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Abstract

Discontinuous-skeletal methods are introduced and analyzed for the elliptic obstacle problem in
two and three space dimensions. The methods are formulated in terms of face unknowns which are
polynomials of degree k = 0 or k = 1 and in terms of cell unknowns which are polynomials of degree
l = 0. The discrete obstacle constraints are enforced on the cell unknowns. A priori error estimates of
optimal order (up to the regularity of the exact solution) are shown. Specifically, for k = 0, the method
employs a local linear reconstruction operator and achieves an energy-error estimate of order h, where h
is the mesh-size, whereas for k = 1, the method employs a local quadratic reconstruction operator and

achieves an energy-error estimate of order h
3
2
−ε, ε > 0. Numerical experiments in two and three space

dimensions illustrate the theoretical results.

Keywords. discontinuous-skeletal method, hybrid high-order method, obstacle problem, error estimates,
variational inequalities

Mathematics Subject Classification. 65N15, 65N30, 65N12

1 Introduction

Hybrid Higher Order (HHO) methods have been introduced recently for linear elasticity in [23] and for lin-
ear diffusion problems in [25]. HHO methods have been extended to other linear PDEs, such as advection-
diffusion [26] and Stokes [27], and to nonlinear PDEs, such as Leray–Lions operators [21], steady incompress-
ible Navier–Stokes equations [24], nonlinear elasticity with infinitesimal deformations [7], and hyperelasticity
with finite deformations [1]. HHO methods are formulated in terms of face unknowns which are polynomials
of arbitrary order k ≥ 0 on each mesh face and in terms of cell unknowns which are polynomials of order
l ≥ 0, with l ∈ {k, k± 1}, in each mesh cell. The cell unknowns can be eliminated locally by static conden-
sation leading to a global transmission problem posed solely in terms of the face unknowns. For this reason,
HHO methods are also termed Discontinuous-Skeletal methods. This is the terminology we adopt in this
work where we are going to focus on the choice k ∈ {0, 1} for the polynomial degree of the face unknowns
and l = 0 for the polynomial degree of the cell unknwons. HHO methods offer various assets: they support
polyhedral meshes, lead to local conservation principles, and their construction is independent of the space
dimension. Lowest-order HHO methods are closely related to the Hybrid Finite Volume method [30], the
Compatible Discrete Operator framework [6], and the Mimetic Finite Difference methods [40, 12, 13], see
also the unifying viewpoint in [28]. HHO methods have been bridged in [20] to hybridizable discontinuous
Galerkin methods [19] and to nonconforming Virtual Element methods [3].

In this work, we devise and analyze a Discontinuous-Skeletal method to approximate the solution of the
elliptic obstacle problem in two and three space dimensions. We consider the polynomial degrees k ∈ {0, 1}
for the face unknowns and the polynomial degree l = 0 for the cell unknowns, and the obstacle constraint
is enforced on the cell unknowns. As is customary with Discontinuous-Skeletal methods, their formulation
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relies on a local reconstruction operator and a local stabilization operator. The local reconstruction operator
produces linear polynomials in each mesh cell for k = 0 and quadratic polynomials in each mesh cell for
k = 1. The local stabilization operator weakly enforces a matching between the face unknowns and the
trace of the cell unknowns. Our main result is Theorem 4.1 below where we establish, under reasonable
smoothness assumptions on the exact solution, an energy-error estimate of order hr, where h is the mesh-size,
r = 1 if k = 0 and r = 3

2 − ε, ε > 0, if k = 1.
Let us put our work in perspective with the literature. The elliptic obstacle problem relies on firm

mathematical foundations and appears in many engineering applications; see, among others, the textbooks
[33, 35, 39, 43]. The numerical analysis of the two-dimensional elliptic obstacle problem using finite elements
was initiated in 1970’s in [32, 11]. In [32], a linear finite element method was proposed and analyzed with
discrete obstacle constraints enforced at the vertices of the triangulation, whereas in [11], a quadratic
finite element method was proposed and analyzed with discrete obstacle constraints enforced at the edge
midpoints of the triangulation. The assumption in [11] on the finiteness of the free boundary length was
relaxed in [47]. More recently in [46], linear and quadratic discontinuous Galerkin (DG) methods were
proposed and analyzed for the elliptic obstacle problem and a frictional contact problem. These methods
are designed by enforcing the discrete obstacle constraints at the vertices and the edge midpoints of the
triangulation, similarly to the case of conforming linear and quadratic finite elements, respcetively. The
classical Crouzeix–Raviart nonconforming method was first studied in [48] with the regularity assumption
on the exact solution that u ∈ W s,p(Ω) with s < 2 + 1/p and 1 < p < ∞. A refined analysis for the
nonconforming method with minimal regularity assumptions is presented in [16] by constructing a novel
conforming companion to the nonconforming discrete solution. Mimetic finite difference methods which
support general polyhedral meshes were studied in [2]. Mixed and stabilized mixed methods, where both
the solution and the Lagrange multiplier are approximated, were analyzed in [36]. Let us emphasize that the
analysis in the above articles for the obstacle problem is restricted to two-dimensional problems. The design
and analysis of linear conforming finite element methods in three dimensions can be performed similarly to
the two-dimensional case. However, the design of a three-dimensional quadratic finite element method that
achieves optimal convergence rates (up to the regularity of the exact solution) is not similar to the two-
dimensional case. Recently, in [34], a quadratic finite element method enriched with element-wise bubbles
was proposed and analyzed for the three-dimensional elliptic obstacle problem. The above literature review
shows that a gap still remains concerning the quadratic approximation of the three-dimensional elliptic
obstacle problem. The main purpose of the present work is to fill this gap. Let us also emphasize that, from
a computational viewpoint, the proposed Discontinuous-Skeletal method is particularly attractive since the
discrete obstacle constraints are enforced on the cell unknowns which are constant in each mesh cell. Hence,
well-established solvers like active-set methods [37] can be readily used. More broadly, we can mention
other works related to the numerical analysis of variational inequalities in computational mechanics, such
as boundary contact problems of Signorini type [4, 5, 15, 17, 29, 38, 44, 49, 50] and C0 interior penalty
methods for displacement obstacle clamped plate problems [8, 9].

