Noncommutative linear rewriting: applications and generalizations

Philippe Malbos

To cite this version:

Philippe Malbos. Noncommutative linear rewriting: applications and generalizations. Two algebraic byways from differential equations: Gröbner bases and quivers, 28, Springer, inPress, Algorithms and Computations in Mathematics. hal-01718880

HAL Id: hal-01718880

https://hal.science/hal-01718880

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Noncommutative Linear rewriting: APPLICATIONS AND GENERALIZATIONS

Philippe Malbos

Abstract

These notes were intended for a lecture given at the Kobe summer school in July 2015. We present the notion of polygraphic presentation for algebras and their properties of confluence and termination, as introduced in [GHM17]. These presentations, called linear polygraphs, are rewriting systems that generalize noncommutative Gröbner bases, as studied by Bokut, [Bok76], Bergman, [Ber78] and Mora, [Mor94], in the sense that the orientation of the rewriting rules does not depend of a monomial order. We give a description of an algorithm given by Anick, Ani86], for computing a free resolution of right modules over an algebra presented by a noncommutative Gröbner basis. Finally, we briefly sketch a method to compute polygraphic resolutions for an algebra presented by a confluent and terminating linear polygraph introduced in [GHM17].

M.S.C. 2010 - 18C10, 18D05, 18G10, 16S37, 68Q42.
1 Introduction 2
2 Linear rewriting 6
2.1 Linear 2-polygraphs 6
2.2 Linear rewriting steps 14
2.3 Termination of linear 2-polygraphs 16
2.4 Monomial orders 17
3 Convergence in linear rewriting systems 19
3.1 Ideal of a linear 2-polygraph 19
3.2 Confluence and convergence 20
3.3 Critical branching lemma 23
3.4 Composition Lemma 28
3.5 Reduction operators 29
3.6 Noncommutative Gröbner bases 31
4 Anick's resolution 34
4.1 Homology of an algebra 34
4.2 Anick's chains. 36
4.3 Anick's resolution 38
4.4 Anick's resolution for a monomial algebra 43
4.5 Computing homology with Anick's resolution 43
4.6 Minimality of Anick's resolution 46
5 Higher-dimensional linear rewriting 47
5.1 Coherent presentations of algebras 48
5.2 Polygraphic resolutions of algebras 51
6 Confluence and Koszulness 55
6.1 Koszulness of associative algebras 55
6.2 Confluence and Koszulness 56

1. Introduction

The aim of these lecture notes is to provide a summary of the theory of linear rewriting and the application of this theory to the construction of free resolutions for associative algebras. In Section 2 we present linear polygraphs as an algebraic setting for linear rewriting without a monomial order and we review fundamental notion of linear polygraphs. In Section 3 we recall several historical constructions on linear rewriting systems for associative algebras, and we show how the confluence properties is studied in these different approaches. We relate the notion of convergent linear polygraph with the notion of noncommutative Gröbner basis. In Section 4 , we describe an algorithmic way to compute free resolutions for algebras using a method introduced by Anick. Section 5 deals with extension of linear polygraphs, seen as higher dimensional linear rewriting systems, into polygraphic resolutions for algebras. We show how to construct such a resolution starting from a convergent presentation. In the last section, we show how to relate Koszulness for algebras with the property of confluence.

Rewriting and linear rewriting

Rewriting in computer science. The notion of rewriting system comes from combinatorial algebra. It was introduced by Thue when he considered systems of transformation rules for rewriting combinatorial objects such as strings, trees or graphs. Its main motivation was to solve the word problem for finitely presented semigroups by using an orientation of relations, [Thu14]. Afterwards, the word problem have been considered in many contexts in algebra and in computer science. Far beyond the precursor works on this decidability problem on strings, rewriting theory has been mainly developed in theoretical computer science for equational reasoning in various situations: theory of programming languages for analysis, verification and optimization, automated deduction, automated theorem proving... Rewriting theory is also present in many others computational formalisms such as Petri nets or logical systems. Depending on the context of application, rewriting theory has numerous variants corresponding to different syntaxes of the formulas being transformed: string, term, graph, circuit, term modulo, tree, λ-term, higher-order term, higher-dimensional term...

Rewriting in algebra. Rewriting appears also on various forms in algebra for universal algebras (term rewriting in Lawvere theories), [BN98, Klo92, Ter03, MM16], monoids (string rewriting in monoids), BO93, GGM15, HM17], monoidal categories, GM12a], linear structures, such as algebras of various type: commutative, [Buc65, Buc70, Buc06], associative, [Bok76, Ber78], Lie, [Shi62], as well as on topological objects, such as Reidemeister moves, knots or braids, [Bur01].

These notes focus on various aspects of rewriting in associative algebras. Rewriting theory gives algorithmic methods to study associative algebras presented by generators and defining relations. The relations are oriented as rewriting rules providing linear bases of normal forms with respect the defining relations. In particular, rewriting methods can be used to provide procedures for decision problems, such as the word problem, ideal membership, or to compute quadratic bases, e.g., Poincaré-Birkhoff-Witt bases, Hilbert series, syzygies of presentations, homology groups and Poincaré series.

We have to be careful when we rewrite over a field. Rewriting rules that relate elements in a ring or in an algebra need to be compatible with the linear structure in the following way. For a rewriting rule

$$
f \rightarrow g
$$

relating two elements of an algebra on a ground field \mathbb{K}, then for any scalar λ in \mathbb{K} we would like a rewriting

$$
\lambda f \rightarrow \lambda g
$$

and for any other element h of the algebra we would like a rewriting

$$
\mathrm{f}+\mathrm{h} \rightarrow \mathrm{~g}+\mathrm{h} .
$$

Taken together, these two reductions lead to losing termination of rewriting. Indeed, it that case from the rule $f \rightarrow g$, we deduce the reductions $-f \rightarrow-g$ and $-f+(f+g) \rightarrow-g+(f+g)$. Finally, we deduce the following reduction

$$
\mathrm{g} \rightarrow \mathrm{f} .
$$

As a consequence, the system will never terminate. Further to this remark, it is necessary to adapt the notion of rewriting system to linear situations. In the example presented above the reduction $-f+(f+g) \rightarrow-g+(f+g)$ appears as the source of the nontermination problem. In these notes, we will see two possibilities to fix this problem.

- By choosing an orientation of the rules induced by a monomial order, which is well-founded by definition, see 2.4.1. This is the most common used method, in particular in the noncommutative Gröbner basis theory.
- By using the structure of linear 2-polygraph introduced in [GHM17] and with an appropriated notion of reduction, explained in Subsection 2.2

Noncommutative Gröbner bases: applications and generalizations

Gröbner basis theory. Gröbner basis theory for ideals in commutative polynomial rings was introduced by Buchberger in [Buc65]. A subset G of an ideal I in the polynomial ring $\mathbb{K}[x]$ of commutative polynomials is a Gröbner basis of I with respect to a given monomial order \prec, if the leading term ideal of I is generated by the set of leading monomials of G , that is

$$
\left\langle\mathrm{lt}_{\prec}(\mathrm{I})\right\rangle=\left\langle\mathrm{lt}_{\prec}(\mathrm{G})\right\rangle .
$$

Buchberger introduced the notion of S-polynomial to describe the obstructions to local confluence and gave an algorithm for computation of Gröbner bases, [Buc65, Buc06], see also [Buc87] for an historical account. Any ideal I of a commutative polynomial ring $\mathbb{K}[x]$ has a finite Gröbner basis. Indeed, the Buchberger algorithm on a finite family of generators of an ideal I always terminates and returns a Gröbner basis of the ideal I.

Shirshov introduced in [Shi62] an algorithm to compute a linear basis of a Lie algebra defined by generators and relations. He used the notion of composition of elements in a free Lie algebra, that corresponds to the notion of S-polynomial in the work of Buchberger. He gave an algorithm to compute bases in free algebras having the computational properties of the Gröbner bases. He proved that irreducible elements for such a basis forms a linear basis of the Lie algebra. This result is called now the Composition Lemma for Lie algebras.

Subsequently, the Gröbner basis theory has been developed for other types of algebras, such as associative algebras by Bokut in [Bok76] and by Bergman in [Ber78]. They prove Newman's Lemma
for rewriting systems in free associative algebras compatible with a monomial order stating that local confluence and confluence are equivalent properties. This result was called Composition Lemma by Bokut and Diamond Lemma for ring theory by Bergman, see also [Mor94, Ufn95]. In general, the Buchberger algorithm does not terminate for ideals in a noncommutative polynomial ring $\mathbb{K}\langle\chi\rangle$. Indeed, its termination would give a decision procedure of the undecidable word problem. Even if the ideal is finitely generated it may not have a finite Gröbner basis. However, when \mathbb{K} is a field an infinite Gröbner basis can be computed, Mor94, Ufn98]. We survey the constructions and the results of Bokut and Bergman in Section 3

Note that ideas in the spirit of the Gröbner basis approach appear in several others works. Let us mention works by Hironaka in [Hir64] and Grauert in [Gra72] that compute bases of ideals in rings of power series having analogous properties to Gröbner bases but without a constructive method for computing such bases. In [Coh65], Cohn gave a method to decide the word problem by a normal form algorithm based on a confluence property. Finally, Janet [Jan20], Thomas [Tho37] and Pommaret [Pom78] developed the notion of involutive bases that are particular cases of Gröbner bases in the context of partial differential algebra. Much more recently, Gröbner basis theory was developed in various noncommutative contexts such as Weyl algebras, see [SST00], or operads [DK10].

Computing normal forms. The main purpose of noncommutative Gröbner basis theory for associative algebras is to compute linear bases. Consider an algebra A presented by a set of generators X and a set R of defining relations, that is \mathbf{A} is the quotient of the free algebra $\mathbb{K}\langle X\rangle$ by the ideal generated by R. The set of monomials on X forms a linear basis of the free algebra $\mathbb{K}\langle X\rangle$. One application of the Gröbner basis theory is to compute a basis of the algebra \mathbf{A} in the form of a reduced subset of monomials. The computation is based on a monomial order on the set of monomials on X and the confluence property of a rewriting system compatible with this order. The set of monomials in normal form with respect to a Gröbner basis forms a linear basis of the algebra \mathbf{A}.

The Buchberger algorithm that computes Gröbner bases is the analogue of the Knuth-Bendix completion procedure in a linear setting. Several frameworks unify Buchberger and Knuth-Bendix algorithms, in particular a Gröbner basis corresponds to a confluent and terminating presentation of an algebra, see [Buc87]. This correspondence is well known in the case of associative and commutative algebras, as recalled in the papers by Bokut [Bok76], Bergman[Ber78], Mora [Mor94]. For a fuller treatment on noncommutative Gröbner bases for associative algebras, we refer the reader to the books [BD16, Chapter 2] and [Ufn95] and to [KR00, Chapter 2] and [BW93, Chapters 4-5] for commutative Gröbner bases.

Computation of free resolutions. In homological algebra, constructive methods based on noncommutative Gröbner bases were developed to compute projective resolutions for algebras. In particular, Anick and Green constructed small explicit free resolutions for algebras given by noncommutative Gröbner bases, Ani85, Ani86, AG87, Gre99. Their constructions provide resolutions to compute homological invariants (homology groups, Hilbert and Poincaré series) of algebras presented by generators and relations given by a Gröbner basis. The chains of these resolutions are given by iterated overlaps of the leading terms of the Gröbner basis and the differentials are constructed by Noetherian induction.

Linear polygraphs. All the constructions mentioned above rely on a monomial order, that is a wellfounded order of the monomials compatible with the multiplication. The termination orders in linear polygraphs introduced in [GHM17] are less restrictive. A linear polygraph is a higher-dimensional linear rewriting system for presentation of an algebra that allows more possibilities of termination orders than
those associated to Gröbner bases using monomial orders. A set-theoretical 2-polygraph describes a string rewriting system, see [GM18]. It is defined by a data ($\Sigma_{0}, \Sigma_{1}, \Sigma_{2}$) made of a 1-polygraph, that is an oriented graph

$$
\Sigma_{0} \underset{\mathrm{t}_{0}}{\stackrel{s_{0}}{\leftleftarrows}} \Sigma_{1}
$$

where Σ_{0} and Σ_{1} denote respectively the sets of 0 -cells and 1 -cells and s_{0}, t_{0} denote the source and target maps, with a cellular extension Σ_{2} of the free category Σ_{1}^{*}, that is a set of globular 2-cells relating parallel 1-cells:

A 2-polygraph corresponds to a string rewriting system, where the rules are describe by a the globular 2-cells, see [GM18].

A linear 2-polygraph corresponds to the same notion for rewriting in a free algebra or a free algebroid. It is constructed in the same manner as a 2-polygraph, but the cellular extension is linear in the sense that it is constructed on 1 -spheres in the free 1 -algebroid over generating 1-cells. Explicitly, we define a linear 2-polygraph as a triple $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right)$ such that $\left(\Lambda_{0}, \Lambda_{1}\right)$ is a 1-polygraph and Λ_{2} is a cellular extension of the free algebroid Λ_{1}^{ℓ} generated by the 1-polygraph $\left(\Lambda_{0}, \Lambda_{1}\right)$, that is given by two maps

$$
\Lambda_{1}^{\ell} \underset{t_{1}}{\stackrel{s_{1}}{\rightleftarrows}} \Lambda_{2}
$$

satisfying globular relations $s_{0} s_{1}=s_{0} t_{1}$ and $t_{0} s_{1}=t_{0} t_{1}$. All the categorical background will be introduced in Section 2 In the free 2 -algebroid Λ_{2}^{ℓ}, any 2 -cell being invertible, the notion of rewriting step induced by a linear polygraph needs to be defined with attention. In Section 2 and Section 3 , we recall from [GHM17] properties of termination, confluence and local confluence for linear 2-polygraphs. We state the Newman Lemma for linear 2-polygraphs in Theorem 3.2.11 showing that a terminating left-monomial linear 2-polygraph is confluent if and only if it is locally confluent. We give a formulation of a critical branching lemma for linear 2-polygraphs in Theorem 3.3.7. The formulation of this result differs from the critical branching lemma for 2-polygraphs in the sense that the termination hypothesis is required, as we will explain with several examples in Section 3.3. Finally, we explain how to recover noncommutative Gröbner bases as a special case of convergent linear 2-polygraphs in Section 3.6

Polygraphic resolutions of algebroids. We recall in Section 5.1 the notion of linear syzygies for linear polygraphs. When the linear 2-polygraph is convergent, we show that all the syzygies can be generated by confluence diagrams induced by the critical branchings, this is the Squier Theorem 5.1.6

In Section 5.2, we recall from [GHM17] the notion of polygraphic resolution for an algebra giving a categorical description of higher-dimensional syzygies of its presentations. A polygraphic resolution for an algebra \mathbf{A} is an acyclic polygraphic extension of a presentation of \mathbf{A}. That is a linear ∞-polygraph, which satisfies an acyclicity condition. Theorem 5.2 .6 from [GHM17] shows that any convergent linear 2-polygraph Λ extends to an acyclic linear ∞-polygraph, presenting the same algebra and whose n-cells, for $n \geqslant 3$, are indexed by the critical $(n-1)$-fold branchings. From this point of view, this resolution is similar to Anick's resolution associated with a Gröbner basis.

2. Linear rewriting

Finally, we show how a polygraphic resolution of an algebra \mathbf{A} induces a free resolution in the category of right-modules (resp. left-modules, resp. bi-modules) over \mathbf{A}.

Confluence and Koszulness. In the last section of these notes, we show how Anick's resolution leads to relate the Koszul property for an associative algebra to the existence of a quadratic Gröbner basis for its ideal of relations. We also show how to prove this property using convergent linear 2-polygraphs.

In Subsection 6.1, we recall the notion of Koszulness for quadratic algebras and N -homogeneous algebras. Koszulness for quadratic algebras was introduced by Priddy, Pri70]. A connected graded algebra \mathbf{A} is Koszul if the Tor groups $\operatorname{Tor}_{n,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ vanish for $\mathfrak{i} \neq n$, where the grading n is the homological degree and the grading i corresponds to the internal grading of the algebra. This notion was generalized by Berger to the case of N -homogeneous algebras, [Ber01].

In [Ani86], Anick showed how its resolution can be used to prove Koszulness of a quadratic algebra. Indeed, if an algebra \mathbf{A} admits a presentation whose relations are defined by a quadratic Gröbner basis, then Anick's resolution associated to this Gröbner basis is concentrated in the right bidegree, and thus the algebra \mathbf{A} is Koszul, see Theorem 6.2.3 For the N -homogeneous case, a Gröbner basis concentrated in weight N is not enough to imply Koszulness: an extra condition has to be checked as shown by Berger in [Ber01].

Finally, we present a sufficient polygraphic condition of Koszulness of graded algebras given in [GHM17]. Using a graded version of Theorem 5.2.9, one shows that an N -homogeneous algebra having a ℓ_{N}-concentrated polygraphic resolution is Koszul, Theorem 6.2.7

2. Linear rewriting

In this section we recall the categorical description of linear rewriting given in [GHM17] using the notion of linear polygraph. This notion extends to associative algebras the categorical notion of 2-polygraph used to describe presentations of monoids by generators and relations. This approach is based on presentations by generators and relations of higher-dimensional categories, independently introduced by Burroni and Street under the respective names of polygraphs in [Bur93] and computads in [Str76, Str87]. Higherdimensional rewriting has unified several paradigms of rewriting. These notes concern only rewriting in algebras, for a deeper discussion on categorical description of string rewriting systems by 2-polygraphs, we refer the reader to [GM18]. Note that there is a shift by 1 in the dimension: in these lecture notes the linear 2-polygraphs are linear 1-polygraphs in [GM18].

2.1. Linear 2-polygraphs

2.1.1. Categories. Recall that a (small) category (or 1-category) is a data \mathbf{C} made of a set \mathbf{C}_{0}, whose elements are called 0 -cells (or objects) of \mathbf{C}, for every 0 -cells p and q a set $\mathbf{C}(p, q)$, whose elements are called 1-cells (or arrows) of \mathbf{C} with source p and target q, for every 0 -cell p a specified 1-cell 1_{p} in $\mathbf{C}(p, p)$, called the identity of p, and for every 0 -cells p, q and r a composition map

$$
\star_{0}^{p, q, r}: \mathbf{C}(p, q) \times \mathbf{C}(q, r) \rightarrow \mathbf{C}(p, r)
$$

that is associative and such that the identities are local units for this composition.

A monoid M with product \cdot and identity element 1_{M} corresponds to a category \mathbf{M} with only one 0 -cell, denoted by $*$, and the 1 -cells of $\mathbf{M}(*, *)$ are the elements of the monoid M. The identity arrow 1_{*} of \mathbf{M} corresponds to the identity element 1_{M} and the composition of $\mathfrak{u} \star_{0} v$ of 1 -cells in $\mathbf{M}(*, *)$ corresponds to the product $u \cdot v$ in the monoid M. The associativity and unitary properties of the composition, making \mathbf{M} into a category, are induced by the corresponding properties of the product \cdot of the monoid. In this way, any monoid can be thought of as a one-0-cell category and a category can be thought of as a "monoid with many 0 -cells". In a similar way, the notion of algebroid describes the concept of associative algebra with many 0 -cells.
2.1.2. Algebroids. A 1 -algebroid over a ground field \mathbb{K} is a category enriched over the monoidal category of vector spaces over \mathbb{K} with its usual tensor product. Explicitly, a 1 -algebroid \mathbf{A} is specified by the following data:
i) a set \mathbf{A}_{0} of 0 -cells, that we will denote by $p, q \ldots$
ii) for every 0 -cells p and q, a vector space $\mathbf{A}(p, q)$, whose elements are the 1-cells of \mathbf{A}, with source p and target q , that we will denote by f, g ...
iii) for every 0 -cells p, q and r, a linear map

$$
\star_{0}: \mathbf{A}(p, q) \otimes \mathbf{A}(q, r) \longrightarrow \mathbf{A}(p, r)
$$

called the 0 -composition of \mathbf{A} and whose image on $f \otimes g$ is denoted by $f \star_{0} g$ or $f g$. This composition is associative, that is the relation:

$$
\left(f \star_{0} g\right) \star_{0} h=f \star_{0}\left(g \star_{0} h\right),
$$

holds for any 0 -composable 1 -cells f, g and h, and unitary, that is, for any 0 -cell p, there is a 1 -cell 1_{p} such that for any 1-cell f in $\mathbf{A}(p, q)$, the following relation holds

$$
1_{p} \star_{0} f=f \star_{0} 1_{q}=f .
$$

A 1 -cell f with source p and target q will be graphically represented by

$$
p \xrightarrow{f} q
$$

2.1.3. Remarks. An 1 -algebra is an 1 -algebroid with a single one 0 -cell, that can be identified to an (unital associative) algebras over \mathbb{K}. We will denote by Alg the category of algebras over \mathbb{K}. The notion of 1 -algebroid was first introduced by Mitchell as ring with several objects called \mathbb{K}-category in [Mit72], terminology linear category appears also in the literature. A small \mathbb{Z}-category is called a ringoid and a one- 0 -cell ringoid is a ring.
2.1.4. One-dimensional polygraphs. An algebroid can be defined by generators and relations. The generators are described by one-dimensional polygraphs. A 1-polygraph is a directed graph

$$
\Lambda_{0} \leftleftarrows \frac{s_{0}}{t_{0}} \Lambda_{1}
$$

2. Linear rewriting

given by a set Λ_{0} of 0 -cells, a set Λ_{1} of 1 -cells together with two maps s_{0} and t_{0} sending a 1 -cell x on its source $s_{0}(x)$ and its target $t_{0}(x)$. A 1-polygraph with only one 0 -cell will be identified to a set.

