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Hybrid high-order methods for the elliptic

obstacle problem∗

Matteo Cicuttin† Alexandre Ern‡ Thirupathi Gudi§

Abstract

Hybrid high-order methods are introduced and analyzed for the elliptic
obstacle problem in two and three space dimensions. The methods are
formulated in terms of face unknowns which are polynomials of degree
k = 0 or k = 1 and in terms of cell unknowns which are polynomials
of degree l = 0. The discrete obstacle constraints are enforced on the
cell unknowns. Higher polynomial degrees are not considered owing to
the modest regularity of the exact solution. A priori error estimates of
optimal order, that is, up to the expected regularity of the exact solution,
are shown. Specifically, for k = 1, the method employs a local quadratic
reconstruction operator and achieves an energy-error estimate of order

h
3
2
−ε, ε > 0. To our knowledge, this result fills a gap in the literature for

the quadratic approximation of the three-dimensional obstacle problem.
Numerical experiments in two and three space dimensions illustrate the
theoretical results.

Keywords. Hybrid high-order method; discontinuous-skeletal method; obsta-
cle problem; error estimates; variational inequalities

MSC. 65N15; 65N30; 65N12

1 Introduction

Hybrid Higher Order (HHO) methods have been introduced for linear elasticity
in [19] and linear diffusion in [21]. HHO methods have been extended to other
linear PDEs, such as advection-diffusion [22], Stokes [23], and elliptic inter-
face problems [12], and to nonlinear PDEs, such as Leray–Lions operators [17],
steady incompressible Navier–Stokes equations [20], nonlinear elasticity with
infinitesimal deformations [6], hyperelasticity with finite deformations [1], and
plasticity with small deformations [2]. Lowest-order HHO methods are closely
related to the Hybrid Finite Volume method [25] and the Mimetic Finite Dif-
ference methods [34, 9, 10], see also the unifying viewpoints in [24, 5]. HHO
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methods have been bridged in [16] to the hybridizable discontinuous Galerkin
methods [15] and to the nonconforming Virtual Element methods [4].

HHO methods employ face unknowns which are polynomials of arbitrary
order k ≥ 0 on each mesh face and cell unknowns which are polynomials of order
l ≥ 0, with l ∈ {k, k±1}, in each mesh cell. The cell unknowns can be eliminated
locally by static condensation leading to a global transmission problem posed
solely in terms of the face unknowns. For this reason, HHO methods are also
termed discontinuous skeletal methods. The formulation of HHO methods relies
on a local reconstruction operator of order (k + 1) in each mesh cell and a
local stabilization operator which weakly enforces a matching between the face
unknowns and the trace of the cell unknowns. HHO methods offer various
assets: they support polyhedral meshes, lead to local conservation principles, are
robust in various regimes, are computationally efficient owing to the above local
elimination procedure, and lend themselves to generic programming software
(see [14] and https://github.com/wareHHOuse/diskpp).

In this work, we devise and analyze a HHO method to approximate the
solution of the elliptic obstacle problem in two and three space dimensions.
We consider the polynomial degrees k ∈ {0, 1} for the face unknowns and the
polynomial degree l = 0 for the cell unknowns, and the obstacle constraint is
enforced on the cell unknowns. Higher polynomial degrees are not considered
owing to the modest regularity that is expected for the exact solution. Our main
result is Theorem 4.1 below where we establish an energy-error estimate of order
hr, with h the mesh-size, r = 1 if k = 0 and r = 3

2 − ε, ε > 0, if k = 1, where
these convergence rates optimally match the assumed regularity of the exact
solution. Note that in the absence of contact and for a smooth enough solution,
the present methods classically delivers a rate h2 if k = 1, even if piecewise con-
stant cell functions are used. Thus, the above rate reflects the nonlinear nature
of the problem. The salient point in Theorem 4.1 is the case where k = 1, since
we are able to reach the best convergence rate matching the expected regularity
of the exact solution even in 3D. As the literature review below reveals, the
present HHO method thus fills a gap for the quadratic approximation of the
three-dimensional obstacle problem. We emphasize that the HHO methodology
is instrumental in achieving this result, since the local reconstruction operator
produces quadratic polynomials in each mesh cell if k = 1, whereas the con-
straint is enforced on the cell unknowns and not on the reconstruction. Let
us also stress that the proposed HHO method is particularly attractive from a
computational viewpoint, since the discrete obstacle constraints are enforced on
the cell unknowns which are constant in each mesh cell. Hence, well-established
solvers like active-set methods [32] can be readily used.

