, there is no conic containing all its base-points.

(2) The inverse f−1 is also a standard (resp. special) quintic transformation and f sends
the pencil of conics through two pairs of base-points onto a pencil of conics through two pairs
of base-points of f−1.

(3) Pick any three pairs of non-real conjugate points, not all six points contained in one
conic. Suppose they are all points in P2 (resp. two pairs are points in P2 and one pair is in the
first neighbourhood of one of the other two pairs). Then there is a standard (resp. special)
quintic transformation with these points as its base-points [BM2014, Example 3.1, Example
3.2], [RV2005, §I].

(4) For any standard or special quintic transformation f there exist α, β ∈ A such that
βfα ∈ J◦ [Z2015, Lemma 3.10]. In particular, all standard and special quintic transformations
are contained in G◦.

For f ∈ BirR(P2) and a point p, let mf (p) the multiplicity of f in p.

Lemma 3.5 ([Z2015, Lemma 4.8]). Let f ∈ J◦ be non-linear and g ∈ BirR(P2). Suppose that

deg(fg) ≤ deg(g) (resp. < deg(g))

Then there exists a base-point q /∈ {p1, p̄1, p2, p̄2} of f of multiplicity 2 such that

(ineq 1) mg−1(p1) +mg−1(p2) +mg−1(q) ≥ deg(g) (resp. > deg(g))

or f has a simple base-point r and there exists i ∈ {1, 2} such that

2mg−1(pi) +mg−1(r) ≥ deg(g), where mf (pi) = deg(f)/2 (resp. > deg(g)).

Lemma 3.6 ([Z2015, Lemma 4.14]). In Lemma 3.5 (ineq 1), suppose that q is a real proper
point of P2. Then one of the following two assertions holds:

(1) there exists h ∈ J◦ of degree 3 with base-points p1, p̄1, p2, p̄2, q.
(2) deg(f) is even and there exists h ∈ J◦ of degree 2 with base-points pi, p̄i, q and

2mg−1(pi) +mg−1(q) ≥ deg(g), where mf (pi) = deg(f)
2

.

3.2. The group G◦ is a strict subgroup of BirR(P2). The following proposition is the key
to proving that G◦ is a strict subgroup of BirR(P2). The lemmas used in its proof are stated
and proven in the next subsection, and to prove them we only use the properties of J∗,J◦
and H listed in the previous subsection.

Proposition 3.7. For any f ∈ G◦ there exist g1, . . . , gm ∈ A∪J◦∪H such that f = gm · · · g1

and such that deg(gi · · · g1) ≤ deg(gi+1gi · · · g1), for i = 1, . . . ,m− 1.

Proof. We write f = fN · · · f1 for some f1, . . . , fN ∈ A ∪ J◦ ∪ H. Define di := deg(fi · · · f1)
and

D := max{di | i = 1, . . . ,m}, n := max{i | di = D}, k =
n∑
i=1

(deg(fi)− 1).
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We claim that there exist h1, . . . , hk ∈ A ∪ J◦ ∪H such that

fn+1fnfn−1 = hk · · ·h1

and the pair (D′, k′) associated to the composition fN · · · fn+2hk · · ·h1fn−2 · · · f1 is strictly
smaller that (D, k) with respect to the lexicographic order.

If the claim holds, the proof finishes as follows. The procedure stops at the pair (D′′, k′′)
where D′′ = deg(f) and f = f ′n′′ · · · f ′1. We define

I := max{i | deg(f ′i · · · f ′1) > deg(f ′i+1 · · · f ′1)}, f ′ := f ′I+1 · · · f ′1
By construction, we have deg(f ′) < deg(f). We repeat the process for f ′. After finitely many
steps we will not find such an I anymore, and the composition we have obtained is the one
in the statement.

Let us prove the claim. If D = 1, all fi are linear maps, so f is linear, and the claim holds
with m = 1.