We will denote by Λ_{1}^{*} the free 1 -category generated by the 1 -polygraph $\left(\Lambda_{0}, \Lambda_{1}\right)$. Its set of 0 -cells is Λ_{0} and for any 0 -cells p and q, the elements of the hom-set $\Lambda_{1}^{*}(p, q)$ are paths from p to q in the 1 -polygraph $\left(\Lambda_{0}, \Lambda_{1}\right)$. The composition is the concatenation of paths and the identity on a 0 -cell p is the empty path with source and target p. If the 1 -polygraph has only one 0 -cell, Λ_{1}^{*} will be identified to the free monoid on the set Λ_{1}.
2.1.5. Free 1 -algebroid. The free 1 -algebroid on a 1 -polygraph $\left(\Lambda_{0}, \Lambda_{1}\right)$ is the 1 -algebroid, denoted by Λ_{1}^{ℓ}, whose set of 0 -cells is Λ_{0}, and for any 0 -cells p and $q, \Lambda_{1}^{\ell}(p, q)$ is the free vector space on $\Lambda_{1}^{*}(p, q)$. In other words, the space $\Lambda_{1}^{\ell}(p, q)$ has for basis the set of paths from p to q in the 1 -polygraph Λ. If Λ_{0} is reduced to only one 0 -cell, Λ_{1}^{ℓ} is the free algebra with basis Λ_{1}. The source and target maps s_{0} and t_{0} are extended into maps on Λ_{1}^{ℓ}, denoted by \bar{s}_{0} and \bar{t}_{0}, in a natural way making the following two diagrams commutative:

where ι_{1} denotes the inclusion of 1 -cells of Λ_{1} in the free algebroid Λ_{1}^{ℓ}.
2.1.6. Quivers and path algebras. The terminology directed graph is used in graph theory. The same notion is also called quiver in representation theory. A linear representation of a quiver $\left(\Lambda_{0}, \Lambda_{1}\right)$ is a functor ρ from the free category Λ_{1}^{*} to the category Vect of vectors spaces. The path algebra of a quiver $\left(\Lambda_{0}, \Lambda_{1}\right)$ is the category algebra of the free category Λ_{1}^{*}. That is, it is the \mathbb{K}-algebra whose underlying space is spanned by the set of 1 -cells in Λ_{1}^{*} and the product on the basis elements is defined by $u \cdot v=u \star_{0} v$ if u and v are 0 -composable 1 -cells in Λ_{1}^{*} and $u \cdot v=0$ otherwise. When the set Λ_{0} is finite, then $\sum_{p \in \Lambda_{0}} 1_{p}$ is the identity of the path algebra. Note that, we can obtain the path algebra of a quiver Λ from the free 1 -algebroid Λ_{1}^{ℓ} by forgetting the 1 -category structure.
2.1.7. Linear 2-polygraph. A cellular extension of the 1 -algebroid Λ_{1}^{ℓ} is a set Λ_{2} equipped with two maps

$$
\Lambda_{1}^{\ell} \frac{s_{1}}{t_{1}} \Lambda_{2}
$$

such that, for every α in Λ_{2}, the pair $\left(s_{1}(\alpha), t_{1}(\alpha)\right)$ is a 1 -sphere in Λ_{1}^{ℓ}, that is, the following globular relations hold

$$
s_{0} s_{1}(\alpha)=s_{0} t_{1}(\alpha) \quad \text { and } \quad t_{0} s_{1}(\alpha)=t_{0} t_{1}(\alpha)
$$

An element of the cellular extension Λ_{2} will be graphically represented by a 2 -cell with the following globular shape

that relates parallel 1-cells f and g in Λ_{1}^{ℓ}, also denoted by $f \xrightarrow{\alpha} g$ or by $\alpha: f \Rightarrow g$.
We define a linear 2-polygraph as a triple $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right)$, where $\left(\Lambda_{0}, \Lambda_{1}\right)$ is a 1-polygraph and Λ_{2} is a cellular extension of the free 1 -algebroid Λ_{1}^{ℓ} :

The elements of Λ_{2} are called the 2-cells of Λ, or the rewriting rules of Λ.

In the sequel, we will consider polygraphs with one 0 -cell denoted $*$.

2.1.8. Presentations of algebras by generators and relations. Given a linear 2-polygraph \wedge. The algebra presented by Λ is the quotient algebra of the free algebra Λ_{1}^{ℓ} by the cellular extension Λ_{2}. That is, it is the algebra \mathbf{A} obtained by identifying in Λ_{1}^{ℓ} all the 1 -cells $s_{1}(a)$ and $t_{1}(a)$, for every 2 -cell a in Λ_{2}^{ℓ}. We denote by \bar{f} the image of a 1 -cell f of Λ_{1}^{ℓ} through the canonical projection $\pi: \Lambda_{1}^{\ell} \longrightarrow \mathbf{A}$. We say that a linear 2-polygraph Λ is a presentation of an algebra \mathbf{A} if the algebra presented by Λ is isomorphic to \mathbf{A}. Two linear 2-polygraphs are said to be Tietze equivalent if they present isomorphic algebras.
2.1.9. First toy example. Here our first toy example that we will use through this lecture:

$$
\Lambda=\langle *| x, y, z\left|x y z \xrightarrow{\gamma} x^{3}+y^{3}+z^{3}\right\rangle .
$$

The free 1 -algebroid generated by $\Lambda_{1}=\{x, y, z\}$ is the free algebra $\mathbb{K}\langle x, y, z\rangle$. The algebra presented by the linear 2-polygraph Λ is the quotient of the free algebra $\mathbb{K}\langle x, y, z\rangle$ by the ideal generated by the 1 -cell $x y z-x^{3}-y^{3}-z^{3}$.
2.1.10. Other toy examples. We will consider the two following Tietze equivalent linear 2-polygraphs:

$$
\Lambda=\langle *| x, y\left|x^{2} \xrightarrow{\beta} y x\right\rangle, \quad \Lambda^{\prime}=\langle *| x, y\left|y x \xrightarrow{\beta^{\prime}} x^{2}\right\rangle .
$$

2.1.11. Two-dimensional algebras. We define a 2-algebra \mathbf{A} as an internal 1-category in the category Alg. Explicitly, it is defined by a diagram

$$
\begin{equation*}
\mathbf{A}_{1} \underset{i_{2}}{\stackrel{\mathrm{~s}_{1}}{\leftrightarrows}} \mathbf{A}_{2} \longleftarrow{ }^{\star_{1}} \mathbf{A}_{2} \times{ }_{\mathbf{A}_{1}} \mathbf{A}_{2} \tag{1}
\end{equation*}
$$

where $\mathbf{A}_{2} \times{ }_{\mathbf{A}_{1}} \mathbf{A}_{2}$ is the algebra defined by the following pullback diagram in the category $\mathbf{A l g}$:

2. Linear rewriting

Elements of the algebra $\mathbf{A}_{2} \times_{\mathbf{A}_{1}} \mathbf{A}_{2}$ are pairs (a, a^{\prime}) of 1-composable 2-cells a and a^{\prime}, that is satisfying $t_{1}(a)=s_{1}\left(a^{\prime}\right)$. The morphisms of algebras s_{1}, t_{1} and \star_{1} satisfy the axioms in such a way that Diagram (1) defines a 1-category. Explicitly, the following diagrams commute in the category Alg:

where π_{1} and π_{2} denote respectively first and second projection. Note that the linear structure and the product in the algebra $\mathbf{A}_{2} \times{ }_{\mathbf{A}_{1}} \mathbf{A}_{2}$ are given by

$$
\begin{aligned}
\left(a, a^{\prime}\right)+\left(b, b^{\prime}\right) & =\left(a+b, a^{\prime}+b^{\prime}\right), \\
\lambda\left(a, a^{\prime}\right) & =\left(\lambda a, \lambda a^{\prime}\right), \\
\left(a, a^{\prime}\right)\left(b, b^{\prime}\right) & =\left(a b, a^{\prime} b^{\prime}\right),
\end{aligned}
$$

for all pair of 1 -composable 2-cells $\left(a, a^{\prime}\right)$ and $\left(b, b^{\prime}\right)$ and scalar λ in \mathbb{K}.
2.1.12. Notations. For a 1 -cell f, the identity 2 -cell $i_{2}(f)$ is denoted by 1_{f}, or f if there is no possible confusion. The 1 -composite $\star_{1}\left(a, a^{\prime}\right)$ of 1 -composable 2 -cells a and a^{\prime}, will be denoted by $a \star_{1} a^{\prime}$. Elements of the algebra \mathbf{A}_{1}, called 1-cells of \mathbf{A}, are graphically pictured as follows

The elements of \mathbf{A}_{2}, called 2-cells of \mathbf{A} are graphically represented by

Given 2-cells

and

we denote by $a b$ their product in the algebra \mathbf{A}_{2}. The source and target maps s_{1} and t_{1} being morphisms of algebras, we have

$$
s_{1}(a b)=s_{1}(a) s_{1}(b), \quad \text { and } \quad t_{1}(a b)=t_{1}(a) t_{1}(b)
$$

and for any scalars λ and μ in \mathbb{K}, we have

$$
s_{1}(\lambda a+\mu b)=\lambda s_{1}(a)+\mu s_{1}(b), \quad \text { and } \quad t_{1}(\lambda a+\mu b)=\lambda t_{1}(a)+\mu t_{1}(b)
$$

Hence

Given 1-cells h, f, f^{\prime} and k in \mathbf{A}_{1} and a 2-cell a in \mathbf{A}_{2} such that

we will denote by hak: $h f k \Rightarrow h f^{\prime} k$ the 0 -composite $1_{h} \star_{0} a \star_{0} 1_{k}$.
2.1.13. Properties of 1 -composition. Given 1-composable 2-cells:
 and

in $\mathbf{A}_{2}{ }_{\mathbf{A}_{1}} \mathbf{A}_{2}$, the 1-composition \star_{1} being linear, $a \star_{1} a^{\prime}+b \star_{1} b^{\prime}$ is a 2-cell from $f+g$ to $f^{\prime}+g^{\prime}$ and we have

$$
(a+b) \star_{1}\left(a^{\prime}+b^{\prime}\right)=a \star_{1} a^{\prime}+b \star_{1} b^{\prime}
$$

and, for any scalar λ in $\mathbb{K}, \lambda\left(a \star_{1} a^{\prime}\right)$ is a 2-cell from λf to $\lambda f^{\prime \prime}$ and we have

$$
(\lambda a) \star_{1}\left(\lambda a^{\prime}\right)=\lambda\left(a \star_{1} a^{\prime}\right)
$$

Finally, the compatibility with the product induces the following relation:

$$
\begin{equation*}
\left(a \star_{1} a^{\prime}\right)\left(b \star_{1} b^{\prime}\right)=a b \star_{1} a^{\prime} b^{\prime} \tag{2}
\end{equation*}
$$

Relation (2) corresponds to the exchange law in the 2-algebra \mathbf{A} between the 1-composition and the product.

2. Linear rewriting

2.1.14. Remarkable identities in a 2-algebra. The following properties hold in a 2-algebra \mathbf{A}
i) for any 1-composable 2-cells a and a^{\prime} in \mathbf{A}, we have

$$
\begin{equation*}
a \star_{1} a^{\prime}=a+a^{\prime}-t_{1}(a) \tag{3}
\end{equation*}
$$

ii) any 2-cell a in \mathbf{A} is invertible for the \star_{1}-composition, and its inverse is given by

$$
\begin{equation*}
a^{-}=-a+s_{1}(a)+t_{1}(a) \tag{4}
\end{equation*}
$$

iii) for any 2-cells a and b in \mathbf{A}, we have

$$
\begin{equation*}
a b=a s_{1}(b)+t_{1}(a) b-t_{1}(a) s_{1}(b)=s_{1}(a) b+a t_{1}(b)-s_{1}(a) t_{1}(b) \tag{5}
\end{equation*}
$$

Relation (3) is a consequence of the linearity of the 1 -composition \star_{1}. Indeed, for any (a, a^{\prime}) in $\mathbf{A}_{2} \times \mathbf{A}_{1} \mathbf{A}_{2}$, we have

$$
\begin{aligned}
a \star_{1} a^{\prime} & =\left(a-s_{1}\left(a^{\prime}\right)+s_{1}\left(a^{\prime}\right)\right) \star_{1}\left(t_{1}(a)-t_{1}(a)+a^{\prime}\right) \\
& =a \star_{1} t_{1}(a)-s_{1}\left(a^{\prime}\right) \star_{1} t_{1}(a)+s_{1}\left(a^{\prime}\right) \star_{1} a^{\prime} \\
& =a-t_{1}(a)+a^{\prime}
\end{aligned}
$$

2.1.15. Exercice. Show identities (4) and (5).
2.1.16. The free 2-algebra on a linear 2-polygraph. The free 2-algebra over a linear 2-polygraph Λ is the 2 -algebra, denoted by Λ_{2}^{ℓ}, defined as follows. In dimension 1 , it is the free 1 -algebra Λ_{1}^{ℓ} over Λ_{1}. For dimension 2 , we consider the following diagram in the category of Λ_{1}^{ℓ}-bimodule

where $\Lambda_{2}^{\mathcal{N}}$ is the Λ_{1}^{ℓ}-bimodule $\left(\Lambda_{1}^{\ell} \otimes \mathbb{K} \Lambda_{2} \otimes \Lambda_{1}^{\ell}\right) \oplus \Lambda_{1}^{\ell}$ and where the maps s_{1}, t_{1} and i_{2} are defined by:

$$
s_{1}(f \alpha g)=f s_{1}(\alpha) g, \quad t_{1}(f \alpha g)=f_{1}(\alpha) g \quad \text { and } \quad s_{1}(h)=t_{1}(h)=i_{2}(h)=h
$$

for all 2 -cell α in Λ_{2}, and 1 -cells f, g, h in Λ_{1}^{ℓ}. The quotient of the Λ_{1}^{ℓ}-bimodule $\Lambda_{2}^{\mathcal{N} \mathcal{L}}$ by the equivalence relation generated by

$$
a s_{1}(b)+t_{1}(a) b-t_{1}(a) s_{1}(b) \sim s_{1}(a) b+a t_{1}(b)-s_{1}(a) t_{1}(b)
$$

for all a and b in $\Lambda_{1}^{\ell} \otimes \mathbb{K} \Lambda_{2} \otimes \Lambda_{1}^{\ell}$, has a structure of algebra, denoted by Λ_{2}^{ℓ}, and whose product is given by

$$
a b=a s_{1}(b)+t_{1}(a) b-t_{1}(a) s_{1}(b)
$$

We prove that the source and target maps are compatible with this quotient, so giving a structure of 2-algebra:

2.1.17. Monomials. A monomial in the free 2 -algebra Λ_{2}^{ℓ} is a 1 -cell of the free monoid Λ_{1}^{*} over Λ_{1}. The set monomials of Λ_{2}^{ℓ}, also denoted by Λ_{1}^{*}, forms a linear basis of the free algebra Λ_{1}^{ℓ}. As a consequence, every nonzero 1 -cell f of Λ_{1}^{ℓ} can be uniquely written as a linear combination of pairwise distinct monomials u_{1}, \ldots, u_{p} :

$$
f=\lambda_{1} u_{1}+\ldots+\lambda_{p} u_{p}
$$

with $\lambda_{i} \in \mathbb{K} \backslash\{0\}$, for all $i=1, \ldots, p$. The set of monomials $\left\{u_{1}, \ldots, u_{p}\right\}$ will be called the support of f and denoted by $\operatorname{Supp}(f)$.
2.1.18. 2-monomials. A 2-monomial of a free 2 -algebra Λ_{2}^{ℓ} is a 2-cell of Λ_{2}^{ℓ} with shape $u \alpha v$, where α is a 2 -cell in Λ_{2}, and u and v are monomials in Λ_{1}^{*} :

By construction of the free 2-algebra Λ_{2}^{ℓ}, and by freeness of Λ_{1}^{ℓ}, every non-identity 2-cell a of Λ_{2}^{ℓ} can be written as a linear combination of pairwise distinct 2 -monomials a_{1}, \ldots, a_{p} and of an 1-cell h of Λ_{1}^{ℓ} :

$$
\begin{equation*}
a=\lambda_{1} a_{1}+\ldots+\lambda_{p} a_{p}+h \tag{6}
\end{equation*}
$$

2.1.19. Exercise. Prove that the decomposition in 6 is unique up to the following relations

$$
\begin{equation*}
a s_{1}(b)+t_{1}(a) b-t_{1}(a) s_{1}(b)=s_{1}(a) b+a t_{1}(b)-s_{1}(a) t_{1}(b) \tag{7}
\end{equation*}
$$

for all 2-monomials a and b in Λ_{2}^{ℓ}.
2.1.20. Monomial linear 2-polygraphs. A linear 2-polygraph Λ is left-monomial if, for every 2-cell α of Λ_{2}, the source $s_{1}(\alpha)$ is a monomial in $\Lambda_{1}^{*} \backslash \operatorname{Supp}\left(t_{1}(\alpha)\right)$. Note that a non-left monomial linear 2-polygraph would produce useless ambiguity only due to the linear structure.

A linear 2-polygraph Λ is monomial if it is left-monomial and for every 2-cell α of $\Lambda_{2}, t_{1}(\alpha)=0$ holds. A monomial algebra is an algebra admitting a presentation by a monomial linear 2-polygraph.
2.1.21. Degrees and length. For monomials u and v in Λ_{1}^{*}, we denote by $\operatorname{Occ}_{v}(u)$ the number of different occurrences of the monomial v in the monomial u. For instance $\operatorname{Occ}_{x^{2}}\left(x^{4}\right)=3$ and $\operatorname{Occ}_{y}\left(x^{4}\right)=0$. For a subset M of monomials in Λ_{1}^{*}, we denote

$$
\operatorname{Occ}_{M}(u)=\sum_{v \in M} \operatorname{Occ}_{v}(u)
$$

The length of a monomial u in Λ_{1}^{*}, denoted by $\ell(u)$, is equal to $\operatorname{Occ}_{\Lambda_{1}}(u)$.
2.1.22. Exercise. Show that any linear 2-polygraph is Tietze equivalent to a left-monomial linear 2polygraph.

2. Linear rewriting

2.1.23. Examples. The linear 2-polygraph Λ given in Example 2.1 .9 is left-monomial. The linear 2polygraph $\langle *| x, y\left|x^{2}+y^{2} \Rightarrow 2 x y\right\rangle$ is not left-monomial, but it is Tietze equivalent to the following left-monomial 2-polygraph:

$$
\Lambda^{\prime}=\langle *| x, y\left|x y \stackrel{\alpha^{\prime}}{\Longrightarrow} \frac{1}{2}\left(x^{2}+y^{2}\right)\right\rangle
$$

The linear 2-polygraphs $\langle *| x\left|x^{2} \Rightarrow 0\right\rangle$ and $\langle *| x, y|x y \Rightarrow 0\rangle$ are monomials.