Let us put our work in perspective with the literature. The elliptic obstacle
problem relies on firm mathematical foundations and appears in many engi-
neering applications; see, among others, the textbooks [28, 30, 33, 37]. The
numerical analysis of the two-dimensional elliptic obstacle problem using fi-
nite elements was pioneered in the 1970’s in [27, 8]. In [27], a linear finite
element method was proposed and analyzed with discrete obstacle constraints
enforced at the vertices of the triangulation, whereas in [8], a quadratic finite
element method was proposed and analyzed with discrete obstacle constraints
enforced at the edge midpoints of the triangulation. The assumption in [8] on
the finiteness of the free boundary length was relaxed in [40]. More recently
in [39], linear and quadratic discontinuous Galerkin (DG) methods were pro-
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posed and analyzed for the elliptic obstacle problem and a frictional contact
problem. These methods are designed by enforcing the discrete obstacle con-
straints at the vertices and the edge midpoints of the triangulation, similarly
to the case of conforming linear and quadratic finite elements, respectively.
The classical Crouzeix–Raviart nonconforming method was first studied in [41]
with the regularity assumption on the exact solution that u ∈ W s,p(Ω) with
s < 2 + 1/p and 1 < p < ∞. A refined analysis for the nonconforming method
with minimal regularity assumptions is presented in [13] by constructing a novel
conforming companion to the nonconforming discrete solution. Mimetic finite
difference methods which support general polyhedral meshes were studied in
[3]. Mixed and stabilized mixed methods, where both the solution and the La-
grange multiplier are approximated, were analyzed in [31]. Let us emphasize
that the analysis in the above articles for the obstacle problem is restricted to
two-dimensional problems. The design and analysis of linear conforming finite
element methods in three dimensions can be performed similarly to the two-
dimensional case. However, the design of a three-dimensional quadratic finite
element method that achieves optimal convergence rates (up to the regular-
ity of the exact solution) is not similar to the two-dimensional case. Recently,
in [29], a quadratic finite element method enriched with element-wise bubbles
was proposed and analyzed for the three-dimensional elliptic obstacle problem.
However the analysis assumes higher regularity, that is, u ∈ H3 piecewise in the
contact and non-contact regions. The above literature review shows that a gap
still remains concerning the quadratic approximation of the three-dimensional
elliptic obstacle problem.

This article is organized as follows. In Section 2, we present the model
problem. In Section 3, we introduce the HHO discretization; we also derive the
discrete elliptic obstacle problem and establish its well-posedness. In Section 4,
we prove our main result, namely an energy-error estimate of order h for k = 0
and of order h

3
2−ε, ε > 0, for k = 1. Finally, in Section 5, we present numerical

results on two- and three-dimensional test cases to illustrate our error estimate.

2 Model problem

Let D ⊂ Rd with d ∈ {2, 3} be an open subset with a Lipschitz boundary ∂D.
Let Hm(D) denote the standard L2-based Sobolev space of order m ≥ 0, and

let γ : H1(D) → H
1
2 (∂D) denote the well-known surjective trace map. More

generally, for any subset G ⊆ D (which is typically D or its boundary, a mesh
cell or its boundary, or a mesh face), we denote the norm and semi-norm on the
standard Sobolev space W s,p(G) by ‖ · ‖W s,p(G) and | · |W s,p(G), where s ≥ 0 is
the order of the derivative and 1 ≤ p ≤ ∞ is the exponent in the integration
(with the appropriate Lebesgue measure depending on the dimension of G). For
simplicity, we denote ‖ · ‖L2(G) by ‖ · ‖G and the L2(G)-inner product by (·, ·)G;
the same notation is used for vector-valued functions.

We consider the elliptic obstacle problem posed inD with a non-homogeneous
Dirichlet condition on ∂D. The data are the load function f ∈ L2(D), the

Dirichlet value g ∈ H
1
2 (∂D), and the obstacle function χ ∈ H1(D) ∩ C0(D)

such that χ ≤ g a.e. on ∂D. Define the set

K := {v ∈ H1(D) | v ≥ χ a.e. in D and γ(v) = g}. (2.1)
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Define the bilinear form a : H1(D) × H1(D) → R and the linear form ` :
H1(D)→ R, respectively, by

a(w, v) = (∇w,∇v)D and `(v) = (f, v)D. (2.2)

The model problem consists of finding u ∈ K such that

a(u, v − u) ≥ `(v − u) ∀v ∈ K, (2.3)

or, equivalently, of minimizing the functional J(v) := 1
2a(v, v) − `(v) over K.

Owing to the following Browder–Stampacchia Lemma (see [11, 33]), we infer
that the model problem (2.3) is well-posed.

Lemma 2.1 (Browder–Stampacchia). Let H be a real Hilbert space with norm
‖ · ‖H and let H ′ denote the dual space of H. Let a be a bilinear form on H×H
satisfying

a(v, v) ≥ α‖v‖2H and |a(w, v)| ≤ ξ‖w‖H‖v‖H for all w, v ∈ H, (2.4)

for some positive constants α and ξ. Let K be a nonempty, closed, convex
subset of H and let ` ∈ H ′. Then there exists a unique u ∈ K such that
a(u, v − u) ≥ `(v − u) for all v ∈ K.

In what follows, we make some (reasonable) additional smoothness assump-
tions on the exact solution. Specifically, we assume that for all 1 < p <∞ and
all s < 2 + 1

p , u ∈W s,p(D), and that the following complementarity conditions
hold true with λ := −∆u− f ,

λ ≥ 0 a.e. in D, (2.5a)

λ = 0 in the interior of the set {x ∈ D : u(x) > χ(x)}, (2.5b)

(u− χ)λ = 0 a.e. in D. (2.5c)

The above assumptions are reasonable once invoking the elliptic regularity the-
ory for obstacle problems if the problem data satisfies additional smoothness
assumptions. In particular, if χ ∈ H2(D) and g is the trace of a H2(D) func-
tion, then u ∈ H2(D) and the above complementarity conditions hold true [33].
Moreover, if f ∈ L∞(D) ∩ BV (D), g, χ ∈ C3(D) with g ≥ χ on ∂D, and if
the boundary ∂D is sufficiently smooth, then u ∈ W s,p(D) as stated above
[7, 8, 33, 40]. In the present work, we are going to assume that the domain D is
a polygon (if d = 2) or a polyhedron (if d = 3) so that it can be meshed exactly
with cells having straight edges or planar faces, respectively, and we are going
to assume that the above smoothness assumptions on the exact solution still
hold true.

