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Abstract. — We consider so-called discrete snakes obtained from size-conditioned critical Bienaymé–Galton–
Watson trees by assigning to each node a random spatial position in such a way that the increments along each
edge are i.i.d. When the o�spring distribution belongs to the domain of attraction of a stable law with index
α ∈ (1, 2], we give a necessary and su�cient condition on the tail distribution of the spatial increments for this
spatial tree to converge, in a functional sense, towards the Brownian snake driven by the α-stable Lévy tree.
We also study the case of heavier tails, and apply our result to study the number of inversions of a uniformly
random permutation indexed by the tree.

Figure 1. A spatial stable Lévy tree with index α = 1,2; colours indicate the spatial position of each
vertex, from blue for the lowest (negative) ones to green then yellow and finally red for the highest
ones. It corresponds to Theorem 1 with Y uniformly distributed on {−1, 0, 1}.
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1. Introduction and main results

We investigate scaling limits of large size-conditioned random Bienaymé–Galton–Watson trees
equipped with spatial positions, when the o�spring distribution belongs to the domain of attraction
of a stable law. Our results extend previous ones established by Janson & Marckert [JM05] when the
o�spring distribution admits �nite exponential moments. Relaxing this strong assumption to even a
�nite variance hypothesis is often challenging, and our key result is a tight control on the geometry of
the trees, which is of independent interest. Let us present precisely our main result, assuming some
familiarities with Bienaymé–Galton–Watson trees and their coding by paths. The basic de�nitions are
recalled in Section 2.1 below.

1.1. Large Bienaymé–Galton–Watson trees. — Throughout this work, we �x a probability measure
µ on Z+ = {0, 1, . . . } such that µ (0) > 0 and

∑
k≥0 kµ (k ) = 1. To simplify the exposition, we also assume

that µ is aperiodic, in the sense that its support generates the whole group Z, not just a strict subgroup;
the general case only requires mild modi�cations. For every n ≥ 1, we denote by Tn a random plane
tree distributed as a Bienaymé–Galton–Watson tree with o�spring distribution µ and conditioned to
have n + 1 vertices,(1) which is well de�ned for every n large enough from the aperiodicity of µ. It is
well known that for every a,b > 0, Tn has the same law as a random simply generated tree with n + 1
vertices, associated with the weight sequence (abkµ (k ))k≥0, so there is almost no loss of generality to
assume that µ has mean 1.

Finally, we assume that there exists α ∈ (1, 2] such that µ belongs to the domain of attraction of an

α-stable law, which means that there exists an increasing sequence (Bn )n≥1 such that if (ξn )n≥1 is a
sequence of i.i.d. random variables sampled from µ, then B−1n (ξ1 + · · · + ξn −n) converges in distribution
to a random variable X (α ) whose law is given by the Laplace exponent E[exp(−λX (α ) )] = exp(λα ) for
every λ ≥ 0. Recall that n−1/αBn is slowly varying at in�nity and that if µ has variance σ 2 ∈ (0,∞), then
this falls in the case α = 2 and we may take Bn =

√
nσ 2/2.

It is well-known that a planar tree can be encoded by discrete paths; in Section 2.1, we recall the
de�nition of the Łukasiewicz pathWn , the height process Hn and the contour process Cn associated with
the tree Tn . Duquesne [Duq03] (see also Kortchemski [Kor13, Kor12]) has proved that

(1)
(
1
Bn

Wn (nt ),
Bn
n
Hn (nt ),

Bn
n
Cn (2nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Xt ,Ht ,Ht )t ∈[0,1]

in the Skorokhod space D([0, 1],R3), where X is the normalised excursion of the α-stable Lévy process

with no negative jump, whose value at time 1 has the law of X (α ) , and H is the associated continuous
height function; see the references above for de�nitions and Figure 2 below for an illustration. In the
case α = 2, the processes X and H are equal, both to

√
2 times the standard Brownian excursion. In

any case, H is a non-negative, continuous function, which vanishes only at 0 and 1. As any such
function, it encodes a ‘continuous tree’ called the α-stable Lévy tree Tα of Duquesne, Le Gall & Le
Jan [Duq03, LGLJ98], which generalises the celebrated Brownian tree of Aldous [Ald93] in the case
α = 2. The convergence (1) implies that the treeTn , viewed as a metric space by endowing its vertex-set by
the graph distance rescaled by a factor Bn

n , converges in distribution in the so-called Gromov–Hausdor�
topology towards Tα , see e.g. Duquesne & Le Gall [DLG05].

(1)Our results also hold when the tree is conditioned to have n + 1 vertices with out-degree in a �xed set A ⊂ Z+, appealing to
[Kor12].
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Figure 2. The Łukasiewicz path and the height process of T10 000 with α = 1,3.

1.2. Spatial trees and applications. — In this paper, we consider spatial trees (or labelled trees, or
discrete snakes) which are plane trees in which each node u of the tree T carries a position Su in R. We
shall always assume that the root ∅ of the tree has position S∅ = 0 by convention so the spatial positions
(Su )u ∈T are entirely characterised by the displacements (Yu )u ∈T \{∅}. Several models of such random
spatial trees have been studied and the simplest one is the following: let Y be some random variable,
then conditional on a random �nite tree T , the spatial displacements (Yu )u ∈T \{∅} are i.i.d. copies of Y .

In the same way a tree Tn with n + 1 vertices is encoded by its height process Hn and its contour
process Cn , the spatial postions are encoded by the spatial height process H

sp
n and the spatial contour

process C
sp
n . We consider scaling limits of these processes as n → ∞. The most general such results

are due to Janson & Marckert [JM05] who considered the case where the tree Tn is a size-conditioned
Bienaymé–Galton–Watson tree whose o�spring distribution has �nite exponential moments. All their
results extend to our setting. The main one is a necessary and su�cient condition for the convergence
towards the so-called Brownian snake driven by the random excursion H, which, similarly to the discrete
setting, is interpreted as a Brownian motion indexed by the stable tree Tα ; see Section 2.1 below for a
formal de�nition and Figure 4 for two simulations.
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Figure 3. A spatial tree, its height process H on top and its spatial height process H sp below.

Theorem 1 (Convergence of discrete snakes). — Let (H,S) be the Brownian snake driven by the

excursion H. Suppose E[Y ] = 0 and Σ2 B E[Y 2] ∈ (0,∞), then the following convergence in distribution

holds in the sense of �nite-dimensional marginals:(
Bn
n
Hn (nt ),

Bn
n
Cn (2nt ),

( Bn
nΣ2

)1/2
H

sp
n (nt ),

( Bn
nΣ2

)1/2
C
sp
n (2nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Ht ,Ht ,St ,St )t ∈[0,1].
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It holds in C([0, 1],R4) if and only if P( |Y | ≥ (n/Bn )
1/2) = o(n−1).

In the �nite-variance case Bn =
√
nσ 2/2, the last assumption is equivalent to P( |Y | ≥ y) = o(y−4),

which is slightly weaker than E[Y 4] < ∞; otherwise, when the tree is less regular, one needs more
regularity from the spatial displacements.

Let us mention that general arguments show that Hn and Cn , once rescaled, are close, see e.g.
Duquesne & Le Gall [DLG02, Section 2.5], or Marckert & Mokkadem [MM03]. The same arguments
apply for their spatial counterparts H sp

n and C
sp
n so we concentrate only on the joint convergence of Hn

and H
sp
n .
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Figure 4. Two instances of the spatial height process Σ−1Hn (n·) associated with the height process of
Figure 2: on the le�, Y is uniformly distributed on [−1, 1] and on the right, Y is symmetric and such
that P(Y > y) = 1

2 (1 + y)
−10 so both satisfy Theorem 1.

Janson & Marckert [JM05] also discuss the case of heavier tails, in which case the spatial processes
converge once suitably rescaled towards a ‘hairy snake’ with vertical peaks; statements are more involved
and we defer them to Section 4 below. Let us only mention the next result, which extends Theorem 8
in [JM05].

Theorem 2 (Non centred snakes). — Suppose thatm B E[Y ] , 0. Then each process
Bn
n H

sp
n (n·) and

Bn
n C

sp
n (2n·) is tight in C([0, 1],R) if and only if P( |Y | ≥ n/Bn ) = o(n−1), and in this case we have the

convergence in distribution in C([0, 1],R4)(Bn
n
Hn (nt ),

Bn
n
Cn (2nt ),

Bn
n
H

sp
n (nt ),

Bn
n
C
sp
n (2nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Ht ,Ht ,m ·Ht ,m ·Ht )t ∈[0,1].

Again, in the �nite-variance case, the assumption is equivalent to P( |Y | ≥ y) = o(y−2), which is
slightly weaker than E[Y 2] < ∞. Let us comment on the result when Y ≥ 0 almost surely and m > 0.
Then for every u ∈ Tn , the displacement Yu can be interpreted as the length of the edge from u to its
parent so H

sp
n and C

sp
n can be interpreted as the height and contour processes of the tree Tn with such

random edge-lengths and Theorem 2 shows that this tree is close to the one obtained by assigning
deterministic length m to each edge of Tn , and it converges towards m times the stable tree for the
Gromov–Hausdor� topology, jointly with the original tree.

The main result of [JM05] has been used very recently by Cai et al. [CHJ+17] to study the asymptotic
number of inversions in a random tree. Given the random treeTn with n + 1 vertices listed u0,u1, . . . ,un
and an independent uniformly random permutation of {0, . . . ,n}, say, σ , assign the label σ (i ) to the
vertex ui for every i ∈ {0, . . . ,n}. The number of inversions of Tn is then de�ned by

I (Tn ) =
∑

0≤i<j≤n
1{ui is a ancestor of uj }1{σ (i )>σ (j ) } .
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This extends the classical de�nition of the number of inversions of a permutation, when the tree contains
a single branch. We refer to [CHJ+17] for a detailed review of the literature on this model. It is easy
to see that E[I (Tn ) | Tn] is half the so-called total path length of Tn , whose asymptotic behaviour is
well-understood. Cai et al. [CHJ+17, Theorem 5] study the �uctuations of I (Tn ) when Tn is a size-
conditioned Bienaymé–Galton–Watson tree whose o�spring distribution admits exponential moments.
Their argument is based on the convergence of snakes from [JM05] and extends readily as follows
thanks to Theorem 1.

Corollary 1 (Inversions on trees). — We have the convergences in distribution

2Bn
n2

E[I (Tn ) | Tn]
(d )
−→
n→∞

∫ 1

0
Htdt , and

( Bn
12n3

)1/2
(I (Tn ) − E[I (Tn ) | Tn])

(d )
−→
n→∞

∫ 1

0
Stdt .

Note that the scaling factors are respectively of order n−3/2 and n−5/4 in the �nite-variance regime
Bn =

√
nσ 2/2. When α = 2, recall that H is

√
2 times the standard Brownian excursion; then the

distribution of 2
∫ 1
0 Htdt is known as the Airy distribution; further, the random variable

∫ 1
0 Stdt is

distributed as (∫
0≤s<t ≤1

min
r ∈[s,t ]

Hrdsdt
)1/2
·N,

where N is standard Gaussian random variable independent of H; we refer to [JC04] for more informa-
tion on this random variable.

The main idea to prove tightness of spatial processes is to appeal to Kolmogorov’s criterion, which
enables one to avoid dealing with all the correlations between vertices. This requires a strong con-
trol on the geometry of the trees. Precisely, although the convergence (1) implies that the sequence
( Bnn Hn (n·))n≥1 is tight in C([0, 1],R), we need the following more precise estimate on the geometry of
the trees.