2.2. Linear rewriting steps

2.2.1. Elementary 2-cells. Let Λ be a linear 2-polygraph. An elementary 2-cell of the free 2-algebra Λ_{2}^{ℓ} is a 2 -cell of Λ_{2}^{ℓ} with shape

where a is a 2 -monomial, g is a 1 -cell of Λ_{1}^{ℓ} and λ is a nonzero scalar in \mathbb{K}.
2.2.2. Example. With the polygraph Λ^{\prime} of Example 2.1.23, the 2-cell

$$
2 x \alpha^{\prime} y+y^{3}: 2 x^{2} y^{2} \Rightarrow x^{3} y+x y^{3}-y^{3}
$$

is elementary and the 2-cell

$$
x \alpha^{\prime}+\alpha^{\prime} y: x^{2} y+x y^{2} \Rightarrow \frac{1}{2}\left(x^{3}+x y^{2}+x^{2} y+y^{3}\right)
$$

is not elementary.
2.2.3. Exercise. Show that any 2 -cell in a free 2 -algebra Λ_{2}^{ℓ} can be decomposed into a 1 -composition of elementary 2-cells of Λ_{2}^{ℓ}
2.2.4. Rewriting steps. Let Λ be a left-monomial linear 2-polygraph. A rewriting step of Λ is an elementary 2-cell

of Λ_{2}^{ℓ} such that λ is a nonzero scalar and u is not in the support of g.
2.2.5. Examples. For the linear 2-polygraph given in Example 2.1.9, the 2-cell

$$
3 x \gamma-3 x z^{3}: 3 x^{2} y z-3 x z^{3} \Longrightarrow 3 x^{4}+3 x y^{3}
$$

is a rewriting step. For a linear 2-polygraph having a rule $\alpha: u \Rightarrow f$, the 2-cell

$$
-\alpha+(u+f):-u+(u+f) \Longrightarrow-f+(u+f)
$$

is not a rewriting step because the monomial u appears in the context $u+f$.
2.2.6. Exercise, [GHM17, Lemma 3.1.2]. Let \wedge be a left-monomial linear 2-polygraph and let a be an elementary 2 -cell of the 2 -algebra Λ_{2}^{ℓ}. Show that a can be factorised in the 2 -algebra Λ_{2}^{ℓ} into

where b and c are either identities of rewriting steps.
2.2.7. Example. Let \wedge be a linear 2-polygraph and let $\alpha: u \Rightarrow v$ be a 2 -cell of Λ_{2}. The 2-cell $-\alpha+(u+v)$ and $\alpha+(5 u+4 v)$ are not rewriting steps of Λ. They can be decomposed respectively as follows:

2.2.8. Rewriting sequences. A 2 -cell a of Λ_{2}^{ℓ} is positive, or a rewriting sequence, if it is an identity or a 1 -composite

$$
f_{0} \xlongequal{a_{1}} f_{1} \Longrightarrow \cdots \Longrightarrow f_{k-1} \xlongequal{a_{k}} f_{k}
$$

of rewriting steps of \wedge.
2.2.9. Reduced cells. A 1 -cell f of Λ_{1}^{ℓ} is called reduced, or irreducible, with respect to Λ_{2}, if there is no rewriting step of Λ with source f. As a consequence, a 1 -cell is reduced if and only if it is the zero 1 -cell of Λ_{1}^{ℓ}, or a linear combination of reduced monomials in Λ_{1}^{*}. The reduced 1-cells of Λ_{1}^{ℓ} form a vector subspace of Λ_{1}^{ℓ}, denoted by $\Lambda_{1}^{\mathrm{ir}}$. Since Λ is left-monomial, the set of reduced monomials of Λ_{1}^{*}, denoted by $\Lambda_{1}^{\text {irm }}$, forms a basis of the vector space $\Lambda_{1}^{\text {ir }}$.

We denote by $s_{1}(\Lambda)$ the set of redex of a reduced left-monomial linear 2-polygraph Λ defined by

$$
s_{1}(\Lambda)=\left\{s_{1}(\alpha) \mid \alpha \text { in } \Lambda_{2}\right\} .
$$

In [Ani86], a redex is called an obstruction. The number of possible application of rules of Λ_{2} to a monomial u is $\operatorname{Occ}_{s_{1}(\Lambda)}(u)$.

2. Linear rewriting

2.2.10. Reduced linear 2-polygraphs. We say that a linear 2-polygraph Λ is left-reduced if, for every 2 -cell α in Λ_{2}, the 1 -cell $s_{1}(\alpha)$ is reduced with respect to $\Lambda_{2} \backslash\{\alpha\}$. We say that Λ is right-reduced if, for every 2 -cell α of Λ, the 1 -cell $t_{1}(\alpha)$ is reduced. The linear polygraph Λ is reduced if it is both left-reduced and right-reduced.
2.2.11. Exercise. Show that any left-monomial linear 2-polygraph is Tietze equivalent to a reduced left-monomial linear 2-polygraph.
2.2.12. Normal forms. If f is a 1 -cell of Λ_{1}^{ℓ}, a normal form for f with respect to Λ_{2} is a reduced 1-cell g of Λ_{1}^{ℓ} such that there exists a positive 2-cell $a: f \Rightarrow g$ in Λ_{2}^{ℓ}.

2.3. Termination of linear 2-polygraphs

We recall the notions of rewrite relation and termination for linear 2-polygraphs from [GHM17, 3.2]. Let us fix a left-monomial linear 2-polygraph Λ.
2.3.1. Termination. The rewrite relation of Λ is the smallest transitive binary relation on Λ_{1}^{*}, denoted by \prec_{Λ}, such that
i) the relation \prec_{Λ} is compatible with Λ_{2}, that is $w \prec_{\Lambda} u$ for every 2-cell $\alpha: u \Rightarrow f$ of Λ and every monomial w in $\operatorname{Supp}(f)$,
ii) the relation \prec_{Λ} is compatible with products, that is $u^{\prime} \prec_{\Lambda} u$ implies $v u^{\prime} w \prec_{\Lambda} \nu u w$ for every monomials u, u^{\prime}, v and w of Λ_{1}^{*}.

We say that the 2-polygraph Λ terminates if the rewrite relation \prec_{Λ} is well-founded, that is, there is no infinite descending chains in Λ_{1}^{*} :

$$
u_{1} \succ_{\wedge} u_{2} \succ_{\wedge} \ldots \succ_{\wedge} u_{n} \succ_{\wedge} u_{n+1} \succ_{\wedge} \ldots
$$

2.3.2. Example. Consider the linear 2-polygraph $\Lambda=\langle *| x, y\left|x y \xlongequal{\alpha} x^{2}+y^{2}\right\rangle$. We have $x y \succ_{\wedge} x^{2}$ and $x y \succ_{\Lambda} y^{2}$. Following compatibility with products we have

$$
x^{2} y \succ_{\Lambda} x y^{2} \succ_{\Lambda} x^{2} y
$$

Hence the relation \prec_{Λ} is not well-founded and the polygraph Λ is not terminating. Note that, we have an infinite sequence of rewriting steps:

$$
x^{2} y \stackrel{x \alpha}{\Longrightarrow} x^{3}+x y^{2} \stackrel{x^{3}+\alpha y}{\Longrightarrow} x^{3}+y^{3}+x^{2} y \Longrightarrow \ldots
$$

2.3.3. The rewrite relation on 1 -cells. The rewrite relation \prec_{Λ} is extended to the 1 -cells of Λ_{1}^{ℓ} by setting, for any 1 -cells f and $g, g \prec_{\Lambda} f$ if the following two conditions hold
i) there exists a monomial in $\operatorname{Supp}(f)$ which is not in $\operatorname{Supp}(g)$,
ii) for any monomial v in $\operatorname{Supp}(g) \backslash \operatorname{Supp}(f)$, there exists a monomial u in $\operatorname{Supp}(f) \backslash \operatorname{Supp}(g)$, such that $v \prec_{\wedge} u$
2.3.4. Proposition. The rewrite relation \prec_{\wedge} is well-founded on 1 -cells if and only if it is well-founded on monomials.

If Λ terminates, then for every rewriting step a of Λ, we have $t_{1}(a) \prec_{\Lambda} s_{1}(a)$. This implies that the 2 -algebra Λ_{2}^{ℓ} contains no infinite sequence of pairwise 1 -composable rewriting steps

$$
f_{0} \stackrel{a_{1}}{\Longrightarrow} f_{1} \Longrightarrow \cdots \Longrightarrow f_{k-1} \stackrel{a_{k}}{\Longrightarrow} f_{k} \Longrightarrow \cdots
$$

so that every 1 -cell of Λ_{1}^{ℓ} admits at least one normal form with respect to Λ_{2}.

2.4. Monomial orders

2.4.1. Monomial orders. A total order \prec on the set of monomials Λ_{1}^{*} is a monomial order if the following conditions are satisfied
i) \prec is a well-order, that is, there is no infinite descending chains in Λ_{1}^{*}.

$$
u_{1} \succ u_{2} \succ u_{3} \succ \ldots \succ u_{n} \succ u_{n+1} \succ \ldots
$$

ii) \prec is compatible with the multiplicative structure on monomials, that is

$$
u \prec u^{\prime} \quad \text { implies } \quad v u w \prec v u^{\prime} w,
$$

for all monomials u, u^{\prime}, v and w in Λ_{1}^{*}.
2.4.2. Example. Given a total order relation \prec on Λ_{1}, we define the left degree-wise lexicographic order generated by \prec, or deglex order generated by \prec, as the order $\prec_{\text {deglex }}$ on Λ_{1}^{*} that compare two monomials first by degree and then lexicographically. It is defined by
i) $y_{1} \ldots y_{p} \prec_{\text {deglex }} x_{1} \ldots x_{q}$, if $p<q$,
ii) $y_{1} \ldots y_{j-1} y_{j} \ldots y_{p} \prec_{\text {deglex }} y_{1} \ldots y_{j-1} x_{j} \ldots x_{p}$, if $y_{j} \prec x_{j}$.
2.4.3. Exercise. Show that the order $\prec_{\text {deglex }}$ is a monomial order.
2.4.4. Exercise. Explain why the pure lexicographic order is not a monomial order. Show that it is neither a well-order nor compatible with the product of monomials.
2.4.5. Polygraph compatible with a monomial order. A linear 2-polygraph Λ is say to be compatible with a monomial order \prec if for every 2-cell $\alpha: u \Rightarrow f$ of Λ_{2}, then $w \prec u$ for any monomial w in the support of f. The monomial order \prec is thus a well-founded rewrite relation for Λ. It follows that any linear 2-polygraph compatible with a monomial order is terminating. The converse is false in general as we will see in Exercise 2.4.7.
2.4.6. Example. Consider the linear 2-polygraph $\Lambda=\langle *| x, y\left|x^{2} \Longrightarrow{ }^{\alpha} x y-y^{2}\right\rangle$. It is Tietze equivalent to the linear 2-polygraph of Example 2.3.2, but it is terminating. Indeed, having $x y \prec x^{2}$ and $y^{2} \prec x^{2}$, the linear 2-polygraph Λ is compatible with the deglex order $\prec_{\text {deglex }}$ induced by $y \prec x$, hence it is terminating. An other way to prove that Λ is terminating, is to count the number of occurrence of x in monomials. For any u in Λ_{1}^{*}, let denote by $A(u)$ the number of occurrence of x in u. To prove that the linear 2-polygraph Λ terminates, it is sufficient to check that, for every rewriting step $a: s_{1}(a) \Rightarrow f$, we have $A\left(s_{1}(a)\right)>A(v)$, for any monomial v in $\operatorname{Supp}(f)$.
2.4.7. Exercise, [GHM17, Ex. 3.2.4]. Show that the linear 2-polygraph Λ given in Example 2.1.9 is terminating. Show that Λ is not compatible with a monomial order.
2.4.8. Exercise, [Ber78, Ex. 5.2.1.]. Examine termination of the linear 2-polygraph $\langle *| x, y|\alpha\rangle$ in each of the following situations

$$
x^{2} y \stackrel{\alpha}{\Longrightarrow} y x, \quad y x \stackrel{\alpha}{\Longrightarrow} x^{2} y, \quad x^{2} y^{2} \stackrel{\alpha}{\Longrightarrow} y x, \quad y x \stackrel{\alpha}{\Longrightarrow} x^{2} y^{2}
$$

2.4.9. Noetherian induction principle. Let us recall the principle of noetherian induction for terminating rewriting systems, see [Hue80] for more details. Let Λ be a left-monomial terminating linear 2-polygraph. The principle can be used to prove by induction a property formulated on the 1-cells of Λ_{1}^{ℓ}. Given a property $\mathcal{P}(f)$ of the 1 -cells f of Λ_{1}^{ℓ}. In order to show that $\mathcal{P}(f)$ holds for any 1 -cell f of Λ_{1}^{ℓ}, it suffices to show that
i) $\mathcal{P}(f)$ holds for f reduced with respect to Λ_{2},
ii) $\mathcal{P}(f)$ holds under the assumption that $\mathcal{P}(g)$ is hold for every $g \prec f$.
2.4.10. Leading terms. Let Λ_{1}^{ℓ} be a free algebra over a set Λ_{1} and let \prec be a monomial order on Λ_{1}^{ℓ}. For a nonzero 1 -cell f of Λ_{1}^{ℓ}, the leading monomial of f with respect to \prec is the monomial of f , denoted by $\operatorname{lm}(f)$, such that $w \prec \operatorname{lm}(f)$, for any monomial w in the support of f. The leading coefficient of f is the coefficient $\operatorname{lc}(f)$ of $\operatorname{lm}(f)$ in f, and the leading term of f is the 1 -cell $\operatorname{lt}(f)=\operatorname{lc}(f) \operatorname{lm}(f)$ of Λ_{1}^{ℓ}. We also define $\operatorname{lt}(0)=\operatorname{lc}(0)=\operatorname{lm}(0)=0$.

Note that for any 1 -cells f and g in Λ_{1}^{ℓ}, we have $f \prec g$ if and only if either $\operatorname{lm}(f) \prec \operatorname{lm}(g)$ or $(\operatorname{lm}(f)=\operatorname{lm}(g)$ and $f-\operatorname{lt}(f) \prec g-\operatorname{lt}(g))$. The following property

$$
\operatorname{lt}(f g)=\operatorname{lt}(f) \operatorname{lt}(g)
$$

for any 1 -cells f and g is also useful.
2.4.11. Leading polygraph. Given a monomial order \prec on Λ_{1}^{ℓ} and a nonzero 1 -cell g in Λ_{1}^{ℓ}, we define the 2-cell:

$$
\alpha_{\mathrm{g}, \prec}: \operatorname{lm}(\mathrm{g}) \Longrightarrow \operatorname{lm}(\mathrm{g})-\frac{1}{\operatorname{lc}(\mathrm{~g})} \mathrm{g} .
$$

For any set \mathcal{G} of nonzero 1-cells in Λ_{1}^{ℓ}, the leading 2-polygraph associated to \mathcal{G} with respect to \prec is the linear 2-polygraph $\Lambda(\mathcal{G}, \prec)$ whose set of 1 -cells is Λ_{1} and

$$
\Lambda(\mathcal{G}, \prec)_{2}=\left\{\alpha_{\mathrm{g}, \prec} \mid \mathrm{g} \in \mathcal{G}\right\} .
$$

By definition, the leading polygraph $\Lambda(\mathcal{G} \prec)$ is compatible with the monomial order \prec.
A monomial w in Λ_{1}^{*} is \mathcal{G}-reduced with respect to the monomial order \prec if it reduced with respect to $\Lambda(\mathcal{G}, \prec)_{2}$, that is, there is no factorization $w=u \operatorname{lm}(\mathrm{~g}) v$, with u and v monomials in Λ_{1}^{*} and g in \mathcal{G}. A set \mathcal{G} of 1-cells is reduced with respect to the monomial order \prec if for any 1 -cell g in \mathcal{G}, any monomial in the support of g is $(\mathcal{G} \backslash\{g\})$-reduced.

3. Convergence in linear Rewriting systems

3.1. Ideal of a linear 2-polygraph

3.1.1. The ideal of a linear 2-polygraph. Given a linear 2-polygraph Λ. We denote by $\mathrm{I}(\Lambda)$ the two-sided ideal of the free algebra Λ_{1}^{ℓ} generated by the following set of 1 -cells

$$
\left\{s_{1}(\alpha)-t_{1}(\alpha) \mid \alpha \in \Lambda_{2}\right\}
$$

The ideal $\mathrm{I}(\Lambda)$ is made of the linear combinations

$$
\sum_{i=1}^{p} \lambda_{i} u_{i}\left(s_{1}\left(\alpha_{i}\right)-t_{1}\left(\alpha_{i}\right)\right) v_{i}
$$

for pairwise distinct 2 -monomials $u_{1} \alpha_{1} v_{1}, \ldots, u_{p} \alpha_{p} v_{p}$ of Λ_{1}^{ℓ}, and nonzero scalars $\lambda_{1}, \ldots, \lambda_{p}$. Note that the algebra presented by Λ is isomorphic to the quotient of the free algebra Λ_{1}^{ℓ} by the ideal $I(\Lambda)$.
3.1.2. Exercise. Let Λ be a linear 2-polygraph. Given 1 -cells f and g in Λ_{1}^{ℓ}, show that the 1 -cell $f-g$ belongs to $I(\Lambda)$ if and only if there exists a 2-cell $a: f \Rightarrow g$ in Λ_{2}^{ℓ}.
3.1.3. Suppose that Λ is a terminating left-monomial linear 2-polygraph. Every 1 -cell f of Λ_{1}^{ℓ} admits at least a normal form \tilde{f}. That is, \widetilde{f} is reduced and there exists a positive 2 -cell $a: f \Rightarrow \widetilde{f}$ in Λ_{2}^{ℓ}. As a consequence, we have a decomposition $f=\widetilde{f}+(f-\widetilde{f})$, with \widetilde{f} in $\Lambda_{1}^{i r}$ and $f-\widetilde{f}$ in $I(\Lambda)$ by Exercice 3.1.2. It follows that the vector space Λ_{1}^{ℓ} admits the following decomposition

$$
\begin{equation*}
\Lambda_{1}^{\ell}=\Lambda_{1}^{\mathrm{ir}}+\mathrm{I}(\Lambda) \tag{8}
\end{equation*}
$$

3.1.4. Example. Note that the decomposition 8 is not direct in general. Indeed, consider the linear 2-polygraph Λ from Example 2.1.10. It is terminating thanks to the deglex order generated by $x>y$. Consider the two following reduction sequences reducing the 1 -cell χ^{3} :

Thus the 1-cell

$$
x y x-y^{2} x=\left(x^{2}-y x\right) x-x\left(x^{2}-y x\right)+y\left(x^{2}-y x\right)
$$

is both in $\Lambda_{1}^{\mathrm{ir}}$ and $\mathrm{I}(\Lambda)$. It follows that the sum $\Lambda_{1}^{\mathrm{ir}}+\mathrm{I}(\Lambda)$ is not direct. We will see in the next section a sufficient condition on the linear 2-polygraph Λ to have a direct decomposition.

3.2. Confluence and convergence

3.2.1. Branchings and confluence. Let \wedge be a left-monomial linear 2-polygraph. A branching of \wedge is a non-ordered pair (a, b) of positive 2 -cells of Λ_{2}^{ℓ} with a common source $s_{1}(a)=s_{1}(b)$. A branching (a, b) is local if both a and b are rewriting steps of Λ. A branching (a, b) of Λ is confluent if there exist positive 2-cells a^{\prime} and b^{\prime} of Λ as in the following diagram

We say that Λ is confluent (resp. locally confluent) if every branching (resp. local branching) of Λ is confluent. An immediate consequence of the confluence property is that every 1 -cell of Λ_{1}^{ℓ} admits at most one normal form.

Under termination hypothesis, we have the following characterization of the confluence.
3.2.2. Proposition. Let \wedge be a terminating left-monomial linear 2-polygraph. The following conditions are equivalent.
i) \wedge is confluent.
ii) Every 1 -cell of $\mathrm{I}(\Lambda)$ admits 0 as a normal form with respect to Λ_{2}.
iii) The vector space Λ_{1}^{ℓ} admits the direct decomposition $\Lambda_{1}^{\ell}=\Lambda_{1}^{i r} \oplus \mathrm{I}(\Lambda)$.

Proof. i) $\Rightarrow \mathbf{i i}$. Let f be a 1 -cell in the ideal $\mathrm{I}(\Lambda)$, then there exists a 2 -cell a: $\mathrm{f} \Rightarrow 0$ in Λ_{2}^{ℓ}. The polygraph Λ being confluent, the 1 -cells f and 0 have the same normal form. Finally, 0 being reduced, this implies that 0 is a normal form for f.
ii) \Rightarrow iii). Prove that $\Lambda_{1}^{\text {ir }} \cap \mathrm{I}(\Lambda)=0$. If f is in $\Lambda_{1}^{\text {ir }}$, then $\widehat{f}=\mathrm{f}$ is reduced and, thus, admits itself as normal form. If f is in $I(\Lambda)$, then $\widehat{f}=0$ by ii). Hence $\Lambda_{1}^{\text {ir }} \cap I(\Lambda)=0$.
iii) \Rightarrow i). Given a branching $(f \xlongequal{a} g, f \xlongequal{b} h)$. Since Λ terminates, the 1 -cells g and h admit normal forms, say g_{1} and h_{1} respectively, and there exist positive 2 -cells a_{1} and b_{1} in Λ_{2}^{ℓ} :

with g_{1} and h_{1} reduced. It follows that $g_{1}-h_{1}$ is also reduced. Moreover, the 2 -cell $\left(a \star_{1} a_{1}\right)^{-} \star_{1}\left(b \star b_{1}\right)$ has g_{1} as source and h_{1} as target. This implies that $g_{1}-h_{1}$ is also in $I(\Lambda)$. As $\Lambda_{1}^{\text {ir }} \cap \mathrm{I}(\Lambda)=0$, we have $g_{1}-h_{1}=0$, hence the branching (a, b) is confluent.
3.2.3. Convergence. We say that a left-monomial linear 2-polygraph \wedge is convergent if it terminates and it is confluent. In that case, every 1 -cell f of Λ_{1}^{ℓ} has a unique normal form, denoted by \widehat{f}, such that $\bar{f}=\bar{g}$ holds in $\bar{\Lambda}$ if and only if $\widehat{f}=\widehat{g}$ holds in Λ_{1}^{ℓ}.

