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This paper is concerned with some spreading properties of monostable Lotka-Volterra two-species competition-diffusion systems when the initial values are null or exponentially decaying in a right half-line. Thanks to a careful construction of super-solutions and sub-solutions, we improve previously known results and settle open questions. In particular, we show that if the weaker competitor is also the faster one, then it is able to evade the stronger and slower competitor by invading first into unoccupied territories. The pair of speeds depends on the initial values. If these are null in a right half-line, then the first speed is the KPP speed of the fastest competitor and the second speed is given by an exact formula describing the possibility of nonlocal pulling. Furthermore, the unbounded set of pairs of speeds achievable with exponentially decaying initial values is characterized, up to a negligible set.

In this paper, we are interested in some spreading properties of the classical monostable Lotka-Volterra two-species competition-diffusion system (1.1)

       ∂ t u -∂ xx u = u (1 -u -av) in (0, +∞) × R ∂ t v -d∂ xx v = rv (1 -v -bu) in (0, +∞) × R u (0, x) = u 0 (x) for all x ∈ R v (0, x) = v 0 (x)
for all x ∈ R with d > 0, a ∈ (0, 1), b > 1, r > 0 and u 0 , v 0 ∈ C (R, [0, 1]) \ {0}. The assumptions on a and b mean that u and v are respectively the stronger and the weaker competitor.

Recall from the classical literature [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Ronald | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] that the scalar Fisher-KPP equation These asymptotics describe the invasion of the unstable state 0 by the stable state 1 and c KPP is consequently referred to as the spreading speed of this invasion. Furthermore, c KPP coincides with the minimal speed of the traveling wave solutions, which are particular entire solutions of the form w : (t, x) → ϕ (x -ct) with ϕ ≥ 0, ϕ (-∞) = 1 and ϕ (+∞) = 0. A striking result is the so-called linear determinacy property: there exists such a pair (ϕ, c) if and only if the linear equation -δϕ -cϕ = ρϕ, namely, the linearization at ϕ = 0 of the semilinear equation satisfied by ϕ, admits a positive solution in R. Consequently, c KPP = 2 √ ρδ. As far as the system (1.1) is concerned, this result shows that in the absence of the competitor, u and v respectively spread at speed 2 and 2 √ rd. Recall also from the collection of works due to Lewis, Li and Weinberger [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF][START_REF] Li | Spreading speeds as slowest wave speeds for cooperative systems[END_REF] that the competition-diffusion system (1.2)

∂
       ∂ t u -∂ xx u = u (1 -u -av) in (0, +∞) × R ∂ t v -d∂ xx v = rv (1 -v -bu) in (0, +∞) × R u (0, x) = ũ0 (x) for all x ∈ R v (0, x) = 1 -ṽ0 (x)
for all x ∈ R with ũ0 and ṽ0 compactly supported and ũ0 nonnegative nonzero, has an analogous spreading property: there exists a unique c LLW > 0 satisfying and describing the invasion of the unstable state (0, 1) by the stable state (1, 0). As in the KPP case, the spreading speed c LLW is the minimal speed of the monotonic traveling wave solutions; linearizing at (0, 1), it is easily deduced that the linear speed is 2 √ 1 -a and that c LLW ≥ 2 √ 1 -a. However, contrarily to the KPP case, the converse inequality c LLW ≤ 2 √ 1 -a is only sometimes true. Depending on the parameters, linear determinacy (c LLW = 2 √ 1 -a) holds true in some cases (we refer for instance to Lewis-Li-Weinberger [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF], Huang [START_REF] Huang | Problem on minimum wave speed for a Lotka-Volterra reaction-diffusion competition model[END_REF], Alhasanat-Ou [START_REF] Alhasanat | Minimal-speed selection of traveling waves to the Lotka-Volterra competition model[END_REF]) but fails (c LLW > 2 √ 1 -a) in other cases (for instance, Huang-Han [START_REF] Huang | Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model[END_REF], Alhasanat-Ou [START_REF] Alhasanat | Minimal-speed selection of traveling waves to the Lotka-Volterra competition model[END_REF]). Let us point out that a sharp necessary and sufficient condition on the parameters for linear determinacy is unknown; to this day, this is one of the greatest open problems on this system. We also recall the related notions of pulled front (roughly speaking, a front that is driven by its exponential tail) and pushed front (roughly speaking, a front that is pushed by its back) as well as the partially proved conjecture of Roques-Hosono-Bonnefon-Boivin [START_REF] Roques | The effect of competition on the neutral intraspecific diversity of invasive species[END_REF] stating the equivalence between the dichotomy "pulled or pushed front" and the dichotomy "linear determinacy or failure of linear determinacy" (namely, a front is pulled if and only if linear determinacy holds true).

Independently of this linear determinacy issue, a rough upper estimate of c LLW can be obtained by comparison with the KPP equation satisfied by u in the absence of v: c LLW ≤ 2 (the competition always slows down the invasion of u). The strict inequality c LLW < 2 is expected but, as far as we know, cannot be established easily when linear determinacy fails.

We focus now on the system (1.1) and observe that, when u 0 and v 0 are both null or exponentially decaying in [0, +∞), the long-time behavior in (0, +∞) is unclear. It is the purpose of this paper to address this question.

If rd > 1 and u 0 and v 0 are compactly supported, then for all small > 0, This fact, which we are going to prove in the forthcoming pages (see Proposition 3.1) by adapting very slightly arguments from the related literature and which is therefore not really new, basically means the following: the open space is first invaded by the faster competitor v at speed 2 √ rd and then the replacement of v by the stronger competitor u occurs somewhere in the area c LLW ≤ x t ≤ 2. In particular, as far as spreading speeds are concerned, the first invasion ((0, 0) by (0, 1)) is not influenced by the second invasion ((0, 1) by (1, 0)): the competition exerted by the exponential tail of u in the area 2 < x t is negligible. It is then natural to investigate whether the converse statement is true: is the second invasion influenced by the first one? Is it possible to show that the speed c 2 of the second invasion is exactly c LLW , or is there on the contrary a possibility of speed enhancement, namely c 2 > c LLW ?

Heuristically, two distinct spreading phenomena occur simultaneously and might influence the second speed.

(1) The first phenomenon occurs at the interface between (1, 0) and (0, 1). As explained previously, its front is either pulled or pushed, with speed c LLW . This is a purely local phenomenon. [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF] The second phenomenon occurs far away on the right, at the interface between (0, 1) and (0, 0). Here, an exponentially small quantity of u spreads in an environment where v 1 {x≤2 √ rdt} does not depend on u anymore. The equation satisfied by u here is a KPP equation with a uniformly positive heterogeneous intrinsic growth rate 1 -a1 {x≤2 √ rdt} : its front is strongly expected to be a pulled front with linearly determined speed. However, this front spreads at most at speed 2 whereas the surrounding environment spreads at speed 2 √ rd > 2. Hence this spreading phenomenon is nonlocal, in some sense, and accordingly its front will hereafter be referred to as nonlocally pulled and its speed will be denoted c nlp .

In the first work on staged invasions of two competitors, due to Shigesada and Kawasaki in 1997 [START_REF] Shigesada | Biological invasions: theory and practice[END_REF], the spreading speeds of the two competitors were estimated based on conjectures of linear determinacy and local determinacy. They, however, noted that the conjectures might need to be revised, in view of the numerical results of Hosono [START_REF] Hosono | Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models[END_REF] illustrating the possible failure of linear determinacy. Nevertheless, the purpose of the investigation of Shigesada-Kawasaki was more to raise interesting mathematical problems than to rigorously solve them. Rigorous analysis started more recently, in the last decade, with Carrère [START_REF] Carrère | Spreading speeds for a two-species competition-diffusion system[END_REF] and Lin and Li [START_REF] Lin | Asymptotic spreading of competition diffusion systems: the role of interspecific competitions[END_REF].

Carrère studied the bistable case (a > 1, b > 1). She proved that the second invasion has the speed of the unique bistable traveling wave connecting (0, 1) to (1, 0): the two invasions are indeed independent, nonlocal pulling does not occur. However we point out that the bistable case is quite different from the monostable one (based on the uniqueness of traveling wave speed and profile in the bistable case, the arguments used on the left of the second transition can be used again on its right).

As a matter of fact, Lin and Li investigated the monostable case with stable coexistence (a < 1, b < 1) and the second speed remained elusive. All three monostable cases (stable coexistence, stable (1, 0), stable (0, 1)) being handled quite similarly (see Lewis-Li-Weinberger [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF] for instance), the technical obstacles they encountered should not depend on the sign of b -1.

In the present paper, we adopt a new point of view: we aim directly for the construction of (almost) optimal pairs of super-solutions and sub-solutions. This point of view turns out to be highly fruitful. Indeed, the forthcoming Theorem 1.1 states that, when the support of u 0 is included in a left half-line (u 0 is Heavysidelike or compactly supported) and v 0 is compactly supported, the actual invasion speed of u is simply the maximum of c LLW and c nlp (the sign of c nlp -c LLW can vary). Therefore speed enhancement does occur in some cases (depending on the parameters). By taking into account the possibility of failure of linear determinacy and by showing the possibility of nonlocal pulling, our work completely settles the mathematical questions raised by Shigesada-Kawasaki [START_REF] Shigesada | Biological invasions: theory and practice[END_REF].

In addition to this first result, our approach also delivers a general existence and nonexistence result related to propagating terraces (succession of compatible traveling waves with decreasingly ordered speeds, first described by Fife and McLeod [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF]) having the unstable steady state (0, 1) as intermediate steady state and corresponding to exponentially decaying initial data. As far as scalar terraces for reaction-diffusion equations are concerned, Ducrot, Giletti and Matano [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF] showed quite generically that all intermediate states are stable from below (see also Poláčik [33] for a complete account in the general setting). In more sophisticated contexts (reaction-diffusion systems, nonlocal equations, etc.), propagating terraces with unstable intermediate states are observed numerically [11, 18, 22, 31, 32, 37, 39, among others]. Rigorous analytical studies are however very difficult and have only been carried out in simple cases and with Heavyside-like or compactly supported initial data [START_REF] Holzer | Accelerated fronts in a two-stage invasion process[END_REF][START_REF] Iida | Stacked fronts for cooperative systems with equal diffusion coefficients[END_REF]. In this regard, the present paper is, to the best of our knowledge, unprecedented.

Our approach relies heavily upon the comparison principle. Therefore it might be appropriate for some cooperative systems of arbitrary size (let us recall however that a fully coupled cooperative system, namely a cooperative system where the positivity of any one component implies the positivity of all the others, necessarily has a single spreading speed). Unfortunately, our approach cannot be adapted to settings devoid of comparison principle.

Finally, let us point out that our forthcoming results would still hold true if u (1 -u) and rv (1 -v) were replaced by more general KPP reaction terms. In order to ease the reading, however, we focus on the traditional logistic form.

1.1. Main results. Define the auxiliary function

(1.3) f : 2 √ 1 -a, +∞ → 2 √ a, 2 √ 1 -a + √ a c → c -c 2 -4 (1 -a) + 2 √ a .
This function is decreasing and bijective and satisfies in particular (

f (2) = 2, f -1 : c → c 2 - √ a + 2 (1 -a) c -2 √ a .
) Assume 2 √ rd ∈ (2, f (c LLW ) 2 
) and define

c nlp = f -1 2 √ rd = √ rd - √ a + 1 -a √ rd - √ a ∈ (c LLW , 2) .
Then

lim t→+∞ sup 0≤x<(c nlp -ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for each ε ∈ (0, c nlp ) , lim t→+∞ sup (c nlp +ε)t<x<(2 √ rd-ε)t (|u (t, x)| + |v (t, x) -1|) = 0 for each ε ∈ 0, 2 √ rd -c nlp 2 , lim t→+∞ sup (2 √ rd+ε)t<x (|u (t, x)| + |v (t, x)|) = 0 for each ε > 0. (3) Assume 2 √ rd ≥ f (c LLW ). Then lim t→+∞ sup 0≤x<(c LLW -ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for each ε ∈ (0, c LLW ) , lim t→+∞ sup (c LLW +ε)t<x<(2 √ rd-ε)t (|u (t, x)| + |v (t, x) -1|) = 0 for each ε ∈ 0, 2 √ rd -c LLW 2 , lim t→+∞ sup (2 √ rd+ε)t<x (|u (t, x)| + |v (t, x)|) = 0 for each ε > 0.
In the first case, v goes extinct. In the second case, v invades first at speed 2 √ rd and is then replaced by u at speed c nlp > c LLW . In the third case, v invades first at speed 2 √ rd and is then replaced by u at speed c LLW . Notice that the limits above are chiefly concerned with x ≥ 0. This is intentional, for the sake of brevity and clarity. In (-∞, 0), two behaviors are possible, depending on whether u 0 is compactly supported or Heavyside-like. In the former case, all inequalities above hold with x replaced by |x| (and this claim is proved simply by symmetry). In the latter case, (u, v) converges uniformly to (1, 0) in (-∞, 0) (and this claim can be proved by a standard comparison argument).

1.1.2. The set of admissible pairs of speeds for more general initial data. Define the auxiliary function

λ v : 2 √ rd, +∞ → 0, r d c → 1 2d c - √ c 2 -4rd . Theorem 1.2. Let c 1 ∈ 2 √ rd, +∞ and c 2 ∈ [c LLW , c 1 ]. Let (u, v) be a solution of (1.1) such that c 2 = sup c > 0 | lim t→+∞ sup 0≤x≤ct (|u (t, x) -1| + |v (t, x)|) = 0
and such that at least one of the following two properties holds true:

(1) x → v (0, x) e λv(c1)x is bounded in R; or (2) c 1 satisfies

c 1 ≥ inf c > 0 | lim t→+∞ sup x≥ct |v (t, x)| = 0 . Then f (c 2 ) ≤ c 1 .
The assumption on c 2 basically means that u spreads at speed c 2 . However, in general, the spreading speed is ill-defined: the minimal spreading speed of u,

sup c > 0 | lim t→+∞ sup 0≤x≤ct |u (t, x) -1| = 0 ,
might very well be smaller than its maximal spreading speed,

inf c > 0 | lim t→+∞ sup x≥ct |u (t, x)| = 0 .
On this problem, we refer to Hamel-Nadin [START_REF] Hamel | Spreading properties and complex dynamics for monostable reaction-diffusion equations[END_REF].

The properties (1) and (2) above are more or less equivalent. Indeed, on one hand, (1) directly implies (2) by standard comparison; on the other hand, if (2) holds, then for all λ ∈ (0, λ v (c 1 )), there exists T λ such that x → v (T λ , x) e λx is bounded in R. However the proof of the latter implication is difficult. In fact, instead of establishing it, we will directly prove the result in each case. We emphasize that although (2) might be easier to understand in that it directly relates c 1 to the spreading of v, (1) has the advantage of being easier to apply since it only requires knowledge of the initial condition.

In short, this theorem means that if v spreads no faster than c 1 and if u spreads at speed c 2 , then f (c 2 ) ≤ c 1 . The next theorem shows the sharpness of this threshold: any c 1 > f (c 2 ) can actually be achieved.

Theorem 1.3. Let c 1 ∈ 2 √ rd, +∞ and c 2 ∈ (c LLW , c 1 ). Assume c 1 > f (c 2 ). Then there exists (u c1,c2 , v c1,c2 ) ∈ C R, [0, 1] 2 such that the solution (u, v) of (1.1) with initial value (u 0 , v 0 ) = (u c1,c2 , v c1,c2 ) satisfies lim t→+∞ sup x<(c2-ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for each ε ∈ (0, c 2 ) , lim t→+∞ sup (c2+ε)t<x<(c1-ε)t (|u (t, x)| + |v (t, x) -1|) = 0 for each ε ∈ 0, c 1 -c 2 2 , lim t→+∞ sup (c1+ε)t<x (|u (t, x)| + |v (t, x)|) = 0 for each ε > 0.
Let us point out that this solution (u, v) is not a proper propagating terrace in the sense of Ducrot-Giletti-Matano [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF]: the locally uniform convergence of the profiles is missing (as in Carrère [4]). The fact that the set of admissible speeds is not always the maximal set

2 √ 1 -a.(1, 1) 2 2 2( √ 1 -a + √ a) c 2 c 1 c 1 = c 2 f (c 2 ) 2 √ rd c nlp (a) c LLW = 2 √ 1 -a, 2 √ rd < f (c LLW ). In this case Theorem 1.1(2) applies with (c 1 , c 2 ) = (2 √ rd, c nlp ), where c nlp > c LLW . 2 √ 1 -a.(1, 1) 2 2 2( √ 1 -a + √ a) c 2 c 1 c 1 = c 2 f (c 2 ) c LLW f (c LLW ) 2 √ rd (b) c LLW > 2 √ 1 -a, 2 √ rd > f (c LLW ). In this case Theorem 1.1(3) applies with (c 1 , c 2 ) = (2 √ rd, c LLW ).
(c 1 , c 2 ) ∈ 2 √ rd, +∞ × [c LLW , +∞) | c 1 > c 2 .
settles completely a question raised by the first author [START_REF] Girardin | Non-cooperative Fisher-KPP systems: Asymptotic behavior of traveling waves[END_REF].