Lemma 1 (Hölder norm of the height process). — For every γ ∈ (0, (α − 1)/α ), it holds that

lim
C→∞

lim inf
n→∞

P
(

sup
0≤s,t ≤1

Bn
n
·
|Hn (nt ) − Hn (ns ) |

|t − s |γ
≤ C

)
= 1.

By very di�erent means, Gittenberger [Git03] proved a similar statement for the contour function
Cn , in the case α = 2, when the o�spring distribution admits �nite exponential moments(2) and Janson
& Marckert [JM05] built upon this result. Note that the maximal exponent (α − 1)/α corresponds to the
maximal exponent for which the limit process H is Hölder continuous, see [DLG02, Theorem 1.4.4].

1.3. More general models and random maps. — The initial motivation for studying spatial trees
comes from the theory of random planar maps. Indeed, the Schae�er bijection relates uniformly random
quadrangulations of the sphere with n faces and such a model of spatial trees, when µ is the geometric
distribution with parameter 1/2, in which case Tn has the uniform distribution amongst plane trees of
size n + 1, and when Y has the uniform distribution on {−1, 0, 1}. The convergence of this particular
spatial tree has been obtained Chassaing & Schae�er [CS04]. More general models of random maps
are also related to spatial trees, via the Bouttier–Di Francesco–Guitter bijection [BDFG04] and the
Janson-Stefánsson bijection [JS15]; however, in this case, the displacements are neither independent
nor identically distributed. Analogous convergences to Theorem 1 in this case have been proved by
Marckert & Mokkadem [MM03] still for the uniform random trees, but for general displacements,
under a ‘(8 + ε )-moment’ assumption; Gittenberger [Git03] extended this result to the case where µ

(2)Even if the assumption is written as ‘�nite variance’ in [Git03], the proof actually requires exponential moments.
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has �nite exponential moments, and then Marckert & Miermont [MM07] reduced the assumptions
on the displacements to a ‘(4 + ε )-moment’, see also Miermont [Mie08] for similar results on multi-
type Bienaymé–Galton–Watson trees, Marckert [Mar08] for ‘globally centred’ displacements, and
�nally [Mar16] for trees (more general than size-conditioned Bienaymé–Galton–Watson trees) with
�nite variance, but only for the very particular displacements associated with maps. Appealing to
Lemma 1, it seems that the ‘(4 + ε )-moment’ assumption su�ces in the case where µ belongs to the
domain of attraction of a Gaussian law to ensure the convergence towards (H,S). However in the
α-stable case with α < 2, the limit may be di�erent and depend more precisely on the displacements,
see Le Gall & Miermont [LGM11], again for the very particular displacements associated with maps.

1.4. Techniques. — The rest of this paper is organised as follows: In Section 2, we �rst recall the
coding of plane trees by paths and de�ne the limit object of interest S; after recalling a few results
on slowly varying functions and well-known results on Bienaymé–Galton–Watson trees, we prove
Lemma 1. The idea is to rely on the Łukasiewicz path of the tree, since height of vertices corresponds to
positive records of the latter, which is an excursion of a left-continuous random walk in the domain of
attraction of a stable law, so it already has attracted a lot of attention and we may use several existing
results, such as those due to Doney [Don82].

In Section 3, we prove Theorem 1, Theorem 2 and Corollary 1. The proof of the two theorems follows
the ideas of Janson & Marckert [JM05] which are quite general once we have Lemma 1. However,
several technical adaptations are needed here to deal with the heavier tails for the o�spring distribution.
Finally, in Section 4, we state and prove results on the convergence of similar to Theorem 1 when Y has
heavier, regularly varying tails. Again, the proof scheme follows that of [JM05] but requires technical
adaptation.

Acknowledgment. — I wish to thank Nicolas Curien for a stimulating discussion on the proof of
Lemma 1 when I started to have some doubts on the strategy used below. Many thanks are also due to
Igor Kortchemski who spotted a mistake in a �rst draft.

This work was supported by a public grant as part of the Fondation Mathématique Jacques Hadamard.

2. Geometry of large Bienaymé–Galton–Watson trees

2.1. Discrete and continuous snakes. — We follow the notation of Neveu [Nev86] and view discrete
trees as words. Let N = {1, 2, . . . } be the set of all positive integers, set N0 = {∅} and consider
the set U =

⋃
n≥0Nn . For every u = (u1, . . . ,un ) ∈ U, we denote by |u | = n the length of u; if

n ≥ 1, we de�ne its pre�x pr (u) = (u1, . . . ,un−1) and we let χu = un ; for v = (v1, . . . ,vm ) ∈ U,
we let uv = (u1, . . . ,un ,v1, . . . ,vm ) ∈ U be the concatenation of u and v . We endow U with the
lexicographical order : givenu,v ∈ U, letw ∈ U be their longest common pre�x, that isu = w (u1, . . . ,un ),
v = w (v1, . . . ,vm ) and u1 , v1, then u < v if u1 < v1.

A (plane) tree is a non-empty, �nite subset T ⊂ U such that:
(i) ∅ ∈ T ;

(ii) if u ∈ T with |u | ≥ 1, then pr (u) ∈ T ;
(iii) if u ∈ T , then there exists an integer ku ≥ 0 such that ui ∈ T if and only if 1 ≤ i ≤ ku .

We shall view each vertex u of a treeT as an individual of a population for whichT is the genealogical
tree. The vertex ∅ is called the root of the tree and for every u ∈ T , ku is the number of children of
u (if ku = 0, then u is called a leaf, otherwise, u is called an internal vertex) and u1, . . . ,uku are these
children from left to right, χu is the relative position of u among its siblings, |u | is its generation, pr (u)
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is its parent and more generally, the vertices u,pr (u),pr ◦ pr (u), . . . ,pr |u | (u) = ∅ are its ancestors; the
longest common pre�x of two elements is their last common ancestor. We shall denote by ~u,v� the
unique non-crossing path between u and v .

Fix a tree T with n + 1 vertices, listed ∅ = u0 < u1 < · · · < un in lexicographical order. We describe
three discrete paths which each encode T . First, its Łukasiewicz pathW = (W (j ); 0 ≤ j ≤ n + 1) is
de�ned byW (0) = 0 and for every 0 ≤ j ≤ n,

W (j + 1) =W (j ) + kuj − 1.

One easily checks thatW (j ) ≥ 0 for every 0 ≤ j ≤ n butW (n + 1) = −1. Next, we de�ne the height

process H = (H (j ); 0 ≤ j ≤ n) by setting for every 0 ≤ j ≤ n,

H (j ) = |uj |.

Finally, de�ne the contour sequence (c0, c1, . . . , c2n ) ofT as follows: c0 = ∅ and for each i ∈ {0, . . . , 2n−1},
ci+1 is either the �rst child of ci which does not appear in the sequence (c0, . . . , ci ), or the parent of ci if
all its children already appear in this sequence. The lexicographical order on the tree corresponds to the
depth-�rst search order, whereas the contour order corresponds to ‘moving around the tree in clockwise
order’. The contour process C = (C (j ); 0 ≤ j ≤ 2n) is de�ned by setting for every 0 ≤ j ≤ 2n,

C (j ) = |c j |.

We refer to Figure 5 for an illustration of these functions.
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Figure 5. A tree on the le�, and on the right, from top to bo�om: its Łukasiewicz pathW , its height
process H , and its contour process C .

A spatial tree (T , (Su ;u ∈ T )) is a tree T in which each individual u is assigned a spatial position
Su ∈ R, with S∅ = 0. We encode these positions via the spatial height and spatial contour processes H sp

and Csp respectively, de�ned by H sp (j ) = Suj for every 0 ≤ j ≤ n and Csp (j ) = Sc j for every 0 ≤ j ≤ 2n,
where n is the number of edges of the tree. See Figure 3 for an illustration of H sp.
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Without further notice, throughout this work, every Łukasiewicz path shall be viewed as a

step function, jumping at integer times, whereas height and contour processes, as well as

their spatial versions, shall be viewed as continuous functions after interpolating linearly

between integer times.

The analogous continuous objects we shall consider are the stable Lévy tree of Duquesne, Le Gall and
Le Jan [Duq03, LGLJ98] which generalise Aldous’ Brownian Continuum Random Tree [Ald93] in the
case α = 2. Recall that H= (Ht ; t ∈ [0, 1]) denotes the excursion of the height process associated with
the α-stable Lévy process with no negative jump; we shall not need the precise de�nition of this process
but we refer the reader to [Duq03, Section 3.1 and 3.2]. For every s, t ∈ [0, 1], set

dH(s, t ) = Hs +Ht − 2 min
r ∈[s∧t,s∨t ]

Hr .

One easily checks that dH is a random pseudo-metric on [0, 1], we then de�ne an equivalence relation
on [0, 1] by setting s ∼H t whenever dH(s, t ) = 0. Consider the quotient space Tα = [0, 1]/ ∼H, we let
πH be the canonical projection [0, 1]→ Tα ; then dH induces a metric on Tα that we still denote by dH.
The space (Tα ,dH) is a so-called compact real-tree, naturally rooted at πH(0) = πH(1), called the stable

tree coded by H.
We construct another process S = (St ; t ∈ [0, 1]) on the same probability space as H which,

conditional on H, is a centred Gaussian process satisfying for every 0 ≤ s ≤ t ≤ 1,

E
[
|Ss − St |

2 ��� H
]
= dH(s, t ) or, equivalently, E [SsSt | H] = min

r ∈[s,t ]
Hr .

Observe that, almost surely, S0 = 0 and Ss = St whenever s ∼H t so Scan be seen as a Brownian motion
indexed by Tα by setting SπH(t ) = St for every t ∈ [0, 1]. We interpret Sx as the spatial position of an
element x ∈ Tα ; the pair (Tα , (Sx ;x ∈ Tα )) is a continuous analog of spatial plane trees.

The Brownian snake driven by H[LG99, DLG02] is a path-valued process which associates with each
time t ∈ [0, 1] the hole path of values Sx where x ranges over all the ancestors of πH(t ) in Tα , from the
root to πH(t ), so the process S that we consider is only its ‘tip’, which is called the head of the Brownian

snake. In this work we only consider the head of the snakes, which is in principle di�erent than the
entire snakes; nevertheless, Marckert & Mokkadem [MM03] proved a homeomorphism theorem which
translates one into the other. Theorem 1 then implies the convergence of the whole snake towards the
Brownian snake, see [JM05, Corollary 2].

It is known, see, e.g. [LG99, Chapter IV.4] on the whole Brownian snake, that the pair (H,S) admits
a continuous version and, without further notice, we shall work throughout this paper with this version.

2.2. Bienaymé–Galton–Watson trees and randomwalks. — Recall that µ is a probability measure
onZ+ satisfying a few assumptions given in the introduction. The Bienaymé–Galton–Watson distribution
is the law on the set of all �nite plane trees, which gives mass

∏
u ∈T µ (ku ) to every such tree T . We

then denote by Tn such a random tree conditioned to have n + 1 vertices.
The key to prove Lemma 1 is a well-known relation between the height processHn and the Łukasiewicz

path Wn , as well as a representation of the latter from a random walk. Our argument is inspired by
the work of Le Gall & Miermont [LGM11, Proof of Lemma 6 and 7] who consider an in�nite forest
of unconditioned trees, which is slightly easier thanks to the fact that the Łukasiewicz path is then
a non-conditioned random walk; furthermore, there it is supposed that µ ([k,∞)) ∼ ck−α for some
constant c > 0, which is a stronger assumption that ours, and several arguments do not carry over.
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2.2.1. On slowly varying functions and domains of attraction. — Let us present a few prerequisites on
slowly varying functions. First, recall that a function l : [0,∞) → R is said to be slowly varying (at
in�nity) when for every c > 0, it holds that

lim
x→∞

l (cx )

l (x )
= 1.