This article is organized as follows. In Section 2, we present the model problem. In Section 3, we
introduce the Discontinuous-Skeletal discretization; we also derive the discrete elliptic obstacle problem and
establish its well-posedness. In Section 4, we prove our main result, namely an energy-error estimate of
order h for k = 0 and of order h

3
2−ε, ε > 0, for k = 1. Finally, in Section 5, we present numerical results on

two- and three-dimensional test cases to illustrate our error estimate.

2 Model problem

Let D ⊂ Rd with d ∈ {2, 3} be an open subset with sufficiently smooth boundary ∂D. Let Hm(D) denote

the standard L2-based Sobolev space of order m ≥ 0, and let γ : H1(D)→ H
1
2 (∂D) denote the well-known

surjective trace map. More generally, for any subset G ⊆ D (which is typically D or its boundary, a mesh
cell or its boundary, or a mesh face), we denote the norm and semi-norm on the standard Sobolev space
W s,p(G) by ‖ · ‖W s,p(G) and | · |W s,p(G), where s ≥ 0 is the order of the derivative and 1 ≤ p ≤ ∞ is the
exponent in the integration (with the appropriate Lebesgue measure depending on the dimension of G). For
simplicity, we denote ‖ · ‖L2(G) by ‖ · ‖G and the L2(G)-inner product by (·, ·)G; the same notation is used
for vector-valued functions.

We consider the elliptic obstacle problem posed in D with a non-homogeneous Dirichlet condition on
∂D. The data are the load function f ∈ L2(D), the Dirichlet value g ∈ H 1

2 (∂D), and the obstacle function
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χ ∈ H1(D) ∩ C0(D) such that χ ≤ g a.e. on ∂D. Define the set

K := {v ∈ H1(D) | v ≥ χ a.e. in D and γ(v) = g}. (2.1)

Define the bilinear form a : H1(D)×H1(D)→ R and the linear form ` : H1(D)→ R, respectively, by

a(w, v) = (∇w,∇v)D and `(v) = (f, v)D. (2.2)

The model problem consists of finding u ∈ K such that

a(u, v − u) ≥ `(v − u) ∀v ∈ K, (2.3)

or, equivalently, of minimizing the functional J(v) := 1
2a(v, v) − `(v) over K. Owing to the following

Browder–Stampacchia Lemma (see [14, 39]), we infer that the model problem (2.3) is well-posed.

Lemma 2.1 (Browder–Stampacchia). Let H be a real Hilbert space with norm ‖ · ‖H and let H ′ denote the
dual space of H. Let a be a bilinear form on H ×H satisfying

a(v, v) ≥ α‖v‖2H and |a(w, v)| ≤ ξ‖w‖H‖v‖H for all w, v ∈ H, (2.4)

for some positive constants α and ξ. Let K be a nonempty, closed, convex subset of H and let ` ∈ H ′. Then
there exists a unique u ∈ K such that a(u, v − u) ≥ `(v − u) for all v ∈ K.

In what follows, we make some (reasonable) additional smoothness assumptions on the exact solution.
Specifically, we assume that for all 1 < p < ∞ and all s < 2 + 1

p , u ∈ W s,p(D), and that the following
complementarity conditions hold true with λ := −∆u− f ,

λ ≥ 0 a.e. in D, (2.5a)

λ = 0 in the interior of the set {x ∈ D : u(x) > χ(x)}, (2.5b)

(u− χ, λ)D = 0. (2.5c)

The above assumptions are reasonable once invoking the elliptic regularity theory for obstacle problems if
the problem data satisfies additional smoothness assumptions. In particular, if χ ∈ H2(D) and g is the trace
of a H2(D) function, then u ∈ H2(D) and the above complementarity conditions hold true [39]. Moreover,
if f ∈ L∞(D) ∩ BV (D), g, χ ∈ C3(D) with g ≥ χ on ∂D, and if the boundary ∂D is sufficiently smooth,
then u ∈ W s,p(D) as stated above [10, 11, 39, 47]. In the present work, we are going to assume that the
domain D is a polygon (if d = 2) or a polyhedron (if d = 3) so that it can be meshed exactly with cells
having straight edges or planar faces, respectively, and we are going to assume that the above smoothness
assumptions on the exact solution still hold true.

3 Discontinuous-Skeletal discretization

In this section, we present the setting for the Discontinuous-Skeletal discretization of the elliptic obstacle
problem introduced in the previous section.