1.1.3. The super-solutions and sub-solutions. The preceding theorems will be proved thanks to the following three propositions, which are of independent interest and concern existence results for super-solutions and sub-solutions (the precise definition of these will be recalled in the next section). Let

λ : 2 √ 1 -a, +∞ → 0, √ 1 -a c → 1 2 c -c 2 -4 (1 -a) , Λ : (c, c) → 1 2 c -c2 -4 (λ (c) (c -c) + 1) .
The domain of Λ is the set of all (c, c) such that c ≥ 2 √ 1 -a and c ≥ max (c, f (c)). For all c ≥ c LLW and c ≥ max (c, f (c)), w c,c denotes the function

w c,c : (t, x) → e -λ(c)(c-c)t e -Λ(c,c)(x-ct) . Proposition 1.4. Let c 1 ≥ 2 √ rd, c 2 ≥ c LLW and assume c 2 < c 1 < f (c 2 ). There exist c > c 2 , c ∈ (c 1 , f (c)), L > 0 and δ > 0 such that, for all δ ∈ (0, δ ), all κ ∈ 0, min 1-a 2 , δ 2 
and all ζ > L, there exists R δ > 0 and a sub-solution u δ,ζ,κ , v δ,ζ of (1.1) satisfying the following properties:

(1)

u δ,ζ,κ (0, x) ≤ 1 -a for all x ∈ R; (2) the support of x → u δ,ζ,κ (0, x) is included in [0, L + ζ + 2R δ ]; (3) u δ,ζ,κ (0, x) ≤ κ for all x ∈ [L, L + ζ + 2R δ ]; (4) 
there exists X > 0 such that u δ,ζ,κ satisfies

∂ t u δ,ζ,κ -∂ xx u δ,ζ,κ ≤ (1 -δ) u δ,ζ,κ in {(t, x) ∈ [0, +∞) × R | x > X + ct} .
(5) there exists C δ > 0 depending only on δ such that v δ,ζ (0, x) ≥ min 1, C δ e -λv(c)(x-ζ) for all x ∈ R;

(6) the following spreading property holds true:

lim t→+∞ sup L≤x<(c-ε)t u δ,ζ,κ (t, x) - 1 -a 2 = 0 for all ε ∈ (0, c) . Proposition 1.5. Let c 2 ∈ max c LLW , f -1 2 √ rd , 2 .
There exists δ > 0 and c δ 1 , c δ 2 δ∈(0,δ ) such that

c 2 < c δ 2 < c δ 1 < 2 √ rd for all δ ∈ (0, δ ) , lim δ→0 c δ 1 , c δ 2 = 2 √ rd, c 2 ,
and, for all δ ∈ (0, δ ), there exists a super-solution u δ , v δ of (1.1) satisfying the following properties:

(1) there exists y 0 ∈ R such that, for all y ≥ y 0 and t ≥ 0,

u δ   0, x -y - Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd t    ≥ min 1, w c2,2
√ rd (t, x) for all x ∈ R;

(2) x → v δ (0, x) is compactly supported;

(3) v δ (0, x) ≤ 1 -δ for all x ∈ R;

(4) the following spreading property holds true:

lim t→+∞ sup (c δ 2 +ε)t<x<(c δ 1 -ε)t |u δ (t, x)| + v δ (t, x) -(1 -2δ) = 0 for all ε ∈ 0, c δ 1 -c δ 2 2 . Proposition 1.6. Let c 1 > 2 √ rd, c 2 > c LLW and assume c 1 > max (c 2 , f (c 2 )
). There exists δ > 0 and c δ 2 δ∈(0,δ ) such that

c δ 2 > c 2 for all δ ∈ (0, δ ) , lim δ→0 c δ 2 = c 2 ,
and, for all δ ∈ (0, δ ), there exists a super-solution of (1.1) u δ , v δ and a subsolution of (1.1) u δ , v δ satisfying the following properties:

(1) there exists y 0 ∈ R such that, for all y ≥ y 0 and t ≥ 0,

u δ 0, x -y - (Λ (c 2 , c 1 )) 2 + 1 Λ (c 2 , c 1 ) t ≥ min (1, w c2,c1 (t, x)) for all x ∈ R;
(2) the support of v δ is a right half-line and there exists (y, z) ∈ R 2 such that 1 2 ≤ e λv(c1)(x-c1t) v δ (0, x -y) ≤ 1 for all t ≥ 0 and x ≥ z;

(3) u δ (0, x) ≤ u δ (0, x) and v δ (0, x) ≤ v δ (0, x) for all x ∈ R;

(4) the following spreading properties hold true: Assume that v invades the uninhabited territory at some speed c 1 ≥ 2 √ rd and that u chases v at some speed c 2 ∈ [c LLW , c 1 ). In the area where v 1, u looks like the exponential tail of the monostable traveling wave connecting (0, 1) to (1, 0) at speed c 2 , that is u (t, x) e -λ(c2)(x-c2t) . Accordingly, in a neighborhood of x = ct with c ∈ (c 2 , c 1 ), we can observe nonnegligible quantities only if we consider the rescaled function

lim t→+∞ sup x<(c2-ε)t u δ (t, x) -(1 -a) = 0 for all ε ∈ (0, c 2 ) , lim t→+∞ sup (c δ 2 +ε)t<x<(c1-ε)t |u δ (t, x)| + v δ (t, x) -(1 -2δ) = 0 for all ε ∈ 0, c 1 -c δ
w : (t, x) → u (t, x) e λ(c2)(x-c2t) instead of u itself.
Yet, in a neighborhood of x = ct with c > c 1 , where (u, v) (0, 0), w satisfies at the first order

∂ t w -∂ xx w = (1 + λ (c 2 ) (c -c 2 )) w
whence the exponential ansatz w (t, x) = e -Λ(x-ct) leads to the equation

Λ 2 -cΛ + (1 + λ (c 2 ) (c -c 2 )) = 0.
The minimal zero of this equation being precisely

Λ (c 2 , c) = 1 2 c -c2 -4 (λ (c 2 ) (c -c 2 ) + 1) ,
we deduce then that c has to satisfy

c2 -4 (λ (c 2 ) (c -c 2 ) + 1) ≥ 0 that is c ≥ f (c 2 ). Passing to the limit c → c 1 , we find indeed c 1 ≥ f (c 2 ).
1.3. Organization of the paper. In Section 2, we recall the comparison principle for (1.1) and define super-solutions and sub-solutions.

In Section 3, we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3 assuming Proposition 1.4, Proposition 1.5 and Proposition 1.6 are true.

In Section 4, we prove Proposition 1.4, Proposition 1.5 and Proposition 1.6. These constructions are rather delicate and require several objects and preliminary lemmas, which we summarize in a table at the beginning of Subsection 4.1.

In Section 5, we comment on the results and provide some future perspectives.

Competitive comparison principle

Competitive comparison principle.

In what follows, vectors in R 2 are always understood as column vectors.

We define the competitive ordering in R 2 as follows: for all

(u 1 , v 1 ) ∈ R 2 , (u 2 , v 2 ) ∈ R 2 , (u 1 , v 1 ) (u 2 , v 2 ) if u 1 ≤ u 2 and v 1 ≥ v 2 .
The strict competitive ordering ≺ is defined by

(u 1 , v 1 ) ≺ (u 2 , v 2 ) if u 1 < u 2 and v 1 > v 2 .
We define also the operators

P : (u, v) → ∂ t (u, v) -diag (1, d) ∂ xx (u, v) , F : (u, v) → u (1 -u -av) rv (1 -v -bu) .
With these notations, (1.1) can be written as

P (u, v) = F (u, v) in (0, +∞) × R (u, v) (0, x) = (u 0 , v 0 ) (x)
for all x ∈ R .

Definition 2.1. A classical super-solution of (1.1) is a pair

(u, v) ∈ C 1 (0, +∞) , C 2 R, [0, 1] 2 ∩ C [0, +∞) × R, [0, 1] 2 satisfying P (u, v) F (u, v) in (0, +∞) × R. A classical sub-solution of (1.1) is a pair (u, v) ∈ C 1 (0, +∞) , C 2 R, [0, 1] 2 ∩ C [0, +∞) × R, [0, 1] 2 satisfying P (u, v) F (u, v) in (0, +∞) × R.
The unbounded domain (0, +∞) × R can be replaced in the above definition by a bounded parabolic cylinder (0, T ) × (-R, R). In such a case, the required regularity

is C 1 (0, T ) , C 2 (-R, R) , [0, 1] 2 ∩ C [0, T ] × [-R, R] , [0, 1] 2 .
We also recall that it is possible to extend the theory of super-and sub-solutions to Sobolev spaces. The full extension is outside of the scope of this reminder, however a very partial extension will be necessary later on. More precisely, we will use the following notion of Lipschitz-continuous super-and sub-solutions, acting against smooth compactly supported test functions. In what follows, C 0,1 and D denote as usual the sets of Lipschitz-continuous and smooth compactly supported functions respectively and • denotes the Hadamard product

(u 1 , v 1 ) • (u 2 , v 2 ) = (u 1 u 2 , v 1 v 2 ).
Definition 2.2. A generalized super-solution of (1.1) is a pair

(u, v) ∈ C 0,1 (0, +∞) × R, [0, 1] 2 satisfying, for all (U, V ) ∈ D (0, +∞) × R, [0, 1] 2 , ∂ t (u, v) • (U, V ) + diag (1, d) ∂ x (u, v) • ∂ x (U, V ) F (u, v) • (U, V ) .
A generalized sub-solution of (1.1) is a pair

(u, v) ∈ C 0,1 (0, +∞) × R, [0, 1] 2 satisfying, for all (U, V ) ∈ D (0, +∞) × R, [0, 1] 2 , ∂ t (u, v) • (U, V ) + diag (1, d) ∂ x (u, v) • ∂ x (U, V ) F (u, v) • (U, V ) .
Again, the unbounded domain (0, +∞) × R can be replaced by a bounded parabolic cylinder (0, T ) × (-R, R). The following important theorem, that will be used repeatedly thereafter, actually uses the local definition.

Theorem 2.3. Let R > 0, T > 0, Q = (0, T ) × (-R, R) and (u 1 , u 2 , v 1 , v 2 ) ∈ C 1 [0, T ] , C 2 [-R, R] , [0, 1] 4 ∩ C [0, T ] × [-R, R] , [0, 1] 4 .
(1) Assume that (u 1 , v 1 ) and (u 1 , v 2 ) are both classical super-solutions in Q.

Then (u 1 , max (v 1 , v 2 )) is a generalized super-solution in Q. (2) Assume that (u 1 , v 1 ) and (u 2 , v 1 ) are both classical super-solutions in Q.
Then (min (u 1 , u 2 ) , v 1 ) is a generalized super-solution in Q.

Remark. We state this theorem in a bounded parabolic cylinder in order to be able to construct later on more complex super-and sub-solutions, for instance supersolutions (u, v) with u of the form

u (t, x) =    u 1 (t, x) if x < x (t) u 2 (t, x) if x ∈ [x (t) , y (t)] u 3 (t, x) if x > y (t)
, where x (t) < y (t) and u 1 , u 2 and u 3 are such that u

1 (t, x) ≤ u 2 (t, x) if x < x (t), u 2 (t, x) ≤ u 1 (t, x) in a right-sided neighborhood of x (t), u 2 (t, x) ≤ u 3 (t, x) in a left-sided neighborhood of y (t) and u 3 (t, x) ≤ u 2 (t, x) if x > y (t).
Although we do not have any global information on u 1 -u 2 , u 1 -u 3 and u 2 -u 3 , the local theorem shows that the construction is still valid.

Proof. Since the second statement is proved similarly, we only prove the first one.

For simplicity, we only consider the special case where Γ = (v 1 -v 2 ) -1 ({0}) is a smooth hypersurface, which is always satisfied for our purposes. A proof that does not require such a regularity assumption can be found for instance in [START_REF] David | Monotone methods in nonlinear elliptic and parabolic boundary value problems[END_REF].

Define v = max (v 1 , v 2 ) and let (U, V ) ∈ D Q, [0, 1]
2 . On one hand,

∂ t u 1 -∂ xx u 1 ≥ F 1 (u 1 , v)
is satisfied in the classical sense (using for instance -au 1 v 1 ≥ -au 1 v). On the other hand, we have assumed that

Γ = (v 1 -v 2 ) -1 ({0}) is a smooth hypersurface,
so that we may integrate by parts. Denoting

Q 1 = (v 1 -v 2 ) -1 ([0, 1]), Q 2 = (v 2 -v 1 ) -1 ([0, 1]), ν the outward unit normal to Q 1 , we find Γ = ∂Q 1 \∂Q = ∂Q 2 \∂Q and (∂ x v 1 -∂ x v 2 ) ν ≤ 0 on Γ, whence Q ∂ t vV + d∂ x v∂ x V = Q1 ∂ t v 1 V + d∂ x v 1 ∂ x V + Q2 ∂ t v 2 V + d∂ x v 2 ∂ x V = Q1 (∂ t v 1 -d∂ xx v 1 ) V + ∂Q1 ∂ x v 1 V ν + Q2 (∂ t v 2 -d∂ xx v 2 ) V + ∂Q2 ∂ x v 1 V (-ν) ≤ Q1 F 2 (u 1 , v 1 ) V + Q2 F 2 (u 1 , v 2 ) V + Γ (∂ x v 1 -∂ x v 2 ) V ν ≤ Q F 2 (u 1 , v) V.
This completes the proof.

An inversion of the roles yields a similar statement on sub-solutions.

Theorem 2.4. Let R > 0, T > 0, Q = (0, T ) × (-R, R) and (u 1 , u 2 , v 1 , v 2 ) ∈ C 1 [0, T ] , C 2 [-R, R] , [0, 1] 4 ∩ C [0, T ] × [-R, R] , [0, 1] 4 .
(

) Assume that (u 1 , v 1 ) and (u 1 , v 2 ) are both classical sub-solutions in Q. Then (u 1 , min (v 1 , v 2 )) is a generalized sub-solution in Q. (2) Assume that (u 1 , v 1 ) and (u 2 , v 1 ) are both classical sub-solutions in Q. Then (max (u 1 , u 2 ) , v 1 ) is a generalized sub-solution in Q. 1 
Since a classical super-or sub-solution is a fortiori a generalized super-or subsolution respectively, from now on, we omit the adjectives classical and generalized and always have in mind the generalized notion.

The comparison principle for (1.1), directly derived from the comparison principle for cooperative systems (see Protter-Weinberger [START_REF] Protter | Maximum Principles in Differential Equations[END_REF]) via the transformation w = 1 -v, reads as follows.

Theorem 2.5. Let (u, v) and (v, u) be respectively a super-solution and a subsolution of (1.1). Assume that

(u, v) (0, x) (u, v) (0, x) for all x ∈ R. Then (u, v) (u, v) in [0, +∞) × R. Furthermore, if there exists (T, x) ∈ (0, +∞) × R such that u (T, x) = u (T, x) or v (T, x) = v (T, x), then (u, v) = (u, v) in [0, T ] × R.
In other words, (u, v) (u, v) holds at t = 0 if and only if it holds at all t ≥ 0. Finally, we recall an important existence-comparison result that will be used later on.

Theorem 2.6. Let (u, v) and (v, u) be respectively a super-solution and a subsolution of (1.1). Assume that for some 

(u 0 , v 0 ) ∈ C(R, [0, 1] 2 ) we have (u, v)(0, x) (u 0 , v 0 )(x) (u, v)(0, x) for all x ∈ R, then the solution (u, v) of (1.1) with initial data (u 0 , v 0 ) satisfies (u, v) (u, v) (u, v) in [0, +∞) × R.
Proof. Let c 1 ≥ 2 √ rd and c 2 ≥ c LLW such that c 1 ≥ c 2 and c 1 < f (c 2 )
. First, we consider the case where x → v 0 (x) e λv(c1)x is globally bounded. By contradiction, assume the existence of a solution (u, v) such that both the boundedness of x → v 0 (x) e λv(c1)x and the equality

c 2 = sup c > 0 | lim t→+∞ sup 0≤x≤ct (|u (t, x) -1| + |v (t, x)|) = 0 are true. Define c, c, δ , δ = δ 2 , R δ , L, u δ,ζ,κ , v δ,η as in Proposition 1.4. Note that c > c 2 , c > c 1 .
In view of the equality satisfied by c 2 , there exists

T ≥ 2L c2 such that, for all x ∈ 0, c2 2 T , u (T, x) ≥ 1 -a 2 . We claim that (t, x) → v (t, x) e λv(c1)(x-c1t) is globally bounded in [0, +∞) × R.
To see this, it suffices to observe that, by definition of

λ v (c 1 ), Ce -λv(c1)(x-c1t) is a supersolution of the equation of v for any constant C > 0. Hence standard comparison implies that v(t, x) ≤ sup x∈R v(0, x)e λv(c1)x e -λv(c1)(x-c1t) . Since c 1 < c and λ v is decreasing, we have λ v (c 1 ) > λ v (c). Hence, there exists ζ > L such that v (T, x) ≤ v δ,ζ (0, x) for all x ∈ R. Now, we fix κ = 1 2 min min 1 -a 2 , δ 2 , min x∈[L,L+ζ+2R δ ] u (T, x) .
It follows that

u(T, x) ≥    1 -a for x ∈ [0, L], κ for x ∈ (L, L + ζ + 2R δ ], 0 for x ∈ R \ [0, L + ζ + 2R δ ], whence u(T, x) ≥ u δ,ζ,κ (0, x) for x ∈ R. Then (u, v) : (t, x) → u δ,ζ,κ (t -T, x) , v (t -T, x)
is a sub-solution of (1.1) which satisfies (u, v) (u, v) at t = T , whence by the comparison principle of Theorem 2.5 it satisfies the same inequality at any time t ≥ T . Now, due to the spreading property satisfied by u, for all ε ∈ (0, c), there exists

T ε ≥ T such that, for all t ≥ T ε , inf L≤x<(c-ε)t u (t, x) ≥ 1 -a 4 .
Assume now the existence of sequences

(t n ) n∈N , (x n ) n∈N and of ĉ ∈ (0, c -ε) such that, as n → +∞, t n → +∞, xn tn → ĉ and lim sup (|u (t n , x n ) -1| + |v (t n , x n )|) > 0. Denote (c n ) n∈N = xn tn n∈N . For all n ∈ N, define τ n = cn ĉ t n = xn ĉ and (u n , v n ) : (t, x) → (u, v) t + ĉ c n τ n , x + ĉτ n .
By classical parabolic estimates (see Lieberman [START_REF] Gary | Second order parabolic differential equations[END_REF]),

((u n , v n )) n∈N converges up to a diagonal extraction in C loc R 2 , [0, 1] to a limit (u ∞ , v ∞ )
which is an entire solution of (1.1) and satisfies u ∞ ≥ 1-a 4 . By comparison of (u ∞ , v ∞ ) with the spatially homogeneous sub-solution U , V satisfying, for any arbitrary t 0 ∈ R, the system

       U (t) = U (t) 1 -U (t) -aV (t) for all t ∈ (T ε , +∞) V (t) = rV (t) 1 -V (t) -bU (t) for all t ∈ (T ε , +∞) U (t 0 ) = 1-a 4 V (t 0 ) = 1 , whose convergence to (1, 0) is well-known, we find (u ∞ , v ∞ ) = (1, 0), which directly contradicts the existence of (t n ), (x n ) and (c n ). Therefore lim t→+∞ sup εt≤x<(c-2ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for all ε ∈ 0, c 3 .
This means c 2 ≥ c, and directly contradicts the choice of c > c 2 made at the beginning of the proof.