A property of slowly varying functions that we shall used repeatedly in Section 3 and 4 is that for every
ε > 0, it holds that

lim
x→∞

x−εl (x ) = 0, and lim
x→∞

xεl (x ) = ∞,

see e.g. Seneta’s book [Sen76] for more information on slowly varying functions (see Chapter 1.5 there
for this property).

Let us �x a random variable X on {−1, 0, 1, . . . } with law P(X = k ) = µ (k + 1) for every k ≥ −1, so
E[X ] = 0. Since µ belongs to the domain of attraction of a stable law with index α ∈ (1, 2], there exists
two slowly varying functions L and L1 such that for every n ≥ 1,

E
[
X 21{X ≤n }

]
= n2−αL(n) and P (X ≥ n) = n−αL1 (n).

The two functions are related by

lim
n→∞

L1 (n)

L(n)
= lim

n→∞

n2P(X ≥ n)

E[X 21{X ≤n }]
=

2 − α
α
,

see Feller [Fel71, Chapter XVII, Equation 5.16]. We shall need a third slowly varying function L∗ (see
Doney [Don82, Equation 2.2]), de�ned uniquely up to asymptotic equivalence as the conjugate of 1/L
by the following equivalent asymptotic relations:

L(x )−1/αL∗ (xαL(x )−1) −→
x→∞

1 and L∗ (x )−αL(x1/αL∗ (x )) −→
x→∞

1.

We refer to [Sen76, Chapter 1.6] for more information about conjugation of slowly varying functions. Let
S = (S (n))n≥0 be a random walk started from 0 with step distribution X . As recalled in the introduction,
there exists an increasing sequence (Bn )n≥1 such that if (Xn )n≥1 are i.d.d. copies of X , then B−1n S (n)

converges in distribution to some α-stable random variable. The sequence `(n) = n−1/αBn is slowly
varying at in�nity and in fact, the ratio L∗ (n)/`(n) converges to some positive and �nite limit. For
α < 2, this was observed by Doney [Don82], but it extends to the case α = 2, see the remark between
Equation 2.2 and Theorem 1 in [Don82]: the function L there is 1/L here. By comparing the preceding
asymptotic relations between L and L∗ to [Kor17, Equation 7], one gets precisely

lim
x→∞

L∗ (x )

`(x )
=

1
(2 − α )Γ(−α )

,

where, by continuity, the limit is interpreted as equal to 2 if α = 2.
Doney [Don82, Theorem 1] studies the behaviour of the strict record times of the walk S , but his

work extends mutatis mutandis to weak record times: let τ0 = 0 and for every i ≥ 1, let τi = inf {k >
τi−1 : S (k ) ≥ S (τi−1)}; in other words, the times (τn )n≥0 list those k ≥ 0 such that S (k ) = max0≤i≤k S (i ).
Then the random variables (τn+1 − τn )n≥0 are i.d.d. and according to [Don82, Theorem 1], it holds that

(2) P (τ1 ≥ n) ∼
n→∞

C · n−
α−1
α L∗ (n),
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with a constant C > 0 which shall not be important here. By a Tauberian theorem, see e.g. [Fel71,
Chapter XVII, Theorem 5.5] it follows that

1 − E
[
e−λτ1

]
= (1 − e−λ )

∑
n≥0

e−λnP (τ1 > n)

∼
λ↓0

C · Γ(1/α ) · (1 − e−λ )
α−1
α L∗

(
(1 − e−λ )−1

)
∼
λ↓0

Cα · λ
α−1
α `(λ−1),

for some constant Cα > 0, where we recall that ` is a slowly varying function at in�nity such that
Bn = n

1/α `(n), so, taking λ = 1/N with N ∈ N, we obtain

(3) 1 − E
[
e−τ1/N

]
∼

N→∞
Cα · N

−1 · BN .

2.2.2. Łukasiewicz paths and random walks. — Recall that S = (S (i ))i≥0 denotes a random walk started
from 0 with steps (Xi )i≥1 given by i.i.d. random variables with law P(X1 = k ) = µ (k + 1) for every
k ≥ −1. Let (Xn (i ))1≤i≤n+1 have the law of (Xi )1≤i≤n+1 conditioned to satisfy X1 + · · · +Xn+2 = −1 and
let Sn = (Sn (i ))0≤i≤n+2 be the associated path. For every 1 ≤ j ≤ n + 2, put

X (j )
n (k ) = Xn (k + j mod n + 2), 1 ≤ k ≤ n + 2.

We say that X (j )
n is the j-th cyclic shift of Xn . Obviously, for every 1 ≤ j ≤ n + 2, we have X (j )

n,1 + · · · +

X (j )
n,n+2 = −1, but it turns out there is a unique j such that X (j )

n,1 + · · · + X
(j )
n,k ≥ 0 for every 1 ≤ k ≤ n.

This index is the least time at which the path Sn achieves its minimum overall value:

(4) j = inf
{
1 ≤ k ≤ n + 2 : Sn (k ) = inf

1≤i≤n+2
Sn (i )

}
.

Moreover, it is a standard fact that this time j has the uniform distribution on {1, . . . ,n + 2} and
furthermore X ∗n = X (j )

n has the same law as the increments of the Łukasiewicz pathWn of the tree Tn
and it is independent of j. See e.g. [Pit06, Chapter 6.1] for details.

We see that cyclicly shifting the pathWn at a �xed time, we obtain a random walk bridge Sn . The
latter is also invariant in law under time and space reversal, so by combining these observations, we
obtain the following property: let (Xn (i ))1≤i≤n+2 be the increments of Sn and for a given 1 ≤ i ≤ n + 2,
let X̂ (i )

n (k ) = Xn (i + 1 − k ) for 1 ≤ k ≤ i and X̂ (i )
n (k ) = Xn (n + i + 2 − k ) for i + 1 ≤ k ≤ n + 2; let Ŝ (i )n be

the associated path started from 0, then it has the same distribution as Sn .
Let us �nally note that the bridge conditioning is not important: an argument based on the Markov

property of S applied at time dn/2e and the local limit theorem shows that there exists a constant C > 0
such that for every event An depending only on the �rst dn/2e steps of the path, we have

P (An | S (n) = −1) ≤ C · P (An ) ,

see e.g. [Kor17], near the end of the proof of Theorem 9 there.

2.2.3. The height process as local times. — Let us list the vertices of Tn in lexicographical order as
∅ = u0 < u1 < · · · < un . It is well-known that the processes Hn andWn are related as follows (see e.g.
Le Gall & Le Jan [LGLJ98]): for every 0 ≤ j ≤ n,

Hn (j ) = #
{
k ∈ {0, . . . , j − 1} :Wn (k ) ≤ inf

[k+1, j]
Wn

}
.

Indeed, for k < j, we haveWn (k ) ≤ inf [k+1, j]Wn if and only if uk is an ancestor of uj ; moreover, the
inequality is an equality if and only if the last child of uk is also an ancestor of uj . Fix i < j and suppose
that ui is not an ancestor of uj (this case is treated similarly); denote by ij < i the index of the last
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common ancestor of ui and uj , and j ′ ∈ (i, j] the index of the child of ui j which is an ancestor of uj . It
follows from the preceding identity that the quantityWn (i ) − mini≤k≤jWn (k ) counts the number of
vertices branching-o� of the ancestral line ~ui j ,ui ~ which lie between ui and uj , i.e. all the vertices
visited between time i and j whose parent belongs to ~ui j ,ui ~. Indeed, started from i , the pathWn will
take only values larger than or equal toWn (i ) until it visits the last ancestor of ui , in which case it takes
value exactlyWn (i ). ThenWn will decrease by one exactly at every time it visits a vertex whose parent
belongs to ~ui j ,ui ~, until the last one which is uj′ . We conclude that

Wn (j
′) = inf

i≤k≤j
Wn (k ), and Hn (j

′) = inf
i≤k≤j

Hn (k ).

It follows that the length of the path ~uj′,uj� is

Hn (j ) − Hn (j
′) = #

{
k ∈ {j ′, . . . , j} :Wn (k ) = min

k≤l ≤j
Wn (l )

}
= #

{
k ∈ {i, . . . , j} :Wn (k ) = min

k≤l ≤j
Wn (l )

}
.

We can now prove Lemma 1 appealing to the preceding subsections.

2.3. Proof of Lemma 1. — Fix γ ∈ (0, (α − 1)/α ). We claim that there exists a sequence of events
(En )n≥1 whose probability tends to 1 such that the following holds. There exists c1, c2 > 0 such that for
every n large enough, every 0 ≤ s ≤ t ≤ 1, and every x ≥ 0, we have

(5) P
(
|Hn (nt ) − inf

r ∈[s,t ]
Hn (nr ) | ≥ x

n

Bn
|t − s |γ

)
≤ c1e−c2x ,

and

(6) P
(
|Hn (ns ) − inf

r ∈[s,t ]
Hn (nr ) | ≥ x

n

Bn
|t − s |γ

�����
En

)
≤ c1e−c2x .

This shows that under the conditional probability P( · | En ), the moments of Bn
n
|Hn (nt )−Hn (ns ) |

|t−s |γ are
bounded uniformly in n and s, t ∈ [0, 1], so Lemma 1, �rst under P( · | En ), but then under the
unconditioned law, follows from Kolmogorov’s tightness criterion. Let us start by considering the right
branch and prove (5). Note that we may, and shall, restrict to times 0 ≤ s < t ≤ 1 such that t − s ≤ 1/2
and both ns and nt are integers.

Proof of (5). — According to the discussion closing Section 2.2.3, our claim (5) reads as follows: for
every pair s < t ,

(7) P
(
#
{
k ∈ {ns, . . . ,nt } :Wn (k ) = min

k≤l ≤nt
Wn (l )

}
≥ x

n

Bn
|t − s |γ

)
≤ c1e−c2x .

Let us �rst consider the random walk bridge Sn and prove that (7) holds whenWn is replaced by Sn .
Note that we may, and shall, restrict to times such that t − s ≤ 1/2 and both ns and nt are integers. By
shifting the path at time nt and then taking its time and space reversal, this cardinal of the set in this
probability has the same law as the number of weak records of Sn up to time n |t − s |. Let (τn (i ))i≥0 be
the weak record times of Sn , we therefore aim at bounding the probability

P
(
τn

(⌊
x
n

Bn
|t − s |γ

⌋)
≤ n |t − s |

)
.

Since n |t − s | ≤ n/2, as explained in Section 2.2.2, this probability is bounded by some constant C > 0
times

P
(
τ

(⌊
x
n

Bn
|t − s |γ

⌋)
≤ n |t − s |

)
,
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where (τ (i ))i≥0 are the weak record times of the unconditioned walk S . Recall that (τ (i + 1) − τ (i ))i≥0
are i.d.d. and let τ = τ (1). The exponential Markov inequality shows that the preceding probability is
bounded by

e · E

exp *

,
−
τ (bx n

Bn
|t − s |γ c)

n |t − s |
+
-


= exp

(
1 +

⌊
x
n

Bn
|t − s |γ

⌋
ln

(
1 −

(
1 − E

[
exp

(
−

τ

n |t − s |

)])))
.