3.1 Discrete setting

We consider a sequence of refined meshes (Th)h>0 where the parameter h denotes the mesh-size and goes
to zero during the refinement process. For all h > 0, we assume that the mesh Th covers D exactly and
consists of a finite collection of non-empty disjoint open polyhedral cells T such that D =

⋃
T∈Th T and

h = maxT∈Th hT , where hT is the diameter of T . The present Discontinuous-Skeletal methods can be
deployed on meshes composed of triangular or quadrangular cells (if d = 2) and of tetrahedral or hexahedral
cells (if d = 3), all having matching interfaces. In this situation, we assume that the mesh sequence (Th)h>0

is shape-regular in the usual sense of Ciarlet.
More generally, it is possible to consider meshes having non-matching interfaces and cells of polyhedral

shape. A closed subset F of D is defined to be a mesh face if it is a subset of an affine hyperplane HF

with positive (d − 1)-dimensional Hausdorff measure and if either of the following two statements holds
true: (i) There exist T1(F ) and T2(F ) in Th such that F = ∂T1(F ) ∩ ∂T2(F ) ∩HF ; in this case, the face F
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is called an internal face; (ii) There exists T (F ) ∈ Th such that F = ∂T (F ) ∩ ∂D ∩ HF ; in this case, the
face F is called a boundary face. The collection of all the internal (resp., boundary) faces is denoted by F i

h

(resp., Fb
h ), and we let Fh := F i

h ∪ Fb
h . Let hF denote the diameter of F ∈ Fh. For each T ∈ Th, the set

FT := {F ∈ Fh | F ⊂ ∂T} denotes the collection of all faces contained in ∂T , nT the unit outward normal
to T , and we set nTF := nT |F for all F ∈ FT . Following [23, Def. 1], we assume that the mesh sequence
(Th)h>0 is shape-regular in the sense that, for all h > 0, Th admits a matching simplicial submesh Th (i.e.,
every cell and face of Th is a subset of a cell and a face of Th, respectively) so that the mesh sequence (Th)h>0

is shape-regular in the usual sense and all the cells and faces of Th have uniformly comparable diameter to
the cell and face of Th to which they belong. For a shape-regular mesh sequence (Th)h>0, the maximum
number of faces of a mesh cell is uniformly bounded (see [22, Lemma 1.41]), i.e., there is a positive integer
N∂ , uniform with respect to h, such that

max
T∈Th

card(FT ) ≤ N∂ ∀h > 0. (3.1)

Moreover, the following discrete trace inequality holds true, see [22, Lemma 1.46]:

‖q‖F ≤ Ctrh
− 1

2

F ‖q‖T ∀T ∈ Th, ∀F ∈ FT , ∀q ∈ Prd(T ), (3.2)

where Ctr depends on the polynomial degree r ≥ 0 but is uniform with respect to h. Henceforth, we use the
notation C for a positive generic constant whose value can change at each occurrence but is independent of
the mesh cell T ∈ Th and of h. The value of C can depend on the shape-regularity of the mesh sequence
and on the underlying polynomial degree.

3.2 Local reconstruction and stabilization operators

Let the polynomial degree k ∈ {0, 1} be fixed. For all T ∈ Th, we define the local discrete space by

ÛkT := P0
d(T )× Pkd−1(∂T ), (3.3)

where Pkd−1(∂T ) := ×F∈FT Pkd−1(F ) is composed of piecewise polynomials of degree at most k on the faces

composing the boundary of T . We represent a generic element v̂T ∈ ÛkT by v̂T = (vT , v∂T ) with vT ∈ P0
d(T )

and v∂T ∈ Pkd−1(∂T ). For all T ∈ Th, we define the local reconstruction operator pk+1
T : ÛkT → Pk+1

d (T ) so

that, for all v̂T = (vT , v∂T ) ∈ ÛkT ,

(∇pk+1
T (v̂T ),∇w)T = (∇vT ,∇w)T + (v∂T − vT ,∇w · nT )∂T ∀w ∈ Pk+1

d (T ), (3.4a)

(pk+1
T (v̂T ), 1)T = (vT , 1)T . (3.4b)

The volume term on the right-hand side of (3.4a) is zero since vT is constant; we keep this term for the
sake of consistency with the general setting from [25, 23]. Let π0

T be the L2-projection onto P0
d(T ) and let

πk∂T be the L2-projection onto Pkd−1(∂T ). We define the local stabilization operator Sk∂T : ÛkT → Pkd−1(∂T )

such that, for all v̂T = (vT , v∂T ) ∈ ÛkT , we have

Sk∂T (v̂T ) := πk∂T
(
v∂T − pk+1

T (v̂T )
)
− π0

T

(
vT − pk+1

T (v̂T )
)
|∂T . (3.5)

Notice that in the present setting, the second term on the right-hand side is a constant. Finally, the discrete
counterpart of the local exact bilinear form (∇w,∇v)T is the local discrete bilinear form aT : ÛkT × ÛkT → R
defined by

aT (ŵT , v̂T ) := (∇pk+1
T (ŵT ),∇pk+1

T (v̂T ))T + (η∂TS
k
∂T (ŵT ), Sk∂T (v̂T ))∂T , (3.6)

with the piecewise constant weight η∂T defined on ∂T such that η∂T |F = h−1
F for all F ∈ FT .

Let us briefly outline the stability and approximation properties associated with the above operators.
We equip the discrete space ÛkT with the following seminorm:

For all v̂T = (vT , v∂T ) ∈ ÛkT ,

|v̂T |ÛkT := ‖η
1
2

∂T (v∂T − vT )‖∂T . (3.7)

Observe that |v̂T |ÛkT = 0 implies that v∂T is constant on ∂T and equal to vT .
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Lemma 3.1 (Stability). There exist positive constants C1 and C2, uniform with respect to T and h, such
that, for all v̂T ∈ ÛkT ,

C1|v̂T |2ÛkT ≤ aT (v̂T , v̂T ) ≤ C2|v̂T |2ÛkT . (3.8)

Proof. The proof follows that of [25, Lemma 4]. We briefly sketch it for completeness since we are dealing
here with different polynomial degrees for the face and the cell unknowns. Let v̂T ∈ ÛkT . Invoking the
triangle inequality, the regularity of the mesh sequence, the L2-stability of πk∂T , and the approximation
properties of π0