Next, we consider the case where

c 1 ≥ inf c > 0 | lim t→+∞ sup x≥ct |v (t, x)| = 0 .
Since the proof is mostly the same, we only sketch it. Again, we argue by contradiction and use Proposition 1.4. Using the assumption on the spreading of v, we can establish the following estimate:

v (t, x -ĉt) ≤ 1 y≤y0 (x -ĉt) + δ 2a 1 y≥y0 (x -ĉt) ,
for some y 0 ∈ R and with ĉ = c+c1 2 . Thanks to this, we can directly use ηu δ,ζ,κ , for some small η > 0, as sub-solution for u and deduce a contradiction. We point out that in this case, we do not use the competitive comparison principle but instead use the scalar one.

3.2. Proof of Theorem 1.1.

3.2.1.

Hair-trigger effect and extinction.

Proposition 3.1. Let u 0 ∈ C (R, [0, 1]) \ {0} with support included in a left half- line and v 0 ∈ C (R, [0, 1]) \ {0} with compact support. Let (u, v) be the solution of 1.1. (1) If 2 √ rd > 2, then lim t→+∞ sup 0≤x<(c LLW -ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for all ε ∈ (0, c LLW ) , lim t→+∞ sup (2 √ rd+ε)t<x (|u (t, x)| + |v (t, x)|) = 0 for all ε > 0, lim t→+∞ sup (2+ε)t<x<(2 √ rd-ε)t (|u (t, x)| + |v (t, x) -1|) = 0 for all ε ∈ 0, 2 √ rd -c LLW 2 .
(

) If 2 √ rd < 2, then lim t→+∞ sup x∈R |v (t, x)| = 0, lim t→+∞ sup 0≤x<(2-ε)t |u (t, x) -1| = 0 for all ε ∈ (0, 2) , lim t→+∞ sup (2+ε)t<x |u (t, x)| = 0 for all ε > 0. 2 
Remark. The inequality regarding (2 + ε) t < x < 2 √ rd -εt is by far the more interesting and the less trivial. It basically means that u does not exert any competition far ahead of its own territory. It was first proved by Ducrot, Giletti and Matano [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] in the case of predator-prey interactions (the conclusion being then that no predation occurs far ahead of the territory of the predator), and by Lin and Li [START_REF] Lin | Asymptotic spreading of competition diffusion systems: the role of interspecific competitions[END_REF] in case of two-species competition (the conclusion being that the region of coexistence falls behind the territory where the faster diffuser dominates). The proof of Ducrot et al. was sufficiently robust and generic to be reused by Carrère [START_REF] Carrère | Spreading speeds for a two-species competition-diffusion system[END_REF] in the bistable competitive case and to be reused again here, in the monostable case. Although it would certainly be interesting to write the result of Ducrot et al. in the most general form possible (with more than two species and minimal assumptions on the interactions), this is far beyond the scope of this paper. Therefore we simply adapt the main idea of their proof.

Proof. First, applying the comparison principle with the solution of

∂ t u KPP -∂ xx u KPP = u KPP (1 -u KPP ) in (0, +∞) × R u KPP (0, x) = u 0 (x) for all x ∈ R ,
we find directly u ≤ u KPP , whence

lim t→+∞ sup x>(2+ε)t u (t, x) = 0 for all ε > 0.
Similarly, lim

t→+∞ sup x>(2 √ rd+ε)t v (t, x) = 0 for all ε > 0.
Furthermore, (u, v) satisfies also (u, v) (u LLW , v LLW ), where (u LLW , v LLW ) is the solution of (1.1) with initial data (u 0 , 1), and by Lewis-Li-Weinberger [START_REF] Lewis | Spreading speed and linear determinacy for two-species competition models[END_REF], this yields

lim t→+∞ sup 0≤x<(c LLW -ε)t |u (t, x) -1| + |v (t, x)| = 0 for all ε ∈ (0, c LLW ) .
Next, let us prove that if 2 √ rd < 2 and provided

lim t→+∞ sup (2 √ rd+ε)t<x<(2-ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for all ε ∈ 0, 2 -2 √ rd 2 ,
then in fact the above limit can be reinforced as

lim t→+∞ sup 0≤x<(2-ε)t (|u (t, x) -1| + |v (t, x)|) = 0 for all ε ∈ (0, 2) . Let ε ∈ 0, 2-2 √ rd 3
. It is well-known (see Du-Lin [START_REF] Du | Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF][START_REF] Du | Erratum: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[END_REF]) that there exists a unique solution of

   -ϕ = ϕ 1 -a -ϕ in (0, +∞) ϕ (0) = 0 ϕ (x) > 0 for all x > 0 .
Furthermore, this solution is increasing in (0, +∞) and converges to 1 -a at +∞.

In view of the assumption on the limit of (u, v) in 2 √ rd + ε t < x < (2 -ε) t, there exists T ≥ 0 and x 0 > 0 such that

u (t, y + (2 -2ε) t) > 1 -a > ϕ(y + (2 -2ε)t -x 0 ) for (y, t) ∈ {0} × [T, +∞), u(t, y + (2 -2ε)t) ≥ ϕ(y + (2 -2ε)t -x 0 ) for (y, t) ∈ (-∞, 0] × {T }, ϕ(y + (2 -2ε)t -x 0 ) > 0 when (y, t) = (0, T ). Let ũ(t, y) = u(t, y + (2 -2ε)t) and ũ(t, y) = ϕ(y + (2 -2ε)t -x 0 ). Then they satisfy for all (t, y) ∈ (0, +∞) × R, ∂ t ũ -∂ xx ũ -(2 -2ε)∂ x ũ -ũ(1 -ũ -av) ≤ 0 = ∂ xx ũ -(2 -2ε)∂ x ũ -ũ(1 -ũ -av),
it follows by virtue of the scalar comparison principle and of a change of variable

y = x -(2 -2ε) t that u (t, x) ≤ u (t, x) for all t ≥ T and x ≤ (2 -2ε) t. Consequently, lim inf t→+∞ inf εt<x<(2-2ε)t u (t, x) ≥ 1 -a,
whence there exists T ≥ 0 such that

inf εt<x<(2-2ε)t u (t, x) ≥ 1 -a 2 > 0 for all t ≥ T .
Repeating a limiting argument developed earlier in the course of the proof of Theorem 1.2 showing the locally uniform convergence of (u, v) to (1, 0) in the cone defined by 2εt < x < (2 -3ε) t (with suitable ε) and recalling that we have the estimate

lim t→+∞ sup 0≤x<(c LLW -ε)t |u (t, x) -1| + |v (t, x)| = 0 for all ε ∈ (0, c LLW ) ,
the claim is now proved.

It now remains to prove the most difficult part, namely

lim t→+∞ sup (2+ε)t<x<(2 √ rd-ε)t (|u (t, x)| + |v (t, x) -1|) = 0, if 2 √ rd > 2,
and

lim t→+∞ sup (2 √ rd+ε)t<x<(2-ε)t (|u (t, x) -1| + |v (t, x)|) = 0, if 2 √ rd < 2.
Since this is a symmetric statement and since the forthcoming proof does not rely upon the assumptions a < 1 and b > 1, we only do the case 2 √ rd > 2 (when v spreads faster than u) and the proof will be valid for the other case (when u spreads faster than v) as well.

Step 1: Let ū : (t, x) → min 1, e -(x-2t-x1) , where x 1 is chosen such that ū (0, x) ≥ u (0, x) for all x ∈ R. Then, by standard scalar comparison, u (t, x) ≤ ū (t, x) for all t ≥ 0 and x ∈ R.

Step 2: We show that for each c ∈ (2, 2 √ rd), there exist positive constants δ, x 2 , η 1 , R such that (3.1)

v (t , x + x 2 + ct) ≥ η 1 for all t ≥ 1, x ∈ (-2R, 2R) and t ∈ [(1 -δ) t, (1 + δ) t] .
To show (3.1), fix c ∈ 2, 2 √ dr and fix δ so small that

2 < c 1 + δ < c 1 -δ < 2 √ dr. Let η > 0, R > 0, x 2 ∈ R, c ∈ c 1+δ , c 1-δ and define v c : (t, x) → ηe -c 2d (x-ct) ψ 4R (x -ct -x 2 ) ,
where (λ 4R , ψ 4R ) is the Dirichlet principal eigenpair defined by

       -dψ 4R = λ 4R ψ 4R in (-4R, 4R) ψ 4R (±4R) = 0 ψ 4R (x) > 0 for all x ∈ (-4R, 4R) max ψ 4R = 1 . The principal eigenvalue λ 4R is positive, vanishes as R → +∞ and ψ 4R is extended into R by setting ψ 4R (x) = 0 if |x| > 4R.
Obviously,

∂ t v c -d∂ xx v c -rv c 1 -v c -bu ≤ ∂ t v c -d∂ xx v c -rv c 1 -v c -bu ,
whence the left-hand side above divided by ηe -c 2d (x-ct) is a fortiori smaller than or equal to

c2 2d ψ 4R -cψ 4R -d ψ 4R + c2 4d 2 ψ 4R - c d ψ 4R -rψ 4R 1 -v c -bu ≤ c2 4d + λ 4R -r + r v c + bu ψ 4R ≤ λ 4R + r v c + bu -γ ψ 4R ,
where the last inequality holds provided we choose the constant γ > 0 so small that

2 r(1 -γ)d > c 1 -δ ≥ c.
Therefore, by choosing R so large that λ 4R < r γ 4 , x 2 so large that ū (t, x) ≤ γ 4b for all t ≥ 0 and x ≥ 2t + x 2 -4R

(which is possible by Step 1), and η so small that

η sup ĉ∈[ c 1+δ , c 1-δ ] sup ξ∈(-4R+x2,4R+x2) e -c 2d ξ ψ 4R (ξ -x 2 ) ≤ γ 4 , η sup ĉ∈[ c 1+δ , c 1-δ ] e -ĉ 2d (x-ĉ) ψ 4R (x -ĉ -x 2 ) ≤ v (1, x) for all x ∈ R,
we deduce that v c is a sub-solution for the single parabolic equation satisfied by v. By scalar comparison, v(t, x) ≥ v c(t, x) for all t ≥ 1 and x ∈ R. It follows then that

v c c t, x + x 2 + ct ≥ v c c c t, x + x 2 + ct = ηe -c 2d (x+x2) ψ 4R (x) ≥ ηe -c 2d x2 e -c d R min [-2R,2R] ψ 4R for all t ≥ 1 and x ∈ [-2R, 2R].
Noticing that the last expression on the right-hand side above is constant and denoting

η 1 = η min [-2R,2R] ψ 4R inf ĉ∈[ c 1+δ , c 1-δ ] e -ĉ 2d x2 e -ĉ d R ,
we may take the infimum over all c ∈ c 1+δ , c 1-δ and obtain indeed (3.1).

Step 3: We are now in position to show that, for any small ε > 0,

lim t→+∞ sup (2+ε)t<x<(2 √ rd-ε)t |v (t, x) -1| = 0.
Assume by contradiction the existence of sequences

(t n ) n∈N , (x n ) n∈N and of c ∈ (2, 2 √ rd) such that, as n → +∞, t n → +∞, xn tn → c and lim sup v (t n , x n ) < 1. Denote (c n ) n∈N = xn tn n∈N
, assume without loss of generality that c cn -

1 < δ/2, where δ = δ(c) is specified in Step 2.
For all n ∈ N, define τ n = cn c t n = xn c and

v n : (t, x) → v t + c c n τ n , x + x 2 + cτ n .
By Step 2 (with t = t + c cn τ n and t = τ n ), we deduce that

v n (t, x) ≥ η 1 if |x| ≤ 2R and t + c c n -1 τ n < δτ n ,
and hence (using

c cn -1 < δ 2 ) if |x -x 2 | ≤ 2R and |t| < δ 2 τ n .
By classical parabolic estimates (see Lieberman [START_REF] Gary | Second order parabolic differential equations[END_REF]), (v n ) n∈N converges up to a diagonal extraction in C loc R 2 , [0, 1] to a limit v ∞ which satisfies (using the fact that u(t

+ c cn τ n , x + cτ n ) → 0 in C loc R 2 , [0, 1] by Step 1, since (cτ n )/( c cn τ n ) = c n ≥ c 1+δ > 2 for all n) ∂ t v ∞ -d∂ xx v ∞ -rv ∞ (1 -v ∞ ) = 0 in R 2
and, in view of the above estimates,

v ∞ (t, x + x 2 ) ≥ η 1 for all t ∈ R and x ∈ [-2R, 2R] .
By standard classification of the entire solutions of the KPP equation, this implies v ∞ ≡ 1. In particular,

v(t n , x n ) = v c c n τ n , cτ n = v n (0, -x 2 ) → 1.
This directly contradicts lim sup v(t n , x n ) < 1.

In view of Proposition 3.1, in order to prove Theorem 1.1, we only have to prove that for each sufficiently small ε > 0,

lim t→+∞ sup x<(c -ε)t (|u (t, x) -1| + |v (t, x)|) = 0, lim t→+∞ sup (c +ε)t<x<(2 √ rd-ε)t (|u (t, x)| + |v (t, x) -1|) = 0, where c = max c LLW , f -1 2 √ rd .
3.2.2. Proof of Theorem 1.1. We begin with an algebraic lemma. 

Lemma 3.2. Let c 2 ≥ 2 √ 1 -a and c 1 > c 2 such that c 1 ≥ f (c 2 ). Then (Λ (c 2 , c 1 )) 2 + 1 Λ (c 2 , c 1 ) < c 1 . Proof. First, Λ(c 2 , c 1 ) is well-defined as c 1 ≥ max{c 2 , f (c 2 )}. Noticing that (Λ (c 2 , c 1 )) 2 -c 1 Λ (c 2 , c 1 ) + λ (c 2 ) (c 1 -c 2 ) + 1 = 0, we find that the claimed inequality is equivalent to -λ (c 2 ) (c 1 -c 2 ) < 0.
sup c > 0 | lim t→+∞ sup x≤ct (|u (t, x) -1| + |v (t, x)|) = 0 ≥ c .
It remains to verify that the quantity

c = inf    0 < c < 2 √ rd | lim t→+∞ sup ct≤x≤ 2 √ rd+c 2 t (|u (t, x)| + |v (t, x) -1|) = 0    satisfies c ≤ c . Notice that by Proposition 3.1, c ≤ 2.
Assume by contradiction c ∈ (c , 2] and let c 2 ∈ (c , c). Define δ as in Proposition 1.5, let δ ∈ (0, δ ) so small that c δ 2 < c and define subsequently (u δ , v δ ). By standard comparison,

u (t, x) ≤ min 1, w c2,2 √ rd (t, x) for all (t, x) ∈ (0, +∞) × R.
By virtue of Proposition 1.5, there exists y 0 ∈ R such that, for all y ≥ y 0 and t ≥ 0,

u δ   0, x -y - Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd t    ≥ min 1, w c2,2 √ rd (t, x) for all x ∈ R, Since c 2 < c ≤ 2 < 2 √ rd, c 2 > c = max c LLW , f -1 2 √ rd ≥ max 2 √ 1 -a, f -1 2 √ rd , Lemma 3.2 yields Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd < 2 √ rd. Choose c > 0 such that max    1 2   2 √ rd + Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd    , 2    < c < 2 √ rd.
By virtue of Proposition 1.5,

x → v δ 0, x -y - (Λ(c2,2 √ rd)) 2 +1 Λ(c2,2 √ rd)
t is compactly supported for all y ≥ y 0 and t ≥ 0. Since also 2 < c < 2 √ rd, by virtue of Proposition 3.1, there exists T 0 ≥ 0 such that, for all T ≥ T 0 , v δ (0, x -cT ) ≤ v (T, x) for all x ∈ R. Now, relating the parameters y and T as follows,

cT = y + Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd
T, where we have c >

Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd ,
we find the existence of y ≥ y 0 and T ≥ T 0 such that

v δ   0, x -y - Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd T    ≤ v (T, x) for all x ∈ R. Then (u, v) : (t, x) → u δ , v δ   t -T, x -y - Λ c 2 , 2 √ rd 2 + 1 Λ c 2 , 2 √ rd T   
is a super-solution of (1.1) which satisfies (u, v) (u, v) at t = T , whence by the comparison principle of Theorem 2.5 it satisfies the same inequality at any time t ≥ T . A contradiction follows from Proposition 1.5 and c δ 2 < c, as in the proof of Theorem 1.2.