From (3), we get that
⌊
x
n

Bn
|t − s |γ

⌋
ln

(
1 −

(
1 − E

[
exp

(
τ

n |t − s |

)]))
=

⌊
x
n

Bn
|t − s |γ

⌋
ln

(
1 −Cα

Bn |t−s |

n |t − s |
(1 + o(1))

)
= −x

n

Bn
|t − s |γCα

Bn |t−s |

n |t − s |
(1 + o(1))

= −Cαx
(n |t − s |)−1/αBn |t−s |

n−1/αBn
|t − s |γ−1+

1
α (1 + o(1)),

where the o(1) does not depend on s and t . Let ε = 1 − 1
α − γ > 0, since the sequence (n−1/αBn )n≥1 is

slowly varying, the so-called Potter bound (see e.g.[BS15, Lemma 4.2] or [Kor17, Equation 9]) asserts
that there exists a constant c , depending on ε (and so on γ ), such that for every n large enough,

(n |t − s |)−1/αBn |t−s |

n−1/αBn
≥ c · |t − s |ε .

We conclude that

P
(
#
{
k ∈ {ns, . . . ,nt } : Sn (k ) = min

k≤l ≤nt
Sn (l )

}
≥ x

n

Bn
|t − s |γ

)
≤ C · exp (1 −Cαcx (1 + o(1))) ,

for every pair s < t , which indeed corresponds to (7) with Sn instead ofWn .

an

Sn

ns nt np nq

n + 2 − an

Wn

nq′ ns ′np ′ nt ′

n + 2 − an

Figure 6. A bridge Sn and its shi�ed excursionWn ; the times s, t fall into the first case, whereas p,q
fall into the second case and s,p into the third case.

We next prove (7) by relatingWn and Sn , as depicted in Figure 6. Recall that these paths have length
n + 2. Let us denote by an the time j in (4) so the path Sn shifted at time an has the law ofWn . Fix two
times s < t such that ns and nt are integers and denote by s ′ and t ′ their respective image after the shift.
We distinguish three cases:

(i) Either ns < nt ≤ an , in which case ns ′ = ns + (n + 2 − an ) < nt + (n + 2 − an ) = nt ′;
(ii) Either an ≤ ns < nt , in which case ns ′ = ns − an < nt − an = nt

′;
(iii) Or ns < an < nt , in which case nt ′ = nt − an < ns + (n + 2 − an ) = ns ′.
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In the �rst two cases, the parts of the two paths (Sn (k ))ns≤k≤nt and (Wn (k ))ns ′≤k≤nt ′ are identical, and
t ′ − s ′ = t − s so, according to (5), we have

P
(
#
{
k ∈ {ns ′, . . . ,nt ′} :Wn (k ) = min

k≤l ≤nt ′
Wn (l )

}
≥ x

n

Bn
|t ′ − s ′ |γ

)
≤ c1e−c2x .

In the third case above, we have to be a little more careful; by cutting Wn at time n + 2 − an (which
corresponds to n + 2 for Sn), we observe that

#
{
k ∈ {nt ′, . . . ,ns ′} :Wn (k ) = min

k≤l ≤ns ′
Wn (l )

}
≤ #

{
k ∈ {nt ′, . . . ,n + 2 − an } :Wn (k ) = min

k≤l ≤n+2−an
Wn (l )

}
+ #

{
k ∈ {n + 2 − an , . . . ,ns ′} :Wn (k ) = min

k≤l ≤ns ′
Wn (l )

}
= #

{
k ∈ {nt , . . . ,n + 2} : Sn (k ) = min

k≤l ≤n+2
Sn (l )

}
+ #

{
k ∈ {0, . . . ,ns} : Sn (k ) = min

k≤l ≤ns
Sn (l )

}
.

A union bound then yields

P
(
#
{
k ∈ {nt ′, . . . ,ns ′} :Wn (k ) = min

k≤l ≤nt ′
Wn (l )

}
≥ x

n

Bn
|t ′ − s ′ |γ

)
≤ P

(
#
{
k ∈ {nt , . . . ,n + 2} : Sn (k ) = min

k≤l ≤n+2
Sn (l )

}
≥

x

2
n

Bn
|t ′ − s ′ |γ

)
+ P

(
#
{
k ∈ {0, . . . ,ns} : Sn (k ) = min

k≤l ≤ns
Sn (l )

}
≥

x

2
n

Bn
|t ′ − s ′ |γ

)
≤ P

(
#
{
k ∈ {nt , . . . ,n + 2} : Sn (k ) = min

k≤l ≤n+2
Sn (l )

}
≥

x

2
n

Bn
|1 − t |γ

)
+ P

(
#
{
k ∈ {0, . . . ,ns} : Sn (k ) = min

k≤l ≤ns
Sn (l )

}
≥

x

2
n

Bn
|s |γ

)
≤ c1e−c2x ,

which concludes the proof of (7). �

The idea to control the left branch |Hn (ns ) − infr ∈[s,t ]Hn (nr ) | is to consider the ‘mirror tree’ obtained
fromTn by �ipping the order of the children of every vertex. There is one subtlety though, let us explain
how to make this argument rigorous, with the help of Figure 7. Put i = ns and j = nt . Let us denote
by T̃n the image of Tn by the following two operations: �rst exchange the subtrees of the progeny of
the i-th and the j-th vertices of Tn and then take the mirror image of the whole tree, the resulting tree
is T̃n . Observe that Tn and T̃n have the same law. Let ĩ > j̃ be the indices such that the ĩ-th and the
j̃-th vertices of T̃n correspond to the i-th and the j-th vertices of Tn respectively. Then between times i
and j, in Tn , the Łukasiewicz pathWn visits all the progeny of the i-th vertex, then all the vertices that
lie strictly between the two ancestral lines between the i-th and j-th vertices and their last common
ancestor, and also all the vertices on this ancestral line leading to j. Similarly, between times j̃ and ĩ , in
T̃n , the Łukasiewicz path W̃n visits all the progeny of the j̃-th vertex, which is the same as that of the
i-th vertex of Tn , then all the vertices that lie strictly between the two ancestral lines between the j̃-th
and ĩ-th vertices and their last common ancestor, which again are the same as in Tn , and also all the
vertices on this ancestral line leading to ĩ . So the two Łukasiewicz paths visit the same vertices, except
thatWn visits the ancestors of the j-th vertex of Tn and not those of its i-th vertex, whereas W̃n visits
the ancestors of the i-th vertex of Tn and not those of its j-th vertex. In principle, the lexicographical
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distance | j̃ − ĩ | may thus be much larger than |i − j | so we cannot directly apply the bound (5) to W̃n

(note that it could also be smaller, but this is not an issue for us, it actually helps). The following lemma
shows that this di�erence is indeed not important.

j

i Tn

j̃

ĩ
T̃n

Figure 7. On the le�: a portion of the tree Tn and two vertices ui and uj ; on the right: the ‘mirror’
images T̃n , ĩ and j̃. The vertices visited byWn (resp. W̃n ) between time i and j (resp. j̃ and ĩ) are those
black dots on the right branch as well as all the vertices strictly inside the grey trees.

Recall that for a vertex v of a tree T di�erent from its root, we denote by pr (v ) its parent and by
kpr (v ) the number of children of the latter; denote further by χv the relative position of v among the
children of pr (v ): formally, the index χv ∈ {1, . . . ,kpr (v ) } satis�es v = pr (v )χv .

Lemma 2. — Let C = 10
µ (0)2 , then the probability of the event{

#{w ∈ �u,v� : χw = 1}
#�u,v�

≤ 1 −
µ (0)
2

for every u,v ∈ Tn such that u ∈ ~∅,v~ and #�u,v� > C lnn
}

tends to 1 as n → ∞.

We can now �nish the proof of Lemma 1.

Proof of (6). — From the preceding lemma, we deduce that there exists some p ∈ (0, 1) such that with
high probability, on all ancestral paths in Tn of length at least logarithmic, there is a proportion at least
p of individuals which are not the �rst child of their parent; symmetrically, there is the same proportion
of individuals which are not the last child of their parent. Consequently, the length of such a path,
multiplied by p, is bounded below by the number of vertices whose parent belongs to this path, and
which themselves lie strictly to its right. With the notation of the discussion preceding the lemma, on
the event described in this lemma, the lexicographical distance in T̃n between the images of the i-th and
j-th vertex of Tn is

| j̃ − ĩ | = |i − j | − |Hn (j ) − inf
i≤k≤j

Hn (k ) | + |Hn (i ) − inf
i≤k≤j

Hn (k ) |

≤ |i − j | + p−1 |i − j |,

where the second (very rough) bound holds only if |Hn (i ) − inf i≤k≤j Hn (k ) | > C lnn, with C as in
Lemma 2. Note that (6) is trivial otherwise since |t − s | ≥ 1

n as we restricted to integer times, so
x n
Bn
|t − s |γ ≥ x n1−γ

Bn
which tends to in�nity like a power of n. We then conclude from the bound (5)

applied to the ‘mirror’ Łukasiewicz path W̃n . �
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It remains to prove Lemma 2. A similar statement was proved in [Mar16, Corollary 3] in the context
of trees ‘with a prescribed degree sequence’. The argument may be extended to our present case but we
chose to modify it in order to directly use the existing references on Bienaymé–Galton–Watson trees.

Proof of Lemma 2. — Fix ε > 0 and let T be an unconditioned Bienaymé–Galton–Watson tree with
o�spring distribution µ. De�ne the set

AT =

{
u,v ∈ T : u ∈ ~∅,v~ and #�u,v� > C lnn and

#{w ∈ �u,v� : χw = 1}
#�u,v�

> 1 −
µ (0)
2

}
.

Note that the maximal height of a tree cannot exceed its total size. Then by sampling v uniformly at
random in T , we obtain

P (∃(u,v ) ∈ AT and #T = n + 1) =
1

n + 1
E



n+1∑
h=1

∑
v ∈T
|v |=h

1{∃u ∈T such that (u,v )∈AT }1{#T=n+1}



≤
1

n + 1

n+1∑
h=1

E



∑
v ∈T
|v |=h

1{∃u ∈T such that (u,v )∈AT }



.(8)

We then use a spinal decomposition due to Duquesne [Duq09, Equation 24] which results in an absolute
continuity relation between the treeT and the treeT∞ ‘conditioned to survive’, which is the in�nite tree
which arise as the local limit of Tn . It was introduced by Kesten [Kes86] and the most general results
on such convergences are due to Abraham & Delmas [AD14]. The tree T∞ contains a unique in�nite
simple path called the spine, starting from the root, and the vertices which belong to this spine reproduce
according to the size-biased law (kµ (k ))k≥1, whereas the other vertices reproduce according to µ, and all
the vertices reproduce independently. For a tree τ and a vertex v ∈ τ , let θv (τ ) be the subtree consisting
of v and all its progeny, and let Cutv (τ ) = {v} ∪ (τ \ θv (τ )) be its complement (note that v belongs to
the two parts). Then for every non-negative measurable functions G1,G2, for every h ≥ 0, we have

E



∑
v ∈T
|v |=h

G1 (Cutv (T ),v ) ·G2 (θv (T ))



= E
[
G1 (Cutv∗h (T∞),v

∗
h )

]
· E [G2 (T )] ,

where v∗h is the only vertex on the spine of T∞ at height h. Then the expectation in (8) equals

P
(
∃u ∈ T∞ : u ∈ ~∅,v∗h~ and #�u,v∗h� > C lnn and

#{w ∈ �u,v∗h� : χw = 1}
#�u,v∗h�

> 1 −
µ (0)
2

)

≤

h−1∑
k=C lnn

P
(#{w ∈ �v∗h−k ,v∗h� : χw = 1}

k
> 1 −

µ (0)
2

)
.