T , we infer that

|v̂T |ÛkT ≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + ‖η

1
2

∂Tπ
k
∂T (pk+1

T (v̂T )− π0
T (pk+1

T (v̂T )))‖∂T

≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + Ch−1

T ‖p
k+1
T (v̂T )− π0

T (pk+1
T (v̂T ))‖T

≤ ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T + C ′‖∇pk+1

T (v̂T )‖T ,

which proves the leftmost bound in (3.8). Concerning the rightmost bound, we first observe that the
definition (3.4a) of pk+1

T (v̂T ) combined with the Cauchy–Schwarz inequality and the trace inequality (3.2)

readily imply that ‖∇pk+1
T (v̂T )‖T ≤ C|v̂T |ÛkT . Moreover, invoking the same arguments as above implies

that

‖η
1
2

∂TS
k
∂T (v̂T )‖∂T ≤ |v̂T |ÛkT + ‖η

1
2

∂Tπ
k
∂T (pk+1

T (v̂T )− π0
T (pk+1

T (v̂T )))‖∂T

≤ |v̂T |ÛkT + C ′‖∇pk+1
T (v̂T )‖T ,

and since we have already proved that ‖∇pk+1
T (v̂T )‖T ≤ C|v̂T |ÛkT , this concludes the proof.

We define the local reduction operator ÎkT : H1(T )→ ÛkT such that, for all v ∈ H1(T ),

ÎkT (v) :=
(
π0
T (v), πk∂T (v)

)
∈ ÛkT . (3.9)

Then, pk+1
T ◦ ÎkT : H1(T )→ Pk+1

d (T ) acts as an approximation operator.

Lemma 3.2 (Approximation). Let s ≥ 0 and set t := min(k, s). There is C, uniform with respect to T and
h, so that, for any v ∈ Hs+2(T ), the following holds true:

‖v − pk+1
T (ÎkT (v))‖T + h

1
2

T ‖v − p
k+1
T (ÎkT (v))‖∂T + hT ‖∇(v − pk+1

T (ÎkT (v)))‖T

+ h
3
2

T ‖∇(v − pk+1
T (ÎkT (v)))‖∂T ≤ Cht+2

T |v|Ht+2(T ). (3.10)

Moreover, we have

‖η
1
2

∂TS
k
∂T (ÎkT (v))‖∂T ≤ Cht+1

T |v|Ht+2(T ). (3.11)

Proof. The proof of (3.10) is similar to [25, Lemma 3] (up to minor adaptations due to the different polyno-
mial degrees for the face and the cell unknowns). The key observation is that (∇(v− pkT (ÎkT (v))),∇w)T = 0

for all w ∈ Pk+1
d (T ), so that ‖∇(v − pkT ÎkT (v)))‖T = infw∈Pk+1

d (T ) ‖∇(v − w)‖T . Concerning (3.11), we have

Sk∂T (ÎkT (v)) = πk∂T (v − pk+1
T (ÎkT (v)))− π0

T (v − pk+1
T (ÎkT (v)))|∂T .

Therefore, proceeding as in [25, Eq. (45)], we use the triangle inequality, the stability of the L2-projectors,
that η∂T is piecewise constant, and the regularity of the mesh sequence to infer that

‖η
1
2

∂TS
k
∂T (ÎkT (v))‖∂T ≤ ‖η

1
2

∂Tπ
k
∂T (v − pk+1

T (ÎkT (v)))‖∂T + ‖η
1
2

∂Tπ
0
T (v − pk+1

T (ÎkT (v)))‖∂T

≤ ‖η
1
2

∂T (v − pk+1
T (ÎkT (v)))‖∂T + Ch−1

T ‖π
0
T (v − pk+1

T (ÎkT (v)))‖T

≤ C ′h−1
T (h

1
2

T ‖v − p
k+1
T (ÎkT (v))‖∂T + ‖v − pk+1

T (ÎkT (v))‖T ),

and we conclude by invoking (3.10).
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3.3 Discrete elliptic obstacle problem

The global discrete space is defined by

Ûkh :=
(
×T∈Th P0

d(T )
)
×
(
×F∈Fh Pkd−1(F )

)
. (3.12)

We use the notation v̂h =
(
(vT )T∈Th , (vF )F∈Fh

)
to denote a generic element v̂h ∈ Ûkh . For all T ∈ Th,

we denote by v̂T = (vT , (vF )F∈FT ) ∈ ÛkT the components of v̂h attached to the mesh cell T and the faces

composing its boundary. We define the global reduction operator Îkh : H1(D) → Ûkh such that, for all
v ∈ H1(D),

Îkh(v) :=
(
(π0
T (v))T∈Th , (π

k
F (v))F∈Fh

)
. (3.13)

Note that Îkh(v) is well-defined since v is single-valued at all the internal faces of the mesh.

The global discrete bilinear form ah on Ûkh × Ûkh is defined by

ah(ŵh, v̂h) :=
∑
T∈Th

aT (ŵT , v̂T ) +
∑
F∈Fb

h

ab
F (ŵT (F ), v̂T (F )), (3.14)

with the Nitsche-type boundary penalty bilinear form [41] such that

ab
F (ŵT (F ), v̂T (F )) := −(∇pk+1

T (F )(ŵT (F )) · nD, vF )F − (wF ,∇pk+1
T (F )(v̂T (F )) · nD)F + ςh−1

F (wF , vF )F , (3.15)

where ς > 0 is the boundary penalty parameter and nD is the unit outward normal to D. The linear form
`h on Ûkh is defined by

`h(v̂h) :=
∑
T∈Th

(f, vT )T +
∑
F∈Fb

h

`bF (v̂T (F )), (3.16)

with
`bF (v̂T (F )) := −(g,∇pk+1

T (F )(v̂T (F )) · nD)F + ςh−1
F (g, vF )F . (3.17)

Remark 3.3 (Dirichlet boundary conditions). Alternatively, one can also enforce Dirichlet boundary con-
ditions strongly by setting the discrete unknowns attached to the boundary faces of the mesh equal to the
L2-projection of the Dirichlet data onto Pkd−1(F ) for all F ∈ Fb

h and zeroing out the discrete test functions

attached to the boundary faces of the mesh. In this case, the contribution of ab
F is dropped from the right-

hand side of (3.14) and that of `bF is dropped from the right-hand side of (3.16). This is the approach we
use in the numerical experiments reported below, but to allow for a bit more generality, we consider the
above boundary-penalty method in the error analysis.