3 Discretization by the hybrid high-order method

In this section, we present the setting for the HHO discretization of the elliptic
obstacle problem introduced in the previous section.
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3.1 Discrete setting

We consider a sequence of refined meshes (Th)h>0 where the parameter h denotes
the mesh-size and goes to zero during the refinement process. For all h > 0,
we assume that the mesh Th covers D exactly and consists of a finite collection
of non-empty disjoint open polyhedral cells T such that D =

⋃
T∈Th T and

h = maxT∈Th hT , where hT is the diameter of T . The present HHO methods can
be deployed on meshes having non-matching interfaces and cells of polyhedral
shape with planar faces. A closed subset F of D is defined to be a mesh face
if it is a subset of an affine hyperplane HF with positive (d − 1)-dimensional
Hausdorff measure and if either of the following two statements holds true: (i)
There exist T1(F ) and T2(F ) in Th such that F = ∂T1(F ) ∩ ∂T2(F ) ∩ HF ; in
this case, the face F is called an internal face; (ii) There exists T (F ) ∈ Th such
that F = ∂T (F ) ∩ ∂D ∩HF ; in this case, the face F is called a boundary face.
The collection of all the internal (resp., boundary) faces is denoted by F i

h (resp.,
Fb
h ), and we let Fh := F i

h∪Fb
h . Let hF denote the diameter of F ∈ Fh. For each

T ∈ Th, the set FT := {F ∈ Fh | F ⊂ ∂T} denotes the collection of all faces
contained in ∂T , nT the unit outward normal to T , and we set nTF := nT |F for
all F ∈ FT . Following [19, Def. 1], we assume that the mesh sequence (Th)h>0

is shape-regular in the sense that, for all h > 0, Th admits a matching simplicial
submesh Th (i.e., every cell and face of Th is a subset of a cell and a face of Th,
respectively) so that the mesh sequence (Th)h>0 is shape-regular in the usual
sense and all the cells and faces of Th have uniformly comparable diameter to
the cell and face of Th to which they belong. For a shape-regular mesh sequence
(Th)h>0, the maximum number of faces of a mesh cell is uniformly bounded (see
[18, Lemma 1.41]), i.e., there is a positive integer N∂ , uniform with respect to
h, such that

max
T∈Th

card(FT ) ≤ N∂ ∀h > 0. (3.1)

Moreover, the following discrete trace inequality holds true, where Pr(T ) is the
linear space of polynomials of degree at most r ≥ 0 on T , see [18, Lemma 1.46]:

‖q‖F ≤ Ctrh
− 1

2

F ‖q‖T ∀T ∈ Th, ∀F ∈ FT , ∀q ∈ Pr(T ), (3.2)

where Ctr depends on the mesh regularity and the polynomial degree r but is
uniform with respect to h. Henceforth, we use the notation C for a positive
generic constant whose value can change at each occurrence but is independent
of the mesh cell T ∈ Th and of h. The value of C can depend on the shape-
regularity of the mesh sequence and on the underlying polynomial degree.

3.2 Local reconstruction and stabilization operators

Let the face polynomial degree k ∈ {0, 1} be fixed. For all T ∈ Th, we define
the local discrete space

ÛkT := P0(T )× Pk(FT ), (3.3)

where Pk(FT ) :=
∏
F∈FT Pk(F ) is composed of piecewise polynomials of degree

at most k on the faces composing the boundary of T . We represent a generic
element v̂T ∈ ÛkT by v̂T = (vT , v∂T ) with vT ∈ P0(T ) and v∂T ∈ Pk(FT ). For

all T ∈ Th, we define the local reconstruction operator Rk+1
T : ÛkT → Pk+1(T )
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so that, for all v̂T = (vT , v∂T ) ∈ ÛkT ,

(∇Rk+1
T (v̂T ),∇w)T = (∇vT ,∇w)T + (v∂T − vT ,∇w · nT )∂T , (3.4a)

(Rk+1
T (v̂T ), 1)T = (vT , 1)T , (3.4b)

where (3.4a) is enforced for all w ∈ Pk+1(T ). The volume term on the right-
hand side of (3.4a) is zero since vT is constant; we keep this term for the sake of
consistency with the general setting from [21, 19]. Let π0

T be the L2-projection
onto P0(T ) and let πk∂T be the L2-projection onto Pk(FT ). We define the local

stabilization operator Sk∂T : ÛkT → Pk(FT ) such that, for all v̂T = (vT , v∂T ) ∈
ÛkT , we have

Sk∂T (v̂T ) := πk∂T
(
v∂T −Rk+1

T (v̂T )
)
−
(
π0
T

(
vT −Rk+1

T (v̂T )
))
|∂T

. (3.5)

Finally, the discrete counterpart of the local exact bilinear form (∇w,∇v)T is
the local discrete bilinear form aT : ÛkT × ÛkT → R defined by

aT (ŵT , v̂T ) := (∇Rk+1
T (ŵT ),∇Rk+1

T (v̂T ))T + (η∂TS
k
∂T (ŵT ), Sk∂T (v̂T ))∂T , (3.6)

with the piecewise constant weight η∂T defined on ∂T such that η∂T |F = h−1
F

for all F ∈ FT .
Let us briefly outline the stability and approximation properties associated

with the above operators. We equip the discrete space ÛkT with the following
seminorm:

|v̂T |ÛkT := ‖η
1
2

∂T (v∂T − vT )‖∂T , ∀v̂T = (vT , v∂T ) ∈ ÛkT . (3.7)

Observe that |v̂T |ÛkT = 0 implies that v∂T is constant on ∂T and equal to vT .