Suppose that D ≥ 2. Any consecutive letters fi, fi+1 that are both contained in A or in J◦
we replace by their product. This does not increase the pair (D, k). We can therefore assume
that no two consecutive letters are both contained in A or in J◦. By definition of n, we have
dn > dn+1, and in particular,

fn+1 ∈ J◦ \ A, fn ∈ A \ J◦, fn−1 ∈ J◦ \ A and dn−2 ≤ dn−1 = dn = D.

(1) If fn−1, fn+1 ∈ H, we apply Lemma 3.11 to fn−1, fn, fn+1. There exist h1 ∈ H, h2 ∈ A,
h3, . . . , hk ∈ A ∪H such that fn+1fnfn−1 = hk · · ·h1 and

deg(h1) = deg(fn−1)− 1,

deg(h2h1fn−2 · · · f1) = deg(h1fn−2 · · · f1) ≤ D,

deg(hi · · ·h2h1fn−1 · · · f1) < D, i = 3, . . . , k.

Then D′ ≤ D and if D′ = D then n′ ≤ n and

k′ =
n−2∑
i=1

(deg(fi)− 1) + (deg(h1)− 1) <
n−1∑
i=1

(deg(fi)− 1) = k.

(2) Else, we proceed as follows. Let mi(t) be the multiplicity of (fi · · · f1)−1 in the point
t. If fn−1 ∈ J◦, then by Lemma 3.5 there exists a base-point q /∈ {p1, p̄1, p2, p̄2} of f−1

n−1 of
multiplicity 2 such that

mn−1(p1) +mn−1(p2) +mn−1(q) ≥ D

or deg(fn−1) is even and there exists a simple base-point r of f−1
n−1 such that

(1) 2mn−1(pi) +mn−1(r) ≥ D, where mf−1
n−1

(pi) = deg(fn−1)/2.

• If q is a non-real point, we can assume that it is a proper point of P2 or in the first neigh-
bourhood of one of p1, p̄1, p2, p̄2. Since mf−1

n−1
(q) = 2, the points p1, . . . , p̄2, q, q̄ are not on one

conic (Remark 3.1). By Remark 3.4 there exists a standard or special quintic transformation
θn−1 ∈ J◦ with these 6 points as base-points.
• If q is a real point, we can assume that it is a proper point of P2 (it cannot be infinitely

near one of p1, . . . , p̄2). By Lemma 3.6 there exists θn−1 ∈ J◦ of degree 3 with base-points
p1, . . . , p̄2, q or there exists θn−1 ∈ J◦ of degree 2 with base-points pi, p̄i, q where mf−1

n−1
(pi) =

deg(fn−1)
2

and 2mn−1(pi) +mn−1(q) ≥ D.
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• If there is no such q, we have r as in (1). If r is not a proper point of P2 we replace it by
the (real) base-point of f−1

n−1 to which it is infinitely near. This does not change Inequality (1).
Remark 3.1 implies that pi, p̄i, r are not collinear, so there exists θn−1 ∈ J◦ of degree 2 with
base-points pi, p̄i, r [Z2015, Lemma 3.4].

In all three cases we define h1 := θn−1fn−1 ∈ J◦. Then

deg(h1fn−2 · · · f1) = deg(θn−1fn−1 · · · f1) ≤ D and deg(θn−1fn−1) < deg(fn−1).

We proceed analogously if fn+1 ∈ J◦, and find θn+1 ∈ J◦ satisfying the analogous inequal-
ities with “<”, and define hk := fn+1θ

−1
n+1 ∈ J◦. Analogously, we have

deg(θn+1fn · · · f1) < D, deg(hk) < deg(fn+1).

Now, we use Lemma 3.9 and Lemma 3.13. The constructions are summarised in the commu-
tative diagrams below.

If fn−1, fn+1 ∈ J◦ \ H, we apply Lemma 3.9 to θ−1
n−1, fn, θn+1. There exist h2 ∈ A,

h3, . . . , hk−1 ∈ A ∪ J◦ such that θn+1fnθ
−1
n−1 = hk−1 · · ·h2 and

deg(hi · · ·h3h2h1fn−2 · · · f1) < D, i = 3, . . . , k − 1.