The discrete admissible set K̂kh is defined by

K̂kh :=
{
v̂h ∈ Ûkh | (vT , 1)T ≥ (χ, 1)T , ∀T ∈ Th

}
. (3.18)

Notice that the constraint is enforced on the cell unknowns. The discrete elliptic obstacle problem consists
of finding ûh ∈ K̂kh such that

ah(ûh, v̂h − ûh) ≥ `h(v̂h − ûh) ∀v̂h ∈ K̂kh. (3.19)

Equivalently, ûh minimizes over K̂kh the discrete functional 1
2ah(v̂h, v̂h) − `h(v̂h). In order to establish the

well-posedness of the discrete problem (3.19), we study the coercivity and boundedness of the discrete
bilinear form ah on Ûkh × Ûkh . To this purpose, we equip the space Ûkh with the following norm:

‖v̂h‖2Ûkh :=
∑
T∈Th

|v̂T |2ÛkT +
∑
F∈Fb

h

h−1
F ‖vF ‖

2
F . (3.20)

Lemma 3.4. Assume that the boundary penalty parameter is such that ς > 1
4N∂C

2
tr where N∂ is defined

by (3.1) and Ctr by (3.2). Then, there exists two positive constants α and ξ, uniform with respect to h, such
that, for all v̂h, ŵh ∈ Ûkh ,

ah(v̂h, v̂h) ≥ α‖v̂h‖2Ûkh , (3.21a)

|ah(v̂h, v̂h)| ≤ ξ‖ŵh‖Ûkh‖ŵh‖Ûkh . (3.21b)
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Proof. The coercivity property (3.21a) follows from the left bound in (3.8) and classical techniques for
Nitsche’s boundary penalty method, see, e.g., [22, Lemma 4.12] in the context of discontinuous Galerkin
methods and [26, Lemma 7] in the context of HHO methods. The boundedness property (3.21b) follows from
the Cauchy–Schwarz inequality, the right bound in (3.8), and by invoking the discrete trace inequality (3.2)
to bound the first two terms composing ab

h.

Corollary 3.5 (Well-posedness). Assume that ς > 1
4N∂C

2
tr. There exists a unique ûh ∈ K̂kh solving the

discrete elliptic obstacle problem (3.19).

Proof. The discrete admissible set K̂kh is nonempty since Îkh(u) ∈ K̂kh. Moreover, K̂kh is a closed convex

subset of Ûkh . We can then invoke the Browder–Stampacchia Lemma 2.1 together with the coercivity and
boundedness result from Lemma 3.4 to conclude.

4 Error analysis

In this section, we state and prove our main result, that is, an energy-error estimate for the Discontinuous-
Skeletal method with k ∈ {0, 1}. The estimate is optimal up to the regularity of the exact solution if k = 1,
whereas if k = 0, the estimate is still optimal concerning the differentiability index of the exact solution,
but requires a somewhat stronger assumption on the integrability index since we essentially require that
u ∈W 2,p(D) with p large enough instead of just u ∈ H2(D) (see also Remark 4.2 below).

Theorem 4.1 (Energy-error estimate). Let u be the exact solution solving (2.3) and let ûh be the discrete
solution solving (3.19). Let Îkh be the global reduction operator defined by (3.13). If k = 1, let ε ∈ (0, 1

2 ], set

r = 3
2 − ε, and assume that u ∈ H1+r(D) = H

5
2−ε(D), (u − χ) ∈ W 2+ 1

p−
ε
2 ,p(D) with p = 2(d−1)

ε ∈ (1,∞),
and λ := −f−∆u ∈W 1−ε,1(D). If k = 0, set r = 1, let τ ∈ (0, 1), and assume that u ∈ H1+r(D) = H2(D),
(u − χ) ∈ W 2,p(D) with p = d

τ ∈ (1,∞), and λ := −f −∆u ∈ W τ,1(D). Then, there is C, uniform with
respect to h, such that the following holds true:

‖Îkh(u)− ûh‖Ûkh ≤ C
(
|u|H1+r(D) + Φu,λ

)
hr, (4.1)

where

Φu,λ =

‖u− χ‖
1
2

W
2+ 1

p
− ε

2
,p

(D)
|λ|

1
2

W 1−ε,1(D) if k = 1,

‖u− χ‖
1
2

W 2,p(D)|λ|
1
2

W τ,1(D) if k = 0.
(4.2)

Moreover, we also have( ∑
T∈Th

‖∇(u− pk+1
T (ûT ))‖2T +

∑
F∈Fb

h

h−1
F ‖u− uF ‖

2
F

) 1
2

≤ C
(
|u|H1+r(D) + Φu,λ

)
hr. (4.3)

Proof. Let us set v̂h := Îkh(u) − ûh ∈ Ûkh . Using the discrete coercivity property (3.21a) and the discrete

variational inequality (3.19) together with Îkh(u) ∈ K̂kh, we find that

α‖Îkh(u)− ûh‖2Ûkh ≤ ah(Îkh(u)− ûh, Îkh(u)− ûh)

≤ ah(Îkh(u), Îkh(u)− ûh)− `h(Îkh(u)− ûh)

= ah(Îkh(u), v̂h)− `h(v̂h)

= ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F )) +
∑
T∈Th

(λ, π0
T (u)− uT )T ,

where we used λ = −f − ∆u and that the cell component of v̂h attached to T ∈ Th is vT = π0
T (u) − uT .