Lemma 3.1 (Stability). There exist positive constants C1 and C2, uniform with
respect to T and h, such that, for all v̂T ∈ ÛkT ,

C1|v̂T |2ÛkT ≤ aT (v̂T , v̂T ) ≤ C2|v̂T |2ÛkT . (3.8)

Proof. The proof follows that of [21, Lemma 4]. We briefly sketch it for com-
pleteness since we are dealing here with different polynomial degrees for the
face and the cell unknowns. Let v̂T ∈ ÛkT . Invoking the triangle inequality, the
regularity of the mesh sequence, the L2-stability of πk∂T , and the approximation
properties of π0

T , we infer that

|v̂T |ÛkT ≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + ‖η

1
2

∂Tπ
k
∂T (Rk+1

T (v̂T )− π0
T (Rk+1

T (v̂T )))‖∂T

≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + Ch−1

T ‖R
k+1
T (v̂T )− π0

T (Rk+1
T (v̂T ))‖T

≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + C ′‖∇Rk+1

T (v̂T )‖T ,

which proves the leftmost bound in (3.8). Concerning the rightmost bound, we
first observe that the definition (3.4a) of Rk+1

T (v̂T ) combined with the Cauchy–
Schwarz inequality and the trace inequality (3.2) readily imply that

‖∇Rk+1
T (v̂T )‖T ≤ C|v̂T |ÛkT .
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Moreover, invoking the same arguments as above implies that

‖η
1
2

∂TS
k
∂T (v̂T )‖∂T ≤ |v̂T |ÛkT + ‖η

1
2

∂Tπ
k
∂T (Rk+1

T (v̂T )− π0
T (Rk+1

T (v̂T )))‖∂T

≤ |v̂T |ÛkT + C ′‖∇Rk+1
T (v̂T )‖T ,

and since we have already proved that ‖∇Rk+1
T (v̂T )‖T ≤ C|v̂T |ÛkT , this concludes

the proof.

We define the local reduction operator ÎkT : H1(T ) → ÛkT such that, for all
v ∈ H1(T ),

ÎkT (v) :=
(
π0
T (v), πk∂T (v)

)
∈ ÛkT . (3.9)

Then, Rk+1
T ◦ ÎkT : H1(T )→ Pk+1(T ) acts as an approximation operator.

Lemma 3.2 (Approximation). Let s ≥ 0 and set t := min(k, s). There is C,
uniform with respect to T and h, so that, for any v ∈ Hs+2(T ), the following
holds true:

‖v −Rk+1
T (ÎkT (v))‖T + h

1
2

T ‖v −R
k+1
T (ÎkT (v))‖∂T + hT ‖∇(v −Rk+1

T (ÎkT (v)))‖T

+ h
3
2

T ‖∇(v −Rk+1
T (ÎkT (v)))‖∂T ≤ Cht+2

T |v|Ht+2(T ). (3.10)

Moreover, we have

‖η
1
2

∂TS
k
∂T (ÎkT (v))‖∂T ≤ Cht+1

T |v|Ht+2(T ). (3.11)

Proof. The proof of (3.10) is similar to [21, Lemma 3] (up to minor adaptations
due to the different polynomial degrees for the face and the cell unknowns). The
key observation is that (∇(v − RkT (ÎkT (v))),∇w)T = 0 for all w ∈ Pk+1(T ), so

that ‖∇(v − RkT ÎkT (v)))‖T = infw∈Pk+1(T ) ‖∇(v − w)‖T . Concerning (3.11), we
have

Sk∂T (ÎkT (v)) = πk∂T (v −Rk+1
T (ÎkT (v)))− π0

T (v −Rk+1
T (ÎkT (v)))|∂T .

Therefore, proceeding as in [21, Eq. (45)], we use the triangle inequality, the
stability of the L2-projectors, that η∂T is piecewise constant, and the regularity
of the mesh sequence to infer that

‖η
1
2

∂TS
k
∂T (ÎkT (v))‖∂T

≤ ‖η
1
2

∂Tπ
k
∂T (v−Rk+1

T (ÎkT (v)))‖∂T + ‖η
1
2

∂Tπ
0
T (v−Rk+1

T (ÎkT (v)))‖∂T

≤ ‖η
1
2

∂T (v −Rk+1
T (ÎkT (v)))‖∂T + Ch−1

T ‖π
0
T (v −Rk+1

T (ÎkT (v)))‖T

≤ C ′h−1
T (h

1
2

T ‖v −R
k+1
T (ÎkT (v))‖∂T + ‖v −Rk+1

T (ÎkT (v))‖T ),

and we conclude by invoking (3.10).

3.3 Discrete elliptic obstacle problem

The global discrete space is defined by

Ûkh :=

( ∏
T∈Th

P0(T )

)
×
( ∏
F∈Fh

Pk(F )

)
. (3.12)
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We use the notation v̂h =
(
(vT )T∈Th , (vF )F∈Fh

)
to denote a generic element

v̂h ∈ Ûkh . For all T ∈ Th, we denote by v̂T = (vT , (vF )F∈FT ) ∈ ÛkT the compo-
nents of v̂h attached to the mesh cell T and the faces composing its boundary.
We define the global reduction operator Îkh : H1(D) → Ûkh such that, for all
v ∈ H1(D),

Îkh(v) :=
(
(π0
T (v))T∈Th , (π

k
F (v))F∈Fh

)
. (3.13)

Note that Îkh(v) is well-defined since v is single-valued at all the internal faces
of the mesh.