If fn−1 ∈ J◦ \ H and fn+1 ∈ H, we apply the last part of Lemma 3.13 to θn−1, fn, fn+1.
There exist h2 ∈ A, h3, . . . , hk ∈ A ∪ J◦ ∪H such that fn+1fnθn−1 = hk · · ·h2 and

deg(hi · · ·h3h2h1fn−2 · · · f1) < D, i = 3, . . . , k.

If fn−1 ∈ H and fn+1 ∈ J◦\H, we apply Lemma 3.13 to fn−1, fn, θn+1. There exist h1 ∈ J◦,
h2 ∈ A, h3, . . . , hk−1 ∈ A ∪ J◦ ∪H such that θn+1fnfn−1 = hk−1 · · ·h1 and

deg(h1) = deg(fn−1)− 1, deg(h1fn−2 · · · f1) = deg(h2h1fn−2 · · · f1) ≤ D

deg(hi · · ·h3h2h1fn−2 · · · f1) < D, i = 3, . . . , k − 1.

P2 fn // P2

fn+1,∈J◦\H

  
θn+1

��
P2

H3fn−1

OO

hk−1···h1
Lem. 3.13

// P2 hk // P2

P2 fn //

θn−1
��

P2

fn+1∈H
��

P2

J◦\H3fn−1

88

h1

deg(h1)<deg(fn−1)
// P2 hk···h2

Lem. 3.13
// P2

P2 fn //

θn−1
��

P2

fn+1∈J◦\H

  
θn+1

��P2

J◦\H3fn−1

88

h1

deg(h1)<deg(fn−1)
// P2

hk−1···h2
Lem. 3.9

// hk // P2

We claim that in each case, the pair (D′, k′) is strictly smaller than (D, k). Indeed, the
above conditions imply D′ ≤ D. If D′ = D then n′ ≤ n and

k′ =
n−2∑
i=1

(deg(fi)− 1) + (deg(h1)− 1) <
n−1∑
i=1

(deg(fi)− 1) = k.

�

Corollary 3.8. The group G◦ contains no maps of degree 2 having more than one real base-
point. In particular, G◦ ( BirR(P2) is a strict subgroup.
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Proof. Suppose that G◦ contains an element τ of degree deg(τ) = 2 with three real base-
points. By Proposition 3.7, there exist g1, . . . , gn ∈ A ∪ J◦ ∪H such that τ = gn · · · g1 and

deg(gi · · · g1) ≤ deg(gi+1 · · · g1), i = 1, . . . , n− 1.

We may suppose that deg(g1) ≥ 2, and then deg(gi · · · g1) = 2 for i = 1, . . . , n. This is only
possible if

• deg(g1) = 2,
• deg(gi) = 1, 2, 3, 4 for i = 2, . . . , n,
• if deg(gi) = 2, 3, 4, then gi and (gi−1 · · · g1)−1 share 2, 3, 3 base-points of multiplicity:

if deg(gi) = 3, these are a double and two simple base-points
if deg(gi) = 4, these are three double points.

The characteristics in Remark 3.1 and Remark 3.2, and all gi being contained in J◦ ∪ H
of degree ≤ 4 implies that the quadratic maps gi · · · g1 have two non-real base-points for
i = 1, . . . , n. This contradicts τ = gn · · · g1 having three real base-points. �

Proof of Theorem 1.1. By Proposition 2.4 is the amalgamated product of G∗ and G◦ along
their intersection. Furthermore, G∗ is a strict subgroup of BirR(P2) by [Z2015, Proposition
5.3], and G◦ is a strict subgroup by Corollary 3.8. �

Proof of Proposition 1.2. Let’s prove the claim first for G◦. We denote by σ : [x : y : z] 7→
[yz : xz : xy] the standard quadratic involution of P2, and define a map