As a consequence, if Λ is a convergent presentation of an algebra \mathbf{A}, the assignment of every 1 -cell f of \mathbf{A} to the normal form \widehat{f}, defines a section $\iota: \mathbf{A} \longrightarrow \Lambda_{1}^{\ell}$ of the canonical projection $\pi: \Lambda_{1}^{\ell} \longrightarrow \mathbf{A}$. The section t is a linear map, i.e., it satisfies $\widehat{\boldsymbol{f}+\mu} \mathrm{g}=\lambda \widehat{\mathrm{f}}+\mu \widehat{\mathrm{g}}$, and it preserves the identities because Λ terminates.
3.2.4. Exercise. Show that the section t is not a morphism of algebras in general.
3.2.5. Suppose that Λ is a convergent linear 2-polygraph. By Proposition 3.2 .2 the following sequence of vector spaces is exact:

$$
0 \longrightarrow \mathrm{I}(\Lambda) \longrightarrow \Lambda_{1}^{\ell} \longrightarrow \Lambda_{1}^{\mathrm{ir}} \longrightarrow 0 .
$$

The vector space $\Lambda_{1}^{\mathrm{ir}}$ admits $\Lambda_{1}^{\mathrm{irm}}$ as a basis, hence $\Lambda_{1}^{\mathrm{irm}}$ forms a linear basis of the quotient algebra $\Lambda_{1}^{\ell} / \mathrm{I}(\Lambda)$. The polygraph Λ being convergent, any 1 -cell of Λ_{1}^{ℓ} has a unique normal form, hence the product defined by $f \cdot g=\widehat{f g}$ is associative. Indeed, for any 1 -cells f, g and h, we have

$$
(f \cdot g) \cdot h=\widehat{f g} \cdot h=\widehat{\hat{f g h}}=\widehat{f \mathrm{gh}}=f \cdot \widehat{g h}=f \cdot(g \cdot h) .
$$

It follows that this product equips $\Lambda_{1}^{\text {ir }}$ with a structure of algebra in such a way that $\Lambda_{1}^{\text {ir }}$ is isomorphic to the quotient algebra $\Lambda_{1}^{\ell} / \mathrm{I}(\Lambda)$. We have thus proved the following result.
3.2.6. Theorem ([GHM17, Thm 3.4.2]). Let \mathbf{A} be an algebra and \wedge be a convergent presentation of \mathbf{A}. The set $\Lambda_{1}^{\text {irm }}$ of reduced monomials is a linear basis of \mathbf{A}. Moreover, the vector space $\Lambda_{1}^{\text {ir }}$ equipped with the product defined by $\mathrm{f} \cdot \mathrm{g}=\widehat{\mathrm{fg}}$, for any 1 -cells f and g in $\Lambda_{1}^{\mathrm{ir}}$, is an algebra isomorphic to \mathbf{A}.
3.2.7. Exercise. Compute a linear basis of the algebra presented by $\langle *| x, y\left|x y=x^{2}\right\rangle$.
3.2.8. Exercise. Compute a linear basis for the symmetric algebra on k variables presented by

$$
\left\langle x_{1}, \ldots, x_{k}\right| x_{i} x_{j} \xlongequal{\tau_{i j}} x_{j} x_{i}|1 \leqslant i<j \leqslant k\rangle
$$

and for the skew-polynomial algebra on k variables presented by

$$
\left\langle x_{1}, \ldots, x_{k}\right| x_{i} x_{j} \xrightarrow{\tau_{i j}} q_{i}^{j} x_{j} x_{i}|1 \leqslant i<j \leqslant k\rangle,
$$

where the q_{i}^{j} are scalars in \mathbb{K}.
3.2.9. Exercise: Poincaré-Birkhoff-Witt theorem, [Bok76, §1], Ber78, Thm. 3.1]. Consider an ordered bases $x_{1} \prec x_{2} \prec \ldots \prec x_{k}$ of a Lie algebra \mathfrak{g}. Consider the following ideals of the free tensor algebra $T(\mathfrak{g})$ over \mathfrak{g} :

$$
\begin{aligned}
& I=\left\langle x_{j} x_{i}-x_{i} x_{j} \mid 1 \leqslant i<j \leqslant k\right\rangle, \\
& J=\left\langle x_{j} x_{i}-x_{i} x_{j}+\left[x_{i}, x_{j}\right] \mid 1 \leqslant i<j \leqslant k\right\rangle .
\end{aligned}
$$

Show that the symmetric algebra $S(\mathfrak{g})=T(\mathfrak{g}) / I$ and the enveloping algebra $U(\mathfrak{g})=T(\mathfrak{g}) / J$ are isomorphic as vector spaces.

3. Convergence in linear rewriting systems

3.2.10. From local to global confluence. The Newman lemma, also called the diamond lemma, states that for terminating rewriting systems local confluence and confluence are equivalent properties. This result was proved by Newman in [New42] for abstract rewriting systems. A short and simple proof of this result was given by Huet in [Hue80] using the principle of noetherian induction. Let us recall the arguments of this proof for linear 2-polygraphs.
3.2.11. Theorem (Newman's Lemma). Let Λ be a terminating left-monomial linear 2-polygraph. Then Λ is confluent if and only if it is locally confluent.

Proof. The proof works as for abstract rewriting systems. One implication is trivial. Suppose Λ locally confluent and prove that it is confluent at every 1 -cell f of Λ_{1}^{ℓ}. We proceed by noetherian induction on f using the principle given in 2.4.9. If f is reduced, the only branching with source f is $\left(1_{f}, 1_{f}\right)$ which is confluent.

Suppose that f is a nonreduced 1 -cell of Λ_{1}^{ℓ} and such that Λ is confluent at every 1 -cell $\mathrm{g} \prec \mathrm{f}$. Consider a branching (a, b) of Λ with source f. If a or b is an identity, then (a, b) is confluent. Otherwise, we prove that the branching (a, b) is confluent by induction. Since a and b are not identities, they admit decompositions $a=a_{1} \star_{1} a_{2}$ and $b=b_{1} \star_{1} b_{2}$ where a_{1} and b_{1} are rewriting steps, and a_{2} and b_{2} are positive 2-cells. By local confluence, the local branching $\left(a_{1}, b_{1}\right)$ is confluent. Hence there exist positive 2-cells a_{1}^{\prime} and b_{1}^{\prime} as indicated in the following diagram

We have $g_{1} \prec_{\Lambda} f$ and $h_{1} \prec_{\Lambda} f$. Then we apply the induction hypothesis on the branching $\left(a_{2}, a_{1}^{\prime}\right)$ to get positive 2-cells a_{2}^{\prime} and c, and, then, to the branching $\left(b_{1}^{\prime} \star_{1} c, b_{2}\right)$ to get positive 2 -cells d and b_{2}^{\prime}, which complete the proof.
3.2.12. Example, Hue80]. The requirement of noetherianity is necessary to prove confluence from local confluence. Indeed, consider the 2-polygraph generated by the following four 2-cells

It is locally confluent but it is not confluent.

3.3. Critical branching lemma

3.3.1. Local branchings. A case analysis leads to a partition of the local branchings of a left-monomial linear 2-polygraph Λ into the following four families, see [GHM17, 3.3.2] for details.
i) Aspherical branchings, for all 2-monomial $a: u \Rightarrow f$ of Λ_{2}^{ℓ}, nonzero scalar λ, and 1-cell h of Λ_{1}^{ℓ} such that the monomial u is not in the support of h :

ii) Additive branchings, for all 2-monomials $\mathrm{a}: \mathrm{u} \Rightarrow \mathrm{f}$ and $\mathrm{b}: \nu \Rightarrow \mathrm{g}$ of Λ_{2}^{ℓ}, nonzero scalars λ and μ, and 1 -cell h of Λ_{1}^{ℓ} such that the monomials u and v are not in the support of h :

$$
\begin{gathered}
\lambda \mathrm{a}+\mu v+\mathrm{h} \Longrightarrow \\
\lambda \mathrm{u}+\mu \mathrm{f}+\mu v+\mathrm{h} \\
\lambda \mathrm{u}+\mu \mathrm{h} \\
\lambda \mathrm{~h}+\mathrm{h}
\end{gathered} \mathrm{u}+\mu \mathrm{g}+\mathrm{h}
$$

iii) Peiffer branchings, for all 2-monomials $a: u \Rightarrow f$ and $b: v \Rightarrow g$ of Λ_{2}^{ℓ}, nonzero scalar λ, and 1 -cell h of Λ_{1}^{ℓ} such that the monomial $u v$ is not in the support of h :

iv) Overlapping branchings, for all 2-monomials $a: u \Rightarrow f$ and $b: u \Rightarrow g$ of Λ_{2}^{ℓ} such that the branching (a, b) is neither aspherical nor Peiffer, and all nonzero scalar λ and 1 -cell h of Λ_{1}^{ℓ} such that the monomial u is not in the support of h :

3.3.2. Critical branchings. A critical branching of a left-monomial linear 2-polygraph Λ is an overlapping branchings, as defined in 3.3.1, with $\lambda=1$ and $h=0$, and that is minimal for the relation on branchings defined by

$$
(\mathrm{a}, \mathrm{~b}) \sqsubseteq\left(w \mathrm{a} w^{\prime}, w \mathrm{~b} w^{\prime}\right) \quad \text { for any } w \text { and } w^{\prime} \text { in } \Lambda_{1}^{*}
$$

By case analysis on the source of critical branchings, they must have one of the following two shapes

with α, β in Λ_{2}. When the linear 2-polygraph Λ is reduced, the first case cannot occur since, otherwise, the monomial $s_{1}(\alpha)$ would be reducible by β.
3.3.3. Exercise. Let \wedge be a reduced linear 2-polygraph. Show that for any critical branching

the monomial u, v and w are reduced and cannot be identities or null.
3.3.4. Critical branching lemma. By Newman's lemma 3.2 .11 for terminating rewriting systems, local confluence and confluence are equivalent properties. It turns out that one can decide whether a rewriting system is convergent by checking local confluence. For string rewriting systems, that is 2-polygraphs, the critical branching lemma states that local confluence is equivalent to the confluence of all critical branching, see [GM18, 3.1.5] for details. For linear 2-polygraphs the critical branching lemma given in [GHM17] differs from the case of 2-polygraphs. Indeed, in the linear setting the termination hypothesis is required. Moreover, nonoverlapping branchings may be non confluent as illustrated by the following example in which an additive branching is nonconfluent.
3.3.5. Example. Some local branchings can be nonconfluent without termination, even if critical confluence holds. Indeed, consider the linear 2-polygraph

$$
\langle *| x, y|x \stackrel{\alpha}{\Longrightarrow} y, y \xlongequal{\beta}-x\rangle
$$

It has no critical branching, but it has a nonconfluent additive branching:

Here another example from [GHM17, Rem. 4.2.4] for instance the following linear 2-polygraph

$$
\langle *| x, y, z, t|x y \stackrel{\alpha}{\Longrightarrow} x z, z t \stackrel{\beta}{\Longrightarrow} 2 y t\rangle
$$

has no critical branching, but it has a nonconfluent additive branching:

3.3.6. If a linear 2-polygraph \wedge is terminating and with any critical branching confluent, we can show that such an additive branching is confluent by noetherian induction on the sources of the branchings. Let consider an additive branching $(\lambda u+\mu \nu+h, \lambda u+\mu g+h)$ as in 3.3.1 and suppose that Λ is locally confluent at every $g \prec_{\Lambda} \lambda u+\mu \nu+h$. By linearity of the 1 -composition, the following equation

$$
(\lambda a+\mu \nu+h) \star_{1}(\lambda f+\mu b+h)=(\lambda u+\mu b+h) \star_{1}(\lambda a+\mu g+h)
$$

holds in the free 2 -algebra Λ_{2}^{ℓ} :

Note that the dotted 2-cells $\lambda a+\mu \mathrm{g}+\mathrm{h}$ and $\lambda \mathrm{f}+\mu \mathrm{b}+\mathrm{h}$ may be not positive in general. Indeed, the monomial u can be in the support of g or the monomial v can be in the support of f, as illustrated in Example 3.3.5. However, those 2-cells are elementary, hence there exist, see Exercise 2.2.6, positive 2-cells $a_{1}^{\prime}, b_{1}^{\prime}, c$ and d that satisfy

$$
a_{1}^{\prime}=(\lambda f+\mu b+h) \star_{1} c \quad \text { and } \quad b_{1}^{\prime}=(\lambda a+\mu g+h) \star_{1} d .
$$

3. Convergence in linear rewriting systems

We have $f \prec_{\Lambda} u$ and $g \prec_{\Lambda} \nu$, hence $\lambda f+\mu g+h \prec_{\Lambda} \lambda u+\mu \nu+h$. Thus, the branching ($\left.c, d\right)$ is confluent by induction hypothesis, yielding the positive 2-cells a_{2}^{\prime} and b_{2}^{\prime}.

Under terminating hypothesis, all local branching given in 3.3.1 are confluent if all critical branching are confluent, see [GHM17, 4.2] for a proof of this result.

3.3.7. Theorem (Critical branching lemma, [GHM17, Cor. 4.2.2]). A terminating left-monomial linear 2-polygraph is locally confluent if and only if all its critical branchings are confluent.

As consequence of the critical branching lemma and of Newman's lemma 3.2.11, a terminating left-monomial linear 2-polygraph is confluent if all its critical branchings are confluent. In particular a terminating left-monomial 2-polygraph with no critical branching is convergent.
3.3.8. Example. The linear 2-polygraph given in Example 2.1 .9 is terminating, see Exercise 2.4.7. Moreover, it does not have critical branching, hence it is convergent.
3.3.9. The Knuth-Bendix completion procedure. Let us recall the completion procedure introduced in [KB70] to the setting of linear 2-polygraphs. Let Λ be a left-monomial linear 2-polygraph compatible with a monomial order \prec on Λ_{1}^{*}. A Knuth-Bendix completion of Λ is a linear 2-polygraph $\mathcal{K} \mathcal{B}(\Lambda)$ obtained by the following procedure that examines the confluence of the set of critical branchings.

Input: Λ be a left-monomial linear 2-polygraph compatible with a monomial order \prec on Λ_{1}^{*}.
$\mathcal{K B}(\Lambda):=\Lambda$
$\mathrm{Cb}:=\left\{\right.$ critical branchings with respect to $\left.\Lambda_{2}\right\}$
while $\mathrm{Cb} \neq \emptyset$ do
Picks a branching in Cb :

$\mathrm{Cb}:=\mathrm{Cb} \backslash\{(\mathrm{f}, \mathrm{g})\}$
Reduce v to a normal form \widehat{v} with respect to $\mathcal{K} \mathcal{B}(\Lambda)_{2}$
Reduce w to a normal form \widehat{w} with respect to $\mathcal{K} \mathcal{B}(\Lambda)_{2}$

$\mathrm{g}=\widehat{v}-\widehat{w}$
if $g \neq 0$ then
$\mathcal{K B}(\Lambda)_{2}:=\mathcal{K B}(\Lambda)_{2} \cup\left\{\alpha_{\mathrm{g}, \prec}: \operatorname{lm}(\mathrm{g}) \Rightarrow \operatorname{lm}(\mathrm{g})-\frac{1}{\operatorname{lc}(\mathrm{~g})} \mathrm{g}\right\}$
$\mathcal{C b}:=\mathcal{C b} \cup\left\{\right.$ critical branching created by $\left.\alpha_{g, \prec}\right\}$
end
end
If the procedure stops, it returns a finite convergent left-monomial linear 2-polygraph $\mathcal{K} \mathcal{B}(\Lambda)$. Otherwise, it builds an increasing sequence of left-monomial linear 2-polygraphs, whose limit is also
denoted by $\mathcal{K B}(\Lambda)$. Note that, if the starting linear 2-polygraph Λ is convergent, then the Knuth-Bendix completion of Λ is Λ itself. The linear 2-polygraph $\mathcal{K B}(\Lambda)$ obtained by this procedure depends on the order of examination of the critical branchings. Finally, since all the operations of adding new rules performed by the procedure are Tietze transformations, the linear 2-polygraph $\mathcal{K} \mathcal{B}(\Lambda)$ is Tietze-equivalent to \wedge.
3.3.10. Exercice, [GHM17, Rem. 4.2.4]. Prove that the following linear 2-polygraph has a nonconfluent Peiffer branching

$$
\langle *| x, y, z|x y \xrightarrow{\alpha} 2 x, y z \stackrel{\beta}{\Longrightarrow} z\rangle .
$$

3.3.11. Weyl algebras. Let \mathbb{K} be a field of characteristic zero. The Weyl algebra of dimension n over \mathbb{K} is the algebra presented by the linear 2-polygraph whose 1-cells are

$$
x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n}
$$

and with the following 2-cells:

$$
\begin{gathered}
x_{i} x_{j} \Rightarrow x_{j} x_{i}, \quad \partial_{i} \partial_{j} \Rightarrow \partial_{j} \partial_{i}, \quad \partial_{i} x_{j} \Rightarrow x_{j} \partial_{i}, \quad \text { for any } 1 \leqslant i<j \leqslant n, \\
\partial_{i} x_{i} \Rightarrow x_{i} \partial_{i}+1, \quad \text { for any } 1 \leqslant i \leqslant n .
\end{gathered}
$$

This polygraph is convergent with the following six families of confluent critical branchings:

where $1 \leqslant i<j \leqslant n$.
3.3.12. Exercice. In his seminal paper on the diamond lemma, Bergman point out that he was first led to the ideas of his paper with the following American Mathematical Monthly Advanced Problem 5082, [Ber78, 2.1.].

Let R be a ring in which, if either $\mathrm{x}+\mathrm{x}=0$ or $\mathrm{x}+\mathrm{x}+\mathrm{x}=0$, it follows that $\mathrm{x}=0$. Suppose that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}$ are all idempotents in R . Does it follows that $\mathrm{ab}=0$?

Solve this problem. [Hints. Consider the following linear 2-polygraph:

$$
\Lambda=\langle *| a, b, c\left|a^{2} \Rightarrow a, b^{2} \Rightarrow b, c^{2} \Rightarrow c, b a \Rightarrow-a b-b c-c b-a c-c a\right\rangle .
$$

1/ List all critical branchings of Λ. 2/ Compute a convergent left-monomial linear 2-polygraph $\mathcal{K} \mathcal{B}(\Lambda)$ by applying the Knuth-Bendix completion procedure to $\Lambda .3 /$ List all irreducible monomials with respect to $\mathcal{K} \mathcal{B}(\Lambda)_{2} .4 /$ Conclude that $a b \neq 0$.]

3.4. Composition Lemma

3.4.1. Compositions in free Lie algebras. Shirshov introduced in [Shi62] an algorithm to compute a linear basis of a Lie algebra defined by generators and relations. He used the notion of composition of elements in a free Lie algebra, that corresponds to the notion of S-polynomial in the work of Buchberger, [Buc65]. This work remained unknown outside the USSR and the two theories were developed in parallel. The algorithm completes a given set of elements in a free algebra by adding all nontrival compositions. This algorithm corresponds to the completion algorithm given by Knuth-Bendix for term rewriting systems, [KB70], and by Buchberger for commutative polynomials, [Buc65]. The Shirshov completion constructs a set, that may be infinite, such that every composition of its elements is trivial. Such a subset is called a Lie Gröbner-Shirshov basis. The key result in [Shi62] states that the set of irreducible elements for a Gröbner-Shirshov basis \mathcal{S} forms a linear basis of the Lie algebra with defining relations \mathcal{S}. This result is called now the Composition-Diamond Lemma for Lie algebras. For a recent account of the theory of Gröbner-Shirshov we refer the reader to [BC 14$]$.

In this subsection we summarize without proofs an analogue of Shirshov's composition-diamond lemma for associative algebras given by Bokut in [Bok76].
3.4.2. Compositions. Bokut introduced in [Bok76] the notion of composition of elements of a free associative algebra as follows. Let Λ_{1}^{ℓ} be a free algebra over a set Λ_{1} and let \prec be a monomial order on Λ_{1}^{ℓ}. Given two 1-cells f and g in Λ_{1}^{ℓ} and a monomial w in Λ_{1}^{*}. There are two kinds of compositions:
i) if $w=\operatorname{lm}(f) v=u \operatorname{lm}(g)$ with $\ell(\operatorname{lm}(f))+\ell(\operatorname{lm}(g))>\ell(w)$, for some monomials u and v in Λ_{1}^{*}, then the 1 -cell

$$
(f, g)_{w}=\frac{1}{\operatorname{lc}(f)} f v-\frac{1}{\operatorname{lc}(g)} u g
$$

is called the intersection composition of f and g with respect to w.
ii) if $w=\operatorname{lm}(\mathrm{f})=u \operatorname{lm}(\mathrm{~g}) v$, for some monomials u and v in Λ_{1}^{*}, then the 1-cell

$$
(f, g)_{w}=\frac{1}{\operatorname{lc}(f)} f-\frac{1}{\operatorname{lc}(g)} u g v
$$

is called the inclusion composition of f and g with respect to w.