The global discrete bilinear form ah on Ûkh × Ûkh is defined by

ah(ŵh, v̂h) :=
∑
T∈Th

aT (ŵT , v̂T ) +
∑
F∈Fb

h

ab
F (ŵT (F ), v̂T (F )), (3.14)

with the Nitsche-type boundary penalty bilinear form [35] such that

ab
F (ŵT (F ), v̂T (F )) := −(∇Rk+1

T (F )(ŵT (F )) · nD, vF )F − (wF ,∇Rk+1
T (F )(v̂T (F )) · nD)F

+ ςh−1
F (wF , vF )F , (3.15)

where ς > 0 is the boundary penalty parameter and nD is the unit outward
normal to D. The linear form `h on Ûkh is defined by

`h(v̂h) :=
∑
T∈Th

(f, vT )T +
∑
F∈Fb

h

`bF (v̂T (F )), (3.16)

with

`bF (v̂T (F )) := −(g,∇Rk+1
T (F )(v̂T (F )) · nD)F + ςh−1

F (g, vF )F . (3.17)

Remark 3.3 (Dirichlet boundary conditions). Alternatively, one can also en-
force Dirichlet boundary conditions strongly by setting the discrete unknowns
attached to the boundary faces of the mesh equal to the L2-projection of the
Dirichlet data onto Pkd−1(F ) for all F ∈ Fb

h and zeroing out the discrete test
functions attached to the boundary faces of the mesh. In this case, the con-
tribution of ab

F is dropped from the right-hand side of (3.14) and that of `bF is
dropped from the right-hand side of (3.16). This is the approach we use in the
numerical experiments reported below, but to allow for a bit more generality,
we consider the above boundary-penalty method in the error analysis.

The discrete admissible set K̂kh is defined by

K̂kh :=
{
v̂h ∈ Ûkh | (vT , 1)T ≥ (χ, 1)T , ∀T ∈ Th

}
. (3.18)

Notice that the constraint is enforced on the cell unknowns. The discrete elliptic
obstacle problem consists of finding ûh ∈ K̂kh such that

ah(ûh, v̂h − ûh) ≥ `h(v̂h − ûh) ∀v̂h ∈ K̂kh. (3.19)

Equivalently, ûh minimizes over K̂kh the discrete functional 1
2ah(v̂h, v̂h)− `h(v̂h).

In order to establish the well-posedness of the discrete problem (3.19), we study
the coercivity and boundedness of the discrete bilinear form ah on Ûkh × Ûkh . To

this purpose, we equip the space Ûkh with the following norm:

‖v̂h‖2Ûkh :=
∑
T∈Th

|v̂T |2ÛkT +
∑
F∈Fb

h

h−1
F ‖vF ‖

2
F . (3.20)
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Lemma 3.4 (Coercivity and boundedness). Assume that the boundary penalty
parameter is such that ς > 1

4N∂C
2
tr, where N∂ is defined by (3.1) and Ctr

by (3.2). Then, there exists two positive constants α and ξ, uniform with respect
to h, such that, for all v̂h, ŵh ∈ Ûkh ,

ah(v̂h, v̂h) ≥ α‖v̂h‖2Ûkh , (3.21a)

|ah(v̂h, v̂h)| ≤ ξ‖ŵh‖Ûkh‖ŵh‖Ûkh . (3.21b)

Proof. The coercivity property (3.21a) follows from the left bound in (3.8) and
classical techniques for Nitsche’s boundary penalty method, see, for example,
[18, Lemma 4.12] in the context of discontinuous Galerkin methods and [22,
Lemma 7] in the context of HHO methods. The boundedness property (3.21b)
follows from the Cauchy–Schwarz inequality, the right bound in (3.8), and by in-
voking the discrete trace inequality (3.2) to bound the first two terms composing
ab
h.

Corollary 3.5 (Well-posedness). Assume that ς > 1
4N∂C

2
tr. There exists a

unique ûh ∈ K̂kh solving the discrete elliptic obstacle problem (3.19).

Proof. The discrete admissible set K̂kh is nonempty since Îkh(u) ∈ K̂kh. More-

over, K̂kh is a closed convex subset of Ûkh . We can then invoke the Browder–
Stampacchia lemma together with coercivity and boundedness (see Lemma 3.4)
to conclude.

4 Error analysis

In this section, we state and prove our main result, that is, an energy-error
estimate for the HHO method with k ∈ {0, 1}. The estimate is optimal up to
the regularity of the exact solution if k = 1, whereas if k = 0, the estimate is still
optimal concerning the differentiability index of the exact solution, but requires
a somewhat stronger assumption on the integrability index since we essentially
require that u ∈ W 2,p(D) with p large enough instead of just u ∈ H2(D) (see
also Remark 4.2 below).

Theorem 4.1 (Energy-error estimate). Let u be the exact solution solving (2.3)
and let ûh be the discrete solution solving (3.19). Let Îkh be the global reduction
operator defined by (3.13). If k = 1, let ε ∈ (0, 1

2 ], set r = 3
2−ε, and assume that

u ∈ H1+r(D) = H
5
2−ε(D), (u − χ) ∈ W 2+ 1

p−
ε
2 ,p(D) with p = 2(d−1)

ε ∈ (1,∞),
and λ := −f −∆u ∈W 1−ε,1(D). If k = 0, set r = 1, let τ ∈ (0, 1), and assume
that u ∈ H1+r(D) = H2(D), (u − χ) ∈ W 2,p(D) with p = d

τ ∈ (1,∞), and
λ := −f − ∆u ∈ W τ,1(D). Then, there is C, uniform with respect to h, such
that the following holds true:

‖Îkh(u)− ûh‖Ûkh ≤ C
(
|u|H1+r(D) + Φu,λ

)
hr, (4.1)

where

Φu,λ =

‖u− χ‖
1
2

W
2+ 1

p
− ε

2
,p

(D)
|λ|

1
2

W 1−ε,1(D) if k = 1,

‖u− χ‖
1
2

W 2,p(D)|λ|
1
2

W τ,1(D) if k = 0.
(4.2)
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Moreover, we also have( ∑
T∈Th

‖∇(u−Rk+1
T (ûT ))‖2T +

∑
F∈Fb

h

h−1
F ‖u− uF ‖

2
F

) 1
2

≤ C
(
|u|H1+r(D) + Φu,λ

)
hr.