ϕ : {[x : y : z] 7→ [x+ az : y + bz : z] | a, b ∈ R} := A −→ BirR(P2)/G◦, α 7→ ασG◦

Note that by Corollary 3.8 the transformation σ is not contained in G◦. In particular, ασG0 6=
G0 for all α ∈ A. We claim that the map ϕ is injective. Note that for all α ∈ A the
transformation σασ is of degree ≤ 2. It is linear if and only if σ and (ασ)−1 have three
common base-points, i.e. if and only if α = Id. If σασ is of degree 2 then it has three real
base-points. It follows from Corollary 3.8 that that for β, γ ∈ A the transformation σβ−1γσ
is contained in G◦ if and only if it is linear, i.e. if and only if β−1γ = Id. Thus the map ϕ is
injective.

Let’s prove the claim for G∗. By [Z2015, Lemma 6.7, Corollary 6.12] we have

G∗ = 〈J∗,AutR(P2)〉 ⊂ 〈〈AutR(P2)〉〉 = [BirR(P2),BirR(P2)].

Then there is a surjective map from BirR(P2)/G∗ onto the abelianisation of BirR(P2), which
is isomorphic to

⊕
(0,1] Z/2Z [Z2015, Theorem 1.1]. It follows that G∗ has uncountable index

in BirR(P2). �

Proof of Corollary 1.3. By Theorem 1.1, the group BirR(P2) acts on the Bass-Serre tree T of
the amalgam G∗ ∗G∗∩G◦ G◦. Then every element of BirR(P2) of finite order has a fixed point
on T . It follows that very finite subgroup of BirR(P2) has a fixed point on T [S1980, §I.6.5,
Corollary 3], and is in particular conjugate to a subgroup of G∗ or G◦.

For infinite algebraic subgroups of BirR(P2), it suffices to check the claim for the maximal
ones. Before we list them, we have to introduce some notation. For n ≥ 0, we denote by Fn
the n-th Hirzebruch surface

Fn = {[x : y : z][u : v] ∈ P2
R × P1

R | unz = vny}.
Note that F0 = P1

R × P1
R. By Q3,1 ⊂ P3

R we denote the real hypersurface given by w2 =
x2 + y2 + z2. Note that it is isomorphic to the real surface (P1

C × P1
C, (x, y) 7→ (ȳ, x̄)). It is

obtained by blowing up two conjugate points in P2 and contracting the (real) line passing
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through them. We denote by π[2] : X[2] → P1 the conic bundle obtained by blowing up a pair
of non-real conjugate points on Q3,1.

Note that for n ≥ 0, the group J∗ is conjugate to the group of birational transformations
of Fn preserving the conic bundle structure pr2 : Fn → P1. The group J◦ is conjugate to the
group of birational transformations of X[2] preserving the conic bundle structure π[2] : X[2] →
P1. The infinite maximal algebraic subgroups of BirR(P2) are conjugate to AutR(X) where
X is one of the real rational surfaces in the following list [RZ2016]:

(1) X = P2,
(2) X = Q3,1,
(3) X = Fn, n = 0, n ≥ 2,
(4) X is a del Pezzo surface of degree 6 obtained by blowing up a pair of non-real conjugate

points on F0,
(5) X is a del Pezzo surface of degree 6 obtained by blowing up two real points on F0,
(6) η : X → X[2] is a birational morphism of real conic bundles blowing up n ≥ 1 pairs

with non-real conjugate points on non-real fibres on the non-real conjugate disjoint
(−1)-curves of X[2] that are the exceptional divisors of X[2] → Q3,1,

(7) η : X → Fn is a birational morphism of real conic bundles blowing up 2n ≥ 4 points
on the zero section of self-intersection n.

We have AutR(P2) ⊂ G∗ ∩G◦. The groups in (3) and (7) are conjugate to subgroups of G∗,
and the groups in (6) conjugate to subgroups of G◦.