A composition $(f, g)_{w}$ can also be called an S-polynomial of f and g with respect to w. A composition $(f, g)_{w}$ is either zero or satisfy $(f, g)_{w} \prec w$. Moreover the composition $(f, g)_{w}$ is in the ideal $\langle f, g\rangle$ generated by f and g. Note that a composition $(f, g)_{w}$ depends on the two polynomials f and g as well as the monomial w. Indeed, in some cases two polynomials f and g may overlap with different combinations creating several compositions.
3.4.3. Example. Consider the polynomial $f=x^{2}-x y$. With respect to the deglex order generated by $x>y$, we have

$$
(f, f)_{x^{3}}=x^{3}-x y x-x^{3}+x^{2} y=x^{2} y-x y x
$$

Compare with Example 3.1.4
3.4.4. Gröbner-Shirshov bases. Let \mathcal{G} be a set of nonzero 1 -cells in Λ_{1}^{ℓ}. Given a monomial w in Λ_{1}^{*}, a 1-cell h is trivial modulo $(\mathcal{G}, \mathcal{w})$ if there exists a decomposition

$$
h=\sum_{i \in I} \lambda_{i} u_{i} g_{i} v_{i}
$$

with λ_{i} in $\mathbb{K} \backslash\{0\}, u_{i}, v_{i}$ in Λ_{1}^{*} and g_{i} in \mathcal{G} such that $u_{i} \operatorname{lm}\left(g_{i}\right) \nu_{i} \prec w$.
A set \mathcal{G} of nonzero 1-cells in Λ_{1}^{ℓ} is a Gröbner-Shirshov basis with respect to the monomial ordering \prec if every composition $(f, g)_{w}$ of 1 -cells in \mathcal{G} is trivial modulo (\mathcal{G}, w). A Gröbner-Shirshov basis \mathcal{G} is minimal if there is no inclusion composition with elements of \mathcal{G}. A minimal Gröbner-Shirshov basis \mathcal{G} is called closed under composition in [Bok76]. Finally, a Gröbner-Shirshov basis \mathcal{G} is reduced if the set \mathcal{G} is reduced with respect to the monomial order \prec.
3.4.5. Exercise. Let \mathcal{G} be a minimal Gröbner-Shirshov basis in a free algebra Λ_{1}^{ℓ}. Suppose that there exists a decomposition

$$
w=u_{1} \operatorname{lm}\left(g_{1}\right) v_{1}=u_{2} \operatorname{lm}\left(g_{2}\right) v_{2}
$$

with $u_{1}, v_{1}, u_{2}, v_{2} \in \Lambda_{1}^{*}$ and $g_{1}, g_{2} \in \mathcal{G}$. Show that $u_{1} g_{1} v_{1}-u_{2} g_{2} v_{2}$ is trivial modulo (\mathcal{G}, w).
3.4.6. Theorem (The Composition Lemma, [Bok76, Prop. 1 \& Cor. 1]). Let Λ_{1}^{ℓ} be a free algebra and let \prec be a monomial order on Λ_{1}^{ℓ}. Let \mathcal{G} be a set of 1 -cells in Λ_{1}^{ℓ} and let I be the ideal generated by \mathcal{G}. The following conditions are equivalent
i) \mathcal{G} is a Gröbner-Shirshov basis,
ii) For any f in I, there exists a factorization $\operatorname{lm}(f)=u \operatorname{lm}(g) v$ for some u, v in Λ_{1}^{*} and g in \mathcal{G},
iii) The set of \mathcal{G}-reduced monomial forms a linear basis of the algebra given by the quotient of the free algebra Λ_{1}^{ℓ} by the ideal I .

3.5. Reduction operators

3.5.1. Reduction operators. Another approach of rewriting in associative algebras were developed by Bergman in [Ber78]. With a functional description of linear rewriting reductions he obtained an equivalent result of the composition lemma 3.4.6. Given Λ_{1}^{ℓ} a free algebra over a set Λ_{1}, he defines a reduction

3. Convergence in linear rewriting systems

system as a set S of pairs $\sigma=\left(\mathcal{w}_{\sigma}, f_{\sigma}\right)$, where \mathcal{w}_{σ} is a monomial of Λ_{1}^{ℓ} and f_{σ} is a 1 -cell of Λ_{1}^{ℓ}. Given σ in S and two monomials u, v in Λ_{1}^{*}, he considers the \mathbb{K}-linear map $r_{u \sigma v}: \Lambda_{1}^{\ell} \longrightarrow \Lambda_{1}^{\ell}$ defined by

$$
r_{u \sigma v}(w)= \begin{cases}u f_{\sigma} v & \text { if } w=u w_{\sigma} v \\ w & \text { otherwise }\end{cases}
$$

The endomorphism $\mathrm{r}_{u \sigma v}$ is called reduction by σ. Note that this notion of reduction corresponds to the notion of rewriting step given in 2.2.4.

A 1-cell f in Σ_{1}^{ℓ} is irreducible under S if every reduction by elements of S acts trivially on f, that is $u w_{\sigma} v$ is not in the support of f, for any σ in S and monomials u, v in Σ_{1}^{*}. As in the case of linear 2-polygraphs, we denote by $\Lambda_{1}^{\mathrm{ir}}$ the vector subspace of Λ_{1}^{ℓ} of all irreducible 1-cells of Λ_{1}^{ℓ}.
3.5.2. Reduction-unique. Bergman introduced the notion of confluence for reduction systems as follows. A finite sequence of reductions r_{1}, \ldots, r_{n} is final on a 1 -cell f, if the 1 -cell $r_{n} \ldots r_{1}(f)$ is irreducible. A 1-cell f of Λ_{1}^{ℓ} is reduction-finite if for any infinite sequence $\left(r_{n}\right)_{n \geqslant 1}$ of reductions, r_{i} acts trivially on $r_{i-1} \ldots r_{1}(f)$ for a sufficiently large i. A 1 -cell f is reduction-unique if it is reduction-finite and if its images under all final sequences of reduction are the same. This common image is denoted by $r_{S}(f)$. A reduction system S is reduction-unique if all 1-cells of Λ_{1}^{ℓ} are reduction-unique under S.

3.5.3. Exercise, Ber78, Lemma 1.1.].

1) Show that the set of reduction-unique 1-cells of Λ_{1}^{ℓ} forms a subspace of Λ_{1}^{ℓ} denoted by $\Lambda_{1}^{\text {ru }}$ and that $\mathrm{r}_{\mathrm{S}}: \Lambda_{1}^{\mathrm{ru}} \rightarrow \Lambda_{1}^{\mathrm{irr}}$ defines a linear map.
2) Given monomials w_{f}, w_{g} and w_{h} in the support of the 1 -cells f, g and h respectively, such that the product $\mathcal{w}_{\mathrm{f}} \mathcal{W}_{\mathrm{g}} \mathcal{w}_{\mathrm{h}}$ is in $\Lambda_{1}^{\text {ru }}$. Show that for any finite composition of reductions r , then $\mathrm{fr}(\mathrm{g}) \mathrm{h}$ is in $\Lambda_{1}^{\mathrm{ru}}$ and that $\mathrm{r}_{\mathrm{S}}(\mathrm{fr}(\mathrm{g}) \mathrm{h})=\mathrm{r}_{\mathrm{S}}(\mathrm{fgh})$ holds.
3.5.4. Ambiguities. A 5-tuple (σ, τ, u, v, w) with σ, τ in S and u, v, w monomials in Λ_{1}^{*}, such that $\mathcal{w}_{\sigma}=u v$ and $\mathcal{w}_{\tau}=\nu w$ (resp. $\sigma \neq \tau, \mathcal{w}_{\sigma}=v$ and $\mathcal{w}_{\tau}=u \nu w$) is an overlap ambiguity (resp. inclusion ambiguity) of S. Such an ambiguity is resolvable if there exist compositions of reductions r and r^{\prime} that satisfy the confluence condition:

$$
r\left(f_{\sigma} w\right)=r^{\prime}\left(u f_{\tau}\right) \quad\left(\text { resp. } \quad r\left(u f_{\sigma} w\right)=r^{\prime}\left(f_{\tau}\right)\right)
$$

3.5.5. Reduction system compatible with a monomial order. The diamond lemma obtained by Bergman concern reduction systems compatible with a monomial order. A reduction system S is compatible with a monomial order \prec, if for any $\sigma=\left(w_{\sigma}, f_{\sigma}\right)$ in S, we have $w \prec \mathcal{w}_{\sigma}$ for any monomial w in the support of f_{σ}.

Given a reduction system compatible with a monomial order \prec. For a monomial w in Σ_{1}^{*}, we denote by $\mathrm{I}_{\prec w}$ the subspace of Λ_{1}^{ℓ} defined by

$$
\mathrm{I}_{\prec w}=\operatorname{Span}_{\mathbb{K}}\left(u\left(w_{\sigma}-\mathrm{f}_{\sigma}\right) v \mid\left(w_{\sigma}, \mathrm{f}_{\sigma}\right) \in \mathrm{S} \text { and } u w_{\sigma} v \prec w\right)
$$

An overlap ambiguity (resp. inclusion ambiguity) (σ, τ, u, v, w) is resolvable relative to \prec if

$$
\mathrm{f}_{\sigma} w-u \mathrm{f}_{\tau} \in \mathrm{I}_{\prec \mathrm{uvw}}, \quad\left(\text { resp. } u \mathrm{f}_{\sigma} w-\mathrm{f}_{\tau} \in \mathrm{I}_{\prec \mathrm{uvw}}\right)
$$

Let \mathcal{G} be a subset of 1 -cells of Λ_{1}^{ℓ} and let \prec be a monomial order on Λ_{1}^{ℓ}. We denote by $S(\mathcal{G}, \prec)$ the reduction system generated by \mathcal{G} with respect to \prec defined by

$$
S(\mathcal{G}, \prec)=\left\{\left.\left(\operatorname{lm}(f), \operatorname{lm}(f)-\frac{1}{\operatorname{lc}(f)} f\right) \right\rvert\, f \in \mathcal{G}\right\} .
$$

3.5.6. Theorem (The Diamond Lemma, [Ber78, Thm. 1.2]). Let S be a reduction system compatible with a monomial order \prec. The following conditions are equivalent.
i) All the ambiguities of S are resolvable.
ii) All the ambiguities of S are resolvable relative to \prec.
iii) S is reduction-unique.

A fourth equivalent condition is given in [Ber78, Thm. 1.2] as follows. Consider the algebra \mathbf{A} given as the quotient of the free algebra Λ_{1}^{ℓ} by the two-side ideal

$$
\mathrm{I}(\mathrm{~S})=\left\{w_{\sigma}-\mathrm{f}_{\sigma} \mid \sigma \in \mathrm{S}\right\} .
$$

If the reduction system S is compatible with a monomial order \prec, the confluence conditions i) - iii) above hold if and only if the set $\Lambda_{1}^{\text {irm }}$ of irreducible monomial under S is a linear basis of the algebra \mathbf{A}. In this case, the \mathbb{K}-algebra \mathbf{A} is isomorphic to the \mathbb{K}-algebra $\Lambda_{1}^{i r}$, whose product is given by $f \cdot g=r_{s}(f g)$, for any 1 -cells f and g in $\Lambda_{1}^{\mathrm{ir}}$.

3.6. Noncommutative Gröbner bases

3.6.1. Noncommutative Gröbner bases. Let Λ_{1}^{ℓ} be a free algebra over a set Λ_{1} and let \prec be a monomial order on Λ_{1}^{ℓ}. A (noncommutative) Gröbner basis of an ideal I of Λ_{1}^{ℓ} with respect to the monomial order \prec is a subset \mathcal{G} of I such that the ideal generated by the leading monomials of the 1 -cells of I coincides with the ideal generated by the leading monomials of the 1 -cells of \mathcal{G} :

$$
\langle\operatorname{lm}(\mathrm{I})\rangle=\langle\operatorname{lm}(\mathcal{G})\rangle .
$$

Equivalently, for every 1 -cell f in I , there exists g in \mathcal{G} with $\operatorname{lm}(\mathrm{f})=u \operatorname{lm}(\mathrm{~g}) v$, where u and v are monomials of Λ_{1}^{ℓ}.

The two following results show that the notion of noncommutative Gröbner basis corresponds to the notion of left-monomial convergent linear 2-polygraph compatible with a monomial order.
3.6.2. Proposition. Let \wedge be a convergent left-monomial linear 2-polygraph, compatible with a monomial order \prec on Λ_{1}^{ℓ}. The set of 1 -cells $\left\{s_{1}(\alpha)-\mathrm{t}_{1}(\alpha) \mid \alpha \in \Lambda_{2}\right\}$ is a Gröbner basis of the ideal $\mathrm{I}(\Lambda)$ for the monomial order \prec.
3.6.3. Exercise. Prove Proposition 3.6 .2
3.6.4. Proposition. Let I be an ideal of a free 1-algebra Λ_{1}^{ℓ}. Let \mathcal{G} be a Gröbner basis for I with respect to a monomial order \prec. Then the leading 2-polygraph $\Lambda(\mathcal{G}, \prec)$ is convergent and $\mathrm{I}(\Lambda(\mathcal{G}, \prec))=\mathrm{I}$ holds.

Proof. Suppose that \mathcal{G} is a Gröbner basis of the ideal I with respect to \prec. By definition, the ideal $\mathrm{I}(\Lambda(\mathcal{G}, \prec))$ is equal to the ideal I generated by \mathcal{G}. Prove that the linear 2-polygraph $\Lambda(\mathcal{G}, \prec)$ is convergent. Its termination is a consequence of its compatibility with the monomial order \prec. The monomials in Λ_{1}^{*} reduced with respect to $\Lambda(\mathcal{G}, \prec)$ are the monomials that cannot be decomposed as $u \operatorname{lm}(g) v$ with g in \mathcal{G} and u and v monomials in Λ_{1}^{*}. As a consequence, if a reduced 1 -cell f of Λ_{1}^{ℓ} is contained in the ideal I , its leading monomial must be 0 , because \mathcal{G} is a Gröbner basis of I. By Proposition 3.2.2, we deduce that the linear 2-polygraph $\Lambda(\mathcal{G}, \prec)$ is confluent.

The following theorem summarizes results obtained in this section. Note that some equivalences are tautological or reformulations.
3.6.5. Theorem. Let I be an ideal of a free algebra Λ_{1}^{ℓ} over a set Λ_{1}. Let \prec be a monomial order on Λ_{1}^{ℓ}. For a subset \mathcal{G} of I, the following conditions are equivalent.
i) The set \mathcal{G} is a Gröbner basis with respect to \prec.
ii) The leading polygraph $\wedge(\mathcal{G}, \prec)$ is convergent.
iii) The leading polygraph $\wedge(\mathcal{G}, \prec)$ is confluent.
iv) The leading polygraph $\wedge(\mathcal{G}, \prec)$ is locally confluent.
v) All the critical branchings of the leading polygraph $\wedge(\mathcal{G}, \prec)$ are confluent.
vi) The set \mathcal{G} is a Gröbner-Shirshov basis with respect to \prec.
vii) All the ambiguities of the reduction system $\mathrm{S}(\mathcal{G}, \prec)$ are resolvable.
viii) All the ambiguities of the reduction system $S(\mathcal{G}, \prec)$ are resolvable relative to \prec.
ix) The reduction system $\mathrm{S}(\mathcal{G}, \prec)$ is reduction-unique.
х) $\Lambda_{1}^{\ell}=\Lambda_{1}^{\mathrm{ir}} \oplus \mathrm{I}$.
xi) Every 1-cell of I admits 0 as a normal form with respect to $\Lambda(\mathcal{G}, \prec)_{2}$.
xii) For any f in I, there exists a decomposition $\operatorname{lm}(f)=u \operatorname{lm}(g) v$ for some u, v in Λ_{1}^{*} and g in \mathcal{G}.
xiii) The set of \mathcal{G}-reduced monomials forms a linear basis of the algebra given by the quotient of Λ_{1}^{ℓ} by the ideal I .
3.6.6. Exercise. Prove the equivalences of Theorem 3.6 .5 .
3.6.7. Example. Consider the linear 2-polygraph \wedge given in Example 2.1 .9 For the deglex order $\prec_{\text {deglex }}$ induced by the alphabetic order $x \prec y \prec z$, the leading monomial of $f=z^{3}+y^{3}+x^{3}-x y z$ is z^{3}, so that

$$
\Lambda\left(\{f\}, \prec_{\text {deglex }}\right)=\langle *| x, y, z\left|z^{3} \xrightarrow{\alpha_{f}} x y z-x^{3}-y^{3}\right\rangle
$$

The left-monomial linear 2-polygraph $\Lambda\left(\{f\}, \prec_{\text {deglex }}\right)$ is compatible with the monomial order $\prec_{\text {deglex }}$, hence it is terminating. It is not confluent, because neither of its two critical branchings is confluent:

In particular, $\{f\}$ does not form a Gröbner basis of the ideal $I(\Lambda)$ We add to the polygraph $\Lambda\left(\{f\}, \prec_{\text {deglex }}\right)$ the following 2-cell

$$
\beta: z y^{3} \Rightarrow z x y z-z x^{3}+y^{3} z+x^{3} z-x y z^{2}
$$

This new rule makes the two previous critical branchings confluent and create a new critical branching

which is also confluent. Finally, the convergent linear 2-polygraph $\langle *| x, y, z\left|\alpha_{f}, \beta\right\rangle$ is Tietze equivalent to the initial linear 2-polygraph $\Lambda\left(\{f\}, \prec_{\text {deglex }}\right)$. In particular, the set of 1-cells $\left\{f, s_{1}(\beta)-t_{1}(\beta)\right\}$ forms a Gröbner basis of the ideal $I(\Lambda)$ with respect to the order $\prec_{\text {deglex }}$.
3.6.8. Example. The algebra presented by the following linear 2-polygraph

$$
\langle *| x, y, z\left|x^{2}=0, x y=z x\right\rangle
$$

does not have a finite Gröbner bases on three generators x, y and z. Indeed, the first relation is oriented as $x^{2} \Rightarrow 0$ and the orientation $x y \Rightarrow z x$ induce the addition of the 2 -cells $x z^{n} x \Rightarrow 0$, for all integer $n \geqslant 1$. Another way is to orient the relation as $z x \Rightarrow x y$. But in this case, we need to add the 2 -cells $x y^{n} x \Rightarrow 0$, for all integer $n \geqslant 1$.

4. Anick's resolution

3.6.9. Exercise. Show that we can compute a Gröbner bases for the algebra given in Example 3.6 .8 with four generators. [Hint. Add a generator t and the relations $x y \Rightarrow t$ and $z x \Rightarrow t$.]
3.6.10. Exercise. Consider the ideal I generated by the linear 2-polygraph Λ of Example 3.1.4

1) Show that $\left\{x y^{k} x-x y^{k+1} \mid k \geqslant 0\right\}$ is a Gröbner basis of the ideal I with respect to a monomial order with $x \succ y$.
2) Compute a Gröbner basis for the ideal I reduced to only one element.

4. Anick's resolution

In two seminal papers, Anick introduced a method to compute a free resolution for an algebra starting with a Gröbner basis of its ideal of relations. First he gave the construction for monomial algebras in Ani85] then for associative augmented algebras in [Ani86]. Resolutions for path algebras using the same method were obtained by Anick and Green in AG87]. For a deeper discussion on the theory of Gröbner bases for path algebras and how to apply this theory to the construction of free resolutions for path algebras, we refer the reader to [Gre99]. Let us mention that Anick's resolution has been achieved by other methods. In particular, Anick's resolution for a homogeneous algebra can be constructed by a deformation of the resolution computed on the associated monomial algebra, see [DK09, Section 2.4.] for details, see also the Backelin construction, [Bac78]. Anick's resolution can be also obtained using algebraic Morse theory with a Morse matching on the bar resolution, see [Skö06, Section 3.2.] for details. Morse theory allows to construct, starting from a chain complex, a new chain complex such that the homology of the two complexes coincides. This method was applied to the computation of minimal resolutions starting from Anick's resolution, [JW09].

Note also that others constructions of free resolutions using convergent rewriting systems were obtained by several authors, [Bro92, Kob90, Gro90, Kob05, GM12b]. Finally, let us mention that noncommutative Gröbner bases where developed by Dotsenko and Khoroshkin for shuffle operads in [DK10], giving operadic versions of Newman's lemma and Buchberger's algorithm. Anick's resolution for shuffle operads was constructed by Dotsenko and Khoroshkin in [DK09, DK13]. Using this construction, they prove that a shuffle operad with a quadratic Gröbner basis is Koszul, [DK13].