Now recall that on the spine, the vertices reproduce according to the size-biased law (iµ (i ))i≥1, and
furthermore, conditional on the number of children of its parent, the position of a vertex amongst its
sibling is uniformly chosen, this means that for every vertex w on the spine, the probability P(χw = 1)
equals

∑
i≥1 (iµ (i ))/i = 1 − µ (0) and these events are independent. Therefore, if Bin(N ,p) denotes a

random variable with the binomial law with parameters N and p, then the preceding probability is
bounded by

h−1∑
k=C lnn

P
(
k−1Bin(k, 1 − µ (0)) > 1 −

µ (0)
2

)
≤

h−1∑
k=C lnn

e−kµ (0)
2/2,
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where we have used the celebrated Cherno� bound. Putting things together, we obtain the bound

P (∃(u,v ) ∈ AT | #T = n + 1) ≤
1

(n + 1)P(#T = n + 1)

n+1∑
h=1

h−1∑
k=C lnn

e−kµ (0)
2/2

≤
1

(n + 1)P(#T = n + 1)

n+1∑
h=1

h · e−C lnnµ (0)2/2.

It is well-known that nBnP(#T = n + 1) → p1 (0) as n → ∞, where p1 is the density of the stable random
variable X (α ) from the introduction; this follows e.g. from the fact that the event P(#T = n + 1) is the
probability that the random walk S �rst hits −1 at time n + 2, which equals by cyclic shift (n + 1)−1 times
the probability that Sn+2 = −1 and the asymptotic behaviour of this probability is dictated by the local
limit theorem, see e.g. [Kor13, Lemma 1]. We conclude that for n large enough

P (∃(u,v ) ∈ AT | #T = n + 1) ≤
n2Bn
2p1 (0)

e−C lnnµ (0)2/2 (1 + o(1))

≤ n3e−C lnnµ (0)2/2,

which converges to 0 from our choice of C . �

3. Convergence of snakes

We prove in this section the results presented in the introduction when we add toTn spatial positions
given by i.i.d. increments with law Y . Recall that we concentrate only on the joint convergence of Hn

and H
sp
n .

3.1. Proof of Theorem 1 for centred snakes. — Let us �rst focus on the case E[Y ] = 0; we aim at
showing the convergence in distribution in C([0, 1],R2)(

Bn
n
Hn (nt ),

( Bn
nΣ2

)1/2
H

sp
n (nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Ht ,St )t ∈[0,1].

where Σ2 B E[Y 2] ∈ (0,∞); this convergence in the sense of �nite-dimensional marginals follows easily
from (1) appealing e.g. to Skorohod’s representation theorem and Donsker’s invariance principle applied
to �nitely many branches. We thus only focus on the tightness of the rescaled process (Bn/n)1/2H

sp
n (n·).

The idea is to apply Kolmogorov’s criterion but our assumption does not give us su�ciently large
moments. We therefore adapt the argument from [JM05] and treat separately the large and small values
of Y ’s: the large ones are too rare to contribute much and the small ones now have su�ciently large
moments. The proof takes �ve steps.

3.1.1. Necessity of the assumption. — Suppose �rst that the assumption P( |Y | ≥ (n/Bn )
1/2) = o(n−1)

does not hold. Then there exists δ > 0 such that for in�nitely many indices n ∈ N, we have P( |Y | ≥
(n/Bn )

1/2) ≥ δn−1. Let us implicitly restrict ourselves to such indices; let (Yi )i≥1 be i.d.d. copies of Y ,
independent of Tn , then the conditional probability given Tn that there exists an internal vertex u such
that its �rst child satis�es |Yu1 | ≥ (n/Bn )

1/2 equals

P *.
,

n+1−λ (Tn )⋃
i=1

{|Yi | ≥ (n/Bn )
1/2}

�������
Tn

+/
-
= 1 − P *.

,

n+1−λ (Tn )⋂
i=1

{|Yi | < (n/Bn )
1/2}

�������
Tn

+/
-
≥ 1 −

(
1 −

δ

n

)n+1−λ (Tn )
,

where λ(Tn ) denotes the number of leaves of the tree. Since lim supn→∞ λ(Tn )/n < 1 with high probabil-
ity, and indeed λ(Tn )/n converges to µ (0), see e.g. [Kor12, Lemma 2.5], the right-most term is bounded
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away from 0 uniformly in n. We conclude that with a probability bounded away from 0, for in�nitely
many indices n ∈ N, there exists 0 ≤ i < n such that (n/Bn )1/2 |H

sp
n (i + 1) − H sp

n (i ) | ≥ 1 so the sequence
of continuous processes ((n/Bn )1/2H

sp
n (n·))n≥1 cannot be tight.

3.1.2. A cut-o� argument. — We assume for the rest of the proof that P( |Y | ≥ (n/Bn )
1/2) = o(n−1). Recall

that for every δ > 0, we have n
1
α −δ � Bn � n

1
α +δ so this assumption implies P( |Y | ≥ y) = o(y−

2α
α (1+δ )−1 ).

Set bn = (n2/Bn )
α−1
4α +ε for some ε > 0; we shall tune ε and δ small. The idea is to take into account

separately the large increments. For every vertex u ∈ Tn , let Y ′u = Yu1{ |Yu | ≤bn } and Y ′′u = Yu1{ |Yu |>bn },
de�ne then H

sp
n
′ and H

sp
n
′′ the spatial processes in which the increments Yu are replaced by Y ′u and Y ′′u

respectively, so H
sp
n = H

sp
n
′ + H

sp
n
′′.

3.1.3. Contribution of the large jumps. — Let En be the event that Tn contains two vertices, say u and v ,
such that u is an ancestor of v and both |Yu | > bn and |Yv | > bn . Then P(En | Tn ) ≤ Λ(Tn )P( |Y | > bn )

2,
where Λ(Tn ) =

∑
u ∈Tn |u | is called the total path length ofTn . It is a simple matter to prove the following

well-known integral representation: if Cn denotes the contour process of Tn , then

Λ(Tn ) =
n

2
+
1
2

∫ 2n

0
Cn (t )dt =

n2

Bn

(
Bn
2n
+

∫ 1

0

Bn
n
Cn (2nt )dt

)
.

We deduce that if Tn satis�es 1, then we have the convergence in distribution:

(9)
Bn
n2

Λ(Tn )
(d )
−→
n→∞

∫ 1

0
Htdt .

We then write for every K > 0,

lim sup
n→∞

P (En ) ≤ lim sup
n→∞

P
(
Λ(Tn ) > Kn2/Bn

)
+ K lim sup

n→∞

n2

Bn
P( |Y | > bn )

2.

The �rst term on the right tends 0 when K → ∞, and as for the second term, from our choice of bn , we
have for every δ > 0,

n2

Bn
P( |Y | > bn )

2 �

(
n2

Bn

)1−( α−14α +ε ) (
4α

α (1+δ )−1 )

,

and the exponent is negative for δ su�ciently small. Now on the event Ecn , there is at most one edge
on each branch along which the spatial displacement is in absolute value larger than bn , therefore
max0≤i≤n |H

sp
n
′′(i ) | simply equals maxu ∈Tn |Y ′′u | and so for every δ > 0,

P
({

max
0≤t ≤1

|H
sp
n
′′(2nt ) | > δ (n/Bn )1/2

}
∩ Ecn

)
≤ P

(
max
u ∈Tn

|Yu | > δ (n/Bn )
1/2

)
≤ nP

(
|Y | > (n/Bn )

1/2
)
,

which converges to 0 as n → ∞. Thus (Bn/n)1/2H
sp
n
′′(n·) converges to 0 so it only remains to prove that

(Bn/n)
1/2H

sp
n
′(n·) is tight.

3.1.4. Average contribution of small jumps. — The process (Bn/n)1/2H
sp
n
′(n·) is simpler to analyse than

(Bn/n)
1/2H

sp
n (n·) since all the increments are bounded in absolute value by (n/Bn )

−ε . Note nonetheless
that H sp

n
′ is non centred in general, we next prove that its conditional expectation given Tn is negligible.

Let mn = E[Y ′] = −E[Y ′′] and observe that E[H sp
n
′(n·) | Tn] = mnHn (n·). Recall that (Bn/n)Hn (n·)

converges in distribution (to H); from the tail behaviour of Y we get:

|mn | ≤ E[|Y ′′ |] ≤ bnP ( |Y | > bn ) +

∫ ∞

bn
P ( |Y | > y) dy = O

(
b
1− 2α

α (1+δ )−1
n

)
.
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Note that for ε and δ su�ciently small, we have(α − 1
4α
+ ε

) (
1 −

2α
α (1 + δ ) − 1

)
> −

α + 1
4α
,

and this bound gets tighter as ε and δ get closer to 0. Then, since

α + 1
4α

<
1
2
<
α + 1
2α
,

we conclude that for ε and δ su�ciently small,(
n

Bn

)1/2 (
b
1− 2α

α (1+δ )−1
n

)
= n2(

α−1
4α +ε ) (1−

2α
α (1+δ )−1 )+

1
2 · B

−( α−14α +ε ) (1−
2α

α (1+δ )−1 )−
1
2

n

converges to 0 as n → ∞ since both exponents are negative. Therefore the process (Bn/n)1/2E[H
sp
n
′(n·) |

Tn] = (n/Bn )
1/2mn · (Bn/n)Hn (n·) converges in probability to 0 and we focus for the rest of the proof

on the centred process Hsp
n
′(n·) = H

sp
n
′(n·) − E[H sp

n
′(n·) | Tn].

3.1.5. Re-centred small jumps are tight. — It only remains to prove that (Bn/n)1/2H
sp
n
′(n·) is tight. Fix

γ ∈ (0, (α − 1)/α ), let η > 0 arbitrary and let us �x C > 0 such that, according to Lemma 1, for every n

large enough,

P
(

sup
0≤s,t ≤1

Bn · |Hn (nt ) − Hn (ns ) |

n · |t − s |γ
≤ C

)
≥ 1 − η.

We shall denote byAn the event in the preceding probability. Our aim is to apply Kolmogorov’s tightness
criterion to (Bn/n)

1/2Hsp
n
′(n·) on the event An . Let us enumerate the vertices of Tn in lexicographical

order as u0 < u1 < · · · < un . Fix 0 ≤ s < t ≤ 1 such that ns and nt are both integers. Then
Hsp
n
′(nt ) − Hsp

n
′(ns ) is the sum of #~uns ,unt ~ i.i.d. random variables distributed as Y′ = Y ′ − E[Y ′]. Let

r ∈ [s, t] be as follows: set r = s if uns is an ancestor of unt ; otherwise, nr is an integer and unr is
the ancestor of unt whose parent is the last common ancestor of uns and unt . In this way, r satis�es
Hn (nr ) = inf [s,t ]Hn (n·) and it holds that

#~uns ,unt ~ ≤ 2 + Hn (ns ) + Hn (nt ) − 2Hn (nr ).

On the event An , the right-hand side is bounded by

C
n

Bn
( |t − r |γ + |r − s |γ ) ≤ 2C

n

Bn
|t − s |γ .

Fix any q ≥ 2 and let us write Cq for a constant which will vary from one line to the other, and which
depends on q and the law of Y , but not on s, t nor n.