3.3. Proof of Theorem 1.3. Let c 1 > 2 √ rd, c 2 > c LLW and assume c 1 > max (c 2 , f (c 2 )). Proof. Fix δ , δ = δ
2 and c δ 2 , and define the super-and sub-solutions (u δ , v δ ) and (u δ , v δ ) as in Proposition 1.6.

First, let (u 0 , v 0 ) ∈ C R, [0, 1]
2 be a pair such that

u δ , v δ (0, x) (u 0 , v 0 ) (x) u δ , v δ (0, x) for all x ∈ R
and satisfying also u 0 (x) ≤ w c2,c1 (0, x) for all x ∈ R.

By virtue of Theorem 2.6, there exists a (unique) solution (u, v) of (1.1) such that

(u, v) (0, x) = (u 0 , v 0 ) (x) for all x ∈ R, u δ , v δ (t, x) (u, v) (t, x) u δ , v δ (t,
x) for all t ∈ (0, +∞) and x ∈ R, u (t, x) ≤ min (1, w c2,c1 (t, x)) for all t ∈ (0, +∞) and x ∈ R.

Next, in view of the spreading properties of the super-solution and the subsolution and thanks to the comparison argument with the ODE system detailed in the proof of Theorem 1.2, it only remains to show that the quantity

c = inf c > 0 | lim t→+∞ sup ct≤x≤ c 1 +c 2 t (|u (t, x)| + |v (t, x) -1|) = 0 satisfies c ≤ c 2 .
Now, the choice of super-and sub-solutions above proves that c ∈ [c 2 , c δ 2 ]. Suppose to the contrary that c > c 2 . Then we can fix a sufficiently small δ ∈ (0, δ) such that c δ 2 ∈ (c 2 , c). (This is possible since c δ 2 c 2 as δ 0, by Proposition 1.6.) Then, thanks to

• the estimate u ≤ min (1, w c2,c1 ), • Lemma 3.2 which controls from above the speed of w c2,c1 , • the control from below of the exponential tail of v, we can use the super-solution u δ , v δ associated with a sufficiently small δ ∈ (0, δ) as barrier after some large time T δ to slow down the invasion of u in an impossible way. More precisely, just as in the proof of Theorem 1.1, there exist large T and y 0 such that, for all x ∈ R,

u(T , x) ≤ min (1, w c2,c1 (T , x)) ≤ u δ (0, x -y 0 ) and v(T , x) ≥ v δ (0, x -y 0 ).
This implies that

(u (t, x) , v (t, x)) u δ (t -T , x -y 0 ) , v δ (t -T , x -y 0 ) for all t ≥ T and x ∈ R
and c ≤ c δ 2 , which is a contradiction. This ends the proof.

4. Proofs of Proposition 1.4, Proposition 1.5 and Proposition 1.6

4.1. Several useful objects. In this subjection, we will define components which will be used for our later constructions. For ease of reading, we suggest the readers to skip Subsection 4.1 and only refer to it when a specific object is being used. 

List of Objects

Object(s) Defined in Used in Property f (c) Sect. 1.1, (1.3) f (c) = c + 2 √ a -c 2 -4(1 -a) c nlp Theorem 1.1(2) c nlp > cLLW λ(c) Sect. 1.1.3 λ(c) = λ δ (c) δ=0 Λ(c,
-cλ + r = 0 a δ Sect. 4.1.2 a δ → a as δ → 0 λ δ (c) Sect. 4.1.3 λ 2 -cλ + (1 -a δ ) = 0 c δ LLW Sect. 4.1.4; Lemma 4.2
Minimal wave speed of 

P (u, v) = F δ (u, v) F δ Sect. 4.1.4 (ϕ δ,c , ψ δ,c ) Sect. 4.
= ω δ,R δ (x3(t) -(2 r(1 -2δ)d -δ)t -ζ3) Lemma 4.15 Sect. 4.3.1 ψ δ,c (x3(t) -ct) = π δ,c,h (x3(t) -ct -ζ3) ξ4, ζ4 Lemma 
z c,c,δ (0,Xz ) z c,c,δ (t, x1(t) -ζ) 4.1.1. λ v .
The function λ v is defined as

λ v : 2 √ rd, +∞ → 0, r d c → 1 2d c - √ c 2 -4rd . 4.1.2. a δ .
For all δ ∈ 0, 1 2 , we denote

a δ = (1 -2δ) a 1 + δ .
Notice that a 0 = a and that δ → a δ is decreasing.

4.1.3. λ δ . For all δ ∈ 0, 1 2 , the function λ δ is defined as

λ δ : 2 √ 1 -a δ , +∞ → 0, √ 1 -a δ c → 1 2 c -c 2 -4 (1 -a δ )
.

The family (λ δ ) δ∈[0, 1 2 ] is continuous and increasing in δ. Note that λ 0 = λ, the latter being introduced in Subsection 1.1.3.

c δ

LLW . For all δ ∈ 0, 1 2 , c δ LLW denotes the minimal wave speed of the problem P (u, v) = F δ (u, v), where

F δ : (u, v) → u (1 + δ -u -av) rv (1 -2δ -v -bu) . Notice that (u, v) is a solution of P (u, v) = F δ (u, v) if and only if (U, V ) : (t, x) → u 1 + δ , v 1 -2δ t 1 + δ , x √ 1 + δ is a solution of P (U, V ) =   U 1 -U -(1-2δ)a 1+δ V (1-2δ)r 1+δ V 1 -V -(1+δ)b 1-2δ U   . Therefore c δ LLW = √ 1 + δĉ δ LLW ,
where ĉδ LLW is the minimal wave speed of equation (1.2) where (r, a, b) is replaced by (

1-2δ)r 1+δ , a δ , (1+δ)b 1-2δ . As such, c δ LLW satisfies 2 (1 -a δ ) (1 + δ) ≤ c δ LLW ≤ 2 √ 1 + δ.
4.1.5. ϕ δ,c , ψ δ,c . For all δ ∈ 0, 1 2 and c ≥ c δ LLW , ϕ δ,c , ψ δ,c denotes a componentwise monotonic profile of traveling wave with speed c for the problem

P (u, v) = F δ (u, v), connecting (1 + δ, 0) to (0, 1 -2δ) and satisfying the normalization ψ δ,c (0) = 1-2δ 2 .
The existence of such a profile is well-known (and proved for instance in [START_REF] Li | Spreading speeds as slowest wave speeds for cooperative systems[END_REF]). In fact, in the appendix, we will prove that any profile of traveling wave is componentwise monotonic and show that the condition

c + √ c 2 + 4rd 2d ≥ c -c 2 -4 (1 -a) 2 
implies the uniqueness, up to translation, of the profile associated with a particular speed c ≥ c LLW . However these results are not actually required here. What is required indeed is the forthcoming Lemma 4.1.

4.1.6. θ δ,c,A . For all δ ∈ 0, 1 2 , c ≥ c δ LLW and A > 0, define the function

θ δ,c,A : ξ → Ae 1 2d √ c 2 +4rd(b-1+δ)-c (ξ-ξ θ ) -e 1 2d - √ c 2 +4rd(b-1+δ)-c (ξ-ξ θ )
where the constant

ξ θ = d ln A c 2 + 4rd (b -1 + δ)
is fixed so that θ δ,c,A (0) = 0. This function is increasing in R.

4.1.7. ω δ,R and R ω δ . For all δ ∈ [0, 1) and all R > 0 large enough, ω δ,R : [-R, R] → [0, +∞) denotes the unique nonnegative nonzero solution of (4.1)

-dω -2 r (1 -δ) d -δ ω = rω (1 -δ -ω) in (-R, R) ω (±R) = 0 .
It is well-known that this problem admits a solution if and only if R is larger than or equal to some R ω δ > 0. We extend the definition of ω δ,R into the whole real line by setting

ω δ,R (ξ) = 0 if |ξ| > R. 4.1.8. π δ,c,h . For all δ ∈ [0, 1), c ≥ 2 √ rd and all h ∈ R, π δ,c,h denotes (4.2) π δ,c,h : (ξ) → π δ,c (ξ) + hξ,
where π δ,c denotes the unique (decreasing) profile of traveling wave solution of

∂ t v -d∂ xx v = rv (1 -δ -v)
connecting 0 to 1 -δ at speed c and satisfying π δ,c (0) = 1-δ 2 .

4.1.9. β c,B,η . For all c > 2 √ rd, η ∈ 0,

1 d √ c 2 -4rd and B > 0, β c,B,η denotes β c,B,η : ξ → max 0, e -λv(c)(ξ+ξ β ) -K β e -(λv(c)+η)(ξ+ξ β ) ,
where the constants

K β = r (1 + bB) η √ c 2 -4rd -dη and ξ β = ln K β η
are fixed so that β c,B,η is positive in (0, +∞) and null elsewhere.

4.1.10. α l and L α . Similarly to the construction of ω δ,R and R ω δ , we define α l : R → [0, +∞) and L α > 0 such that, for all l ≥ L α , (4.3)

   -α l = α l 1 -a -α l in (0, l) α l (0) = α l (l) = 0 α l (x) = 0 if x -l 2 > l 2 .
4.1.11. χ c . For all c ≥ 2 1-a 2 , χ c denotes the unique (decreasing) profile of traveling wave solution of (4.4)

∂ t u -∂ xx u = u 1 -a 2 -u connecting 0 to 1-a 2 at speed c and satisfying χ c (0) = 1-a 4 .
4.1.12. f δ (c) and Λ δ (c, c). For all δ ∈ 0, 1 2 , f δ denotes the function

f δ : 2 √ 1 -a δ , +∞ → 0, 2 √ 1 -a δ + √ a δ c → c -c 2 -4 (1 -a δ ) + 2 √ a δ .
Notice right now that provided c -f δ (c) > -4 √ a δ , c -f δ (c) has exactly the sign of c2 -4 (λ δ (c) (c -c) + 1). Indeed, by the fact that (λ δ (c))

2 -cλ δ (c) + 1 -a δ = 0, c2 -4 (λ δ (c) (c -c) + 1) = (c -2λ δ (c)) 2 -4 1 -λ δ (c) c + (λ δ (c)) 2 = c -c + c 2 -4 (1 -a δ ) 2 -4a δ = (c -f δ (c) + 2 √ a δ ) 2 -(2 √ a δ ) 2 = (c -f δ (c)) (c -f δ (c) + 4 √ a δ ) .
For all δ ∈ 0, 1 2 , Λ δ denotes the function

Λ δ : (c, c) → 1 2 c -c2 -4 (λ δ (c) (c -c) + 1) .
Its domain is the set of all (c, c) such that c ≥ 2 √ 1 -a δ and c ≥ max (c, f δ (c)) and it is decreasing with respect to both c and c. As a function of c only, with a fixed c, it bijectively maps 2 √ 1 -a δ , +∞ onto

1 2 c -c2 -4 (a δ + 1) , 1 2 c -c2 -4 c√ 1 -a δ + 2a δ -1 .
The family (Λ δ ) δ∈[0, 1 2 ) is increasing. Recalling the earlier definition of Λ, we find Λ 0 = Λ.

Finally, by construction, for all

(c, c) such that c ≥ 2 √ 1 -a δ and c ≥ max (c, f δ (c)), Λ δ (c, c) satisfies (4.5) (Λ δ (c, c)) 2 -cΛ δ (c, c) + λ δ (c) (c -c) + 1 = 0.
4.1.13. w δ,c,c . For all δ ∈ 0, 1 2 , c ≥ c δ LLW and c ≥ max (c, f δ (c)), w δ,c,c denotes the function w δ,c,c : (t, x) → e -λ δ (c)(c-c)t e -Λ δ (c,c)(x-ct) . In view of (4.5),

w δ,c,c (t, x) = e ((Λδ(c,c)) 2 +1)t e -Λ δ (c,c)x for all (t, x) ∈ [0, +∞) × R.
Recalling the earlier definition of w c,c , we find w c,c = w 0,c,c . 4.1.14. w c,c,A,η . For all c ≥ c LLW , c ≥ c such that c > f (c), η ∈ 0, min Λ (c, c) , c2 -4 (λ (c) (c -c) + 1) and A > 0, w c,c,A,η denotes w c,c,A,η : (t, x) → e -λ(c)(c-c)t max 0, e -Λ(c,c)(x-ct+xw) -K w e -(Λ(c,c)+η)(x-ct+xw) , where

K w = max   1, 1 + aA η c2 -4 (λ (c) (c -c) + 1) -η   = max 1, 1 + aA η (c -η -2Λ 0 (c, c))
and x w = ln Kw η is fixed so that, for all t ≥ 0, x → w c,c,A,η (t, x) is positive in (ct, +∞), null elsewhere, increasing in ct, ln(Λ(c,c)+η)-ln(Λ(c,c)) η + ct and decreasing in ln(Λ(c,c)+η)-ln(Λ(c,c)) η + ct, +∞ . Hereafter, the point where the global maximum is attained at t = 0 is denoted X w . 

z δ,c,c (t, x) = e -λ(c)(c-c)t e -c 2 (x-ct) sin π 2Rz (x -ct) if x -ct ∈ [0, 2R z ] 0 otherwise . where R z = π -c 2 + 4 (λ (c) (c -c) + 1 -δ) .
Hereafter, the point where the global maximum is attained at t = 0 is denoted X z .

Several useful lemmas.

Lemma 4.1. Let c > c LLW and (ϕ, ψ) be a profile of traveling wave solution of (1.1) with speed c. Then there exist A > 0 and B > 0 such that

ϕ (ξ) = Ae -λ(c)ξ + h.o.t. as ξ → +∞ and ψ (ξ) = Be λ -∞ (c)ξ + h.o.t. as ξ → -∞ where λ -∞ (c) = 1 2d c 2 + 4rd (b -1) -c ,
The proof of this lemma is quite lengthy. Therefore it is postponed to the appendix (see Corollary A. [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] LLW is the minimal wave speed of the system (1.2) where (r, a, b) is replaced by (1-2δ)r 1+δ , a δ , (1+δ)b 1-2δ , the continuity of δ → c δ LLW follows directly from the theorem due to Kan-on [START_REF] Kan-On | Fisher wave fronts for the Lotka-Volterra competition model with diffusion[END_REF] establishing the continuity of the spreading speed of (1.2) with respect to the parameters (r, a, b).

The monotonicity follows from the comparison principle.

Lemma 4.3. Let δ ∈ [0, 1). Then for all R ≥ R ω δ , max [-R,R] ω δ,R < 1 -δ. Furthermore, if δ > 0, then there exists R δ ≥ R ω δ such that, for all R ≥ R δ , max [-R,R] ω δ,R ≥ 1 -2δ,
and there exists a unique

x δ,R ∈ (-R, R) such that ω δ,R is increasing in [-R, x δ,R ],
decreasing in [x δ,R , R] and maximal at x δ,R .

Proof. The first inequality follows very classically from the first and second order conditions at any local maximum and from the strong maximum principle.

The second inequality comes from the locally uniform convergence of ω δ,R to 1 -δ as R → +∞. This fact is also well-known and its proof is not detailed here.

Finally, the piecewise strict monotonicity comes from the inequality

-dω δ,R -2 r (1 -δ) d -δ ω δ,R > 0 in (-R, R) ,
which implies the nonexistence of local minima.

The function α l satisfies of course a similar property. 

α l < 1 -a.
Furthermore, there exists L ≥ L α such that, for all l ≥ L,

max [0,l] α l ≥ 1 -a 2 ,
and there exists a unique x l ∈ (-l, l) such that α l is increasing in [0, x l ], decreasing in [x l , l] and maximal at x l .

Lemma 4.5. For all δ ∈ 0,

1 2 , c ≥ c δ LLW and c ≥ max (c, f δ (c)), w δ,c,c satisfies ∂ t w δ,c,c -∂ xx w δ,c,c = w δ,c,c in [0, +∞) × R.
Proof. The following equality being straightforward, (4.6)

∂ t w δ,c,c -∂ xx w δ,c,c -w δ,c,c = -λ δ (c) (c -c) + cΛ δ (c, c) -(Λ δ (c, c))
2 -1 w δ,c , the conclusion follows from (4.5).