Let us define T n
h := {T ∈ Th | u > χ on T} (collecting the non-contact cells), T c

h := {T ∈ Th | u ≡ χ on T}
(collecting the contact cells), and T f

h := Th \ (T n
h ∪T c

h ) (collecting the free-boundary cells). Note that λ ≡ 0
on any T ∈ T n

h owing to (2.5b). Therefore, we have∑
T∈Th

(λ, π0
T (u)− uT )T =

∑
T∈T c

h

(λ, π0
T (u)− uT )T +

∑
T∈T f

h

(λ, π0
T (u)− uT )T .
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Moreover, for all T ∈ T c
h , we have π0

T (u) = π0
T (χ), and hence

(λ, π0
T (u)− uT )T = (λ, π0

T (χ)− uT )T ≤ 0,

recalling that uT ≥ π0
T (χ) since ûh ∈ K̂kh and that λ ≥ 0 on D owing to (2.5a). As a result, we have

α‖Îkh(u)− ûh‖2Ûkh ≤ ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F )) +
∑
T∈T f

h

(λ, π0
T (u)− uT )T .

The first three terms on the right hand side are estimated in Lemma 4.3 below, and the last term is estimated
in Lemma 4.4 below. This proves (4.1). Finally, the bound (4.3) follows from (4.1) by invoking the rightmost
bound in (3.8), the triangle inequality, and the bound (3.10) on ∇(u− pk+1

T (ÎkT (u))) with s = t = 1
2 − ε ≥ 0

if k = 1 and s = t = 0 if k = 0.

Remark 4.2 (Regularity for k = 0). The regularity requirement u ∈ W 2,p(D) with p = d
τ introduced in

Theorem 4.1 for k = 0 can be reduced to u ∈ H2(D) provided one uses a Discontinuous-Skeletal method
with affine cell unknowns on simplicial meshes and one enforces the obstacle constraint on the cell unknowns
with respect to the linear Lagrange interpolate of the obstacle function. Details are omitted for brevity.

Lemma 4.3 (Consistency error on differential operator). Let r be as in Theorem 4.1 and assume that the
exact solution u is in H1+r(Ω). There is C, uniform with respect to h, such that the following holds true
for all v̂h ∈ Ûkh : ∣∣∣∣ah(Îkh(u), v̂h) +

∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F ))

∣∣∣∣ ≤ Chr|u|H1+r(Ω)‖v̂h‖Ûkh .

Proof. The proof follows along the lines of [26, Sect. 6.2]; we sketch it for completeness. Re-organizing the
various terms, we have

ah(Îkh(u), v̂h) +
∑
T∈Th

(∆u, vT )T −
∑
F∈Fb

h

`bF (v̂T (F )) = A1 +A2 +A3,

where

A1 =
∑
T∈Th

(∇pk+1
T (ÎkT (u)),∇pk+1

T (v̂T ))T + (∆u, vT )T −
∑
F∈Fb

h

(∇pk+1
T (F )(Î

k
T (F )(u)) · nD, vF )F ,

A2 =
∑
T∈Th

(η∂TS
k
∂T (ÎkT (u)), Sk∂T (v̂T ))∂T ,

A3 =
∑
F∈Fb

h

−(πkF (u)− g,∇pk+1
T (F )(v̂T (F )) · nD)F + ςh−1

F (πkF (u)− g, vF )F .

Using the definition of pk+1
T , integrating by parts the term (∆u, vT )T , and since the normal component of

∇u is single-valued across the mesh internal faces, we infer that

A1 =
∑
T∈Th

(∇(u− pk+1
T (ÎkT (u))) · nT , v∂T − vT )∂T +

∑
F∈Fb

h

(∇(u− pk+1
T (F )(Î

k
T (F )(u))) · nD, vF )F .

We can now use the bound (3.10) on (u − pk+1
T (ÎkT (u))) where we set s = r − 1 so that t = min(k, s) =

s = r − 1 whether k = 1 or k = 0. Using the Cauchy–Schwarz inequality and the definition of the ‖ · ‖Ûkh -

norm, we then obtain that |A1| ≤ Cht+1|u|Ht+2(Ω)‖v̂h‖Ûkh . Furthermore, since ‖η
1
2

∂TS
k
∂T (v̂T )‖∂T ≤ C|v̂T |ÛkT

for all T ∈ Th, the Cauchy–Schwarz inequality and the bound (3.11) on ‖η
1
2

∂TS
k
∂T (ÎkT (u))‖∂T imply that

|A2| ≤ Cht+1|u|Ht+2(Ω)‖v̂h‖Ûkh . Finally, since ∇pk+1
T (F )(v̂T (F )) · nD and vF are polynomials of order at most

k on F , we have A3 = 0.

8



Lemma 4.4 (Consistency error on Lagrange multiplier). Let p and Φu,λ be as in Theorem 4.1. There is
C, uniform with respect to h, such that the following holds true:∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ CΦu,λh

r.

Proof. Let T ∈ T f
h . Then, using (2.5c), we infer that

(λ, π0
T (u)− uT )T = (λ, π0

T (u)− u+ χ− π0
T (χ) + π0

T (χ)− uT )T .