The nth chains in Anick's resolution are generated by the n-fold overlaps of the leading terms of the Gröbner basis and the differentials are constructed by Noetherian induction with respect to the monomial order. The chains defined by Anick are recall in Subsection 4.2. The construction of the resolution is given in Subsection 4.3. In a first part of this section, we briefly recall the definition of the homology of associative algebras.

4.1. Homology of an algebra

4.1.1. Functor Tor. Let us recall the definition of the bifunctor $\operatorname{Tor}^{\mathbf{R}}$, where \mathbf{R} is a fixed ring. Let M be a left \mathbf{R}-module and N be a right \mathbf{R}-module. Given a projective resolution \mathcal{P} of the right \mathbf{R}-module N :

$$
\mathcal{P}: \quad \cdots \longrightarrow P_{n} \xrightarrow{d_{n-1}} P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \xrightarrow{d_{0}} P_{0} \xrightarrow{\varepsilon} N \longrightarrow 0
$$

we associate the deleted complex:

$$
\mathcal{P}_{\mathrm{N}}: \quad \cdots \longrightarrow \mathrm{P}_{\mathrm{n}} \xrightarrow{\mathrm{~d}_{\mathrm{n}-1}} \mathrm{P}_{\mathrm{n}-1} \longrightarrow \cdots \longrightarrow \mathrm{P}_{1} \xrightarrow{\mathrm{~d}_{0}} \mathrm{P}_{0} \longrightarrow 0
$$

obtained by suppressing the module N . Note that, we have not lost any information in the complex \mathcal{P}_{N}, as $N=\operatorname{coker}\left(d_{0}\right)$ by exactness of complex \mathcal{P}. Then, applying the functor $-\otimes_{\mathbf{R}} M$, we form a complex of \mathbb{Z}-modules denoted by $\mathcal{P}_{\mathrm{N}} \otimes_{\mathbf{R}} \mathrm{M}$:

$$
\mathcal{P}_{N} \otimes_{\mathbf{R}} M: \cdots \longrightarrow P_{n} \otimes_{\mathbf{R}} M \xrightarrow{\overline{\mathrm{~d}}_{n-1}} P_{n-1} \otimes_{\mathbf{R}} M \longrightarrow \cdots \longrightarrow P_{1} \otimes_{\mathbf{R}} M \xrightarrow{\overline{\mathrm{~d}}_{0}} P_{0} \otimes_{\mathbf{R}} M \longrightarrow 0
$$

where \bar{d}_{n-1} denotes the map $d_{n-1} \otimes \operatorname{Id}_{M}$.
We defined the \mathbb{Z}-module $\operatorname{Tor}^{\mathbf{R}}(M, N)$ as the homology of the complex $\mathcal{P}_{N} \otimes_{\mathbf{R}} M$:

$$
\operatorname{Tor}_{n}^{\mathbf{R}}(N, M)=H_{n}\left(\mathcal{P}_{N} \otimes_{\mathbf{R}} M\right)=\operatorname{Ker} \overline{\mathrm{d}}_{n-1} / \operatorname{Im} \overline{\mathrm{d}}_{n} .
$$

In this way, we define a bifunctor $\operatorname{Tor}^{\mathbf{R}}$ with values in the category of \mathbb{Z}-modules.
Following the definitions, the functor $\operatorname{Tor}_{0}^{\mathbf{R}}(\mathrm{N},-)$ is naturally equivalent to $\mathrm{N} \otimes_{\mathbf{R}}-$ and the functor $\operatorname{Tor}_{n}^{\mathbf{R}}(-, M)$ is naturally equivalent to $-\otimes_{\mathbf{R}} M$. Indeed, we have $\operatorname{Tor}_{0}^{\mathbf{R}}(N, M)=\operatorname{coker}\left(\bar{d}_{0}\right)$. Furthermore, the functor $\mathrm{N} \otimes_{\mathbf{R}}$ - is right exact, hence

$$
\operatorname{coker}\left(\overline{\mathrm{d}}_{0}\right)=\mathrm{P}_{0} \otimes_{\mathbf{R}} M / \operatorname{Im}\left(\overline{\mathrm{d}}_{0}\right)=\mathrm{P}_{0} \otimes_{\mathbf{R}} M / \operatorname{ker}\left(\varepsilon \otimes \operatorname{Id}_{M}\right)=\mathrm{N} \otimes_{\mathbf{R}} M
$$

This proves that

$$
\operatorname{Tor}_{0}^{\mathbf{R}}(N, M)=N \otimes_{\mathbf{R}} M
$$

4.1.2. Contracting homotopy. Recall that a method to prove that a complex

$$
\cdots \longrightarrow M_{n+1} \xrightarrow{d_{n}} M_{n} \xrightarrow{d_{n-1}} M_{n-1} \longrightarrow \cdots \longrightarrow M_{1} \xrightarrow{d_{0}} M_{0} \xrightarrow{\varepsilon} N \longrightarrow 0
$$

is acyclic is to construct a contracting homotopy, that is a sequence of morphisms of abelian groups

$$
(\cdots) \longleftarrow M_{n+1} \stackrel{i_{n+1}}{\longleftarrow} M_{n} \stackrel{i_{n}}{\longleftarrow} M_{n-1} \longleftarrow(\cdots) \longleftarrow M_{1} \stackrel{i_{1}}{\longleftarrow} M_{0} \stackrel{i_{0}}{\longleftarrow} N
$$

such that

$$
\varepsilon \iota_{0}=\mathrm{Id}_{\mathrm{N}}, \quad \mathrm{~d}_{0} \iota_{1}+\iota_{0} \varepsilon=\mathrm{Id}_{M_{0}}, \quad \mathrm{~d}_{n} \iota_{n+1}+\iota_{n} \mathrm{~d}_{n-1}=\mathrm{Id}_{M_{n}},
$$

for every $n \geqslant 1$.
4.1.3. Homology of an algebra. Let \mathbf{A} be an associative algebra over a field \mathbb{K}. For $n \geqslant 0$, the n-th homology space of the algebra \mathbf{A} with coefficient in a left \mathbf{A}-module M is defined by

$$
\mathrm{H}_{\mathrm{n}}(\mathbf{A}, M)=\operatorname{Tor}_{n}^{\mathbf{A}}(\mathbb{K}, M)
$$

In practice, to compute the n-th homology spaces $H_{n}(\mathbf{A}, \mathbb{K})$, for all $n \geqslant 0$, we construct a free resolution of \mathbb{K}, seen as a trivial right-A-module:

$$
\mathcal{F}: \cdots \longrightarrow F_{n} \xrightarrow{d_{n-1}} F_{n-1} \longrightarrow \cdots \longrightarrow F_{1} \xrightarrow{d_{0}} F_{0} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

and we compute the homology of the complex $\mathcal{F}_{\mathbb{K}} \otimes_{\mathbf{A}} \mathbb{K}$.
4.1.4. Minimal complex. A complex of free right A-modules

$$
\cdots \longrightarrow F_{n+1} \xrightarrow{d_{n}} F_{n} \xrightarrow{d_{n-1}} F_{n-1} \longrightarrow \cdots
$$

is minimal if all induced maps $\bar{d}_{n}=d_{n} \otimes \operatorname{Id}_{\mathbb{K}}: F_{n+1} \otimes_{\mathbf{A}} \mathbb{K} \longrightarrow F_{n} \otimes_{\mathbf{A}} \mathbb{K}$ are zero. A resolution is minimal if the associated complex is minimal. Note that a minimal free resolution is one in which each free module has the minimal number of generators as illustrated in the following example.

4.2. Anick's chains

4.2.1. Anick's chains, Ani86]. Let Λ be a reduced left-monomial linear 2-polygraph. The Anick n -chains of the linear 2-polygraph Λ and their tails are defined by induction as follows.

- The unique (-1)-chain is the empty monomial, denoted by 1 , it is its own tail.
- The 0 -chains are the 1 -cells in Λ_{1}, and the tail of 0 -chain x in Λ_{1} is x itself.
- For $n \geqslant 1$, suppose that the $(n-1)$-chains and their tails constructed. An n-chain is a monomial u in Λ_{1}^{*} of the form

$$
u=v t
$$

where the monomials v and t satisfy the following conditions:
i) v is $(n-1)$-chain,
ii) t is a reduced monomial with respect to Λ, called the tail of u,
iii) if r is the tail of v, then $\operatorname{Occ}_{s_{1}(\Lambda)}(r t)=1$,
iv) the unique reduction on $r t$ is rightmost, that is, given by a 2 -cell σ in Λ reducing the ending of the monomial rt:

We will denote by $\Omega_{n}(\Lambda)$ the set of n-chains of the linear 2-polygraph Λ.
4.2.2. Anick's chains and overlapping. The linear 2-polygraph Λ being reduced, we have the following description of Anick's chains. A 1 -chain u is necessarily in $s_{1}(\Lambda)$. Indeed, a 1-chain is a non reduced monomial u written $u=x t$, where x is a 1 -cell in Λ_{1} and t is a monomial reduced with respect to Λ :

and such that there is only one 2 -cell of \wedge that can be applied on the monomial u.
A 2-chains u is the source of a critical branching. Indeed, $u=x t_{1} t_{2}$, where $x t_{1}$ is the source of a 2-cell σ in Λ_{2} and there is a rightmost reduction τ reducing $t_{1} t_{2}$ and thus overlapping σ :

Moreover, u is not the source of a critical triple branching, as we have $\operatorname{Occ}_{s_{1}(\Lambda)}(u)=2$. In this way, there is a 1-1 correspondence between $\Omega_{2}(\Lambda)$ and the set of critical branchings of the 2-polygraph Λ.

For $n \geqslant 3$, a n-chain u corresponds to a n-fold overlapping composed by $(n-1)$ chained critical branchings. Note that it may possible that $\operatorname{Occ}_{s_{1}(\Lambda)}(u)>n$, see Example 4.2.5.

4.2.3. Proposition (|Ani86]). Suppose $\mathfrak{n} \geqslant 1$. If $\mathfrak{u}=x_{\mathfrak{i}_{1}} \ldots x_{\mathfrak{i}_{t}}$ is an n-chain, then there is a unique $\mathrm{s} \leqslant \mathrm{t}$ such that $\mathrm{x}_{\mathrm{i}_{1}} \ldots \mathrm{x}_{\mathrm{i}_{s}}$ is an $(\mathrm{n}-1)$-chain. Moreover, $\mathrm{x}_{\mathrm{i}_{\mathrm{s}+1}} \ldots \mathrm{x}_{\mathrm{i}_{\mathrm{t}}}$ is reduced.

Indeed, suppose that there is two $(n-1)$-chains $x_{i_{1}} \ldots x_{i_{s}}$ and $x_{i_{1}} \ldots x_{i_{s}}$, which factorise u. By uniqueness of the reduction on the tail, condition iii) in 4.2.1, necessarily we have $s=s^{\prime}$.
4.2.4. Notation. If u is a n-chain with $(n-1)$-chain v and tail t, we will denote $u=v \mid t$. An n-chain will be denoted by $x\left|t_{1}\right| t_{2}|\ldots| t_{n}$.
4.2.5. Example, Ani86]. Let Λ be a reduced left-monomial linear 2-polygraph with $\Lambda_{1}=\{x\}$ and $s_{1}(\Lambda)=\left\{x^{3}\right\}$. The 1 -cell x is the unique 0 -chain. The monomial $x^{3}=x \mid x^{2}$ is the unique 1 -chain, $x x$ is not a 1 -chain because $\operatorname{Occ}_{\wedge_{2}}\left(x^{2}\right)=0$. The monomial $x^{4}=x^{3} \mid x$ is the unique 2 -chain. Note that $x^{5}=x^{3} x^{2}$ is not a 2 -chain because $\operatorname{Occ}_{\wedge_{2}}\left(x^{2} x^{2}\right)=2$: on the monomial x^{5} there are 3 possible reductions. Here x^{5} links three obstructions, with the first one intersect with the last, hence it form a critical triple branching:

The monomial $x^{6}=x^{4} \mid x^{2}$ is the unique 3-chain, note that $\chi^{5}=x^{4} x$ is not a 3-chain because $\operatorname{Occ}_{\Lambda_{2}}(x x)=$ 0 . Note that there are 4 -obstructions on the 3 -chain x^{6} :

4. Anick's resolution

Thus we have

$$
\Omega_{0}(\Lambda)=\Lambda_{1}, \quad \Omega_{1}(\Lambda)=s_{1}(\Lambda), \quad \Omega_{2}(\Lambda)=\left\{x^{4}\right\}, \quad \Omega_{3}(\Lambda)=\left\{x^{6}\right\}
$$

More generally, we show that for any integer $\mathfrak{n} \geqslant 0$, we have

$$
\Omega_{2 n-1}(\Lambda)=\left\{x^{3 n}\right\}, \quad \Omega_{2 n}(\Lambda)=\left\{\chi^{3 n+1}\right\}
$$

4.2.6. Example, Ani86]. Suppose that $\Lambda_{1}=\{x, y\}$ and $s_{1}(\Lambda)=\left\{x^{2} y x y, x y x y^{2}\right\}$. Then we have

$$
\Omega_{0}(\Lambda)=\{x, y\}, \quad \Omega_{1}(\Lambda)=\left\{x|x y x y, x| y x y^{2}\right\}, \quad \Omega_{2}(\Lambda)=\left\{x|x y x y| y, x|x y x y| x y^{2}\right\}
$$

and $\Omega_{n}(\Lambda)$ is empty for $n \geqslant 3$.
4.2.7. Exercise, Ani85]. Let Λ be a linear 2-polygraph such that $\Lambda_{1}=\{x, y, z\}$. Determine Anick's chains in the following situations

1) $s_{1}(\Lambda)=\{x y z x, z x y\}$,
2) $s_{1}(\Lambda)=\{x y z x, x x y\}$. In this case, show that the number of n-chains equals the $(n+2)$ nd Fibonacci number when $n \geqslant 1$.

4.3. Anick's resolution

Let Λ be a convergent reduced left-monomial linear 2-polygraph, compatible with a monomial order \prec on Λ_{1}^{ℓ}. Let denote by \mathbf{A} the algebra presented by Λ. We define a section $\iota: \mathbf{A} \longrightarrow \Lambda_{1}^{\ell}$ of the canonical projection $\pi: \Lambda_{1}^{\ell} \longrightarrow \mathbf{A}$, sending every 1-cell f of \mathbf{A} to the unique normal form \widehat{f} of any representative 1 -cell of f in Λ_{1}^{ℓ}, as in 3.2 .3 In the construction of the following resolution, the convergence hypothesis is used to guarantee the unicity of this normal form.
4.3.1. Anick's resolution. Let $\mathbf{A}\left[\Omega_{n}(\Lambda)\right]=\mathbb{K}\left[\Omega_{n}(\Lambda)\right] \otimes_{\mathbb{K}} \mathbf{A}$ be the free right A-module over the set of n-chains $\Omega_{n}(\Lambda)$. We identify $\mathbf{A}\left[\Omega_{0}(\Lambda)\right]$ to $\mathbf{A}\left[\Lambda_{1}\right]$ and $\mathbf{A}\left[\Omega_{-1}(\Lambda)\right]$ to \mathbf{A}. Anick constructs in [Ani86] a free resolution of right \mathbf{A}-modules, that we will denote by $\mathcal{A}(\Lambda)$, and defined by

$$
\cdots \longrightarrow \mathbf{A}\left[\Omega_{n}(\Lambda)\right] \xrightarrow{\mathrm{d}_{n}} \mathbf{A}\left[\Omega_{\mathrm{n}-1}(\Lambda)\right] \longrightarrow \cdots \longrightarrow \mathbf{A}\left[\Omega_{1}(\Lambda)\right] \xrightarrow{\mathrm{d}_{1}} \mathbf{A}\left[\Lambda_{1}\right] \xrightarrow{\mathrm{d}_{0}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

where the differentials d_{n} are constructed by induction on n together with the contracting homotopy

$$
\mathfrak{l}_{n}: \operatorname{Ker} d_{n-1} \longrightarrow \mathbf{A}\left[\Omega_{n}(\Lambda)\right] .
$$

The applications d_{n} are morphisms of right \mathbf{A}-module and the applications \boldsymbol{l}_{n} are linear maps.
4.3.2. The applications d_{n} and t_{n} are constructed by noetherian induction with respect to the monomial order \prec. From the monomial order \prec on Λ_{1}^{ℓ}, we define a partial order $\prec_{\Omega_{n}}$ on the set of elements $u \otimes t$ such that $\mathfrak{u} \in \Omega_{\mathfrak{n}}(\Lambda)$ and $t \in \Lambda_{1}^{*}$ by setting

$$
u \otimes t \prec_{\Omega_{n}} u^{\prime} \otimes t^{\prime} \quad \text { if and only if } \quad u \widehat{t} \prec u^{\prime} \widehat{t}^{\prime} .
$$

This order is total on the set of n-chains. Indeed, by Proposition 4.2.3 if $u t=u^{\prime} t^{\prime}$, then $u=u^{\prime}$ and then $t=t^{\prime}$.

Given a linear combination $h=\sum_{i=1}^{l} \lambda_{i} u_{i} \otimes \mathfrak{t}_{\mathfrak{i}}$ in $\mathbf{A}\left[\Omega_{\mathfrak{n}}(\Lambda)\right]$, the leading term of h with respect to $\prec_{\Omega_{n}}$ is the term $\mathfrak{u}_{k} \otimes t_{k}$ such that $\mathfrak{u}_{i} \otimes \mathfrak{t}_{i} \prec_{\Omega_{n}} u_{k} \otimes t_{k}$ for any $\mathfrak{i} \in\{1, \ldots, l\} \backslash\{k\}$.
4.3.3. For the first steps of the resolution

$$
\mathbf{A}\left[\Lambda_{1}\right] \stackrel{\mathrm{d}_{0}}{\leftrightarrows} \mathbf{A} \underset{\mathrm{~L}_{0}}{\stackrel{\varepsilon}{\rightleftarrows}} \mathbb{K} \longrightarrow 0
$$

we set $\iota_{-1}=\eta: \mathbb{K} \hookrightarrow \mathbf{A}$ the embedding of \mathbb{K} in \mathbf{A} and we define the augmentation $\varepsilon: \mathbf{A} \rightarrow \mathbb{K}$ by $\varepsilon(x)=0$, for all $x \in \Lambda_{1}$. Hence $\mathbf{A}=\mathbb{K} \oplus \operatorname{Ker} \varepsilon$ and we have $\varepsilon \iota_{-1}=\operatorname{Id}_{\mathbb{K}}$. Then we set

$$
\mathrm{d}_{0}(x \otimes 1)=1 \otimes x
$$

for all x in Λ_{1}. For a monomial u in \mathbf{A} such that the normal form with respect to Λ is written $\widehat{u}=x_{1} x_{2} \ldots x_{k}$ in Λ_{1}^{ℓ}, we define

$$
\begin{equation*}
\mathfrak{c}_{0}(1 \otimes u)=x_{1} \otimes x_{2} \ldots x_{k} \tag{9}
\end{equation*}
$$

Then we extend t_{0} to any element of \mathbf{A} by linearity. The map \mathfrak{c}_{0} is well defined by uniqueness of the normal form due to the convergence of the linear 2-polygraph \wedge.