Quite similarly, we have the following lemma.

Lemma 4.6. For all c ≥ c LLW , c ∈ (f (c) -4 √ a, f (c)) and δ ∈ 0, 1 4 -c 2 + 4 (λ (c) (c -c) + 1) , z δ,c,c satisfies (4.7) ∂ t z δ,c,c -∂ xx z δ,c,c = (1 -δ) z δ,c,c in [0, +∞) × R.
Proof. It suffices to verify

-λ (c) (c -c) + c2 4 + π 2R z 2 -(1 -δ) = 0,
which, in view of the definition of R z , is equivalent to

-λ (c) (c -c) + c2 4 + -c 2 + 4λ (c) (c -c) + 4 (1 -δ) 4 -(1 -δ) = 0.
The last statement obviously holds.

Lemma 4.7. For all c ≥ c LLW , c ≥ c such that c > f (c), η ∈ 0, min Λ (c, c) , c2 -4 (λ (c) (c -c) + 1)
and A > 0, the function w c,c,A,η satisfies, for all σ ≥ η,

(4.8) ∂ t w c,c,A,η -∂ xx w c,c,A,η ≤ w c,c,A,η 1 -w c,c,A,η -aAe -σ(x-ct+xw) .
Remark. The above inequality is to be understood in the weak sense associated with generalized sub-solutions.

Proof. For x -ct < 0, w c,c,A,η is trivial and the inequality obviously holds. We focus on the case x -ct > 0, where w c,c,A,η reduces to (t, x) → e -λ(c)(c-c)t e -Λ(c,c)(x-ct+xw) -K w e -(Λ(c,c)+η)(x-ct+xw) .

First, differentiating, we find:

∂ t w c,c,A,η (t, x) = -λ (c) (c -c) w c,c,A,η (t, x) + cΛ (c, c) e -λ(c)(c-c)t e -Λ(c,c)(x-ct+xw) -K w (c (Λ (c, c) + η)) e -λ(c)(c-c)t e -(Λ(c,c)+η)(x-ct+xw) , ∂ xx w c,c,A,η = e -λ(c)(c-c)t (Λ (c, c)) 2 e -Λ(c,c)(x-ct+xw) -K w (Λ (c, c) + η) 2 e -(Λ(c,c)+η)(x-ct+xw) ,
so that the auxiliary function

Q : (t, x) → e λ(c)(c-c)t -∂ t w c,c,A,η + ∂ xx w c,c,A,η + w c,c,A,η (t, x) satisfies Q (t, x) = λ (c) (c -c) -cΛ (c, c) + (Λ (c, c)) 2 + 1 e -Λ(c,c)(x-ct+xw) -K w λ (c) (c -c) -c (Λ (c, c) + η) + (Λ (c, c) + η) 2 + 1 e -(Λ(c,c)+η)(x-ct+xw) .
Using (4.5), it follows

Q (t, x) = K w η (c -η -2Λ (c, c)) e -(Λ(c,c)+η)(x-ct+xw) ,
that is, recalling the definition of Λ δ (c, c) as well as that of K w ,

Q (t, x) ≥ (1 + aA) e -(Λ(c,c)+η)(x-ct+xw) .
Next, getting rid of all the negative terms and using e -λ(c)(c-c)t ≤ 1, we find e λ(c)(c-c)t w c,c,A,η w c,c,A,η + aAe -σ(x-ct+xw) ≤ e -Λ(c,c)(x-ct+xw) e -Λ(c,c)(x-ct+xw) + aAe -σ(x-ct+xw)

Finally, using x > ct, x w = 1 η ln K w ≥ 0 as well as the assumption 0 < η ≤ min{Λ(c, c), σ}, we find e η(x-ct+xw) e -Λ(c,c)(x-ct+xw) + aAe -σ(x-ct+xw) ≤ e -(Λ(c,c)-η)xw + aAe -(σ-η)xw ≤ 1 + aA and the proof is therefore ended.

With an analogous proof, we obtain directly the following lemma.

Lemma 4.8. For all c > 2 √ rd, η ∈ 0, min λ v (c) , 1 d √ c 2 -4rd and B > 0, β c,B,η satisfies, for all σ ≥ η, -dβ c,B,η -cβ c,B,η ≤ rβ c,B,η 1 -β c,B,η -bBe -σ(ξ+ξ β ) in (R\ {0}) .
Lemma 4.9. For all δ ∈ (0, 1), c > 2 √ rd and h > 0, π δ,c,h satisfies

-dπ δ,c,h -cπ δ,c,h ≤ rπ δ,c,h 1 -δ -π δ,c,h in - c rh , c rh .
Furthermore, there exists h > 0 such that, for all h ∈ (0

, h ], max [- √ c rh ,0] π δ,c,h ≥ 1 -2δ, max [- √ c rh ,0] π δ,c,h > max π δ,c,h (0) , π δ,c,h - c rh .
Remark. It should be achievable to prove that the global maximum of π δ,c,h in c rh , 0 is actually unique and that π δ,c,h is increasing in (-∞, ξ ) and decreasing in (ξ , 0) but this is really unnecessary for our purpose.

Proof. Recalling that π δ,c,h (ξ) = π δ,c (ξ) + hξ (see Subsection 4.1.8), we have

-dπ δ,c,h (ξ) -cπ δ,c,h (ξ) = rπ δ,c (ξ) 1 -δ -π δ,c (ξ) -ch = rπ δ,c,h (ξ) 1 -δ -π δ,c,h (ξ) -hr ξ 1 -δ -π δ,c (ξ) + c r -π δ,c,h (ξ) ξ = rπ δ,c,h (ξ) 1 -δ -π δ,c,h (ξ) -hr -hξ 2 + 1 -δ -2π δ,c (ξ) ξ + c r .
It is easily verified that, inc rh , c rh ,

-hξ 2 + 1 -δ -2π δ,c (ξ) ξ + c r > -hξ 2 + c r ≥ 0,
where we used the facts

π δ,c,h > 1 -δ 2 for ξ < 0, and π δ,c,h < 1 -δ 2 for ξ > 0.
And the stated differential inequality is established.

The maximum of π δ,c,h inc rh , 0 is larger than or equal to

π δ,c,h - c rh = π δ,c - c rh - ch r ,
which is itself larger than or equal to 1 -2δ if h is small enough. Finally, since π δ,c -c rh vanishes exponentially as h → 0,

π δ,c,h - c rh = π δ,c - c rh + h > 0, and π δ,c,h (0) = π δ,c (0) + h < 0,
for all sufficiently small h. This implies that the values at ξ = 0 andc rh are smaller than the aforementioned maximum. Lemma 4.10. For all δ ∈ 0, 1 2 , c ≥ c δ LLW and A > 0, θ δ,c,A satisfies

(4.9) -dθ δ,c,A -cθ δ,c,A -rθ δ,c,A (1 -δ -b) = 0 in R. Proof. Note that θ δ,c,A is a linear combination of ξ → e 1 2d ± √ c 2 +4rd(b-1+δ)-c ξ ,
where 1 2d ± c 2 + 4rd(b -1 + δ) -c are the two distinct roots of the characteristic polynomial associated with the above linear ODE (4.9).

Lemma 4.11. For all c > 2 √ 1 -a, c ≥ c such that c > f (c) , η ∈ 0, min c2 -4 (λ (c) (c -c) + 1) , λ v (c) ,
and A > 0, there exists ζ 0 ∈ R such that the equation

χ c (x -ct + ζ 0 ) = w c,c,A,η (t, x)
admits for all t ≥ 0 an isolated solution x 0 (t) ∈ R such that

(1) χ c (x -ct + ζ 0 ) > w c,c,A,η (t, x) in a left-sided neighborhood of x 0 (t);

(2) χ c (x -ct + ζ 0 ) < w c,c,A,η (t, x) in a right-sided neighborhood of x 0 (t);

(3) ct < x 0 (t) < X w + ct.

Furthermore, x 0 ∈ C 1 ([0, +∞) , (0, +∞)).

Proof. Recall from standard results on the KPP equation that, since c > 2 √ 1 -a, there exists ζ 0,1 ∈ R such that

χ c (x + ζ 0,1 ) ∼ e -λ(c)x as x → +∞.
Hence there exists ζ 0 ∈ R such that, for all x ≥ 0,

χ c (x + ζ 0 ) ≤ 1 2 e -λ(c)x max y∈R w c,c,A,η (0, y) ≤ 1 2 max y∈R w c,c,A,η (0, y)
with max y∈R w c,c,A,η (0, y) uniquely attained at X w .

From the intermediate value theorem and the respective strict monotonicities of χ c in R and x → w c,c,A,η (0, x) in [0, X w ], it clearly follows that χ c (x + ζ 0 ) = w c,c,A,η (0, x) admits a unique solution x 0 (0) in (0, X w ).

Next, to define in the same way x 0 (t), it suffices to verify that for all t > 0,

w c,c,A,η (t, X w + ct) > χ c (X w + (c -c) t + ζ 0 ) .
Since X w + ct ≥ 0, it is a fortiori sufficient to verify that for all t ≥ 0,

e -λ(c)(c-c)t max x∈R w c,c,A,η (0, x) > 1 2 max x∈R w c,c,A,η (0, x) e -λ(c)(Xw+(c-c)t) .
This inequality reduces in fact to 2 > e -λ(c)Xw , which holds as λ (c) and X w are both positive. The existence of x 0 (t) for all t > 0 follows. Finally, the regularity of x 0 follows from the aforementioned monotonicities and the implicit function theorem. Lemma 4.12. For all δ ∈ 0, 1 2 , c ≥ c δ LLW and κ ∈ (0, δ], there exists ζ 1,κ ∈ R and A κ > 0 such that the equation

θ δ,c,Aκ (ξ) = ψ δ,c (ξ -ζ 1,κ ) admits an isolated solution ξ 1,κ ∈ R such that (1) θ δ,c,Aκ (ξ) > ψ δ,c (ξ -ζ 1,κ ) for ξ in a left-sided neighborhood of ξ 1,κ ; (2) θ δ,c,Aκ (ξ) < ψ δ,c (ξ -ζ 1,κ ) for ξ in a right-sided neighborhood of ξ 1,κ ; (3) ψ δ,c (ξ 1,κ -ζ 1,κ ) ≤ κ; (4) ζ 1,κ -ξ 1,κ → +∞ as κ → 0.
Proof. Let δ, c and κ be given as in the statement, define

λ -∞ = 1 2d c 2 + 4rd (b -1 + (b + 2) δ) -c , λ + θ = 1 2d c 2 + 4rd (b -1 + δ) -c , λ - θ = 1 2d -c 2 + 4rd (b -1 + δ) -c , ξ θ = d ln A c 2 + 4rd (b -1 + δ) = ln A λ + θ -λ - θ ,
and notice that

λ - θ < 0 < λ + θ < λ -∞ . Let κ ∈ (0, κ] such that (1 -κ) λ -∞ > λ + θ . In view of Lemma 4.1, lim ξ→-∞ ψ δ,c (ξ) ψ δ,c (ξ) = λ -∞ .
Therefore, by monotonicity of ψ δ,c , there exists ζ κ ∈ R such that for all ξ ≤ 0,

ψ δ,c (ξ -ζ κ ) ≤ κ, 1 - κ 2 λ -∞ ≤ ψ δ,c (ξ -ζ κ ) ψ δ,c (ξ -ζ κ ) ≤ 1 + κ 2 λ -∞ . Note that ζ κ → +∞ as κ → 0. It remains to find A > 0, ζ 1 > ζ κ and ξ 1 ∈ (0, ζ 1 -ζ κ ] such that θ δ,c,A (ξ 1 ) = ψ δ,c (ξ 1 -ζ 1 ) , θ δ,c,A (ξ 1 ) θ δ,c,A (ξ 1 ) ≤ (1 -κ) λ -∞ .
For all ξ ∈ R,

θ δ,c,A (ξ) = Aλ + θ e λ + θ (ξ-ξ θ ) -λ - θ e λ - θ (ξ-ξ θ ) > 0,
as well as the limit lim

κ→0 (ζ 1 -ξ 1 ) = lim κ→0 ζ κ = +∞.
This completes the proof.

Lemma 4.13. There exists δ 0 ∈ 0, 1 2 such that, for all δ ∈ [0, δ 0 ), c > c δ LLW and c ≥ max (c, f δ (c)), there exists ζ 2 ∈ R such that the equation

ϕ δ,c (x -ct) = w δ,c,c (t, x -ζ 2 )
admits for all t ≥ 0 an isolated solution

x 2 (t) ∈ R such that (1) ϕ δ,c (x -ct) > w δ,c,c (t, x -ζ 2 ) for all x ∈ (x 2 (t) , +∞); (2) ϕ δ,c (x -ct) < w δ,c,c (t, x -ζ 2 ) for all x ∈ (-∞, x 2 (t)); (3) ϕ δ,c,c (x 2 (t) -ct) ≤ δ b . Furthermore, ( 1 
)
x 2 ∈ C 1 ([0, +∞) , (ζ 2 , +∞)); (2) x 2 (t) = ct + O (1) as t → +∞. Remark. As δ → 0, f δ (c) → f (c). It can be verified that (f δ (c)) δ∈[0, 1 2 
) is increasing, so that the convergence occurs from above.

Proof. Recall from Lemma 4.1 that there exists ζ ∈ R such that,

ϕ δ,c (ξ -ζ) ∼ e -λ δ (c)ξ as ξ → +∞.
Hence, by the intermediate value theorem, for each t ≥ 0 and each ζ 2 ∈ R, the equation

ϕ δ,c (x -ct) = w δ,c,c (t, x -ζ 2 ) = e -λ δ (c)(c-c)t e -Λ δ (c,c)(x-ζ2-ct)
admits at least one solution x (t) provided Λ δ (c, c) > λ δ (c). This inequality is true indeed, since it is equivalent to

c -c2 -4 (λ δ (c) (c -c) + 1) > 2λ δ (c) , that is to c2 -4λ δ (c) c + 4 (λ δ (c)) 2 > c2 -4 (λ δ (c) (c -c) + 1) , that is to (λ δ (c)) 2 -cλ δ (c) + 1 > 0, that is (recalling that λ δ (c) is characterized by (λ δ (c)) 2 -cλ δ (c) + 1 -a δ = 0) to the obviously true following inequality, a δ > 0.
Since ϕ δ,c (ξ) < 1 + δ for all ξ ∈ R, any such solution satisfies

-ln (1 + δ) < λ δ (c) (c -c) t + Λ δ (c, c) (x (t) -ζ 2 -ct) , that is x (t) > ζ 2 + c - λ δ (c) (c -c) + ln (1 + δ) /t Λ δ (c, c) t.
By

lim δ →0 c - λ δ (c) (c -c) + ln (1 + δ ) /t Λ δ (c, c) = c - λ (c) (c -c) Λ (c, c)
uniformly for t ≥ 1, and, due to the preceding observation,

λ (c) (c -c) Λ (c, c) < c -c,
we deduce that x(t) > ζ 2 + ct provided δ is small enough. Therefore the set of solutions is bounded from below and admit an infimum I (t) > ζ 2 + ct. Back to the exponential estimates, it is also clear that the set of solutions is bounded from above and admits therefore a supremum S (t).