Since (λ, π0
T (χ)− uT )T ≤ 0, we obtain

(λ, π0
T (u)− uT )T ≤

(
λ, π0

T (u− χ)− (u− χ)
)
T

=
(
λ− π0

T (λ), π0
T (u− χ)− (u− χ)

)
T

≤ ‖λ− π0
T (λ)‖L1(T )‖(u− χ)− π0

T (u− χ)‖L∞(T ). (4.4)

(1) The case k = 1. The approximation properties of π0
T imply that

‖λ− π0
T (λ)‖L1(T ) ≤ Ch1−ε

T |λ|W 1−ε,1(T ). (4.5)

Furthermore, we also have

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ ChT |u− χ|W 1,∞(T ). (4.6)

The definition of p implies that α := 1 − d−1
p −

ε
2 = 1 − ε > 0. Moreover, by assumption, we have

(u− χ) ∈W 2+ 1
p−

ε
2 ,p(D). Then, the Sobolev Embedding Theorem implies that ∇(u− χ) ∈ C0,α(D). Since

T ∈ T f
h , there is a point x∗ ∈ T such that ∇(u− χ)(x∗) = 0 [45] and hence, for any x ∈ T , we have

|∇(u− χ)(x)| ≤ C|x− x∗|α‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
≤ ChαT ‖u− χ‖

W
2+ 1

p
− ε

2
,p

(D)
.

Therefore, we have

|u− χ|W 1,∞(T ) ≤ ChαT ‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
. (4.7)

Using (4.7) in (4.6), we obtain

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ Ch1+α

T ‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
. (4.8)

Substituting (4.5) and (4.8) in (4.4) and summing over all T ∈ T f
h , we find that∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ Ch2+α−ε‖u− χ‖

W
2+ 1

p
− ε

2
,p

(D)

∑
T∈T f

h

|λ|W 1−ε,1(T )

≤ Ch3−2ε‖u− χ‖
W

2+ 1
p
− ε

2
,p

(D)
|λ|W 1−ε,1(D) = Ch3−2εΦu,λ,

since 2 + α− ε = 3− d−1
p −

3ε
2 = 3− 2ε. This completes the proof for k = 1.

(2) The case k = 0. Using the approximation properties of π0
T , we have

‖λ− π0
T (λ)‖L1(T ) ≤ ChτT |λ|W τ,1(T ), (4.9)

and we also have

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ ChT |u− χ|W 1,∞(T ).

Since τ ∈ (0, 1) and p = d
τ , we have γ := 1 − d

p = 1 − τ > 0. Moreover, by assumption, we have

(u− χ) ∈W 2,p(D). Then, the Sobolev Embedding Theorem implies that ∇(u− χ) ∈ C0,γ(D). Proceeding
as above for k = 1, we infer that

‖(u− χ)− π0
T (u− χ)‖L∞(T ) ≤ Ch1+γ

T ‖u− χ‖W 2,p(D). (4.10)

Using (4.9) and (4.10) in (4.4) and summing over all T ∈ T f
h , we find that∑

T∈T f
h

(λ, π0
T (u)− uT )T ≤ Ch1+γ+τ‖u− χ‖W 2,p(D)

∑
T∈T f

h

|λ|W τ,1(T )

≤ Ch2‖u− χ‖W 2,p(D)|λ|W τ,1(D) = Ch2Φu,λ,

since 1 + γ + τ = 2− d
p + τ = 2. This completes the proof for k = 0.
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5 Numerical experiments

In this section, we briefly review some implementation aspects of the present Discontinuous-Skeletal methods
applied to elliptic obstacle problems, and we illustrate the above theoretical results on two- and three-
dimensional test cases from [42].

5.1 Implementation aspects

We implement Dirichlet boundary conditions strongly (see Remark 3.3). The standard HHO matrix as-

sociated with the bilinear form ah(ŵh, v̂h) =
∑
T∈Th aT (ŵT , v̂T ) is denoted A ∈ RNkh×Nkh with Nk

h :=

|Th|+
(
k+d−1
d−1

)
|F i
h| (recall that the cell unknowns are constant in each mesh cell), and the load vector associ-

ated with the linear form `h(v̂h) =
∑
T∈Th(f, vT )T is denoted b ∈ RNkh . For any vector α ∈ RNkh , we denote

αT ∈ R its components attached to the mesh cell T ∈ Th and (αF,n)0≤n<(k+d−1
d−1 ) its components attached

to the internal face F ∈ F i
h of the mesh.

The numerical solution of the discrete elliptic obstacle problem (3.19) is based on the primal-dual active
set method (see [37]). Let m ≥ 0 be the iteration counter. For all m ≥ 0, we are looking for the solution

vector αm ∈ RNkh and the Lagrange multiplier vector βm ∈ RNkh (note that βm is actually a discrete
counterpart of the function −λ considered in the previous section). Since the constraint is enforced on the
cell unknowns, the components of β attached to the internal faces of the mesh are always zero. Moreover,
since the cell unknowns are constant in each mesh cell, the primal-dual active set method leads to a
partition of the mesh cells into active and inactive ones; specifically, we consider the subsets T mA := {T ∈
Th | βmT + c(αmT − γT ) < 0} and T mI := T \ T mA , where c > 0 is a numerical weighting parameter and

γT = 1
|T |
∫
T
χ for all T ∈ Th. For all m ≥ 1, given the pair (αm−1,βm−1) ∈ RNkh × RNkh and the resulting

partition (T m−1
A , T m−1

I ) of Th, we solve the following (nonsymmetric) linear system:
Aαm + βm = b

αmT = γT ∀T ∈ T m−1
A ,

βmT = 0, ∀T ∈ T m−1
I .