The exactness, $\operatorname{Im} \mathrm{d}_{0}=\operatorname{Ker} \varepsilon$, in \mathbf{A} is a consequence of the two equalities:

$$
\varepsilon \mathrm{d}_{0}(x \otimes 1)=0 \text { and } \mathrm{d}_{0} \mathrm{l}_{0}=\mathrm{id}_{\operatorname{Ker}(\varepsilon)}
$$

4.3.4. For $n \geqslant 0$, we define the pair $\left(d_{n}, \iota_{n}\right)$:

$$
\mathbf{A}\left[\Omega_{n}(\Lambda)\right] \underset{\iota_{n}}{\stackrel{d_{n}}{\rightleftarrows}} \mathbf{A}\left[\Omega_{n-1}(\Lambda)\right] \underset{\iota_{n-1}}{\stackrel{d_{n-1}}{\rightleftarrows}} \mathbf{A}\left[\Omega_{n-2}(\Lambda)\right]
$$

by induction on n. We suppose that the maps d_{n-1} and $\mathfrak{m}_{n-1}: \operatorname{Ker}_{n-2} \longrightarrow \mathbf{A}\left[\Omega_{n-1}(\Lambda)\right]$, constructed such that the following equalities

$$
\mathrm{d}_{n-2} \mathrm{~d}_{n-1}=0 \quad \text { and } \quad \mathrm{d}_{n-1} \mathrm{l}_{n-1}=\operatorname{Id}_{\text {Ker }_{n-2}}
$$

hold. We define inductively d_{n} on a n-chain $u=v \mid t$ with tail t by

$$
\begin{equation*}
\mathrm{d}_{\mathrm{n}}(v \mid \mathrm{t} \otimes 1)=v \otimes \mathrm{t}-\mathrm{l}_{\mathrm{n}-1} \mathrm{~d}_{\mathrm{n}-1}(v \otimes \mathrm{t}) \tag{10}
\end{equation*}
$$

In the right-hand side of (10), the term $v \otimes \mathrm{t}$ will be the leading term with respect to $\prec_{\Omega_{n-1}}$.
4.3.5. Let us define recursively the map

$$
\mathfrak{l}_{n}: \operatorname{Kerd} \mathrm{d}_{n-1} \longrightarrow \mathbf{A}\left[\Omega_{n}(\Lambda)\right] .
$$

Let $h \in \operatorname{Ker}_{n-1} \subset \mathbf{A}\left[\Omega_{n-1}(\Lambda)\right]$. Denote by $u_{n-1} \otimes t$ the leading term of h with respect to $\prec_{\Omega_{n-1}}$, that is

$$
h=\lambda u_{n-1} \otimes t+\text { lower terms }
$$

where $\lambda \in \mathbb{K} \backslash\{0\}$. By Proposition 4.2 .3 , the $(n-1)$-chain u_{n-1} can be uniquely decomposed in

$$
u_{n-1}=u_{n-2} \mid t^{\prime}
$$

where u_{n-2} is an $(n-2)$-chain and t^{\prime} is the tail of u_{n-1}. By induction, we have

$$
d_{n-1}\left(u_{n-1} \otimes 1\right)=u_{n-2} \otimes t^{\prime}+\text { lower terms }
$$

As d_{n-1} is a morphism of right A-modules, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{n}-1}(\mathrm{~h}) & =\lambda \mathrm{d}_{\mathrm{n}-1}\left(\mathrm{u}_{\mathrm{n}-1} \otimes \mathrm{t}\right)+\mathrm{d}_{\mathrm{n}-1}(\text { lower terms }) \\
& =\lambda \mathrm{u}_{\mathrm{n}-2} \otimes \mathrm{t}^{\prime} \mathrm{t}+\text { lower terms }
\end{aligned}
$$

Suppose that $t^{\prime} t$ is reduced, then $u_{n-2} \otimes t^{\prime} t$ remains the leading term of $d_{n-1}(h)$ and h cannot be in Ker d_{n-1} thus contradicting the hypothesis. It follows that $t^{\prime} t$ can be reduced, we set

$$
t^{\prime} t=v^{\prime} w v
$$

where w is the 1 -source of the leftmost reduction σ that can be applied on the monomial $t^{\prime} t$:

Then $u_{n-2} v^{\prime} w=u_{n-2}\left|t^{\prime}\right| w_{1}$ forms an n-chain, it follows that $u_{n-2} v^{\prime} w \otimes v \in \mathbf{A}\left[\Omega_{n}(\Lambda)\right]$. We set

$$
\begin{align*}
\iota_{n}(h) & =\iota_{n}\left(\lambda u_{n-1} \otimes t+\text { lower terms }\right) \\
& =\lambda u_{n-2} v^{\prime} w \otimes v+\iota_{n}\left(h-\lambda d_{n}\left(u_{n-2} v^{\prime} w \otimes v\right)\right) . \tag{11}
\end{align*}
$$

This is well defined, because $h-\lambda d_{n}\left(u_{n-2} v^{\prime} w \otimes v\right) \prec h$ by construction. Indeed

$$
\begin{aligned}
d_{n}\left(u_{n-2} v^{\prime} w \otimes v\right)=d_{n}\left(u_{n-2} v^{\prime} w_{1} w_{2} \otimes v\right) & =u_{n-2} v^{\prime} w_{2} \otimes w_{1} v+\text { lower terms } \\
& =u_{n-1} \otimes t+\text { lower terms }
\end{aligned}
$$

Moreover, $d_{n-1}\left(h-\lambda d_{n}\left(u_{n-2} v^{\prime} w \otimes v\right)\right)=0$.
From this construction, we deduce the following result.
4.3.6. Theorem (Ani86, Thm 1.4]). Let A be an algebra presented by a convergent reduced leftmonomial linear 2-polygraph Λ, compatible with a given monomial order \prec. The complex of right A-modules $\mathcal{A}(\Lambda)$ defined by

$$
\cdots \longrightarrow \mathbf{A}\left[\Omega_{n}(\Lambda)\right] \xrightarrow{\mathrm{d}_{n}} \mathbf{A}\left[\Omega_{n-1}(\Lambda)\right] \longrightarrow \cdots \longrightarrow \mathbf{A}\left[\Omega_{1}(\Lambda)\right] \xrightarrow{\mathrm{d}_{1}} \mathbf{A}\left[\Lambda_{1}\right] \xrightarrow{\mathrm{d}_{0}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

where, for any $\mathrm{n} \geqslant 0$, the morphism d_{n} is defined on a n -chain $v \mid \mathrm{t}$ by

$$
\mathrm{d}_{\mathrm{n}}(v \mid \mathrm{t} \otimes 1)=v \otimes \mathrm{t}+\mathrm{h}
$$

where $\operatorname{lt}(\mathrm{h}) \prec \nu \mid \mathrm{t} \otimes 1$, if $\mathrm{h} \neq 0$, is a resolution of the trivial right \mathbf{A}-module \mathbb{K}.
4.3.7. Example. Let consider the algebra \mathbf{A} presented by the linear 2-polygraph Λ of Example 2.1.10 and denote by α_{0} the 2 -cell β. It appears one critical branching

We complete the linear 2-polygraph Λ with the 2-cells

$$
\alpha_{n}: x y^{n} x \Longrightarrow y^{n+1} x
$$

for all $n>0$. We note that, for any integers $n, m \geqslant 0$, we have a critical branching

The linear 2-polygraph Λ^{\prime}, whose set of 1-cell is Λ_{1} and $\Lambda_{2}^{\prime}=\left\{\alpha_{n} \mid n \geqslant 0\right\}$ is convergent, compatible with the monomial order \prec and Tietze equivalent to Λ. Equivalently, the set $\left\{x y^{n} x-y^{n+1} x \mid n \geqslant 0\right\}$ forms a Gröbner basis for the ideal $I(\Lambda)$. Anick's 1-chains are of the form $x \mid y^{n} x$ with $n \geqslant 0$ and Anick's 2 -chains are of the form $x\left|y^{n} x\right| y^{m} x$ with $n, m \geqslant 0$. More generally, for any $k \geqslant 2$, we have

$$
\Omega_{k}\left(\Lambda^{\prime}\right)=\left\{x\left|y^{n_{1}} x\right| y^{n_{2}} x|\ldots| y^{n_{k}} x \text { for } n_{1}, \ldots, n_{k} \geqslant 0\right\}
$$

Let us compute the boundary maps d_{0}, d_{1}, d_{2} and d_{3}. We have $d_{0}(x \otimes 1)=x, d_{0}(y \otimes 1)=y$ and

$$
\begin{aligned}
d_{1}\left(x \mid y^{n} x \otimes 1\right) & =x \otimes y^{n} x-v_{0} d_{0}\left(x \otimes y^{n} x\right) \\
& =x \otimes y^{n} x-v_{0}\left(1 \otimes x y^{n} x\right) \\
& =x \otimes y^{n} x-v_{0}\left(1 \otimes y^{n+1} x\right) \\
& =x \otimes y^{n} x-y \otimes y^{n} x
\end{aligned}
$$

4. Anick's resolution

The last equality is consequence of the definition of the map t_{0} in 9 .

$$
\begin{aligned}
\mathrm{d}_{2}\left(x\left|y^{n} x\right| y^{m} x \otimes 1\right) & =x \mid y^{n} x \otimes y^{m} x-\mathfrak{l}_{1} d_{1}\left(x \mid y^{n} x \otimes y^{m} x\right) \\
& =x \mid y^{n} x \otimes y^{m} x-\iota_{1}\left(x \otimes y^{n} x y^{m} x-y \otimes y^{n} x y^{m} x\right) \\
& =x \mid y^{n} x \otimes y^{m} x-\mathfrak{l}_{1}\left(x \otimes y^{n+m+1} x-y \otimes y^{n+m+1} x\right)
\end{aligned}
$$

By (11), we have
$\mathfrak{l}_{1}\left(x \otimes y^{n+m+1} x-y \otimes y^{n+m+1} x\right)=x \mid y^{n+m+1} x \otimes 1-\iota_{1}\left(x \otimes y^{n+m+1} x-y \otimes y^{n+m+1} x-x \otimes y^{n+m+1} x+y \otimes y^{n+m+1} x\right)$.
Hence

$$
d_{2}\left(x\left|y^{n} x\right| y^{m} x \otimes 1\right)=x\left|y^{n} x \otimes y^{m} x-x\right| y^{n+m+1} x \otimes 1
$$

$$
\begin{aligned}
\mathrm{d}_{3}\left(x\left|y^{n} x\right| y^{m} x \mid y^{k} x \otimes 1\right)= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-\iota_{2}\left(x\left|y^{n} x \otimes y^{m+k+1} x-x\right| y^{n+m+1} x \otimes y^{k} x\right) \\
= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-x\left|y^{n} x\right| y^{m+k+1} x \otimes 1 \\
& -\iota_{2}\left(x\left|y^{n} x \otimes y^{m+k+1} x-x\right| y^{n+m+1} x \otimes y^{k} x-x\left|y^{n} x \otimes y^{m+k+1} x-x\right| y^{n+m+k+2} x \otimes 1\right) \\
= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-x\left|y^{n} x\right| y^{m+k+1} x \otimes 1-\iota_{2}\left(-x\left|y^{n+m+1} x \otimes y^{k} x-x\right| y^{n+m+k+1} x \otimes 1\right), \\
= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-x\left|y^{n} x\right| y^{m+k+1} x \otimes 1+x\left|y^{n+m+1} x\right| y^{k} x \otimes 1 \\
& +\iota_{2}\left(x\left|y^{n+m+1} x \otimes y^{k} x-x\right| y^{n+m+k+1} x \otimes 1-d_{2}\left(x\left|y^{n+m+1} x\right| y^{k} x \otimes 1\right)\right) \\
= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-x\left|y^{n} x\right| y^{m+k+1} x \otimes 1+x\left|y^{n+m+1} x\right| y^{k} x \otimes 1 \\
& \left.+\iota_{2}\left(x\left|y^{n+m+1} x \otimes y^{k} x-x\right| y^{n+m+k+1} x \otimes 1-x\left|y^{n+m+1} x \otimes y^{k} x-x\right| y^{n+m+k+1} x \otimes 1\right)\right) \\
= & x\left|y^{n} x\right| y^{m} x \otimes y^{k} x-x\left|y^{n} x\right| y^{m+k+1} x \otimes 1+x\left|y^{n+m+1} x\right| y^{k} x \otimes 1
\end{aligned}
$$

4.3.8. Example. Let consider the algebra \mathbf{A} given in 4.3 .7 , but with the presentation by the linear 2-polygraph Λ^{\prime} of Example 2.1.10, compatible with the deglex order induced by the alphabetic order $x \prec y$. This polygraph does not have critical branching, thus the sets of Anick's n-chains are empty for $\mathrm{n} \geqslant 2$. It follows that the associated Anick's resolution is

$$
\cdots \longrightarrow 0 \longrightarrow \mathbf{A}[y \mid x] \xrightarrow{\mathrm{d}_{1}} \mathbf{A}[x, y] \xrightarrow{\mathrm{d}_{0}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

with $d_{0}(x \otimes 1)=x, d_{0}(y \otimes 1)=y$ and $d_{1}(y \mid x \otimes 1)=y \otimes x-x \otimes x$.
4.3.9. Example. Consider the algebra \mathbf{A} presented by the linear 2-polygraph Λ of Example 2.1.9. With the Gröbner basis computed in 3.6.7.

$$
z^{3} \stackrel{\alpha_{f}}{\Longrightarrow} x y z-x^{3}-y^{3} \quad z y^{3} \stackrel{\beta}{\Longrightarrow} z x y z-z x^{3}+y^{3} z+x^{3} z-x y z^{2}
$$

Anick's chains are of the form z^{n} and $z^{n} y^{3}$, for $n \geqslant 0$, so that Anick's resolution for the algebra \mathbf{A} with respect to this Gröbner basis is infinite.
4.3.10. Exercise, Ani86, Section 3]. Compute Anick's resolution for the algebra presented by the linear 2-polygraph $\langle *| x, y|x y x y x \Rightarrow x y x\rangle$.

4.4. Anick's resolution for a monomial algebra

4.4.1. Anick's chains for a monomial algebra. We construct Anick's resolution in the case of a monomial algebra A. Recall from 2.1.20, that such an algebra can be presented by a monomial linear 2-polygraph Λ, that is, left-monomial and $t_{1}(\alpha)=0$ for all α in Λ_{2}. Note that such a presentation is always convergent. Suppose that the polygraph Λ is reduced. The sets of chains for Λ are $\Omega_{0}(\Lambda)=\Lambda_{1}$, $\Omega_{1}(\Lambda)=s_{1}(\Lambda)$ and for any $n \geqslant 2, \Omega_{n}(\Lambda)$ is the set of n-overlapping $x\left|t_{1}\right| \ldots\left|t_{n-1}\right| t_{n}$ of branchings of Λ with x, t_{1}, \ldots, t_{n} in Λ_{1} and $x t_{1}, t_{i} t_{i+1}$ in $s_{1}(\Lambda)$ for any $1 \leqslant i \leqslant n-1$. We have

$$
\begin{equation*}
\widehat{x t_{1}}=0 \quad \text { and } \quad \widehat{t_{i-1} t_{i}}=0, \text { for all } 1 \leqslant i \leqslant n \tag{12}
\end{equation*}
$$

Consider the boundary map

$$
\mathrm{d}_{\mathrm{n}}: \mathbf{A}\left[\Omega_{\mathrm{n}}(\Lambda)\right] \longrightarrow \mathbf{A}\left[\Omega_{n-1}(\Lambda)\right]
$$

defined by

$$
d_{n}\left(x\left|t_{1}\right| \ldots\left|t_{n-1}\right| t_{n} \otimes 1\right)=x\left|t_{1}\right| \ldots \mid t_{n-1} \otimes t_{n}-t_{n-1} d_{n-1}\left(x\left|t_{1}\right| \ldots \mid t_{n-1} \otimes t_{n}\right)
$$

By definition of d_{n-1}, we have

$$
d_{n-1}\left(x\left|t_{1}\right| \ldots \mid t_{n-1} \otimes t_{n}\right)=x\left|t_{1}\right| \ldots \mid t_{n-2} \otimes t_{n-1} t_{n}-t_{n-2} d_{n-2}\left(x\left|t_{1}\right| \ldots \mid t_{n-2} \otimes t_{n-1} t_{n}\right)
$$

Using relation in $\sqrt[12]{ }$, we have $d_{n-1}\left(x\left|t_{1}\right| \ldots \mid t_{n-1} \otimes t_{n}\right)=0$, hence

$$
d_{n}\left(x\left|t_{1}\right| \ldots\left|t_{n-1}\right| t_{n} \otimes 1\right)=x\left|t_{1}\right| \ldots \mid t_{n-1} \otimes t_{n}
$$

As consequence, the map $d_{n} \otimes_{\mathbf{A}} 1_{\mathbb{K}}$ is zero, for all $n \geqslant 0$. This proves that Anick's resolution of a monomial algebras is minimal.
4.4.2. Proposition. Let \wedge be a monomial linear 2-polygraph, and \mathbf{A} be the monomial algebra presented by \wedge. The following statements hold.
i) Anick's resolution $\mathcal{A}(\Lambda)$ is a minimal resolution.
ii) There is an isomorphism $\operatorname{Tor}_{n}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K} \Omega_{n-1}(\Lambda)$, for all $n \geqslant 0$.

4.5. Computing homology with Anick's resolution

Given an algebra \mathbf{A} presented by a convergent reduced left-monomial linear 2-polygraph Λ, compatible with a monomial order, Anick's resolution $\mathcal{A}(\Lambda)$ gives a method to compute the homology groups of \mathbf{A} with coefficient in a A-module M. In particular, Anick's resolution can be used to calculate Poincaré series. In this section, we give several examples of computations of homology groups with coefficients in \mathbb{K}.
4.5.1. Computing homology. From the resolution $\mathcal{A}(\Lambda)$, we compute the complex $\mathcal{A}(\Lambda) \otimes_{\mathbf{A}} \mathbb{K}$ given by

$$
\cdots \longrightarrow \mathbb{K}\left[\Omega_{\mathfrak{n}}(\Lambda)\right] \xrightarrow{\overline{\mathrm{d}}_{\mathrm{n}}} \mathbb{K}\left[\Omega_{\mathfrak{n}-1}(\Lambda)\right] \longrightarrow \cdots \longrightarrow \mathbb{K}\left[\Omega_{1}(\Lambda)\right] \xrightarrow{\overline{\mathrm{d}}_{1}} \mathbb{K}\left[\Lambda_{1}\right] \xrightarrow{\overline{\mathrm{d}}_{0}} \mathbb{K} \longrightarrow 0
$$

where $\mathbb{K}\left[\Omega_{n}(\Lambda)\right]$ denotes the free vector space on $\Omega_{n}(\Lambda)$ and \bar{d}_{n} denotes the map $d_{n} \otimes \operatorname{Id}_{\mathbb{K}}$. These maps satisfy $\bar{d}_{n} \overline{\mathrm{~d}}_{\mathrm{n}+1}=0$, for all $\mathrm{n} \geqslant 0$, and we have

$$
\mathrm{H}_{0}(\mathbf{A}, \mathbb{K})=\mathbb{K}, \quad \text { and } \quad \mathrm{H}_{\mathrm{n}}(\mathbf{A}, \mathbb{K})=\operatorname{Ker} \overline{\mathrm{d}}_{\mathrm{n}-1} / \operatorname{Im} \overline{\mathrm{d}}_{\mathrm{n}}
$$

As a first application, we have the following finiteness properties.
4.5.2. Proposition. Let \mathbf{A} be an algebra presented by a finite convergent left-monomial linear 2polygraph. The following statements hold.
i) \mathbf{A} is of homological type right $-\mathrm{FP}_{\infty}$, that is, there exists an infinite length free finitely generated resolution of the trivial right \mathbf{A}-module \mathbb{K}.
ii) For any $\mathrm{n} \geqslant 0$, the vector space $\mathrm{H}_{\mathrm{n}}(\mathbf{A}, \mathbb{K})$ is finitely generated.
iii) [Ani86. Lemma 3.1] The algebra A has a Poincaré series

$$
\begin{equation*}
P_{\mathbf{A}}(t)=\sum_{n=0}^{\infty} \operatorname{dim}_{\mathbb{K}}\left(H_{n}(\mathbf{A}, \mathbb{K})\right) t^{n} \tag{13}
\end{equation*}
$$

with exponential or slower growth, that is, there are constants $c_{1}, c_{2}>0$, such that

$$
0 \leqslant \operatorname{dim}_{\mathbb{K}}\left(\mathrm{H}_{\mathrm{n}}(\mathbf{A}, \mathbb{K})\right) \leqslant \mathrm{c}_{2}\left(\mathrm{c}_{1}\right)^{n}
$$

Note that the finiteness conditions i) and ii) were obtained by Kobayashi for monoids. A monoid \mathbf{M} is of homological type right- FP_{∞} over \mathbb{K} if the monoid algebra $\mathbb{K} \mathbf{M}$ is of homological type rightFP_{∞}. In [Kob90], by constructing a resolution similar to the Anick resolution, Kobayashi shows that a monoid \mathbf{M} having a presentation by a finite convergent rewriting system is of homological type FP_{∞}. Similar constructions of resolutions of monoids presented by convergent rewriting systems were also obtained by Brown [Bro92] and by Groves [Gro90]. The diferent constructions are based on distinct ways to describe the n-fold critical branchings of a convergent rewriting system.
4.5.3. Exercise. Prove the conditions i) and ii) in Proposition 4.5 .2
4.5.4. Low-dimensional homology. Let us explicit the first terms of the series 13 . In the first dimensions, we have the following complex

$$
\mathbb{K}\left[\Omega_{2}(\Lambda)\right] \xrightarrow{\overline{\mathrm{d}}_{2}} \mathbb{K}\left[\Omega_{1}(\Lambda)\right] \xrightarrow{\overline{\mathrm{d}}_{1}} \mathbb{K}\left[\Lambda_{1}\right] \xrightarrow{\overline{\mathrm{d}}_{0}} \mathbb{K} \longrightarrow 0
$$

The map \bar{d}_{0} is zero, hence

$$
\mathrm{H}_{1}(\mathbf{A}, \mathbb{K})=\mathbb{K}\left[\Lambda_{1}\right] / \operatorname{Im} \overline{\mathrm{d}}_{1}
$$