Via the birational map F0 99K P2 that blows up a real point and blows down the strict
transforms of the two (real) fibres passing through the point, the group AutR(F0) is conjugate
to a subgroup of G∗.

Via the birational map Q3,1 99K P2 that blows up a real point and blows down the strict
transforms of the two (non-real conjugate) fibres passing through the point, AutR(Q3,1) is
conjugate to a subgroup of G◦ ∩G∗.

Group (4): via the blow-down X → F0 of the two exceptional divisors, the group is conju-
gate to a subgroup of BirR(F0) generated by a subgroup of AutR(F0) and a transformation
of F0 that is the composition of a transformation preserving the fibrations and the automor-
phism exchanging the fibrations (see construction in [RZ2016, Proposition 3.5]). Thus group
(4) is conjugate to a subgroup of G∗.

Group (5): via the blow-down X → P2 of three disjoint (−1)-curves onto the three coordi-
nate points of P2, the group is conjugate to a subgroup of BirR(P2) generated by a subgroup
of AutR(P2) and [x : y : z] 799K [yz : xz : xy] [RZ2016, Proposition 3.6]. Since the latter is
contained in J∗, group (5) is also conjugate to a subgroup of G∗. �

3.3. Lowering the degree. In this section we prove the lemmas used in the proof of Propo-
sition 3.7. Let ϕ ∈ BirR(P2), f1, f3 ∈ J◦ ∪H and f2 ∈ A.

Lemma 3.9. Suppose that f1, f3 ∈ J◦ be standard or special quintic transformations and
that

deg(g) ≤ deg(f1g) and deg(f3f2f1g) < deg(f2f1g).

Then there exists h1 ∈ A, h2, . . . , hm ∈ A ∪ J◦ such that f3f2f1 = hm · · ·h1 and

deg(hi · · ·h2h1g) < deg(f1g), i = 2, . . . ,m.

Proof. Follows from [Z2015, Lemma 4.10] by taking Λ to be the linear system of (f1g)−1. �
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Lemma 3.10. Let f1, f3 ∈ H be of degree 2. Suppose that

deg(g) ≤ deg(f1g) and deg(f3f2f1g) < deg(f2f1g)

Then there exist h1 ∈ A, h2, . . . , hm ∈ A ∪H such that f3f2f1 = hm · · ·h1 and

deg(hi · · ·h2h1g) < deg(f1g), i = 2, . . . ,m.

Proof. If deg(f3f2f1) = 1, we put hm = h1 = f3f2f1.
If deg(f3f2f1) = 2, then f−1

1 and f3f2 have exactly two common base-points, namely their
pairs of non-real conjugate base-points. It follows that the quadratic map f3f2f1 has two
non-real base-points and a real base-point. So there exist α, β ∈ A such that βf3f2f1α ∈ H.
The claim follows with h1 = α−1, h2 = βf3f2f1α and hm = h3 = β−1.

If deg(f3f2f1) = 3, then the maps f−1
1 and f3f2 have exactly one common base-point,

namely [1 : 0 : 0]. Hence f3f2f1 ∈ J∗. Since moreover f1, f3 have only one real base-point,
f3f2f1 has only one real base-point. Thus f3f2f1 ∈ H and the claim follows with h1 = hm =
f3f2f1.

If deg(f3f2f1) = 4, then the maps f−1
1 and f3f2 have no common base-points. The following

construction is visualised in the diagram below. Let [1 : 0 : 0], p, p̄ be the base-points of
f−1

1 and r, q, q̄ the base-points of f3f2, and define D := deg(f1g). By m(t) we denote the
multiplicity of (f1g)−1 in the point t. The assumptions deg(g) ≤ D and deg(f3f2f1g) < D
imply that

(2) m([1 : 0 : 0]) + 2m(pi) ≥ D, m(r) + 2m(q) > D.