(4.3)

Proof. Let us set v̂h := Îkh(u) − ûh ∈ Ûkh . Using the discrete coercivity prop-

erty (3.21a) and the discrete variational inequality (3.19) together with Îkh(u) ∈
K̂kh, we find that

α‖Îkh(u)− ûh‖2Ûkh ≤ ah(Îkh(u)− ûh, Îkh(u)− ûh)

≤ ah(Îkh(u), Îkh(u)− ûh)− `h(Îkh(u)− ûh)

= ah(Îkh(u), v̂h)− `h(v̂h)

= ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F ))

+
∑
T∈Th

(λ, π0
T (u)− uT )T ,

where we used λ = −f − ∆u and that the cell component of v̂h attached to
T ∈ Th is vT = π0

T (u) − uT . Let us define T n
h := {T ∈ Th | u > χ on T}

(collecting the non-contact cells), T c
h := {T ∈ Th | u ≡ χ on T} (collecting the

contact cells), and T f
h := Th \ (T n

h ∪ T c
h ) (collecting the free-boundary cells).

Note that λ ≡ 0 on any T ∈ T n
h owing to (2.5b). Therefore, we have∑

T∈Th

(λ, π0
T (u)− uT )T =

∑
T∈T c

h

(λ, π0
T (u)− uT )T +

∑
T∈T f

h

(λ, π0
T (u)− uT )T .

Moreover, for all T ∈ T c
h , we have π0

T (u) = π0
T (χ), and hence

(λ, π0
T (u)− uT )T = (λ, π0

T (χ)− uT )T ≤ 0,

recalling that uT ≥ π0
T (χ) since ûh ∈ K̂kh and that λ ≥ 0 on D owing to (2.5a).

As a result, we have

α‖Îkh(u)− ûh‖2Ûkh ≤ ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F ))

+
∑
T∈T f

h

(λ, π0
T (u)− uT )T .

The first three terms on the right hand side are estimated in Lemma 4.3 below,
and the last term is estimated in Lemma 4.4 below. This readily lead to (4.1).
Finally, the bound (4.3) follows from (4.1) by invoking the rightmost bound
in (3.8), the triangle inequality, and the bound (3.10) on ∇(u − Rk+1

T (ÎkT (u)))
with s = t = 1

2 − ε ≥ 0 if k = 1 and s = t = 0 if k = 0.

Remark 4.2 (Regularity for k = 0). The regularity requirement u ∈ W 2,p(D)
with p = d

τ introduced in Theorem 4.1 for k = 0 can be reduced to u ∈ H2(D)
provided one uses a HHO method with cell unknowns of degree one on simplicial
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meshes and one enforces the obstacle constraint on the cell unknowns with
respect to the linear Lagrange interpolate of the obstacle function. Details are
omitted for brevity.

Lemma 4.3 (Consistency error on differential operator). Let r be as in The-
orem 4.1 and assume that the exact solution u is in H1+r(Ω). There is C,
uniform with respect to h, such that the following holds true for all v̂h ∈ Ûkh :∣∣∣∣ah(Îkh(u), v̂h) +

∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F ))

∣∣∣∣ ≤ Chr|u|H1+r(Ω)‖v̂h‖Ûkh .

Proof. The proof follows along the lines of [22, Sect. 6.2]; we sketch it for com-
pleteness. Re-organizing the various terms, we have

ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F )) = A1 +A2 +A3,

where

A1 =
∑
T∈Th

(∇Rk+1
T (ÎkT (u)),∇Rk+1

T (v̂T ))T + (∆u, vT )T

−
∑
F∈Fb

h

(∇Rk+1
T (F )(Î

k
T (F )(u)) · nD, vF )F ,

A2 =
∑
T∈Th

(η∂TS
k
∂T (ÎkT (u)), Sk∂T (v̂T ))∂T ,

A3 =
∑
F∈Fb

h

−(πkF (u)− g,∇Rk+1
T (F )(v̂T (F )) · nD)F + ςh−1

F (πkF (u)− g, vF )F .

Using the definition of Rk+1
T , integrating by parts the term (∆u, vT )T , and since

the normal component of ∇u is single-valued across the mesh internal faces, we
infer that

A1 =
∑
T∈Th

(∇(u−Rk+1
T (ÎkT (u))) · nT , v∂T − vT )∂T

+
∑
F∈Fb

h

(∇(u−Rk+1
T (F )(Î

k
T (F )(u))) · nD, vF )F .

We can now use the bound (3.10) on (u−Rk+1
T (ÎkT (u))) where we set s = r− 1

so that t = min(k, s) = s = r − 1 whether k = 1 or k = 0. Using the
Cauchy–Schwarz inequality and the definition of the ‖ · ‖Ûkh -norm, we then ob-

tain that |A1| ≤ Chr|u|H1+r(Ω)‖v̂h‖Ûkh . Furthermore, since ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T ≤

C|v̂T |ÛkT for all T ∈ Th, the Cauchy–Schwarz inequality and the bound (3.11)

on ‖η
1
2

∂TS
k
∂T (ÎkT (u))‖∂T imply that |A2| ≤ Chr|u|H1+r(Ω)‖v̂h‖Ûkh . Finally, since

∇Rk+1
T (F )(v̂T (F )) · nD and vF are polynomials of order at most k on F , we have

A3 = 0.
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Lemma 4.4 (Consistency error on Lagrange multiplier). Let p and Φu,λ be as
in Theorem 4.1. There is C, uniform with respect to h, such that the following
holds true: ∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ CΦu,λh

r.