Note that E[|Y′ |2] = Var(Y ′) ≤ E[|Y ′ |2] ≤ E[|Y |2] < ∞ and |Y′ |q ≤ 2q (n2/Bn )q (
α−1
4α +ε ) . Appealing

to [Pet95, Theorem 2.9] (sometimes called the Rosenthal inequality), we obtain

E
[(
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |

(n/Bn )1/2

)q �����
An

]
≤ Cq

(Bn
n

)q/2
*
,

n

Bn
|t − s |γE

[
|Y′ |q

]
+

(
n

Bn
|t − s |γ

)q/2
E

[
|Y′ |2

]q/2+
-

≤ Cq
*.
,

(Bn
n

)q/2−1 (
n2

Bn

)q ( α−14α +ε )

|t − s |γ + |t − s |qγ /2+/
-
.

Recall that for every δ > 0, we have Bn � n
1
α +δ so

1
lnn

ln *.
,

(Bn
n

)q/2−1 (
n2

Bn

)q ( α−14α +ε )+/
-
≤

( 1
α
+ δ

) (q
2
− 1 − q

(α − 1
4α
+ ε

))
+ 2q

(α − 1
4α
+ ε

)
−

(q
2
− 1

)
.
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Taking ε = δ = 0, the right-hand side reads

1
α

(q
2
− 1 − q

α − 1
4α

)
+ q

α − 1
2α

−

(q
2
− 1

)
=
α − 1
α

(
1 −

q

4α

)
,

which tends to −∞ as q → ∞. Now if ε,δ > 0 are small, one obtains instead the exponent

α − 1
α

(
1 −

q

4α

[
1 − δ

(
4α2

α − 1
+
1
2

)
+ 2αε

(
2
( 1
α
+ δ

)
− 1

)])
− δ ,

which still tends to −∞ as q → ∞. Notice also that n−1 ≤ |s − t | ≤ 1, so we may choose q large enough
so that

sup
n→∞

E
[(
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |

(n/Bn )1/2

)q �����
An

]
≤ Cq |t − s |

2.

This bound holds whenever s, t ∈ [0, 1] are such that ns and nt are both integers. Since Hsp
n
′ is de�ned

by linear interpolation between such times, then it also holds for every s, t ∈ [0, 1]. The standard
Kolmogorov criterion then implies the following bound for the Hölder norm of Hsp

n
′ for some θ > 0: for

every δ > 0, there exists C > 0 such that for every n large enough,

P
(

sup
0≤s,t ≤1

|Hsp
n (nt ) − Hsp

n (ns ) |

(n/Bn )1/2 |t − s |θ
≤ C

�����
An

)
≥ 1 − δ .

Since P(An ) → 1 as n → ∞, the same result holds under the unconditional probability, which shows
that the sequence (Bn/n)

1/2Hsp
n
′(n·) is indeed tight and the proof is complete.

3.2. Proof of Theorem 2 for non-centred snakes. — We next assume that E[Y ] =m , 0 and prove
Theorem 2. The intuition behind the result is that the �uctuations are small and disappear after scaling,
only the contribution of the expected displacement remains. Indeed, as in the preceding proof, we have
Bn
n E[H sp

n (n·) | Tn] = m Bn
n Hn (n·) which converges to m ·H so it is equivalent to consider the centred

version of Y . For the rest of the proof, we thus assume that E[Y ] = 0 and P( |Y | ≥ n/Bn ) = o(n
−1), and

we prove that the corresponding scaled spatial process Bn
n H

sp
n (n·) converges to the null process.

The fact that our assumption is necessary for tightness of this process goes exactly as for Theorem 1,
in the �rst step: Now the tails of Y are so that P( |Y | ≥ y) = o(y−

α
α (1+δ )−1 ) for every δ > 0 and we may

proceed as previously, with the sequence bn = (n2/Bn )
α−1
2α +ε instead: up to δ , ε , both exponents in the

tails of Y and in bn are half what they were in the preceding section, so these changes compensate each
other. Then the previous arguments apply mutatis mutandis: we have

lim
n→∞

n2

Bn
P( |Y | > bn )

2 = 0 and lim
n→∞

(
n

Bn

)1/2
bnP ( |Y | > bn ) = 0,

so both processes Bn
n H

sp
n
′′(n·) and Bn

n E[H sp
n
′(n·) | Tn] converge to the null process. Similarly, with the

preceding notations, for s, t ∈ [0, 1], we have

E
[(
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |

n/Bn

)q �����
An

]
≤ Cq

(Bn
n

)q
*
,

n

Bn
|t − s |γE

[
|Y′ |q

]
+

(
n

Bn
|t − s |γ

)q/2
E

[
|Y′ |2

]q/2+
-

≤ Cq
*.
,

(Bn
n

)q−1 (
n2

Bn

)q ( α−12α +ε )

|t − s |γ +
(Bn
n
E

[
|Y ′ |2

]
|t − s |γ

)q/2+/
-
.

The �rst term in the last line is controlled as previously: the factor 1/2 in the exponent in bn compensate
the fact that we now rescale by n/Bn instead of (n/Bn )1/2 and similar calculations as in the preceding
section show that this �rst term is bounded by |t − s |γ times n raised to a power which converges to −∞



20 CYRIL MARZOUK

as q → ∞. The only change compared to the proof of Theorem 1 is that we may not have E[|Y |2] < ∞.
Still,

E
[
|Y ′ |2

]
= 2

∫ bn

0
yP ( |Y | > y) dy = O

(∫ bn

1
y1−

α
α (1+δ )−1 dy

)
.

Note that if α < 2, then for δ su�ciently small, the exponent is smaller than −1 so the integral converges.
If α = 2, then since Bn is at least of order n1/2 (and it is exactly of this order if and only if µ has �nite
variance), then we do not need any δ : we have P( |Y | ≥ y) = o(y−2) and so

E
[
|Y ′ |2

]
= O

(∫ bn

1
y−1dy

)
= O (lnbn ) = O (lnn).

In both cases, Bn
n E[|Y ′ |2] is bounded above by n−η for some η > 0 and we may conclude as in the

preceding proof that for q large enough,

sup
n→∞

E
[(
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |

n/Bn

)q �����
An

]
≤ Cq |t − s |

2,

and so the process Bn
n Hsp

n
′(n·) is tight. Moreover, the preceding bounds applied with s = 0 and t ∈ [0, 1]

�xed show that the one-dimensional marginals converge in distribution to 0 so the whole process
converges in distribution to the null process, which completes the proof.

3.3. Application to the number of inversions. — Before discussing heavy-tailed snakes, let us
apply Theorem 1 to prove Corollary 1, following the argument of Cai et al. [CHJ+17, Section 5].

First note that for a given tree T with n + 1 vertices listed ∅ = u0 < u1 < · · · < un in lexicographical
order, we have

E[I (T )] =
1
2

∑
0≤i<j≤n

1{ui is a ancestor of uj } =
1
2

∑
u ∈T

|u | =
1
2
Λ(T ),

where we recall the notation Λ(T ) for the total path length of T . Therefore the convergence of the
conditional expectation of I (Tn ) follows from (9). We focus on the �uctuations.

Let (Yu )u ∈Tn be i.i.d. spatial increments on the treeTn , where each Yu has the uniform distribution on
the interval (−1/2, 1/2), with variance Σ2 = 1/12. The main idea, see the discussion around Equation
(5.1) in [CHJ+17], is the introduction of a coupling between an inversion I on Tn and (Yu )u ∈Tn , which
yields the following comparison:

�����
J (Tn ) −

(
I (Tn ) −

Λ(Tn )

2

) �����
≤ 2n,

where J (Tn ) =
∑
v ∈Tn Sv and we recall that Sv is the spatial position of the vertex v . Still follow-

ing [CHJ+17, Section 5], let us de�ne a process R̂n on [0, 2n] as follows: recall that Csp
n is the spatial

process in contour order, then for every t ∈ [0, 2n], if t is an integer, then set R̂n (t ) = C
sp
n (t ), otherwise

set

R̂n (t ) =



C
sp
n (btc), if Cn (btc) > Cn (dte),

C
sp
n (dte), if Cn (btc) < Cn (dte).

In other words, R̂n is a step function on [0, 2n] which is constant on each interval [i, i + 1) with
0 ≤ i ≤ 2n − 1, on which it takes the value of the position of either the vertex visited at time i or i + 1 in
the contour order, whichever is the farthest (in graph distance) from the root. It then readily follows that

J (Tn ) =
1
2

∫ 2n

0
R̂n (t )dt .
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Observe that |R̂n (t ) −C
sp
n (t ) | ≤ 1/2 for every t ∈ [0, 2n] so,

I (Tn ) −
Λ(Tn )

2
=

1
2

∫ 2n

0
C
sp
n (t )dt +O (n) = n

∫ 1

0
C
sp
n (2nt )dt +O (n).

Notice that (n3/Bn )1/2 � n; since Σ2 = 1/12, we conclude from Theorem 1 that( Bn
12n3

)1/2 (
I (Tn ) −

Λ(Tn )

2

)
=

∫ 1

0

( Bn
12n

)1/2
C
sp
n (2nt )dt + o(1)

(d )
−→
n→∞

∫ 1

0
Stdt .

4. Heavy-tailed snakes

We investigate more precisely in this section the behaviour of H sp
n and C

sp
n when the assumption

P( |Y | ≥ (n/Bn )
1/2) = o(n−1) of Theorem 1 fails. In this case, these processes cannot converge to

continuous function since they admit large increments. In fact, they do not converge to functions at
all; indeed, with high probability as n becomes large, we may �nd in the tree Tn vertices, say, u, which
have a microscopic descendance and such that |Yu | is very large so the processes H sp

n and C
sp
n have a

macroscopic increment, almost immediately followed by the opposite increment, which gives rise at
the limit to a vertical peak. Nonetheless, as proved by Janson & Marckert [JM05] they still converge in
distribution in the following weaker sense.

In this section, we identify continuous fonctions from [0, 1] to R with their graph, which belong to
the space Kof compact subsets of [0, 1] × R, which is a Polish space when equipped with the Hausdor�
distance: the distance between two compact sets A and B is

dH (A,B) = inf {r > 0 : A ⊂ B (r ) and B ⊂ A(r ) },

where A(r ) = {x ∈ R2 : d (x ,A) ≤ r }. Then a sequence of functions ( fn )n≥1 in C([0, 1],R) may converge
in K to a limit K which is not the graph of a function; note that if K is the graph of a continuous
function, then this convergence is equivalent to the uniform convergence considered previously. The
type of limits we shall consider are constructed as follows. Take f ∈ C([0, 1],R) and Ξ a collection
of points in [0, 1] × R such that for every x ∈ [0, 1] there exists at most one element y ∈ R such that
(x ,y) ∈ Ξ, and for every δ > 0, the set Ξ ∩ ([0, 1] × (R \ [−δ ,δ ])) is �nite. We then de�ne a subset
f ./ Ξ ⊂ [0, 1] × R as the union of the graph of f and the following collection of vertical segments:
for every point (x ,y) ∈ Ξ, we place a vertical segment of length |y | at (x , f (x )), directed up or down
according to the sign of y. Then f ./ Ξ belongs to Kand the map ( f ,Ξ) 7→ f ./ Ξ is measurable so we
may take a random function f and a random set Ξ and obtain a random set f ./ Ξ.

Again, our results focus on the head of the snakes, but they imply the convergence of the entire
snakes towards ‘jumping snakes’, see [JM05, Section 3.1].