If m([1 : 0 : 0]) ≥ m(r), then Inequality (2) implies that

m([1 : 0 : 0]) + 2m(q) ≥ m(r) + 2m(q)
(2)
> D,

which means that [1 : 0 : 0], q, q̄ are not collinear. In particular, there exists α ∈ A and θ ∈ H
of degree 2 such that θα has base-points [1 : 0 : 0], q, q̄. The above inequality implies

deg(θαf1g) = 2D −m([1 : 0 : 0])− 2m(q) < D.

The maps f−1
1 and θα have one common base-point, and the maps θα and f3f2 have two

common base-points. We proceed as in (3) and (2).

P2

f2

((

θα

[[1:0:0],q,q̄]

  

P2

f3

[r,q,q̄]

  
P2

f1

[[1:0:0],p,p̄] >>

P2 P2

Suppose that m([1 : 0 : 0]) < m(r). Inequalities (2) imply that

m(r) + 2m(p) > m([1 : 0 : 0]) + 2m(p) ≥ 2D,

so r, p, p̄ are not collinear. There exists α ∈ A and θ ∈ H of degree 2 such that θα has these
points as base-points. The claim follows as above. �

Lemma 3.11. Let f1, f3 ∈ H. Suppose that

deg(g) ≤ deg(f1g) and deg(f3f2f1g) < deg(f2f1g)
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Then there exist h1 ∈ H, h2 ∈ A, h3, . . . , hm ∈ A ∪ H such that f3f2f1 = hm · · ·h1 and
deg(h1) = deg(f1)− 1,

deg(h2h1g) = deg(h1g) ≤ deg(f1g),

deg(hi · · ·h3h2h1g) < deg(f1g), i = 3, . . . ,m.

If the inequality in the assumption is strict, all inequalities are strict.

Proof. By Remark 3.2, f1 and f3 both have exactly one real base-point, and the rest of
their base-points are pairs of non-real conjugate points. Let m(q) be the multiplicity of
(f1g)−1 in the point q, and D := deg(f1g) = deg(f2f1g). Both f1 and f3f2 have characteristic
(d; d− 1, 12d−2), hence there exist non-real base-points q1, q2 of f−1

1 and f3, respectively, such
that

(3) m([1 : 0 : 0]) + 2m(q1) ≥ D, m(f−1
2 ([1 : 0 : 0])) + 2m(f−1

2 (q2)) > D.

We can assume that q1, q2 are points in P2 or on the exceptional divisor of [1 : 0 : 0]
or f−1

2 ([1 : 0 : 0]), respectively. Furthermore, the points [1 : 0 : 0], q1, q̄1 and the points
f−1

2 ([1 : 0 : 0]), q2, q̄2 are not collinear because of Bézout theorem.
If q1, q2 are both in P2, there exist τ1, τ2 ∈ H of degree 2 with base-points [1 : 0 : 0], q1, q̄1

and [1 : 0 : 0], q2, q̄2 respectively. We define h1 := τ1f1 ∈ H and hm := f3τ
−1
2 ∈ H. By

construction we have

deg(h1) = deg(f1)− 1, deg(hm) = deg(f3)− 1

and by Inequalities (3) that

deg(h1g) = deg(τ1f1g) = 2D −m([1 : 0 : 0])− 2m(q1) ≤ D

deg(τ2f2f1g) = 2D −m(f−1
2 ([1 : 0 : 0]))− 2m(f−1

2 (q2)) < D.

We apply Lemma 3.10 to f1, . . . , fn−2, h1, τ1, f2, τ2 to get the claim.
Let us consider what to do if q1 or q2 is on the exceptional divisors of [1 : 0 : 0].
If they are both on the exceptional divisors, respectively, then f1 and f3 are both of degree

at least 3 and

2m(q1) ≤ m([1 : 0 : 0]), 2m(f−1
2 (q2)) ≤ m(f−1

2 ([1 : 0 : 0])).

Now, Inequalities (3) imply that

2m([1 : 0 : 0]) ≥ D, 2m(f−1
2 ([1 : 0 : 0])) > D

Since f1 and f3 are of degree at least three, this is only possible if f−1
2 ([1 : 0 : 0]) = [1 : 0 : 0].