Proof. Let T ∈ T f
h . Since (2.5c) implies that (λ, u− χ)T = 0, we infer that

(λ, π0
T (u)− uT )T = (λ, π0

T (u)− u+ χ− π0
T (χ) + π0

T (χ)− uT )T .

Since (λ, π0
T (χ)− uT )T ≤ 0, we obtain

(λ, π0
T (u)− uT )T ≤

(
λ, π0

T (u− χ)− (u− χ)
)
T

=
(
λ− π0

T (λ), π0
T (u− χ)− (u− χ)

)
T

≤ ‖λ− π0
T (λ)‖L1(T )‖(u− χ)− π0

T (u− χ)‖L∞(T ). (4.4)

(1) The case k = 1. The approximation properties of π0
T imply that

‖λ− π0
T (λ)‖L1(T ) ≤ Ch1−ε

T |λ|W 1−ε,1(T ). (4.5)

Furthermore, we also have

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ ChT |u− χ|W 1,∞(T ). (4.6)

The definition of p implies that α := 1 − d−1
p −

ε
2 = 1 − ε > 0. Moreover, by

assumption, we have (u − χ) ∈ W 2+ 1
p−

ε
2 ,p(D). Then, the Sobolev Embedding

Theorem implies that ∇(u − χ) ∈ C0,α(D). Since T ∈ T f
h , there is a point

x∗ ∈ T such that ∇(u− χ)(x∗) = 0 [38] and hence, for any x ∈ T , we have

|∇(u− χ)(x)| ≤ C|x− x∗|α‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
≤ ChαT ‖u− χ‖

W
2+ 1

p
− ε

2
,p

(D)
.

Therefore, we have

|u− χ|W 1,∞(T ) ≤ ChαT ‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
. (4.7)

Using (4.7) in (4.6), we obtain

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ Ch1+α

T ‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
. (4.8)

Substituting (4.5) and (4.8) in (4.4) and summing over all T ∈ T f
h , we find that∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ Ch2+α−ε‖u− χ‖

W
2+ 1

p
− ε

2
,p

(D)

∑
T∈T f

h

|λ|W 1−ε,1(T )

≤ Ch3−2ε‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
|λ|W 1−ε,1(D) = Ch3−2εΦ2

u,λ,

since 2 + α− ε = 3− d−1
p −

3ε
2 = 3− 2ε and where we used the definition (4.2)

of Φu,λ for k = 1. This completes the proof for k = 1.
(2) The case k = 0. Using the approximation properties of π0

T , we have

‖λ− π0
T (λ)‖L1(T ) ≤ ChτT |λ|W τ,1(T ), (4.9)
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and we also have

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ ChT |u− χ|W 1,∞(T ).

Since τ ∈ (0, 1) and p = d
τ , we have γ := 1 − d

p = 1 − τ > 0. Moreover,

by assumption, we have (u − χ) ∈ W 2,p(D). Then, the Sobolev Embedding
Theorem implies that ∇(u− χ) ∈ C0,γ(D). Proceeding as above for k = 1, we
infer that

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ Ch1+γ

T ‖u− χ‖W 2,p(D). (4.10)

Using (4.9) and (4.10) in (4.4) and summing over all T ∈ T f
h , we find that∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ Ch1+γ+τ‖u− χ‖W 2,p(D)

∑
T∈T f

h

|λ|W τ,1(T )

≤ Ch2‖u− χ‖W 2,p(D)|λ|W τ,1(D) = Ch2Φ2
u,λ,

since 1 + γ + τ = 2− d
p + τ = 2 and where we used the definition (4.2) of Φu,λ

for k = 0. This completes the proof for k = 0.

5 Numerical experiments

In this section, we briefly review some implementation aspects of the present
HHO method applied to elliptic obstacle problems, and we illustrate the above
theoretical results on two- and three-dimensional test cases from [36].

5.1 Implementation aspects

We implement Dirichlet boundary conditions strongly (see Remark 3.3). The
standard HHO matrix associated with the bilinear form

ah(ŵh, v̂h) =
∑
T∈Th

aT (ŵT , v̂T )

is denoted A ∈ RNkh×Nkh with Nk
h := |Th| +

(
k+d−1
d−1

)
|F i
h| (recall that the cell

unknowns are constant in each mesh cell), and the load vector associated with

the linear form `h(v̂h) =
∑
T∈Th(f, vT )T is denoted b ∈ RNkh . For any vector

α ∈ RNkh , we denote αT ∈ R its components attached to the mesh cell T ∈ Th
and (αF,n)0≤n<(k+d−1

d−1 ) its components attached to the internal face F ∈ F i
h of

the mesh.
The numerical solution of the discrete elliptic obstacle problem (3.19) is

based on the primal-dual active set method (see [32]). Let m ≥ 0 be the iteration

counter. For all m ≥ 0, we are looking for the solution vector αm ∈ RNkh and

the Lagrange multiplier vector βm ∈ RNkh (note that βm is actually a discrete
counterpart of the function −λ considered in the previous section). Since the
constraint is enforced on the cell unknowns, the components of β attached to the
internal faces of the mesh are always zero. Moreover, since the cell unknowns
are constant in each mesh cell, the primal-dual active set method leads to a
partition of the mesh cells into active and inactive ones; specifically, we consider
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the subsets T mA := {T ∈ Th | βmT + c(αmT − γT ) < 0} and T mI := T \ T mA , where
c > 0 is a numerical weighting parameter and γT = 1

|T |
∫
T
χ for all T ∈ Th. For

all m ≥ 1, given the pair (αm−1,βm−1) ∈ RNkh×RNkh and the resulting partition
(T m−1
A , T m−1

I ) of Th, we solve the following (nonsymmetric) linear system:
Aαm + βm = b

αmT = γT ∀T ∈ T m−1
A ,

βmT = 0, ∀T ∈ T m−1
I .