Recall that the asymptotic estimate for ϕ δ,c can be differentiated. Setting g :

(t, x) → ϕ δ,c (x -ct) -w δ,c,c (t, x -ζ 2 )
, we find that for any t ≥ 0 and any solution

x (t) ∈ [I (t) , S (t)], ∂ x g (t, x (t)) = ϕ δ,c (x (t) -ct) ϕ δ,c ϕ δ,c (x (t) -ct) + Λ δ (c, c) .
Since

lim ξ→+∞ ϕ δ,c ϕ δ,c (ξ) + Λ δ (c, c) = -λ δ (c) + Λ δ (c, c) < 0,
we can choose ζ 2 large enough so that

ϕ δ,c ϕ δ,c (ξ) < 0 for all ξ ≥ ζ 2 . Since x (t)-ct > ζ 2 for all t ≥ 0, we deduce ϕ δ,c ϕ δ,c (x (t) -ct) + Λ δ (c, c) < 0,
whence g is decreasing with respect to x in a neighborhood of x (t). This implies directly the uniqueness of x (t), namely I (t) = S (t). From now on, we denote this unique solution x 2 (t). Of course, the regularity of x 2 follows directly from the implicit function theorem. The above yields that x 2 (t)

-ct ≥ ζ 2 for all t ≥ 0. Provided ζ 2 is large enough, for all ξ ≥ ζ + ζ 2 , (1 -δ) e -λ δ (c)ξ ≤ ϕ δ,c (ξ -ζ) ≤ (1 + δ) e -λ δ (c)ξ . At ξ = x 2 (t) -ct + ζ ≥ ζ + ζ 2 , this reads (1 -δ) e -λ δ (c)(x2(t)-ct+ζ) ≤ w δ,c,c (t, x 2 (t) -ζ 2 ) ≤ (1 + δ) e -λ δ (c)(x2(t)-ct+ζ) , that is ln (1 -δ) -λ δ (c) (x 2 (t) -ct + ζ) ≤ -λ δ (c) (c -c) t -Λ δ (c, c) (x 2 (t) -ζ 2 -ct) ≤ ln (1 + δ) -λ δ (c) (x 2 (t) -ct + ζ) .
The first inequality yields

x 2 (t) ≤ c (Λ δ (c, c) -λ δ (c)) t -ln (1 -δ) + λ δ (c) ζ + Λ δ (c, c) ζ 2 Λ δ (c, c) -λ δ (c
) and the second inequality yields

x 2 (t) ≥ c (Λ δ (c, c) -λ δ (c)) t -ln (1 + δ) + λ δ (c) ζ + Λ δ (c, c) ζ 2 Λ δ (c, c) -λ δ (c) .
Together these two estimates give that the asymptotic speed of x 2 is exactly c. Finally, using once again x 2 (t) -ct ≥ ζ 2 , we find

ϕ δ,c (x 2 (t) -ct) ≤ (1 + δ) e -λ δ (c)(x2(t)-ct+ζ) ≤ (1 + δ) e -λ δ (c)(ζ+ζ2) ,
and the inequality

ϕ δ,c (x 2 (t) -ct) ≤ δ b for all t ≥ 0 Lemma 4.17. For all c > 2 √ 1 -a, there exists ζ 0 ∈ R such that, for all κ ∈ 0, 1-a 2 , the equation α L (x) = χ c (x -ct -ζ 0 )
admits for all t ≥ 0 a minimal solution x 0,κ (t) ∈ R such that

(1) α L (x) > χ c (x -ct -ζ 0 ) for x in a left-sided neighborhood of x 0,κ (t); (2) χ c (x 0,κ (0) -ζ 0 ) = κ; (3) x L < x 0,κ (t) < L. Furthermore, x 0,κ ∈ C 1 ([0, +∞) , (x L , L)).
Notice that in the above lemma, x 0,κ (0

) = χ c -1 (κ) + ζ 0 . Lemma 4.18. For all c > 2 √ 1 -a, c ≥ c such that c ∈ (f (c) -4 √ a, f (c)), δ ∈ 0, 1 4 -c 2 + 4 (λ (c) (c -c) + 1) and ζ > χ c -1 δ
2 , the equation

χ c (x -ct) = χ c (ζ) z c,c,δ (0, X z ) z c,c,δ (t, x -ζ)
admits for all t ≥ 0 an isolated solution

x 1 (t) ∈ R such that (1) χ c (x -ct) > χc(ζ) z c,c,δ (0,Xz) z c,c,δ (t, x -ζ) for x in a left-sided neighborhood of x 1 (t); (2) χ c (x -ct) < χc(ζ) z c,c,δ (0,Xz) z c,c,δ (t, x -ζ) for x in a right-sided neighborhood of x 1 (t); (3) ct + ζ < x 1 (t) < X z + ct + ζ. Furthermore, x 1 ∈ C 1 ([0, +∞) , (ζ, +∞)).
Remark. Similarly to the third interface x 3 which is defined in two separate lemmas, the zeroth interface is defined concurrently by Lemma 4.11 and Lemma 4.17 and the first interface is defined concurrently by Lemma 4.12 and Lemma 4.18. Lemma 4.11 will be used only in the proof of Proposition 1.6, Lemma 4.12 will be used only in the proof of Proposition 1.6 and in that of Proposition 1.5, Lemma 4.17 and Lemma 4.18 will be used only in the proof of Proposition 1.4.

There exists a small δ ∈ 0, 1 2 such that all the lemmas of this subsection involving a parameter δ can be applied in the range δ ∈ (0, δ ). By construction, all the objects depending on δ defined in the preceding subsection are also welldefined in this range.

Construction of the super-solutions and sub-solutions for Theorem 1.3.

In this subsection, we prove Proposition 1.6.

Let c 1 > 2 √ rd and c 2 > c LLW such that c 1 > c 2 and c 1 > f (c 2 ). In order to construct a satisfying approximated speed c δ 2 c 2 , we need to find c δ 2 such that:

(1) c δ 2 > c δ LLW ; (2) c δ 2 → c 2 as δ → 0; (3) c 2 < c δ 2 < c 1 ; (4) f δ c δ 2 < c 1 (5) Λ δ c δ 2 , c 1 is well-defined; (6) Λ δ c δ 2 , c 1 ≤ Λ (c 2 , c 1 ).
The condition (6) above is equivalent to

λ δ c δ 2 c 1 -c δ 2 ≤ λ (c 2 ) (c 1 -c 2 ), that is to λ δ c δ 2 λ (c 2 ) ≤ (c 1 -c 2 ) c 1 -c δ 2 ,
with a right-hand side necessarily larger than 1 provided (3) above is satisfied. Since the function (δ, c) → λ δ (c) is increasing with respect to c and decreasing with respect to δ, the sign of

λ δ c δ 2 -λ (c 2 ) is unclear if we only assume c δ 2 > c 2 .
Hence some care is needed and we cannot simply take a rough approximation like c δ 2 = c 2 + δ.

In fact, since a δ < a and λ(c

2 ) < √ 1 -a, we can choose δ ∈ (0, δ ) such that λ (c 2 ) < √ 1 -a δ .
Consequently, the following quantity is well-defined:

c δ 2 = λ -1 δ • λ (c 2 )
. Since λ and λ δ are both decreasing functions and λ (c

2 ) < λ δ (c 2 ), it follows that c δ 2 > c 2 , whence 4 λ δ c δ 2 c 1 -c δ 2 + 1 = 4 λ (c 2 ) c 1 -c δ 2 + 1 < 4 (λ (c 2 ) (c 1 -c 2 ) + 1) < c 2 1 ,
where the last inequality is due to c 1 -f (c 2 ) > 0 (see also Subsection 4.1.12). By continuity, we can further assume that δ is so small that

   c LLW ≤ c δ LLW < c δ 2 c 2 < c δ 2 < c 1 -4 √ a δ < c 1 -f δ c δ 2 .
It follows then, from Subsection 4.1.12, that

f δ c δ 2 < f (c 2 ) < c 1 ,
whence the quantity Λ δ c δ 2 , c 1 is well-defined. By definition, it satisfies

Λ δ c δ 2 , c 1 = 1 2 c 1 -c 2 1 -4 λ δ c δ 2 c 1 -c δ 2 + 1 = 1 2 c 1 -c 2 1 -4 λ (c 2 ) c 1 -c δ 2 + 1 < 1 2 c 1 -c 2 1 -4 (λ (c 2 ) (c 1 -c 2 ) + 1) , so that Λ δ c δ 2 , c 1 < Λ (c 2 , c 1 ).
4.3.1. Super-solution. The pair u δ , v δ is defined by (see Figure 4.2)

u δ (t, x) = min 1, ϕ δ,c δ 2 x -c δ 2 t -ζ 1,κ if x < x 2 (t) + ζ 1,κ w δ,c δ 2 ,c1 (t, x -ζ 1,κ -ζ 2 ) if x ≥ x 2 (t) + ζ 1,κ , v δ (t, x) =            max 0, θ δ,c δ 2 ,Aκ x -c δ 2 t if x < ξ 1,κ + c δ 2 t ψ δ,c δ 2 x -c δ 2 t -ζ 1,κ if x ∈ ξ 1,κ + c δ 2 t, x 3 (t) + ζ 1,κ π δ,c1,h (x -c 1 t -ζ 1,κ -ζ 3 ) if x ∈ [x 3 (t) + ζ 1,κ , ξ 4 + c 1 t + ζ 1,κ + ζ 3 ) β c1,B,η β (x -c 1 t -ζ 1,κ -ζ 3 -ζ 4 ) if x ≥ ξ 4 + c 1 t + ζ 1,κ + ζ 3
, where

• κ ∈ (0, δ] is fixed so small that ζ 1,κ -ξ 1,κ + x 2 (0) is large enough so that for all t ≥ 0, ξ 1,κ + c δ 2 t < x 2 (t) + ζ 1,κ (see Lemma 4.
12(4) and Lemma 4.13 and use Lemma 4.13 Lemma 4.15, x 2 (t) -c 1 t and x 3 (t) -c 1 t are both bounded uniformly in t ≥ 0, whence we can translate x 3 (t) to the right by increasing ζ 3 );

x 2 (t) ≥ c 1 t + O(1) ≥ c δ 2 t + O(1)); • ζ 3 is fixed so large that, for all t ≥ 0, x 2 (t) < x 3 (t) (by
• h = h 2 ; • η β = 1 2 min 1 d c 2 1 -4rd, Λ δ c δ 2 , c 1 ; • B = e Λ δ (c δ 2 ,c1)ξ β 2u δ (0, ζ 1,κ + ζ 3 + ζ 4 ). The inequality x 3 (t) + ζ 1,κ < ξ 4 + c 1 t + ζ 1,κ + ζ 3
is guaranteed by Lemma 4.15 and Lemma 4.16 which respectively show that x 3 (t) < c 1 t + ζ 3 and ξ 4 > 0. In conclusion, we have

ξ 1,κ + c δ 2 t < x 2 (t) + ζ 1,κ < x 3 (t) + ζ 1,κ < ξ 4 + c 1 t + ζ 1,κ + ζ 3
for all t ≥ 0, i.e. v δ is well-defined for all t ≥ 0. 

u (t, x) = χ c2 (x -c 2 t + ζ 0 ) if x < x 0 (t) w c2,c1,A,ηw (t, x) if x ≥ x 0 (t) , v (t, x) = min 1, e -λv(c1)(x-c1t) ,
where

η w = 1 2 min c 2 1 -4 (λ (c 2 ) (c 1 -c 2 ) + 1), λ v (c 1 )
. The function u depends on a constant A > 0 which will be fixed later on. 4.3.3. Up to some translations, the sub-solution (u, v) is initially smaller than the super-solution (u δ , v δ ). First, let V : R → [0, 1] be the smallest nonincreasing continuous function such that v δ (0, x) ≤ V (x) for all x ∈ R and let ζ 5 ∈ R such that, for all t ≥ 0, x → v δ (t, x + c 1 t) is C 1 and nonincreasing in (ζ 5 , +∞). The existence of ζ 5 follows from the fact that the last discontinuity of ∂ x v δ and the last local maximum of v δ move both at most at speed c 1 . The limit of V at -∞ is smaller than 1 and V (x) = v δ (0, x) if x > ζ 5 . Therefore, since v and v δ have the same exponential decay at +∞, there exists ζ 6 ≥ ζ 5 such that:

(1) for all t ≥ 0, 

x → v δ (t, x + c 1 t) is C 1 and nonincreasing in (ζ 6 , +∞); (2) for all x ∈ R, v δ (0, x) ≤ V (x) ≤ v (0, x -ζ 6 ). x χ(x -c2t) 1 C exp(-λv(c1)(x -c1t)) x0(t) v(t, x) u(t, x) w(t, x) Figure 4.1. Sub-solution u δ , v δ for Theorem 1.3 x 1 u(t, x) v(t, x) θ(x -c δ 2 t) ψ(x -c δ 2 t) π(x -c1t) ϕ(x -c δ 2 t) w(t, x) ξ1 + c δ 2 t x2 (t) x3(t) β(x -c1t) ξ4 + c1t 
P u δ , v δ F u δ , v δ
where the functions are regular in order to establish that u δ , v δ and u δ , v δ are indeed a super-solution and a sub-solution of (1.1) respectively. Also, the differential inequalities can also be verified before the translations are performed.

In what follows, for the sake of brevity, we voluntarily omit the mentions of the points (t, x), x -c 1 t, x -c 2 t or x -c δ 2 t where the various functions are evaluated. In view of the construction, it should be unambiguous.

First, we consider (4.10). By Lemma 4.10 and Lemma 4.12, for all (t, x) such that

u δ , v δ (t, x) = 1, θ δ x -c δ 2 t ,
we find, using w δ ≤ δ b (Lemma 4.13(3)),

P u δ , v δ -F u δ , v δ = ∂ t w δ -∂ xx w δ -w δ 1 -w δ -aπ δ -c 1 π δ -dπ δ -rπ δ 1 -π δ -bw δ w δ w δ + aπ δ -rπ δ δ + π δ -bw δ (0, 0) .
By Lemma 4.8, Lemma 4.13 and construction of B, for all (t, x) such that

u δ , v δ (t, x) = w δ (t, x) , β δ (x -c 1 t) ,
we find, By definition of β δ , and that of η β in Subsection 4.3.1,

P u δ , v δ -F u δ , v δ = ∂ t w δ -∂ xx w δ -w δ 1 -w δ -aβ δ -c 1 β δ -dβ δ -rβ δ 1 -β δ -bw δ w δ w δ + aβ δ rbβ δ w δ -Be -Λ δ (c δ 2 ,c1)(x-c1t+ξ β ) (0, 0) .
Finally, we consider the differential inequalities associated with (u δ , v δ ). By definition of χ δ , for all (t, x) such that

u δ , v δ (t, x) = χ δ (x -c 2 t) , 1 , we find P u δ , v δ -F u δ , v δ = -c 2 χ δ -χ δ -χ δ 1 -a -χ δ rbχ δ = 0 rbχ δ (0, 0) .
By Lemma 4.7, Lemma 4.11 and by construction of A = 2C δ e λv(c1)xw , for all (t, x) such that u δ , v δ (t, x) = w δ (t, x) , 1 , we find, using C δ e -λv(c1)(x-c1t) ≥ 1,

P u δ , v δ -F u δ , v δ = ∂ t w δ -∂ xx w δ -w δ 1 -w δ -a rbw δ aw δ 1 -Ae -λv(c1)(x-c1t+xw) 0 aw δ 1 -2C δ e -λv(c1)(x-c1t) 0 (0, 0) .
Similarly, for all (t, x) such that 

u δ , v δ (t, x) = w δ (t, x) , C δ e -λv(c1)(x-c1t) , x α(x) χ(x -ct) z(t, x -ζ) 1 C exp(-λv(c)(x -ct)) 0 x0(t) x1(t) v(t,
u δ,ζ,κ (t, x) =    α (x) if x < x 0 (t) χ (x -ct) if x ∈ [x 0 (t) , x 1 (t)) z δ (t, x -ζ) if x ≥ x 1 (t) , v δ,ζ (t, x) = min 1, C δ e -λv(c)(x-ζ-ct) .
4.5.3. Verification of the differential inequalities. Again, we verify that u δ,ζ,κ , v δ,ζ is a sub-solution. The only new components are α and z δ , the latter being handled with Lemma 4.6.

Discussion

As a preliminary remark, let us point out that analogous results can be obtained with the exact same method for the coexistence case a < 1, b < 1. In that case the solutions are characterized by a profile connecting (0, 0) to (0, 1) to 1-a 1-ab , 

f (c) = f (2 √ 1 -a) = 2 √ 1 -a + √ a , the condition √ rd > √ 1 -a + √ a always implies 2 √ rd > f (c LLW )
and consequently always implies that u invades at speed c LLW . In particular, the maximum of a → √ 1 -a + √ a in (0, 1) being √ 2, if rd > 2, then u invades at speed c LLW independently of the value of a and b. In ecological terms, if v is a sufficiently fast invader, then it decelerates optimally any stronger and slower competitor.

Applied to a pair (u 0 , 0), the nonexistence result reduces to a well-known property of the KPP equation satisfied by u in isolation: all solutions spread at least at speed 2.

In view of Figure 1.1, it is tempting to refer to the pair of speeds

(c 2 , c 1 ) = max c LLW , f -1 2 √ rd , 2
√ rd as a "minimal pair" and to the corresponding terrace as a "minimal terrace". But in our opinion, such a terminology would be misleading. Indeed, a very natural conjecture in view of the KPP literature is that the propagating terraces attract initial data with appropriate exponential decays (λ v (c 1 ) for v 0 and Λ (c 2 , c 1 ) for u 0 ). Assume this conjecture is true indeed, assume 2 < 2 √ rd < f (c LLW ) and fix a compactly supported or Heavyside-like u 0 . Then decreasing the decay of v 0 will increase the speed of v but decrease that of u (with the obvious convention that a compactly supported v 0 has an infinite decay).

More generally, this paper presents several results that are complementary to that of Lewis, Li and Weinberger, with several surprising consequences. It shows that c LLW is not always the relevant speed when predicting the speed of the invasion of u in the territory of v. The initial spatial distribution of v has to be taken into account and in particular, it can be inappropriate to approximate a very large territory by an unbounded territory. Also, even if c LLW is linearly determined and therefore only depends on a, the speed of u might still depend on rd.

It would be interesting to verify the existence of nonlocally pulled fronts in real biological invasions. Indeed, at first glance, our result might very well be described by ecological modelers as a strong case against diffusion equations: dispersal operators preserving compact supports, like the nonlinear diffusion of the porous form, ∂ t u -∆ (u m ), should never lead to such a result. Actually, Du and Wu [START_REF] Du | Spreading with two speeds and mass segregation in a diffusive competition system with free boundaries[END_REF] studied the analogous problem in a model with free boundaries, first considered by Guo and Wu [START_REF] Guo | Dynamics for a two-species competition-diffusion model with two free boundaries[END_REF], and showed under appropriate assumptions on the initial conditions that the spreading speed of the slower species is uniquely determined by the semi-wave system whose solutions were classified by Du, Wang and Zhou [START_REF] Du | Semi-wave and spreading speed for the diffusive competition model with a free boundary[END_REF]. Therefore, in such a model, the second speed is never enhanced. Let us also point out here that Li [START_REF] Li | Multiple invasion speeds in a two-species integro-difference competition model[END_REF] very recently addressed similar questions in the framework of integro-difference systems and did not find nonlocal pulling.