In particular f2 ∈ H. We put h1 = hm = f3f2f1 ∈ H.
Let us assume that f2 /∈ H. Then either q1 or q2 are points in P2. Suppose that q1 is in P2

and q2 is on the exceptional divisor of f−1
2 ([1 : 0 : 0]). Then, because of the above reasoning,

we have
2m(f−1

2 ([1 : 0 : 0])) > D > 2m([1 : 0 : 0]).

Inequalities (3) get us

m(f−1
2 ([1 : 0 : 0])) + 2m(q1) > m([1 : 0 : 0]) + 2m(q1) ≥ D.

Then [1 : 0 : 0], f2(q1), f2(q̄1) are not collinear and all of them are points of P2. There exists
τ ′2 ∈ H of degree 2 with base-points [1 : 0 : 0], f2(q1), f2(q̄1). We proceed as in the first case
with τ ′2 instead of τ2. If q2 is a point of P2 and q1 is on the exceptional divisor of [1 : 0 : 0],
we proceed analogously. �
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Lemma 3.12. Let f1 ∈ H be of degree 2 and f3 ∈ J◦ a standard or special quintic transfor-
mation. Suppose that

deg(g) ≤ deg(f1g), and deg(f3f2f1g) < deg(f2f1g)

Then there exist h1 ∈ A, h2, . . . , hm ∈ A ∪ J◦ ∪H such that f3f2f1 = hm · · ·h1 and

deg(h1g) ≤ deg(f1g),

deg(hi · · ·h3h2h1g) < deg(f1g) i = 2, . . . , n.

If we have strict inequality in the assumption, all inequalities are strict.
The same claim holds if f1 ∈ J◦ is a a standard or special quintic transformation and

f3 ∈ H is of degree 2.

Proof. By m(s) we denote the multiplicity of (f1g)−1 in s and defined D := deg(f1g). Let
r1, r̄1, r2, r̄2, r3, r̄3 be the base-points of f3f2 and order them such that

m(r1) ≥ m(r2) ≥ m(r3),

and r1 is a proper point of P2 and r2 is either a proper point of P2 or in the first neighbourhood
of r1. Let [1 : 0 : 0], q, q̄ be the base-points of f−1

1 . Lemma 3.5 and f1 being quadratic imply
respectively that

(4) m(r1) +m(r2) +m(r3) > D, m([1 : 0 : 0]) + 2m(q) ≥ D.

We look at two cases, q = r1 and q 6= r1.
(1) Suppose that q = r1. As r1, r2, r3 are not collinear, at least one of r2, r3 is not one a

line contracted by f−1
1 , say ri, and it is a point of P2. Then f3f2f1 sends the pencil of conics

passing through the non-real base-points of f1 and f−1
1 (ri), f

−1
1 (r̄i) onto a pencil of conics

through two pairs of non-real conjugate points of f−1
3 . Hence, there exist α, β ∈ A such that

βf3f2f1α ∈ J◦. The claim follows with h1 = α−1, h2 = βf3f2f1α and hm = h3 = β−1.
(2) Suppose that q 6= r1. We look at two cases, depending on the multiplicities m([1 : 0 : 0]),

m(q),m(q̄).
(2.1) If m(q) ≥ m([1 : 0 : 0]), then Inequalities (4) and the order of the ri imply that

m(q) ≥ D
3

and m(r1) +m(r2) > 2D
3

, and so

m(q) +m(r1) +m(r2) > D.

In particular, the six points q, q̄, r1, r̄1, r2, r̄2 are not on a conic. Then the chosen order of
the points implies that there exists a standard or special quintic transformation θ ∈ J◦ and
α ∈ A such that θα has these 6 points as base-points. The above inequality implies

deg(θαf1g) = 5D − 4m(q)− 4m(r1)− 4m(r2) < D.