(5.1)

The iteration is started with α0 = 0, β0
T = −1 for all T ∈ Th, and the stopping

criterion is ‖αm+1 − αm‖
`2(RN

k
h )

< 10−6. The weighting parameter is set to

c = 1. The above linear system is solved using the PARDISO direct linear solver
included in the Intel MKL library. For further insight into the implementation of
HHO methods, the reader is referred to [14]. The open-source template library
DiSk++ is available at https://github.com/wareHHOuse/diskpp.

5.2 2D and 3D test cases

In 2D, we consider the square domain Ω = (−1, 1)2 and the obstacle function
χ = 0. We prescribe a contact radius r0 = 0.7 and, setting r2 = x2 + y2, we
take the load function

f(x, y) :=

{
−4(4r2 − 2r2

0) if r > r0,

−8r2
0(1− r2 + r2

0) if r ≤ r0.
(5.2)

It can be shown that the exact solution solving (2.3) is u(x, y) = max(r2−r2
0, 0)2.

Isocontours of the exact solution obtained using one of the hexagonal meshes
from our tests are displayed in Figure 1. In 3D, we consider the cubic domain
Ω = (0, 1)3 and the obstacle function χ = 0. We prescribe again a contact
radius r0 = 0.7 and, setting r2 = x2 + y2 + z2, we take the load function

f(x, y, z) :=

{
−4(5r2 − 3r2

0) if r > r0,

−8r2
0(1− r2 + r2

0) if r ≤ r0,
(5.3)

so that the exact solution solving (2.3) is u(x, y, z) = max(r2 − r2
0, 0)2.

Figure 1: Isocontours of the 2D exact solution obtained on one of the hexagonal
meshes.

The computations are run on six types of mesh sequences. In 2D, we consider
triangular, square Cartesian, and hexagonal mesh sequences, whereas in 3D, we
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consider tetrahedral, cubic Cartesian, and hexagonal-based-prismatic mesh se-
quences (this last mesh sequence corresponds to the set “F” of the FVCA6
benchmark [26]). Each mesh sequence is generated by successive uniform re-
finements from an initial coarse mesh; for the meshes involving hexagons, the
process is performed on an underlying simplicial mesh and the hexagons are
then created by agglomeration. The energy errors and convergence orders are
reported in Table 1 for triangular and tetrahedral mesh sequences, in Table 2
for square and cubic Cartesian mesh sequences, and in Table 3 for hexagonal
and hexagonal-based-prismatic mesh sequences. A summary of the results is
presented in Figure 2. In all cases, we observe that the reported results match
the theoretical predictions from the analysis.

Table 1: Errors and convergence rates on 2D triangular (left) and 3D tetrahedral
meshes (right).

2D (triangles) 3D (tetrahedra)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

3.10e-2 6.50e-1 – 2.64e-2 – 2.73e-2 1.59e0 – 1.03e-1 –
1.55e-2 3.29e-1 0.98 8.29e-3 1.67 1.36e-2 7.56e-1 1.07 2.58e-2 1.98
7.76e-3 1.65e-1 0.99 2.60e-3 1.67 1.09e-2 6.05e-1 1.03 1.69e-2 1.95
3.88e-3 8.27e-2 1.00 8.92e-4 1.54 8.61e-3 4.79e-1 0.98 1.09e-2 1.86
1.94e-3 4.14e-2 1.00 3.07e-4 1.54 6.87e-3 3.83e-1 0.99 7.08e-3 1.89

Table 2: Errors and convergence rates on 2D (left) and 3D (right) Cartesian
meshes.

2D (squares) 3D (cubes)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

6.25e-2 2.26e0 – 1.98e-1 – 4.17e-2 2.10e0 – 1.59e-1 –
3.13e-2 1.28e0 0.82 5.88e-2 1.75 2.08e-2 1.09e0 0.94 4.57e-2 1.79
1.56e-2 6.50e-1 0.98 1.72e-2 1.78 1.04e-2 5.54e-1 0.98 1.25e-2 1.88
7.81e-3 3.26e-1 0.99 5.30e-3 1.70 5.21e-3 2.78e-1 0.99 3.43e-3 1.86
3.91e-3 1.63e-1 1.00 1.68e-3 1.65 2.60e-3 1.39e-1 1.00 9.89e-4 1.79

Table 3: Errors and convergence rates on 2D hexagonal (left) and 3D prismatic
meshes (right).

2D (hexagons) 3D (hexagonal-based prisms)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

1.31e-1 2.73e0 – 5.50e-1 – 2.00e-2 9.37e-1 – 3.30e-2 –
6.53e-2 2.25e0 0.28 1.72e-1 1.67 1.01e-2 4.94e-1 0.94 9.66e-3 1.80
3.27e-2 1.32e0 0.76 4.92e-2 1.81 6.76e-3 3.35e-1 0.97 4.57e-3 1.87
1.63e-2 7.01e-1 0.92 1.51e-2 1.71 5.08e-3 2.53e-1 0.98 2.68e-3 1.86
8.16e-3 3.60e-1 0.96 4.82e-3 1.65
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Figure 2: Summary of the convergence results for the 2D (left) and 3D (right)
test cases. The mesh size is on the horizontal axis, and the energy error on the
vertical axis. Solid lines show the results for k = 0, and dashed lines for k = 1.
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