(5.1)

The iteration is started with α0 = 0, β0
T = −1 for all T ∈ Th, and the stopping criterion is ‖αm+1 −

αm‖
`2(RN

k
h )
< 10−6. The weighting parameter is set to c = 1. The above linear system is solved using the

PARDISO direct linear solver included in the Intel MKL library. For further insight into the implementation
of Discontinuous-Skeletal methods, the reader is referred to [18]. The open-source template library DiSk++

is available at https://github.com/datafl4sh/diskpp (for a fast-prototyping environment, limited to
simple 2D meshes, see also the library ProtoN available at https://github.com/datafl4sh/ProtoN).

5.2 2D and 3D test cases

In 2D, we consider the square domain Ω = (−1, 1)2 and the obstacle function χ = 0. We prescribe a contact
radius r0 = 0.7 and, setting r2 = x2 + y2, we take the load function

f(x, y) :=

{
−4(4r2 − 2r2

0) if r > r0,

−8r2
0(1− r2 + r2

0) if r ≤ r0.
(5.2)

It can be shown that the exact solution solving (2.3) is u(x, y) = max(r2 − r2
0, 0)2. Isocontours of the exact

solution obtained using one of the hexagonal meshes from our tests are displayed in Figure 1. In 3D, we
consider the cubic domain Ω = (0, 1)3 and the obstacle function χ = 0. We prescribe again a contact radius
r0 = 0.7 and, setting r2 = x2 + y2 + z2, we take the load function

f(x, y, z) :=

{
−4(5r2 − 3r2

0) if r > r0,

−8r2
0(1− r2 + r2

0) if r ≤ r0,
(5.3)

so that the exact solution solving (2.3) is u(x, y, z) = max(r2 − r2
0, 0)2.
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Figure 1: Isocontours of the 2D exact solution obtained on one of the hexagonal meshes.

The computations are run on six types of mesh sequences (each obtained by successive uniform refine-
ments from an initial coarse mesh). In 2D, we consider triangular, square Cartesian, and hexagonal mesh
sequences, whereas in 3D, we consider tetrahedral, cubic Cartesian, and hexagonal-based-prismatic mesh
sequences (this last mesh sequence corresponds to the set “F” of the FVCA6 benchmark [31]). The energy
errors and convergence orders are reported in Table 1 for triangular and tetrahedral mesh sequences, in
Table 2 for square and cubic Cartesian mesh sequences, and in Table 3 for hexagonal and hexagonal-based-
prismatic mesh sequences. A summary of the results is presented in Figure 2. In all cases, we observe that
the reported results match the theoretical predictions from the analysis.

Table 1: Errors and convergence rates on 2D triangular (left) and 3D tetrahedral meshes (right).
2D (triangles) 3D (tetrahedra)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

3.10e-2 6.50e-1 – 2.64e-2 – 2.73e-2 1.59e0 – 1.03e-1 –
1.55e-2 3.29e-1 0.98 8.29e-3 1.67 1.36e-2 7.56e-1 1.07 2.58e-2 1.98
7.76e-3 1.65e-1 0.99 2.60e-3 1.67 1.09e-2 6.05e-1 1.03 1.69e-2 1.95
3.88e-3 8.27e-2 1.00 8.92e-4 1.54 8.61e-3 4.79e-1 0.98 1.09e-2 1.86
1.94e-3 4.14e-2 1.00 3.07e-4 1.54 6.87e-3 3.83e-1 0.99 7.08e-3 1.89

Table 2: Errors and convergence rates on 2D (left) and 3D (right) Cartesian meshes.
2D (squares) 3D (cubes)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

6.25e-2 2.26e0 – 1.98e-1 – 4.17e-2 2.10e0 – 1.59e-1 –
3.13e-2 1.28e0 0.82 5.88e-2 1.75 2.08e-2 1.09e0 0.94 4.57e-2 1.79
1.56e-2 6.50e-1 0.98 1.72e-2 1.78 1.04e-2 5.54e-1 0.98 1.25e-2 1.88
7.81e-3 3.26e-1 0.99 5.30e-3 1.70 5.21e-3 2.78e-1 0.99 3.43e-3 1.86
3.91e-3 1.63e-1 1.00 1.68e-3 1.65 2.60e-3 1.39e-1 1.00 9.89e-4 1.79

11



Table 3: Errors and convergence rates on 2D hexagonal (left) and 3D prismatic meshes (right).
2D (hexagons) 3D (hexagonal-based prisms)

k = 0 k = 1 k = 0 k = 1
h error rate error rate h error rate error rate

1.31e-1 2.73e0 – 5.50e-1 – 2.00e-2 9.37e-1 – 3.30e-2 –
6.53e-2 2.25e0 0.28 1.72e-1 1.67 1.01e-2 4.94e-1 0.94 9.66e-3 1.80
3.27e-2 1.32e0 0.76 4.92e-2 1.81 6.76e-3 3.35e-1 0.97 4.57e-3 1.87
1.63e-2 7.01e-1 0.92 1.51e-2 1.71 5.08e-3 2.53e-1 0.98 2.68e-3 1.86
8.16e-3 3.60e-1 0.96 4.82e-3 1.65

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e-031.0e-021.0e-01

Triangles, k=0
Squares, k=0

Hexagons, k=0
Triangles, k=1
Squares, k=1

Hexagons, k=1

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e-031.0e-021.0e-01

Tetrahedrons, k=0
Cubes, k=0
Prisms, k=0

Tetrahedrons, k=1
Cubes, k=1
Prisms, k=1

Figure 2: Summary of the convergence results for the 2D (left) and 3D (right) test cases. The mesh size is
on the horizontal axis, and the energy error on the vertical axis. Solid lines show the results for k = 0, and
dashed lines for k = 1.
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[28] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference,
hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci., 20(2):265–
295, 2010.

13



[29] G. Drouet and P. Hild. Optimal convergence for discrete variational inequalities modelling Signorini
contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer.
Anal., 53(3):1488–1507, 2015.
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