4.1. The intermediate regime. — In the next result, we investigate the case where n · P( |Y | ≥
(n/Bn )

1/2) is uniformly bounded. Extracting a subsequence if necessary, we may assume in fact that
both tails n · P(Y ≥ (n/Bn )

1/2) and n · P(−Y ≥ (n/Bn )
1/2) converge.

Theorem 3 (Convergence to a ‘hairy snake’). — Suppose that E[Y ] = 0, that Σ2 B E[Y 2] ∈ (0,∞)

and that there exists a+,a− ∈ [0,∞) such that a+ + a− > 0 and

lim
n→∞

n · P(Y ≥ (n/Bn )
1/2) = a+ and lim

n→∞
n · P(−Y ≥ (n/Bn )

1/2) = a−.
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Let Ξ be a Poisson random measure on [0, 1] × R with intensity
2α
α−1y

−1− 2α
α−1 (a+1{y>0} + a−1{y<0} )dxdy

which is independent of the pair (H,S). Then the convergence in distribution of the sets{(Bn
n

)1/2
H

sp
n (nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

(Σ · S) ./ Ξ,

holds in K, jointly with (1). The same holds (jointly) when H
sp
n (n·) is replaced by C

sp
n (2n·).

-4

-2

2

-20

-10

10

20

Figure 8. Two instances of the spatial height process Hn (n·) associated with the height process of
Figure 2 where in both cases, Y is symmetric and such that limn→∞ n · P(Y ≥ (n/Bn )

1/p ) = 1; on the
le�, p = 2 and on the right, p = 0,6.

The intuition behind this result is that, as opposed to Theorem 1, we can �nd here vertices u of Tn
such that |Yu | is macroscopic, and these points lead to the peaks given by Ξ at the limit. Indeed, for
every c > 0, we have (

cn

Bcn

)1/2
= c

α−1
2α

(
n

Bn

)1/2 (
n−1/αBn

(cn)−1/αBcn

)1/2
,

and the very last term converges to 1 since n−1/αBn is slowly varying at in�nity. Therefore, for every
y > 0 �xed, we have

y

(
n

Bn

)1/2
∼

n→∞
*.
,

y
2α
α−1n

B
y

2α
α−1 n

+/
-

1/2

.

Observe that under the assumption of Theorem 3, we have

P
*..
,
Y > *.

,

y
2α
α−1n

B
y

2α
α−1 n

+/
-

1/2
+//
-
∼

n→∞
a+y

− 2α
α−1n−1.

For every ε > 0, the same relation holds when each occurence (on both sides) of y
2α
α−1 is multiplied by

1 + ε or by 1 − ε , which enables to conclude (the second limit is obtained by a symmetric argument) that
under the assumption of Theorem 3, we have

lim
n→∞

n · P *
,
Y > y

(
n

Bn

)1/2
+
-
= a+y

− 2α
α−1 , and lim

n→∞
n · P *

,
−Y < y

(
n

Bn

)1/2
+
-
= a−y

− 2α
α−1 .

Since, conditional on Tn , the cardinal #{u ∈ Tn : Yu > y (n/Bn )1/2} has the binomial distribution with
parameters n and P(Y > y (n/Bn )

1/2), this number is asymptotically Poisson distributed with rate
a+y

− 2α
α−1 , which indeed corresponds to Ξ, provided that the locations are asymptotically uniformly

distributed in the tree.
As for Theorem 1, let us decompose the proof into several steps, following closely the argument of

the proof of Theorem 5 in [JM05].
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4.1.1. Contribution of the small jumps. — As in the proof of Theorem 1, let us treat separately the large
and small increments: put bn = (n2/Bn )

α−1
4α +ε for some ε > 0 small to be tuned. For every vertex u ∈ Tn ,

let Y ′u = Yu1{ |Yu | ≤bn } and Y ′′u = Yu1{ |Yu |>bn }, de�ne then H
sp
n
′ and H

sp
n
′′ the spatial processes in which

the increments Yu are replaced by Y ′u and Y ′′u respectively, so H
sp
n = H

sp
n
′ +H

sp
n
′′. Observe that the only

di�erence with Theorem 1 is that our assumption now implies P( |Y | ≥ y) = O (y−
2α

α (1+δ )−1 ), whereas
the big O was a small o there. Actually, the arguments used to control the small jumps in Section 3.1.4
and 3.1.5 only requires a big O so we conclude that, as there, we have(

Bn
n
Hn (nt ),

( Bn
nΣ2

)1/2
H

sp
n
′(nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Ht ,St )t ∈[0,1].

4.1.2. Contribution of the medium-large jumps. — We next claim that we have

(10)
{(Bn

n

)1/2
H

sp
n
′′(nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

0 ./ Ξ,

in K. Let us approximate both sides. First note that the intensity measure of Ξ explodes at the x axis, but
for every η > 0, the restricted Poisson random measure Ξη = Ξ ∩ ([0, 1] × (R \ [−η,η])) is almost surely
�nite. Clearly, the Hausdor� distance between 0 ./ Ξ and 0 ./ Ξη is at most η. Similarly, let us truncate
further Y ′′u by setting Y

η
u = Yu1{ |Yu |>η (n/Bn )1/2 } and then de�ne H sp

n
η as the spatial process in which the

increments Yu are replaced by Y
η
u . Recall the event En that Tn contains two vertices, say u and v , such

that u is an ancestor of v and both |Yu | > bn and |Yv | > bn . Then again, P(En ) converges to 0 since the
argument used in Section 3.1.3 only requires a big O in the tail of Y . Furthermore, on the complement
event, we have max0≤i≤n |H

sp
n
′′(i ) | = maxu ∈Tn |Y ′′u | and max0≤i≤n |H

sp
n
η (i ) | = maxu ∈Tn |Y

η
u |. The latter

is either maxu ∈Tn |Y ′′u | or 0 in the case maxu ∈Tn |Y ′′u | ≤ η(n/Bn )1/2 so we conclude that on the event Ecn
whose probability tends to 1, we have

max
0≤i≤n

|H
sp
n
′′(i ) | − max

0≤i≤n
|H

sp
n
η (i ) | ≤ η

(
n

Bn

)1/2
.

Therefore, in order to prove (10), it su�ces to prove that for every η > 0, it holds that

(11)
{(Bn

n

)1/2
H

sp
n
η (nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

0 ./ Ξη .

4.1.3. A discrete Poisson random measure. — Let ∅ = u0 < u1 < · · · < un be the vertices of Tn listed in
lexicographical order, and let 1 ≤ k1 < · · · < kNn ≤ n be the indices of those vertices u of Tn for which
Y
η
u is non-zero, or otherwise said |Yu | > η(n/Bn )1/2. Let νη (dy) = 2α

α−1y
−1− 2α

α−1 (a+1{y>η } + a−1{y<−η } )dy
so dxνη (dy) is the intensity of Ξη . Then the discussion just after the statement of the theorem shows
that Nn has the binomial distribution with parameters n and P( |Y | > η(n/Bn )1/2) which converges to
the Poisson distribution with parameter νη (R) ∈ (0,∞). Furthermore, conditional on Nn , the values
(Y

η
uki

)1≤i≤Nn have the same distribution as i.i.d. copies of Y conditioned on |Y | > η(n/Bn )1/2, the indices
(ki )1≤i≤Nn have the uniform distribution amongst the ranked Nn-tuples in {1, . . . ,n}, and they are
independent of the values (Y ηuki )1≤i≤Nn . All the other Yu ’s are null.

Since Nn is bounded in probability, the Nn-tuple (ki )1≤i≤Nn is well approximated as n → ∞ by i.d.d.
random times on {1, . . . ,n}. Furthermore, one easily checks from their tail behaviour that the random
variables (Bn/n)1/2Y

η
uki

converge in distribution as n → ∞ towards i.i.d. random variables sampled from
the probability νη (·)/νη (R). Therefore, the set ξ ηn = {(n−1ki , (Bn/n)1/2Y

η
uki

); 1 ≤ i ≤ Nn } ⊂ [0, 1] × R.
converges in law in K towards the random set ξ η∞ = {(Ui ,Xi ); 1 ≤ i ≤ N } where (Ui )i≥1 are i.i.d.
uniformly distributed on [0, 1], (Xi )i≥1 are i.i.d. with law νη (·)/νη (R), N has the Poisson distribution
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with parameter νη (R), and all are independent. Then ξ η∞ has the law of Ξη . One easily check that the
mapping ξ 7→ 0 ./ ξ is continuous Ξ-almost surely, so we conclude that

0 ./ ξn
(d )
−→
n→∞

0 ./ Ξη .

in K.

4.1.4. Contribution of the very large jumps. — In order to prove that (11), and therefore (10), holds, in
only remains to prove that

dH

({(Bn
n

)1/2
H

sp
n
η (nt ); t ∈ [0, 1]

}
, 0 ./ ξ ηn

)
P
−→
n→∞

0.

We implicitly work conditional on the event Ecn so there is at most one non zero value of Y ηu along each
branch of Tn . In this case, the process (Bn/n) · H

sp
n
η can be described at follows: it is null until time

k1 − 1, then it moves to a random value Yuk1 at time k1, it stays at this value for a time given by the
total progeny of uk1 before going back to zero where it stays until time k2 and so on. On the other hand,
0 ./ ξ ηn is constructed by putting value 0 for every time t ∈ [0, 1] except the ki ’s where we place vertical
peaks given by the Yuki ’s. Then the previous convergence is an easy consequence of the following
lemma which extends [JM05, Lemma 8]:

Lemma 3. — Let vn be uniformly distributed in Tn , and let D (vn ) be its number of descendants, then

D (vn )/n converges in probability to 0.

Indeed, since Nn is bounded in probability and our vertices (uki )1≤i≤Nn are uniformly distributed
(and conditioned to be di�erent and to lie on di�erent branches, but this occurs with high probability),
it follows that their progeny are all small compared to n, so as n → ∞, the process (Bn/n) · H

sp
n
η indeed

goes back almost immediately to 0 after reaching a high value, as for 0 ./ ξ ηn .

Proof of Lemma 3. — Let us condition on Tn :

E [D (vn ) | Tn] =
1

n + 1

∑
v ∈Tn

∑
w ∈Tn

1{w is an ancestor of v } =
1

n + 1

∑
w ∈Tn

|v | =
1

n + 1
Λ(Tn ),

where we recall the notation Λ(Tn ) for the total path length of Tn , which is of order n2/Bn according
to (9). We conclude from the Markov inequality that for every ε,C > 0, we have

P (D (vn ) > εn) ≤ P
(
Λ(Tn ) > C (n + 1)2/Bn

)
+C/Bn ,

which converges to 0 when letting �rst n → ∞ and then C → ∞. �

4.1.5. Combining small and large jumps. — The proof is not �nished! We have shown that(
Bn
n
Hn (nt ),

(Bn
n

)1/2
H

sp
n
′(nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Ht , Σ
2 · St )t ∈[0,1],

and {(Bn
n

)1/2
H

sp
n
′′(nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

0 ./ Ξ,

and yet, although, if for f ∈ C([0, 1],R) andB ∈ K, we putAuB = {(x ,yA+yB ); (x ,yA) ∈ A, (x ,yB ) ∈ B},
then this addition is continuous, we cannot directly conclude that{(Bn

n

)1/2
(H

sp
n
′(nt ) + H

sp
n
′′(nt )); t ∈ [0, 1]

}
(d )
−→
n→∞

(Σ2 · St ) ./ Ξ = (Σ2 · St ) u (0 ./ Ξ),

because the previous convergences in distribution may not hold simultaneously. Indeed, the processes
H

sp
n
′ and H

sp
n
′′(nt ) are not independent since each Yu either contributes to one or to the other.
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We create independence by resampling the Yu ’s which contribute to H
sp
n
′′(nt ) as follows: let (Zi )i≥1

be i.i.d. copies of Y1{ |Y | ≤bn } independent of the rest and put

Ỹi = Yi1{ |Y | ≤bn } + Zi1{ |Y |>bn },

for each 1 ≤ i ≤ n. Now the processes H̃ sp
n and H

sp
n
′′(nt ) are independent, and furthermore, the error

between H
sp
n
′ and H̃

sp
n comes from those Yu ’s for which |Yu | > bn ; on the event Ecn , there exists at most

one such u on each branch and therefore max0≤i≤n |H̃
sp
n (i ) − H

sp
n
′(i ) | ≤ bn = o(n/Bn )

1/2 since each Ỹi
and each Y ′i belongs to [0,bn]. We conclude that((Bn

n

)1/2
H

sp
n
′(nt ),

(Bn
n

)1/2
H̃

sp
n (nt )

)
t ∈[0,1]

(d )
−→
n→∞

(Σ2 · St , Σ
2 · St )t ∈[0,1],

and the proof of Theorem 3 is now complete.