The maps f1 and θα have two common base-points, and we find the maps h1, . . . , hk as in
Case 1. The maps g′ := hk · · ·h1g, θ−1, f2α, f3 satisfy the assumptions of Lemma 3.9 with
“<”, and we get the maps hk+1, . . . , hm from there.

(2.2) If m(q) < m([1 : 0 : 0]), then Inequalities (4) and the order of the ri imply that
m([1 : 0 : 0]),m(r1) ≥ D

3
, so

m([1 : 0 : 0]) + 2m(r1) > D

In particular, the points [1 : 0 : 0], r1, r̄1 are not collinear. As they are proper points of P2,
there exists θ ∈ J◦ of degree 2 and α ∈ J◦ such that θα has these 3 points as base-points.
Moreover, the above inequality implies that

deg(θαf1g) = 2D −m(q)− 2m(r1) < D.
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We apply Lemma 3.11 to f1, α, θ to get h1, . . . , hk and then Case 1 to g′ := hk · · ·h1g,
θ−1, f2α, f3 with “<” to get the rest of the hi.

The case where f1 is a standard or special quintic transformation and f3 ∈ H is of degree
2 is done analogously. �

Lemma 3.13. Let f1 ∈ H and f3 ∈ J◦ a standard or special quintic transformation. Suppose
that

deg(g) ≤ deg(f1g), and deg(f3f2f1g) < deg(f2f1g)

Then there exist h1 ∈ H, h2 ∈ A, h3, . . . , hm ∈ A ∪ J◦ ∪H such that f3f2f1 = hm · · ·h1 and
deg(h1) = deg(f1)− 1,

deg(h1g) ≤ deg(f1g),

deg(hi · · ·h3h2h1g) < deg(f1g) i = 3, . . . , n.

If we have strict inequality in the assumption, all inequalities are strict.
If f1 ∈ J◦ is a a standard or special quintic transformation and f3 ∈ H, we have

deg(hi · · ·h2h1g) < deg(f1g) i = 2, . . . ,m.

Proof. Let m(s) be the multiplicity of (f1g)−1 in the point s and define D := deg(f1g). Since
f1 has characteristic (d; d− 1, 12d−2) and is contained in H, there exist a non-real base-point
q of f−1

1 such that

m([1 : 0 : 0]) + 2m(q) ≥ D.

We can assume that they are points in P2 or on the exceptional divisor of [1 : 0 : 0].
Furthermore, the points [1 : 0 : 0], q, q̄ are not collinear by Bézout theorem.

(1) Suppose that q, q̄ are points in P2. Then there exists τ ∈ H of degree 2 such that τ has
base-points [1 : 0 : 0], q, q̄. We put h1 := τf1 ∈ H. Note that

deg(h1) = deg(f1)− 1,

deg(h1g) = deg(τf1g) = 2D −m([1 : 0 : 0])− 2m(q) ≤ D.

We apply Lemma 3.12 to g′ := h1g and τ−1, f2, f3 to get h2, . . . , hm.
(2) Suppose that q, q̄ are on the exceptional divisor of [1 : 0 : 0]. Then m([1 : 0 : 0]) ≥

2m(q). Call r1, r̄1, r2, r̄2, r3, r̄3 the base-points of f3f2, and suppose that

m(r1) ≥ m(r2) ≥ m(r3)

and r1 is a point in P2. Lemma 3.5 implies that

m(r1) +m(r2) +m(r3) > D.

We get m([1 : 0 : 0]) ≥ D
3

and m(r1) > D
3

, and so m([1 : 0 : 0]) + 2m(r1) > D. In particular,
the points [1 : 0 : 0], r1, r̄1 are not collinear, and hence there exists τ ∈ H of degree 2 with
these three points its base-points. As above we put h1 := τf1 ∈ H and note that

deg(h1) = deg(f1)− 1, deg(h1g) = deg(τf1g) < D,

and apply Lemma 3.12 to g′ := h1g and τ−1, f2, f3.
If f1 is a standard or special quintic transformation and f3 ∈ H, we construct h1, . . . , hm

analogously. �
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