In 2014, Holzer and Scheel [START_REF] Holzer | Accelerated fronts in a two-stage invasion process[END_REF] considered a partially decoupled two-species system, which contains as a particular case the system (1.1) when b = 0. They found a sufficient condition for nonlocal pulling which is consistent with our necessary and sufficient condition c nlp > c LLW . Although we did not know their work at the time of writing of this paper, we discovered it during the reviewing process and acknowledge that they were the first to uncover the phenomenon of nonlocally pulled fronts. Interestingly, the same year, a more applied paper on horizontally transmitted hitchhiking traits, by Venegas, Allen and Evans [START_REF] Venegas-Ortiz | Speed of invasion of an expanding population by a horizontally transmitted trait[END_REF], suggested a speed formula that is consistent with our expression for c nlp ; yet a rigorous proof was missing.

To the best of our knowledge, the present paper is the first one to investigate general propagating terraces for reaction-diffusion systems with unstable intermediate steady states. By showing that multidimensional manifolds of terraces do exist, it opens new interesting research directions. 5.2. On the boundary of the set of admissible pairs of speeds. In the present paper, the question of existence at the boundary of the set of admissible pairs is not settled. It is in fact more subtle than expected.

Assuming only 2 √ rd > 2, this boundary is naturally partitioned as V ∪G∪H ∪D, where

V = {c LLW } × max 2 √ rd, f (c LLW ) , +∞ , G = (c, f (c)) | c ∈ c LLW , max c LLW , f -1 2 √ rd , H = max c LLW , f -1 2 √ rd , 2 √ rd × 2 √ rd , D = (c, c) | c ≥ 2 √ rd ,
and where G is possibly empty whereas V , H and D are always nonempty.

Points on V ∪ G should correspond to pairs (u 0 , v 0 ) with u 0 supported in a left half-line and v 0 exponentially decaying. Using both Theorem 1.3 and Theorem 1.2 as well as a limiting argument and the comparison principle, it is possible to obtain the existence of such a terrace with a pair (u 0 , v 0 ) of this form.

However, on H, which corresponds naively to pairs (u 0 , v 0 ) with compactly supported v 0 and exponentially decaying u 0 , such a construction seems to be impossible. A different, likely more delicate, argument is needed to deal with H. Still, we believe existence holds there.

On the contrary, on D, the question remains completely open. Indeed, on D, propagating terraces reduce to non-monotonic traveling waves connecting (0, 0) to (1, 0) with an intermediate bump of v. To the best of our knowledge, such traveling waves have never been studied. Even though it might be tempting to conjecture their nonexistence, we prefer to remain cautious here. 5.3. On the proofs. In the proof of Theorem 1.1, the approximated speed c δ 1 is necessary in the following sense: it is impossible to construct another v spreading this time exactly at speed 2 √ rd. This is an immediate consequence of the Bramson shift for the KPP equation [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF]: the level sets of the solution of the KPP equation satisfied by v in isolation with compactly supported initial data are asymptotically located at 2

√ rdt + s Bramson (t), with s Bramson (t) = -3 2 √ r log t + o (log t)
. By comparison, it is then easily verified that for the solution (u, v) of our competitive system, there exists a time shift s (t) ≤ s Bramson (t) such that the level sets of v in our problem are located at 2 √ rdt + s (t). Similarly, in the proofs of Theorem 1.1 and of Theorem 1.3, we believe that the approximated speed c δ 2 are needed to account for a time shift s (t) = 0 describing the position of the level sets of u. The characterization of this shift is completely open; the only hint provided by our approach is that s (t) is asymptotically nonnegative (contrarily to s (t) and s Bramson (t)). Proof. This result follows from a standard yet lengthy phase-plane analysis. The detailed proof can be found for instance in Kan-on [START_REF] Kan-On | Fisher wave fronts for the Lotka-Volterra competition model with diffusion[END_REF] or in Morita-Tachibana [START_REF] Morita | An entire solution to the Lotka-Volterra competitiondiffusion equations[END_REF].

(c) if λ -∞ 2,P = λ -∞ 1,P , then c + 2λ -∞ 2,P = √ c 2 + 4 > 0 and ϕ (ξ) = 1 -B |ξ| e λ -∞ 2,P ξ + h.o.t. ψ (ξ) = c+2λ -∞ 2,P a Be λ -∞ 2,P ξ + h.o.t. . (2) There exist A ∈ R, B ∈ R and C ≥ 0 such that B > 0 if C = 0 and, as ξ → +∞: (a) if c > 2 √ 1 -a, (i) if λ +∞ 1,P < λ +∞ 3,P , then A > 0 and ϕ (ξ) = Be -λ +∞ 2,P ξ + Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 -Ae -λ +∞ 1,P ξ + h.o.t. ; (ii) if λ +∞ 1,P = λ +∞ 3,P , then A > 0 if C = 0 and ϕ (ξ) = 2dλ +∞ 1,P -c a Ce -λ +∞ 1,P ξ + Be -λ +∞ 2,P ξ + h.o.t. ψ (ξ) = 1 -(A + Cξ) e -λ +∞ 1,P ξ + h.o.t. ; (iii) if λ +∞ 1,P ∈ λ +∞ 3,P , λ +∞ 2,P , then R +∞ P λ +∞ 3,P < 0, A > 0 if C = 0 and    ϕ (ξ) = Be -λ +∞ 2,P ξ + Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 -Ae -λ +∞ 1,P ξ + rb R +∞ P (λ +∞ 3,P ) Ce -λ
b) if c = 2 √ 1 -a, (i) if λ +∞ 1,P < λ +∞ 2,P , then A > 0 and ϕ (ξ) = (B + Cξ) e -λ +∞ 2,P ξ + h.o.t. ψ (ξ) = 1 -Ae -λ +∞ 1,P ξ + h.o.t. . (ii) if λ +∞ 1,P = λ +∞ 2,P , then 2dλ +∞ 1,P -c = √ c 2 + 4rd > 0 and ϕ (ξ) = 2dλ +∞ 1,P -c a (B + Cξ) e -λ +∞ 1,P ξ + h.o.t. ψ (ξ) = 1 -B + 1 2 Cξ ξe -λ ( 
Compiling these estimates, we obtain the following two corollaries. 

Let i -= 2 -# λ -∞
1,P , λ -∞ 2,P . Then there exist A > 0 and B > 0 such that, as ξ → -∞, 

ϕ (ξ) = 1 -A |ξ| i-e min(λ -∞ 1,P ,λ -∞ 2,P )ξ + h.o.t. ψ (ξ) = Be λ -∞ 2 
= (c, d, r, a, b) ∈ E. Let (ϕ, ψ) ∈ C 2 R, [0, 1]
2 be a profile of traveling wave solution of (1.1) with speed c connecting (1, 0) to (0, 1). Then (ϕ, ψ) is component-wise strictly monotonic, i.e.

(ϕ, ψ) (ξ 1 ) (ϕ, ψ) (ξ 2 ) whenever ξ 1 < ξ 2 .

Proof. The proof relies upon a sliding argument. The sliding argument for monostable problems has three main steps: first, showing that if two profiles are correctly ordered at some point far on the left, then they remain correctly ordered everywhere on the left of this point; next, showing thanks to the first step and the exponential estimates at +∞ that, up to some translation, the two profiles are globally ordered; finally, showing by optimizing the aforementioned translation that the two profiles actually coincide.

Notice that since the exponential estimates of Lemma A.1 can be differentiated, they imply the component-wise strict monotonicity of (ϕ, ψ) near ±∞. Thus we can define R > 0 such that (ϕ, ψ) is component-wise strictly monotonic in R\ [-R, R].

In particular, we can assume that

(A.1) (ϕ, ψ)(-R) (ϕ, ψ)(ξ) (ϕ, ψ)(R) for all ξ ∈ (-R, R).
Step 1: We claim that there is τ 1 > 0 such that for all τ ≥ τ 1 ,

(A.2) (ϕ, ψ) (ξ -τ ) (ϕ, ψ) (ξ) for all ξ ∈ R.
In view of the monotonicity of (ϕ, ψ) in R \ (-R, R), and (A.1), the claim clearly holds once we take τ 1 = 2R.

Step 2: Define τ to be the infimum of all τ ∈ (0, 2R] such that (A.2) holds true. It remains to show that τ = 0. Suppose to the contrary that τ > 0. By construction, (ϕ, ψ) (ξ -τ ) (ϕ, ψ) (ξ) for all ξ ∈ R.

Moreover, by (A.1) and monotonicity of (ϕ, ψ) in R \ (-R, R), we see that for each

τ ∈ τ 2 , 2τ , (ϕ, ψ) (ξ -τ ) (ϕ, ψ) (ξ) for all ξ ∈ R \ (-R + τ, R),
and in particular for all ξ ∈ R \ (-R + τ /2, R). By the minimality of τ > 0, there exists ξ ∈ [-R + τ /2, R] such that equality holds for at least one of the components. The strong comparison principle yields

(ϕ, ψ)(ξ -τ ) = (ϕ, ψ)(ξ) for all ξ ∈ R.
This implies (ϕ, ψ) is periodic with period τ , and contradicts (ϕ, ψ)(-∞) = (1, 0) and (ϕ, ψ)(+∞) = (0, 1). Hence τ = 0 and, subsequently, for all τ > 0, we have

(ϕ, ψ) (ξ -τ ) (ϕ, ψ) (ξ) for all ξ ∈ R,
which exactly means that (ϕ, ψ) is component-wise strictly monotonic.

A.3. Ordering of the decays. By a similar proof, we can characterize more precisely the decays. We recall that Roques-Hosono-Bonnefon-Boivin [START_REF] Roques | The effect of competition on the neutral intraspecific diversity of invasive species[END_REF] showed that the slow or fast decay problem is related to the pulled or pushed front problem. 

Let (ϕ, ψ) ∈ C 2 R, [0, 1] 2 and φ, ψ ∈ C 2 R, [0, 1]
2 be two profiles of traveling wave solution of (1.1) with speed c and ĉ respectively. Denote (i, C, D, i + , j + ) and î, Ĉ, D, î + , ĵ+ the quantities given by Corollary A.2 when applied to (ϕ, ψ) and φ, ψ respectively. Then at least one of the following estimates fails: Proof. The proof is by contradiction: we assume from now on that, on the contrary, the above two asymptotic estimates are satisfied. This means that, near +∞, any translation of (ϕ, ψ) dominates φ, ψ (in the sense of the competitive ordering).

Ĉξ î + e -λ +∞
Here are the three steps of the sliding argument of this proof.

Step 1: choose ξ 0 ∈ R sufficiently close to -∞ and such that for all ξ ≤ ξ 0 , (A. Notice that such a ξ 0 exists indeed, since ( φ, ψ)(-∞) = (1, 0), and max 5-a 8-4a , 3+b 4b < 1 with a < 1 and b > 1. We claim that if there exists τ ∈ R such that (ϕ, ψ) (ξ 0 -τ ) φ, ψ (ξ 0 ) , then (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ≤ ξ 0 .

Clearly, there exists ε ∈ 0, 1 4 such that (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) + ε (-1, 1) for all ξ ≤ ξ 0 . Now, let ε ∈ 0, 1 4 be the infimum of all these ε and assume by contradiction that ε > 0. In view of the limiting values at -∞ and of the inequality at ξ 0 , there exists ξ ∈ (-∞, ξ 0 ) such that 

-ϕ ε -cϕ ε -ϕ ε (1 -ϕ ε -aψ ε ) < ε (1 -(2 -a) ϕ ε -(1 -a) ε -aψ ε ) -dψ ε -cψ ε -rψ ε (1 -ψ ε -bϕ ε ) > -rε (1 -(2 -b) ψ ε -(b -1) ε -bϕ ε )
. We are now in position to apply the strong comparison principle of Theorem 2.5 and deduce from the existence of ξ a contradiction. Hence ε = 0, that is (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ≤ ξ 0 .

Finally, by strong comparison principle the strict inequality must hold for any ξ ≤ ξ 0 .

Step 2: in this step, we show the existence of τ 1 such that, for all τ ≥ τ 1 , (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ R.

To this end, we fix ξ 0 as in (A.3) and choose τ 0 > 0 large so that (ϕ, ψ) (ξ 0 -τ ) φ, ψ (ξ 0 ) for all τ ≥ τ 0 .

By Step 1, we deduce that for all τ ≥ τ 0 , (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ≤ ξ 0 .

Next, we use the asymptotic behavior of (ϕ, ψ) and ( φ, ψ) at +∞ to choose τ 1 ≥ τ 0 such that for all τ ≥ τ 1 , (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ≥ ξ 0 .

The above two inequalities complete Step 2.

Step 3: define τ as the infimum of all τ such that the preceding inequality holds true. By construction, (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ R. Hence, there exists ξ 1 > 0 large and δ > 0 small such that for all τ ∈ (τ -δ, τ ), (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ≥ ξ 1 .

By taking δ > 0 small, we have also that, for all τ ∈ (τ -δ, τ ), (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ [ξ 0 , ξ 1 ].

Finally, the result in Step 1 implies that for all τ ∈ (τ -δ, τ ), (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ R.

This contradicts the minimality of τ .

From the preceding lemma, Lemma A.1 and the respective monotonicities of c → λ +∞ 1,P , c → λ +∞ 2,P and c → λ +∞ 3,P , we deduce the following corollary which is a refinement of Lemma A.1. Basically, it discards the possibility of solutions having a fast decay and a super-critical speed. LLW and (ϕ, ψ) be a profile of traveling wave solution of (1.1) with speed c.

Then there exist A > 0 and C > 0 such that, as ξ → +∞:

( Remark. We emphasize that there exists a unique translation of the profile such that the normalization C = 1 holds. The remaining degree of freedom in the first case above (A can still take any positive value a priori ) is the main difficulty regarding uniqueness.

A.4. Uniqueness and continuity. We are now in position to establish the following uniqueness result. Then (ϕ, ψ) and φ, ψ coincide up to translation.

Proof. The proof relies upon a sliding argument again. In view of Corollary A.6, if c > c d,r,a,b LLW , the assumption λ +∞ 1,P ≥ λ +∞ 3,P immediately yields that the two profiles can be normalized so that they have the same decay at +∞. Similarly, in view of Lemma A.1, if c = c d,r,a,b LLW , then the two profiles can be normalized so that their decays either coincide or are well-ordered. In all cases, we can fix a priori the roles of the two profiles so that (ϕ, ψ) dominates φ, ψ near +∞. By following the first two steps of the proof of Lemma A.5, we can assume without loss of generality the existence of τ 0 ∈ R such that, for all τ ≥ τ 0 , (ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ R.

Next, define τ ∈ R as the infimum of all τ such that the preceding inequality holds true. It again suffices to show that there exists ξ ∈ R where equality holds for one of the components. Assume on the contrary that no such ξ exists. Thus the preceding inequality is strict for both components for all ξ ∈ R. Now, note that Otherwise we may further reduce τ , just as in the proof of Lemma A.5. Notice that this equality directly yields τ = 0, that is (ϕ, ψ) (ξ) φ, ψ (ξ) for all ξ ∈ R.

Next, from the fact that λ +∞ 1,P ≥ λ +∞ 3,P and, depending on c, Corollary A.6 or Lemma A.1, both of the above limits are equal to 1.

Since the decay rate at +∞ of both profiles coincide, we can reverse the profiles and repeat the proof. This leads to φ, ψ (ξ) (ϕ, ψ) (ξ) for all ξ ∈ R.

Hence the two profiles actually coincide, which directly contradicts the assumption of nonexistence of ξ .

In the end, ξ exists indeed and, by virtue of the strong comparison principle, the two normalized profiles coincide. In other words, the two profiles coincide up to translation. Finally, as a consequence of the uniqueness, we also have the continuity of the profiles with respect to the parameters.
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 23 The quantities f (c 2 ), λ (c 2 ), Λ (c 2 , c 1 ) 10 1.3. Organization of the paper 11 2. Competitive comparison principle 11 2.1. Competitive comparison principle 11 3. Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1Construction of the super-solutions and sub-solutions for Theorem 1.3 37 4.4. Construction of the super-solutions for Theorem 1.1 44 1. Introduction

  t w -δ∂ xx w = ρw (1 -w) in (0, +∞) × R w (0, x) = w 0 (x) for all x ∈ R with δ, ρ > 0 and w 0 ∈ C b (R) with nonempty support included in (-∞, 0] has the following spreading property: there exists a unique c KPP > 0 satisfying x) -1| = 0 for each c < c KPP lim t→+∞ sup ct<x |w (t, x)| = 0 for each c > c KPP .

  t, x) -1| + |v (t, x)|) = 0 for each c < c LLW lim t→+∞ sup ct<|x| (|u (t, x)| + |v (t, x) -1|) = 0 for each c > c LLW

  LLW -)t (|u (t, x) -1| + |v (t, x)|) = 0, lim t→+∞ sup (2+ )t<|x|<(2 √ rd-)t (|u (t, x)| + |v (t, x) -1|) = 0, lim t→+∞ sup (2 √ rd+ )t<|x| (|u (t, x)| + |v (t, x)|) = 0.

1. 1 . 1 .