4.2. The strong heavy tail regime. — We �nally investigate the regime where the tails ofY are much
stronger than what requires Theorem 1. In this case, the extreme values dominate the small ones and
the snake disappears at the limit, and only the vertical peaks remain, see Figure 8 for a comparison with
the previous case.

Theorem 4 (Convergence to a ‘flat hairy snake’). — Fix p ∈ (0, 2] and suppose that E[Y ] = 0.
Assume that there exists ϱ ∈ [0, 1] and two slowly varying functions at in�nity L+ and L− such that if

L = L+ + L−, then as x → ∞, the ratios L+ (x )/L(x ) and L− (x )/L(x ) converge respectively to ϱ and 1 − ϱ,
and furthermore

n · P(Y ≥ (n/Bn )
1/pL+ (n/Bn )) −→

n→∞
1 and n · P(−Y ≥ (n/Bn )

1/pL− (n/Bn )) −→
n→∞

1,

If p = 2, assume also that the function L tends to in�nity. Let Ξ be a Poisson random measure on [0, 1] × R
independent of the pair S, with intensity

pα

α − 1
y−1−

pα
α−1

(
ϱ1+

pα
α−1 1{y>0} + (1 − ϱ)1+

pα
α−1 1{y<0}

)
dxdy.

Then the convergence in distribution of the sets




B
1/p
n

n1/pL(n/Bn )
H

sp
n (nt ); t ∈ [0, 1]




(d )
−→
n→∞

0 ./ Ξ,

holds in K, jointly with (1). The same holds (jointly) when H
sp
n (n·) is replaced by C

sp
n (2n·).

In the case L+ (x ) → c+ ∈ [0,∞) and L− (x ) → c− ∈ [0,∞), the assumption reads

n · P(Y ≥ (n/Bn )
1/p ) −→

n→∞
a+ and n · P(−Y ≥ (n/Bn )

1/p ) −→
n→∞

a−,

where a+/− = (c+/−)
pα
α−1 , and then the conclusion reads{(Bn

n

)1/p
H

sp
n (nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

0 ./ Ξ,

where Ξ has intensity pα
α−1y

−1− pα
α−1 (a+1{y>0} + a−1{y<0} )dxdy, which recovers [JM05, Theorem 6].

Remark 1. — Recall if E[Y ] =m , 0, then (Bn/n) · E[H
sp
n (n·) | Tn] converges tom ·H so the previous

result still holds in this case for p < 1, and when p = 1 and L+ and L− both converge, then{(Bn
n

)1/p
H

sp
n (nt ); t ∈ [0, 1]

}
(d )
−→
n→∞

m ·H ./ Ξ,
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in K, jointly with (1), where H and Ξ are independent, and the same holds (jointly) when H
sp
n (n·) is

replaced by C
sp
n (2n·).

Proof. — Since L+/− are slowly varying, we have (n/Bn )
−θ � L+/− (n/Bn ) � (n/Bn )

θ for every θ > 0
so the tails of Y satisfy now P((Y )+/− > y) = o(y−

α (p−θ )
α (1+δ )−1 ) for every δ ,θ > 0. As usual, let us cut the

increments: put bn = (n2/Bn )
α−1
2pα +ε for some ε > 0 small to be tuned. For every vertex u ∈ Tn , let

Y ′u = Yu1{ |Yu | ≤bn } and Y ′′u = Yu1{ |Yu |>bn }, de�ne then H
sp
n
′ and H

sp
n
′′ the spatial processes in which the

increments Yu are replaced by Y ′u and Y ′′u respectively, so H
sp
n = H

sp
n
′ + H

sp
n
′′. Similarly as in the proof

of Theorem 1 and Theorem 2, the exponent in bn matches that in the tails of Y . Therefore, again, it hods
that

n2

Bn
P ( |Y | > bn )

2
�

(
n2

Bn

)1−( α−12αp +ε )
α (p−θ )
α (1+δ )−1

,

and the exponent is negative for δ ,θ small enough. The event En that Tn contains two vertices, say u

and v , such that u is an ancestor of v and both |Yu | > bn and |Yv | > bn , thus has a probability tending to
0. Then the arguments used in Section 4.1.2, 4.1.3 and 4.1.4 extend readily to prove that




B
1/p
n

n1/pL(n/Bn )
H

sp
n
′′(nt ); t ∈ [0, 1]




(d )
−→
n→∞

0 ./ Ξ,

and it only remains to prove the convergence

*
,

B
1/p
n

n1/pL(n/Bn )
H

sp
n
′(nt )+

-t ∈[0,1]

P
−→
n→∞

0.

We �rst consider the average displacement induced by these small jumps. Let mn = E[Y ′] = −E[Y ′′], so

B
1/p
n

n1/pL(n/Bn )
E

[
H

sp
n
′(n·) ��� Tn

]
=

B
−(p−1)/p
n

n−(p−1)/pL(n/Bn )
mn ·

Bn
n
Hn (n·).

From the tail behaviour of Y we get:

|mn | ≤ E[|Y ′′ |] ≤ bnP ( |Y | > bn ) +

∫ ∞

bn
P ( |Y | > y) dy = O

(
b
1− α (p−θ )

α (1+δ )−1
n

)
.

Exactly as in the proof of Theorem 1, note that for ε,δ ,θ su�ciently small, we have(
α − 1
2pα

+ ε

) (
1 −

α (p − θ )

α (1 + δ ) − 1

)
> −

α + 1
2α
,

and this bound gets tighter as ε,δ ,θ get closer to 0. Then, since

α + 1
2α

<
p − 1
p
<
α + 1
α
,

we conclude that for ε,δ ,θ su�ciently small,

n(p−1)/p

B
(p−1)/p
n L(n/Bn )

(
b
1− α (p−θ )

α (1+δ )−1
n

)
≤ n

2( α−12pα +ε ) (1−
α (p−θ )
α (1+δ )−1 )+

p−1
p−θ · B

−( α−12pα +ε ) (1−
α (p−θ )
α (1+δ )−1 )−

p−1
p−θ

n

converges to 0 as n → ∞ since both exponents are negative. Therefore the process E[H sp
n
′(n·) | Tn]

suitably rescaled converges in probability to 0 and we focus for the rest of the proof on the centred
process Hsp

n
′(n·) = H

sp
n
′(n·) − E[H sp

n
′(n·) | Tn].
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Similarly, with the notation from Section 3, for s, t ∈ [0, 1], we have

E

*
,

B
1/p
n

n1/pL(n/Bn )
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |+

-

q ������
An



≤ Cq
B
q/p
n

nq/pL(n/Bn )q
*
,

n

Bn
|t − s |γE

[
|Y′ |q

]
+

(
n

Bn
|t − s |γ

)q/2
E

[
|Y′ |2

]q/2+
-

≤ Cq
*.
,
L

(
n

Bn

)−q (Bn
n

) q
p −1

(
n2

Bn

)q ( α−1pα +ε )

|t − s |γ +

L

(
n

Bn

)−2 (Bn
n

) 2
p −1

E
[
|Y ′ |2

]

q/2

|t − s |qγ /2+/
-
.

The �rst term in the last line is controlled as in the proof of Theorem 1 and Theorem 2: the slowly
varying function will not cause any trouble, and the factor 1/p in the exponent in bn compensate the
fact that we now rescale by (n/Bn )

1/p instead of (n/Bn )1/2 for Theorem 1 and similar calculations as
in the proof of the latter show that this �rst term is bounded by |t − s |γ times n raised to a power
which converges to −∞ as q → ∞. The only change compared to the proof of Theorem 1 is that, as for
Theorem 2, we may not have E[|Y |2] < ∞. Still,

E
[
|Y ′ |2

]
= 2

∫ bn

0
yP ( |Y | > y) dy = O

(∫ bn

1
y1−

α (p−θ )
α (1+δ )−1 dy

)
.

Either α (p−θ )
α−1 > 2, in which case 1 − α (p−θ )

α (1+δ )−1 < −1 for δ small enough and the integral converges, or
α (p−θ )
α−1 ≤ 2, in which case, 1 − α (p−θ )

α (1+δ )−1 > −1, so E[|Y ′ |2] = O (b
2− α (p−θ )

α (1+δ )−1
n ) and then

(Bn
n

) 2
p −1

E
[
|Y ′ |2

]
= O

(
B

2
p −1−(

α−1
2pα +ε ) (2−

α (p−θ )
α (1+δ )−1 )

n n1−
2
p +2(

α−1
2pα +ε ) (2−

α (p−θ )
α (1+δ )−1 )

)
.

Now for every η > 0, it holds that Bn = o(n
1+η
α ), so �nally(Bn

n

) 2
p −1

E
[
|Y ′ |2

]
= o

(
n

1+η
α ( 2p −1−(

α−1
2pα +ε ) (2−

α (p−θ )
α (1+δ )−1 ))+1−

2
p +2(

α−1
2pα +ε ) (2−

α (p−θ )
α (1+δ )−1 )

)
.

Note that we got rid of the term L(n/Bn )
−2 but its contribution is negligible. For η = ε = δ = θ = 0, the

preceding exponent reduces to

1
α

(
2
p
− 1 −

α − 1
2pα

(
2 −

αp

α − 1

))
+ 1 −

2
p
+
α − 1
pα

(
2 −

αp

α − 1

)
=

2 − α (p + 2)
4α2p

,

which is negative for any p > 0 and α > 1. Then the exponent is still negative for η, ε,δ ,θ > 0 small
enough. In almost all cases, (Bn/n)

2
p −1E[|Y ′ |2] is thus bounded by a negative power of n, the only case

where it fails is for p = 2, in which case α (p−θ )
α−1 > 2 for θ small enough, so (Bn/n)

2
p −1E[|Y ′ |2] is uniformly

bounded, but this in not an issue. We conclude as in the proof of Theorem 1 and Theorem 2 that for q
large enough,

sup
n→∞

E

*
,

B
1/p
n

n1/pL(n/Bn )
|Hsp

n
′(nt ) − Hsp

n
′(ns ) |+

-

q ������
An


≤ Cq |t − s |

2,

so the process Bn
n Hsp

n
′(n·) is tight, and the bounds applied with s = 0 and t ∈ [0, 1] �xed show that the

one-dimensional marginals converge in distribution to 0 so the whole process converges in distribution
to the null process, which completes the proof. �
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