 11 Spreading properties of initially localized solutions. Theorem 1.1. Let u 0 ∈ C (R, [0, 1]) \ {0} with support included in a left halfline and v 0 ∈ C (R, [0, 1]) \ {0} with compact support. Let (u, v) be the solution of equation (1.1). |u (t, x) -1| = 0 for each ε ∈ (0, 2) , lim t→+∞ sup (2+ε)t<x |u (t, x)| = 0 for each ε > 0.

Figure 1 . 1 .

 11 Figure 1.1. Examples of sets of admissible pairs of speeds (c 1 , c 2 )

( 1 . 2 .

 12 |u δ (t, x)| + |v δ (t, x)|) = 0 for all ε > 0, The forms of the super-and sub-solutions of Proposition 1.4 and Proposition 1.5 are illustrated in Figure 4.4 and Figure 4.3 respectively. Those of Proposition 1.6 are illustrated in Figure 4.1 and Figure 4.2. The quantities f (c 2 ), λ (c 2 ), Λ (c 2 , c 1 ). Let us explain by a heuristic argument how these three quantities come out naturally in the problem and what is their ecological meaning.

3 . 3 . 1 .

 331 Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 In this section, we assume Proposition 1.4, Proposition 1.5 and Proposition 1.6 are true. Proof of Theorem 1.2.

  Now we prove the remaining part of Theorem 1.1. Assume 2 √ rd > 2, define c as above, fix u 0 ∈ C (R, [0, 1]) \ {0} with support included in a left half-line and v 0 ∈ C (R, [0, 1]) \ {0} with compact support and let (u, v) be the solution of equation (1.1). Proof. By virtue of Theorem 1.2 and Proposition 3.1,

c) Sect. 1 . 1 . 3 ;

 113 Lemma 3.2 Λ(c, c) = Λ δ (c, c) δ=0 wc,c Sect. 1.1.3 u δ,ζ,κ , v δ,ζ Proposition 1(u δ , v δ ), (u δ , v δ ) Proposition 1.6 Sect. 3.3 Fig. 4.1 and Fig. 4.2 λv(c) Sect. 4.1.1 Sect. 4.3.2 and 4.5.1 dλ 2

4. 1 .

 1 15. z δ,c,c . For all c ≥ c LLW , c ∈ (f (c) -4 √ a, f (c)) and δ ∈ 0, 1 4 -c 2 + 4 (λ (c) (c -c) + 1) , z c,c,δ denotes the function defined by

Lemma 4 . 4 .

 44 For all l ≥ L α , max [0,l]

4. 3 . 2 .

 32 Sub-solution. First define the pair (u, v) by (see Figure4.1)

Figure 4 . 2 . 3 4. 3 . 5 .

 42335 Figure 4.2. Super-solution u δ , v δ for Theorem 1.3

Corollary A. 2 .

 2 Let P = (c, d, r, a, b) ∈ E and (ϕ, ψ) be a profile of traveling wave solution of the corresponding system with speed c. Then there exist i ∈ {2, 3}, C > 0, D > 0 and (i + , j + ) ∈ {0, 1} × {0, 1, 2} such that, as ξ → +∞,ϕ (ξ) = Cξ i+ e -λ +∞ i,P ξ + h.o.t. ψ (ξ) = 1 -Dξ j+ e -min(λ +∞ 1,P ,λ +∞ i,P )ξ + h.o.t. . Corollary A.3. Let P = (c, d,r, a, b) ∈ E and (ϕ, ψ) be a profile of traveling wave solution of the corresponding system with speed c.

Lemma A. 5 .

 5 Let p = (d, r, a, b) ∈ Π, c ≥ c p LLW and ĉ ≥ c. Define P = (c, p) ∈ E and P = (ĉ, p) ∈ E.

  î, P ξ = o Cξ i+ e -λ +∞ i,P ξ as ξ → +∞, Dξ ĵ+ e -min λ +∞ 1, P ,λ +∞ î, P ξ = o Dξ j+ e -min(λ +∞ 1,P ,λ +∞ i,P )ξ as ξ → +∞.

  (ϕ, ψ) (ξ -τ ) φ, ψ (ξ ) + ε (-1, 1)with, most importantly, equality for at least one of the components. Let us verify that(ϕ ε , ψ ε ) = φ, ψ + ε (-1, 1) is a sub-solution. Since (ϕ, ψ) satisfies by definition    -φ -c φ = (ĉ -c) φ + φ 1 -φ -a ψ -d ψ -c ψ = (ĉ -c) ψ + r ψ 1 -ψ -b φ ,we find (note that, by Proposition A.4, ( φ , ψ ) (0, 0))

From 1 -- 1 -

 11 (2 -a) ϕ ε -(1 -a) ε -aψ ε -(1 -(2 -b) ψ ε -(b -1) ε -bϕ ε ) 1 -(2 -a) φ + 1-a 4 -a ψ (2 -b) ψ + b-1 4 -b φ , we deduce by (A.3) that 1 -(2 -a) ϕ ε -(1 -a) ε -aψ ε -(1 -(2 -b) ψ ε -(b -1) ε -bϕ ε ) 0 0for all ξ ≤ ξ 0 .

  It suffices to show the existence of ξ ∈ R such that (ϕ, ψ) (ξ -τ ) (ϕ, ψ) (ξ ) with equality for at least one component. Granted, then the strong comparison principle yields(ϕ, ψ) (ξ -τ ) = φ, ψ (ξ) for all ξ ∈ R,and the proof is ended. Suppose by contradiction that such a ξ does not exist, that is(ϕ, ψ) (ξ -τ ) φ, ψ (ξ) for all ξ ∈ R.Now, the asymptotic behavior assumed at the beginning of this proof implieslim ξ→+∞ ϕ (ξ -τ ) φ (ξ) = +∞,andlim ξ→+∞ 1 -ψ (ξ -τ ) 1 -ψ (ξ) = +∞.

Corollary A. 6 .

 6 Let P = (c, d, r, a, b) ∈ E with c > c d,r,a,b

Proposition A. 7 .

 7 Let P = (c, d, r, a, b) ∈ E such that λ +∞ 1,P ≥ λ +∞ 3,P . Let (ϕ, ψ) ∈ C 2 R, [0, 1] 2 and φ, ψ ∈ C 2 R, [0, 1]2 be two profiles of traveling wave solution of (1.1) with speed c.

Corollary A. 8 .

 8 Let (d, r, a, b) ∈ Π such that d ≤ 2 + r 1-a . Then each speed c ≥ c d,r,a,bLLW is associated with a unique profile (up to translation). Proof. It suffices to prove that, for all c ≥ c d,r,a,b LLW , λ +∞ 1,(c,d,r,a,b) ≥ λ +∞ 3,(c,d,r,a,b) . Noticing that this inequality is equivalent to R +∞ (c,d,r,a,b) λ +∞ 3,(c,d,r,a,b) ≤ 0, we find that we just have to prove that, for all c ≥ c d,r,a,b LLW , the polynomial equation satisfied by λ +∞ 3,(c,d,r,a,b)

  and Corollary A.6).

	Lemma 4.2. The function δ → c δ LLW is continuous and nondecreasing in 0, 1 2 .
	Proof. Recalling that	c δ LLW =	√	1 + δĉ δ LLW ,
	where ĉδ			

  Figure 4.4. Sub-solution u δ,ζ,κ , v δ,ζ for Theorem 1.2 Note that v δ,ζ (t, x) ≤ δ 2a for all x ≥ ζ 0 + ζ + ct. By Lemma 4.18(3), we have x 1 (t) > ct + ζ and thus v δ,ζ (t, x) ≤ δ 2a for all x ≥ x 1 (t) + ζ 0 . Notice also that the support of x → u δ,ζ,κ (0, x) is included in [0, L + ζ + 2R z ]. 4.5.2. Cleansing. Again, we normalize and simplify:

	x)
	u(t, x)

  On the consequences of Theorem 1.1, Theorem 1.2 and Theorem 1.3. Consider here the Cauchy problem associated with Theorem 1.1, namely the initial condition u 0 of the slower and stronger species has a support included in (-∞, 0] while the initial condition v 0 of the faster and weaker species has compact support.

	1-b 1-ab .
	5.1. Treating 2 spreads at speed 2 √ rd as a parameter, Theorem 1.1 says that, while the species v always √ rd if it persists, the species u: • lags behind v and spreads at speed c LLW if 2 √ rd ≥ f (c LLW ); • lags behind v and spreads at speed f -1 (2 √ rd) > c LLW if 2 < 2 √ rd <
	f (c LLW ); • drives v to extinction and spreads at speed 2 if 2 In general, it is unclear whether c LLW = 2 √ 1 -a or not. Hence the condition √ rd < 2. √ 2 rd ≥ f (c LLW ) might be difficult to check in practice. However, since
	max c∈[2 √ 1-a,2]

  1) if λ +∞ 1,P < λ +∞ 3,P , then ϕ (ξ) = Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 -Ae -λ +∞ 1,P ξ + h.o.t.

	(4) if λ +∞ 1,P = λ +∞ 2,P , then R +∞ P	λ +∞ 3,P	< 0 and
	  	ϕ (ξ) = Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 + rb R +∞ P (λ +∞ 3,P ) Ce -λ +∞ 3,P ξ + h.o.t.	;
	(5) if λ +∞ 1,P > λ +∞ 2,P , then R +∞ P	λ +∞ 3,P	< 0 and
	  	ϕ (ξ) = Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 + rb R +∞ P (λ +∞ 3,P ) Ce -λ +∞ 3,P ξ + h.o.t.	;
				;
	(2) if λ +∞ 1,P = λ +∞ 3,P , then	
		ϕ (ξ) = ψ (ξ) = 1 -Cξe -λ +∞ 2dλ +∞ 1,P -c a Ce -λ +∞ 1,P ξ + h.o.t. 1,P ξ + h.o.t.	;
	(3) if λ +∞ 1,P ∈ λ +∞ 3,P , λ +∞ 2,P , then R +∞ P	λ +∞ 3,P	< 0 and
	  	ϕ (ξ) = Ce -λ +∞ 3,P ξ + h.o.t. ψ (ξ) = 1 + rb R +∞ P (λ +∞ 3,P ) Ce -λ +∞ 3,P ξ + h.o.t.	;
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is indeed satisfied provided ζ 2 is large enough.

Thanks again to the intermediate value theorem and the implicit function theorem, we can similarly establish the following lemmas. Since they involve the quantities L, x L and h , we recall that these are defined in Lemma 4.4 and Lemma 4.9 respectively. Lemma 4.14. There exists δ 1 ∈ 0, 1 2 such that, for all δ ∈ (0, δ 1 ), c ∈ c δ LLW , 2 and ζ 3 ∈ R, the equation

admits for all t ≥ 0 an isolated solution x 3 (t) ∈ R such that (1) ψ δ,c (x -ct) > ω δ,R δ x -2 r (1 -2δ) d -δ t -ζ 3 for x in a left-sided neighborhood of x 3 (t);

(2) ψ δ,c (x -ct) < ω δ,R δ x -2 r (1 -2δ) d -δ t -ζ 3 for x in a rightsided neighborhood of x 3 (t);

(3) for all t ≥ 0,

Lemma 4. [START_REF] Girardin | Non-cooperative Fisher-KPP systems: Asymptotic behavior of traveling waves[END_REF]. For all δ ∈ 0, 1 2 , c ≥ c δ LLW , c > 2 √ rd such that c ≥ c and h ∈ (0, h ), there exists ζ 0 3 ∈ R such that, for all

admits for all t ≥ 0 an isolated solution x 3 (t) ∈ R such that [START_REF] Alhasanat | Minimal-speed selection of traveling waves to the Lotka-Volterra competition model[END_REF] 

Remark. We have to point out here that the preceding two lemmas defining x 3 will never be used concurrently and no conflict of notation will occur. Lemma 4.14 will be used only in the proof of Proposition 1.5 whereas Lemma 4.15 will be used only in the proof of Proposition 1.6. In other words, going back to Theorem 1. 

for ξ in a left-sided neighborhood of ξ 4 ;

(2) π δ,c,h (ξ + ζ 4 ) < β c,B,η (ξ) for ξ in a right-sided neighborhood of ξ 4 ;

(3) ξ 4 > 0.

Notice that with this definition of ζ 5 and ζ 6 , the irregularity of v is initially on the right of the last irregularity of v δ . Since the distance between these two points is nondecreasing with respect to t, it is bounded from below by the initial distance.

Next, quite similarly, we define

The irregularity of u moves faster than the first irregularity of u δ (as c 1 > c δ 2 ), whence it is impossible to guarantee that they stay ordered. This is not a major issue but some additional care will be required later on. Still, without loss of generality, we assume that ζ 7 is so large that the irregularity of u and the second (last) irregularity of u δ , which both move at speed c 1 , stay ordered. 4.3.4. Cleansing. Now that all required translations are done, we fix

and thus there remains only one parameter: δ.

From now on, all the subscripts referring to fixed parameters are omitted. Furthermore, since all the properties of the functions χ, w, w δ , ϕ δ , ψ δ , θ δ , ω δ , π δ , β we are interested in are invariant by translation, we assume that these functions were correctly normalized from the beginning, so that

and we fix x 0 (0) = 0. Similarly, we define C δ = e λv(c1)ζ6 > 0 so that v δ (t, x) = min 1, C δ e -λv(c1)(x-c1t) and x w and ξ β are redefined so that Lemma 4.7 and Lemma 4.8 stay true as stated. Notice that χ, w, β, u and v now depend on δ because of these various normalizations (and consequently these notations come with a subscript δ from now on).

To summarize, the super-and sub-solutions are now defined as follows:

Furthermore, the interfaces satisfy, for all t ≥ 0,

we find θ δ ≤ κ ≤ δ and

we find, using

Similarly, for all (t, x) such that

we find

By Lemma 4.5 and Lemma 4.13, for all (t, x) such that

we find, using w δ ≤ ϕ δ (Lemma 4.13(1)),

By Lemma 4.9 and Lemma 4.13, for all (t, x) such that

aw δ e -λv(c1)(x-c1t) C δ -Ae -λv(c1)xw 0 (0, 0) .

4.4.

Construction of the super-solutions for Theorem 1.1. In this subsection, we prove Proposition 1.5.

Let

Recall from Subsection 4.1.12 that, given a fixed c, the function c → Λ δ (c, c) is decreasing and bijectively maps 2 √ 1 -a δ , +∞ onto

Thus the equation

admits a unique solution c δ 2 if and only if (4.12)

Since c 2 ∈ (c LLW , +∞) ⊂ 2 √ 1 -a, +∞ , we have by the above discussion

By the facts that c δ 1 → 2 √ rd and a δ → a as δ → 0, we deduce that we can in fact assume that δ is so small that (4.12) holds. Hence c δ 2 is well-defined. Furthermore, by continuity, c δ 2 converges to c 2 as δ → 0, and thus c δ 2 > c δ LLW . In summary, we can assume that δ is so small that c δ 1 and c δ 2 are well-defined, respectively close to c 1 and c 2 , and satisfy the following:

, where • κ ∈ (0, δ] is fixed so small that, for all t ≥ 0, ξ 1,κ + c δ 2 t < x 2 (t) + ζ 1,κ (see Lemma 4.12); • ζ 3 is fixed so large that, for all t ≥ 0, x 2 (t) < x 3 (t) (see Lemma 4.14). Thus, we have

Cleansing. Just as in the previous case, we normalize and simplify the notations so that x 2 (0) = 0 and the super-solution is defined as follows:

. 4.4.3. Verification of the differential inequalities. Just as in the previous case, we verify that u δ , v δ is indeed a super-solution. The only new component to account for is ω δ , which can be handled easily in view of its definition.

4.5. Construction of the sub-solutions for Theorem 1.2. In this subsection, we prove Proposition 1.4.

where 

Then the asymptotic behaviors of (ϕ, ψ) are as follows.

(1) There exist A > 0 and B > 0 such that, as ξ → -∞:

For all P ∈ E u , let Φ P , Ψ P be the unique profile of traveling wave solution of (1.1) with speed c satisfying Ψ P (0) = 1 2 . Then P →

N such that lim n→+∞ P n = P ∞ . By standard elliptic estimates (see ), the sequence Φ Pn , Ψ Pn n∈N converges, up to a diagonal extraction, in C 2 loc . A fortiori it converges pointwise in R. The limit (Φ ∞ , Ψ ∞ ) is continuous, monotonic, and satisfies Ψ ∞ (0) = 1 2 . Using standard elliptic estimates to study the asymptotic behaviors, we find easily lim -∞ (Φ ∞ , Ψ ∞ ) ∈ {(1, 0) , (0, 0)} and lim +∞ (Φ ∞ , Ψ ∞ ) = (0, 1) . ξ) is a KPP traveling wave with negative speed, which is impossible. Therefore the limit at -∞ of (Φ ∞ , Ψ ∞ ) is [START_REF] Alhasanat | Minimal-speed selection of traveling waves to the Lotka-Volterra competition model[END_REF]0). This shows that the sequence of monotonic functions Φ Pn , Ψ Pn n∈N converges pointwise in [-∞, +∞], whence by a variant of the Dini theorem it converges uniformly in R. In view of the preceding uniqueness result, the limit is exactly Φ P∞ , Ψ P∞ . Finally, a classical uniqueness and compactness argument shows that the previous diagonal extraction was not necessary and the sequence Φ Pn , Ψ Pn n∈N converges indeed in C b R, R 2 to Φ P∞ , Ψ P∞ .