A 1-cell x of Λ_{1} in $\operatorname{Im} \bar{d}_{1}$ comes from a relation with source or target x. It follows that x is a redundant generator in the presentation. Indeed, a term $x \otimes 1$, with x in Λ_{1} appears in $\operatorname{Im} d_{1}$ if and only if x is the source or the target of a 2 -cell in Λ_{2}. Let $\alpha: x \Rightarrow y_{1} \ldots y_{k}$ be a 2 -cell in Λ_{2}, where by hypothesis $y_{1} \ldots y_{k}$ is reduced. Thus we have

$$
d_{1}(x \mid 1 \otimes 1)=x \otimes 1-y_{1} \otimes y_{2} \ldots y_{k}
$$

Hence $\bar{d}_{1}(x)=x$. Suppose now that $x_{1} \ldots x_{k} \stackrel{\alpha}{\Longrightarrow} y$ is a 2 -cell in Λ_{2}. We have

$$
d_{1}\left(x_{1} \mid x_{2} \ldots x_{k} \otimes 1\right)=x_{1} \otimes x_{2} \ldots x_{k}-y \otimes 1
$$

Hence $\bar{d}_{1}\left(x_{1} \ldots x_{k}\right)=-y$. Thus, we have $\bar{d}_{1}=0$ if and only if the number of generators is minimal. In this way, $\operatorname{dim}_{\mathbb{K}} H_{1}(\mathbf{A}, \mathbb{K})$ is equal to the minimal number of generators for a presentation of the algebra \mathbf{A}. For analogous reasons, we show that $\operatorname{dim}_{\mathbb{K}} \mathrm{H}_{2}(\mathbf{A}, \mathbb{K})$ is the minimal required number of the defining relations, see [Ufn95, Sect. 3.9].
4.5.5. Example. Consider the algebra A from Example 4.3.8 Using Anick's resolution computed in 4.3.8, we deduce the complex

$$
\cdots \longrightarrow 0 \longrightarrow \mathbb{K}[y \mid x] \xrightarrow{\overline{\mathrm{d}}_{1}} \mathbb{K}[x, y] \xrightarrow{\overline{\mathrm{d}}_{0}} \mathbb{K} \longrightarrow 0
$$

whose boundary maps $\overline{\mathrm{d}}_{0}$ and $\overline{\mathrm{d}}_{1}$ are zero. We deduce

$$
H_{n}(\mathbf{A}, \mathbb{K})= \begin{cases}\mathbb{K} & \text { if } n=0,2 \\ \mathbb{K}^{2} & \text { if } n=1 \\ 0 & \text { if } n \geqslant 3\end{cases}
$$

4.5.6. Exercise [Ani86, Thm 3.2]. Let \mathbf{A} be an algebra admitting a presentation by a left-monomial reduced linear 2-polygraph compatible with a monomial order and having no critical branching. Show that $\mathrm{H}_{\mathrm{n}}(\mathbf{A}, \mathbb{K})=0$, for any $n \geqslant 3$. A presentation without critical branching is called combinatorially free in Ani86].
4.5.7. Exercise. Show that the Poincaré series of the algebra \mathbf{A} presented by the linear 2-polygraph $\langle *| x, y\left|x^{2} \Rightarrow 0\right\rangle$ is

$$
\mathrm{P}_{\mathbf{A}}(\mathrm{t})=1+2 \mathrm{t}+\sum_{\mathrm{k}=2}^{\infty} \mathrm{t}^{\mathrm{k}} .
$$

4.5.8. Exercise. Let \mathbf{B}_{3}^{+}be the monoid of positive braids on three strands given by the following Artin presentation:

$$
\langle\mathrm{s}, \mathrm{t} \mid \mathrm{sts} \Rightarrow \mathrm{tst}\rangle .
$$

Compute Anick's resolution and the Poincaré series of the monoid \mathbf{B}_{3}^{+}.

4.6. Minimality of Anick's resolution

4.6.1. Example. Let \mathbf{A} be the algebra presented by the linear 2-polygraph $\langle *| x, y|x \Rightarrow y\rangle$, which is compatible with the deglex order induced by $y \prec x$. The Anick resolution is

$$
0 \longrightarrow \mathbf{A}[x \mid 1] \xrightarrow{\mathrm{d}_{1}} \mathbf{A}[x, y] \xrightarrow{\mathrm{d}_{0}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

with

$$
d_{0}(x \otimes 1)=x, \quad d_{0}(y \otimes 1)=y, \quad d_{1}(x \mid 1 \otimes 1)=x \otimes 1-1 \otimes y .
$$

This resolution is not minimal because $\bar{d}_{1} \neq 0$. A minimal resolution for the algebra \mathbf{A} can be constructed from the polygraph $\langle *| x|\emptyset\rangle$ with no 2-cell.
4.6.2. Example. Let consider the algebra A presented by the linear 2-polygraph

$$
\Lambda=\langle *| x, y, z, r, s|x y \xlongequal{\alpha} s, y z \xlongequal{\beta} r\rangle
$$

compatible with the deglex order induced by the alphabetic order $s \prec r \prec z \prec y \prec x$. There is a critical branching:

which is confluent by adding the rule $\mathrm{xr} \xlongequal{\gamma}$ sz. The linear 2-polygraph $\Lambda^{\prime}=\left\langle\Lambda_{1} \mid \alpha, \beta, \gamma\right\rangle$ is compatible with the deglex order considered above, convergent and Tietze equivalent to Λ. The induced the Anick resolution $\mathcal{A}\left(\Lambda^{\prime}\right)$ is

with

$$
d_{1}(x \mid y \otimes 1)=x \otimes y-s \otimes 1, \quad d_{1}(x \mid r \otimes 1)=x \otimes r-s \otimes z, \quad d_{1}(y \mid z \otimes 1)=y \otimes z-r \otimes 1
$$

and $d_{2}(x|y| z \otimes 1)=x y \otimes z-x r \otimes 1$. This resolution is not minimal, because the maps \bar{d}_{1} and \bar{d}_{2} are non zero. Note that

$$
H_{n}(\mathbf{A}, \mathbb{K})= \begin{cases}\mathbb{K} & \text { if } n=0 \\ \mathbb{K}^{3} & \text { if } n=1 \\ 0 & \text { if } n \geqslant 2\end{cases}
$$

and a minimal resolution for the algebra \mathbf{A} can be constructed from the linear 2-polygraph $\langle *| x, y, z|\emptyset\rangle$ which produces the following resolution

$$
\cdots \longrightarrow 0 \longrightarrow \mathbf{A}[x, y, z] \xrightarrow{\mathrm{d}_{0}} \mathbf{A} \xrightarrow{\varepsilon} \mathbb{K} \longrightarrow 0
$$

4.6.3. Exercise. Consider the linear 2-polygraph

$$
\Lambda=\langle *| x, y, z, r, s|x y \xlongequal{\alpha} s s, y z \xrightarrow{\beta} s r\rangle .
$$

1) Complete the polygraph Λ into a convergent polygraph Λ^{\prime}.
2) Show that the Anick resolution of Λ^{\prime} is not minimal.
3) Compute the homology of the algebra \mathbf{A} presented by \wedge.
4) Compute a minimal Anick's resolution of the algebra \mathbf{A}.
4.6.4. Exercise. Let consider the algebra presented by

$$
\langle *| x, y, z, r, s|x y=s s, y z=r r\rangle .
$$

Show that there is no orientation of rules of this presentation giving a convergent linear 2-polygraph, and thus there is no minimal Anick's resolution for this algebra.
4.6.5. Proposition. Let \mathbf{A} be an algebra and let \wedge be a left-monomial reduced convergent linear 2polygraph compatible with a monomial order that presents A. If the Anick resolution $\mathcal{A}(\Lambda)$ is minimal, then, for any $\mathrm{n} \geqslant 0$, there is an isomorphism of spaces

$$
H_{n}(\mathbf{A}, \mathbb{K}) \simeq \mathbb{K}\left[\Omega_{n-1}(\Lambda)\right]
$$

4.6.6. Exercise. Prove Proposition 4.6 .5
4.6.7. When Anick's resolution is minimal. We have seen in Proposition 4.4.2 that the Anick resolution $\mathcal{A}(\Lambda)$ is minimal when the presentation is monomial. Following exercise gives an other situation for which the Anick resolution is minimal.
4.6.8. Exercise. Let Λ be a left-monomial reduced linear 2-polygraph compatible with a monomial order. Suppose that Λ is convergent and quadratic, that is, any 2 -cell in Λ_{2} is of the form $x_{i_{1}} x_{i_{2}} \Rightarrow y_{i_{1}} y_{i_{2}}$ with $x_{i_{1}}, x_{i_{2}}, y_{i_{1}}, y_{i_{2}}$ in Λ_{1}. Show that the Anick resolution $\mathcal{A}(\Lambda)$ is minimal.
4.6.9. Exercise. A linear 2-polygraph is cubical if its 2-cells are of the form $x_{i_{1}} x_{i_{2}} x_{i_{3}} \Rightarrow y_{i_{1}} y_{i_{2}} y_{i_{3}}$. Is the result of Exercise 4.6 .8 can be extended to cubical convergent linear 2-polygraphs?
4.6.10. Exercises. Compute homology spaces of the algebras presented by the following linear 2polygraphs

1) $\langle *| x, y|x y \Rightarrow y x\rangle$.
2) $\langle *| x, y\left|x^{2} \Rightarrow 0\right\rangle$.
3) $\langle *| x, y\left|x^{2} \Rightarrow y^{2}\right\rangle$.
4) $\langle *| x, y\left|x^{2} \Rightarrow x y\right\rangle$.
5) $\langle *| x, y\left|x^{2} \Rightarrow x y-y^{2}\right\rangle$.
6) $\langle *| x, y|x y x \Rightarrow y x y\rangle$.

5. Higher-dimensional linear rewriting

In this section, we recall the notion of coherent presentation for an algebra as a presentation of the algebra extended by a family of generating syzygies. We explain how to generate syzygies when the presentation is convergent. Finally, we recall from [GHM17] the notion of polygraphic resolution for an algebra as an acyclic polygraphic extension of a presentation of the algebra.

5. Higher-dimensional linear rewriting

5.1. Coherent presentations of algebras

5.1.1. Linear 3-polygraph. Let Λ be a linear 2-polygraph. A cellular extension of the free 2algebroid Λ_{2}^{ℓ} is a set Λ_{3} equipped with maps

$$
\Lambda_{2}^{\ell} \frac{s_{2}}{t_{2}} \Lambda_{3}
$$

such that, for every F in Λ_{3}, the pair $\left(s_{2}(F), t_{2}(F)\right)$ is a 2 -sphere in Λ_{2}^{ℓ}, that is, $s_{1} s_{2}(F)=s_{1} t_{2}(F)$ and $t_{1} s_{2}(F)=t_{1} t_{2}(F)$ hold in Λ_{2}^{ℓ}. The elements of Λ_{3} are the 3-cells of the cellular extension and graphically represented by

A linear 3-polygraph is a data $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$, where $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right)$ is a linear 2-polygraph and Λ_{3} is a cellular extension of the free 2 -algebroid Λ_{2}^{ℓ} :

5.1.2. Three-dimensional algebras. We define a 3-algebra as an internal 2-category in the category Alg:

$$
\mathbf{A}_{1} \leftleftarrows \frac{s_{1}}{t_{1}} \mathbf{A}_{2} \leftleftarrows \frac{s_{2}}{t_{2}} \mathbf{A}_{3}
$$

In particular, the algebras \mathbf{A}_{1} and \mathbf{A}_{2} with composition $\mathbf{A}_{2} \times \mathbf{A}_{1} \mathbf{A}_{2} \xrightarrow{{ }^{\star}} \mathbf{A}_{2}$ form a 2-algebra. The 3-cells can be composed in two different ways:

$$
\mathbf{A}_{3} \times_{\mathbf{A}_{1}} \mathbf{A}_{3} \xrightarrow{\star_{1}} \mathbf{A}_{3} \quad \mathbf{A}_{3} \times \mathbf{A}_{2} \mathbf{A}_{3} \xrightarrow{\star_{2}} \mathbf{A}_{3}
$$

by \star_{1}, along their 1-dimensional boundary:

$\stackrel{\star 1}{\longmapsto}$

by \star_{2}, along their 2-dimensional boundary:

The source and target maps s_{1}, s_{2} and t_{1}, t_{2} being morphisms of algebras, the product of 3-cells F and G satisfies:

These compositions and the product satisfy remarkable properties similar to those given in 2.1.14 for 2-algebras.
5.1.3. Free 3 -algebras. The free 3 -algebra over a linear 3 -polygraph \wedge is constructed similarly to the free 2 -algebra given in 2.1.16 It is the 3 -algebra, denoted by Λ_{3}^{ℓ}, whose underlying 2 -algebra is the free 2 -algebra Λ_{2}^{ℓ}, and its 3 -cells are all the formal 1 -composition, 2 -composition and product of 3 -cells of Λ_{3}, of identities of 2-cells, up to associativity, identity, exchange and inverse relations, see [GHM17, 2.1.3] for more details.
5.1.4. Coherent presentations of algebras. A coherent presentation of an algebra \mathbf{A} is a linear 3polygraph Λ such that
i) the linear 2-polygraph $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right)$ is a presentation of \mathbf{A},
ii) Λ_{3} is a homotopy basis of the free 2 -algebra Λ_{2}^{ℓ}, that is, a cellular extension

$$
\Lambda_{2}^{\ell} \leftleftarrows \frac{s_{2}}{t_{2}} \Lambda_{3}
$$

such that for every 2 -sphere (a, b) of the free 2 -algebra Λ_{2}^{ℓ}, there exists a 3 -cell A in the free 3 -algebra Λ_{3}^{ℓ} such that $s_{2}(A)=a$ and $t_{2}(A)=b$.
5.1.5. Squier's completion. Let \wedge be a left-monomial linear 2-polygraph. Suppose that all critical branching of Λ are confluent. For every critical branching (a, b) in Λ, we choose two positive 2 -cells a^{\prime} and b^{\prime} making the branching confluent:

For any such a confluent branching, we consider a 3-cell $F_{(a, b)}: a \star_{1} a^{\prime} \Rightarrow b \star_{1} b^{\prime}$. The set of such 3-cells

$$
\Lambda_{3}=\left\{F_{(a, b)} \mid(a, b) \text { is a critical branching }\right\}
$$

forms a cellular extension of the free 2-algebra Λ_{2}^{ℓ}. The linear 3-polygraph $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ is a Squier's completion of Λ. When the polygraph is confluent, there exists such a Squier's completion. However, the cellular extension Λ_{3} is not unique in general. Indeed, the 3-cells can be directed in the reverse way and a branching (a, b) can have several possible positive 2-cells a^{\prime} and b^{\prime} making the branching confluent.

The following result is a formulation of Squier's Theorem, [SOK94], in the setting of linear 2polygraphs:
5.1.6. Theorem (Squier's Theorem, [GHM17, Thm. 4.3.2]). Let A be an algebra and let Λ be a convergent left-monomial presentation of A. Any Squier's completion of Λ is a coherent presentation of \mathbf{A}.
5.1.7. Linear oriented syzygies. Let Λ be a presentation of an algebra A. Any nontrivial 2 -sphere (a, b) in the free 2 -algebra Λ_{2}^{ℓ} is called a linear oriented 3 -syzygy of the presentation Λ. If Λ is extended into a coherent presentation $\left(\Lambda, \Lambda_{3}\right)$ of the algebra \mathbf{A}, the quotient 2-algebra $\Lambda_{2}^{\ell} / \Lambda_{3}$ is aspherical, that is, for any 2 -sphere (a, b) in $\Lambda_{2}^{\ell} / \Lambda_{3}$, we have $a=b$. In other words, the cellular extension Λ_{3} forms a generating set of linear 3 -syzygies of the presentation Λ. Theorem 5.1.6 say that, when the presentation Λ is convergent the 3 -cells defined by confluence diagrams of the critical branchings, as in (14), form a family of generator for 3-syzygies.
5.1.8. Exercice. Let $\left\{F_{1}, \ldots, F_{k}\right\}$ be a generating set for linear 3-syzygies of a linear 2-polygraph Λ. Prove that $\left\{\mathrm{F}_{1}^{-}, \ldots, \mathrm{F}_{\mathrm{k}}^{-}\right\}$is also a generating set for linear 3-syzygies of Λ.
5.1.9. Example. The linear 2-polygraph $\langle *| x\left|x^{2} \xlongequal{\alpha} 0\right\rangle$ has one critical branching

which is confluent. The polygraph being convergent the 3-cell $F: \alpha x \Rightarrow x \alpha$ generates all linear 3-syzygies of this presentation.
5.1.10. Example. Consider the algebra \mathbf{A} presented by the linear 2-polygraph Λ given in Example 2.1.9. It does not have critical branching, hence any Squier's completion of Λ is empty. As a consequence, Λ can be extended into a coherent presentation with an empty homotopy basis. That is, there is no 3-syzygy for this presentation.

The linear 2-polygraph $\langle *| x, y, z\left|\alpha_{f}, \beta\right\rangle$ considered in Example 3.6.7 is Tietze equivalent to Λ, convergent and compatible with a monomial order. It has three critical branchings, as shown in Example 3.6.7. It can be extended into a coherent presentation of \mathbf{A} with three generating 3-syzygies.
5.1.11. Exercise. Give an explicit description of the 3-cells of a coherent presentation on the linear 2-polygraph Λ^{\prime} of Example 5.1.10.
5.1.12. Exercise. Compute a coherent presentation for the algebras presented by the following linear 2-polygraphs

1) $\langle *| x, y\left|x y x \Rightarrow y^{2}\right\rangle$.
2) $\langle *| x, y, z\left|y z \xlongequal{\alpha}-x^{2}, z y \stackrel{\beta}{\Longrightarrow}-\lambda^{-1} x^{2}\right\rangle$, where $\lambda \in \mathbb{K} \backslash\{0,1\}$, see [PP05, 4.3].
5.1.13. Exercise. Compute a minimal coherent presentation for the algebra presented by the linear 2-polygraph $\langle *| x\left|x^{3}=0\right\rangle$.

5.2. Polygraphic resolutions of algebras

In this subsection, we summarize the notion of polygraphic resolution for algebras as introduced in [GHM17]. Such a resolution can be computed for an algebra given by a convergent linear 2-polygraph. The first three steps of the resolution are generated by the cells of the 2 -polygraph. For $n \geqslant 3$, the n-cells are generated by confluences diagrams induced by n-fold branchings.
5.2.1. Higher-dimensional algebras. Let n be a nonzero natural number. An n-algebra \mathbf{A} is an internal ($n-1$)-category in the category Alg:

$$
\mathbf{A}_{1} \frac{s_{1}}{t_{1}} \mathbf{A}_{2} \stackrel{s_{2}}{t_{2}} \mathbf{A}_{3} \leftleftarrows \quad \mathbf{A}_{n-1} \frac{s_{n-1}}{t_{t_{n-1}}} \mathbf{A}_{n}
$$

The elements of the algebra \mathbf{A}_{k}, for $1 \leqslant k \leqslant n$, are the k-cells of the n-algebra \mathbf{A}. A cellular extension of \mathbf{A} is a set Γ equipped with maps

$$
\mathbf{A}_{\mathrm{n}} \leftleftarrows \frac{s_{\mathrm{n}}}{\mathrm{t}_{\mathrm{n}}} \Gamma
$$

such that, for any γ in Γ, the pair $\left(s_{n}(\gamma), t_{n}(\gamma)\right)$ is an n-sphere of \mathbf{A}, that is, $s_{n-1} s_{n}(\gamma)=s_{n-1} t_{n}(\gamma)$ and $t_{n-1} s_{n}(\gamma)=t_{n-1} t_{n}(\gamma)$.

In these notes, we will do not develop the construction of the free k-algebra $\mathbf{A}[\Gamma]$ on a pair of a $(k-1)$-algebra \mathbf{A} and a cellular extension Γ of it, for $k \geqslant 3$. The construction is the same as in the case of 2-algebras given in 2.1.5. For more details we refer the reader to [GHM17, 2.1.3]. It has the $(k-1)$-algebra \mathbf{A} as underlying $(k-1)$-algebra and its k-cells are all formal compositions by \star_{i} for $1 \leqslant i \leqslant k$ and product of k cells in Γ and identities of $(k-1)$-cells, up to associativity, identity, exchange and inverse relation.
5.2.2. Linear polygraphs. A linear n-polygraph is a sequence $\Lambda=\left(\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{n}\right)$ made of
i) a 1-polygraph $\left(\Lambda_{0}, \Lambda_{1}\right)$,
ii) for any $k \geqslant 2$, a cellular extension Λ_{k} of the free $(k-1)$-algebra

$$
\Lambda_{\mathrm{k}-1}^{\ell}=\Lambda_{1}^{\ell}\left[\Lambda_{2}\right] \cdots\left[\Lambda_{k-1}\right]
$$

The elements of Λ_{k} are called the k-cells of Λ.

5. Higher-dimensional linear rewriting

5.2.3. A linear n-polygraph can be defined explicitly as a diagram

where the maps $\bar{s}_{k}, \bar{t}_{k}: \Lambda_{k+1}^{\ell} \longrightarrow \Lambda_{\mathrm{k}}^{\ell}$ are the extensions of the source and target maps s_{k} and t_{k}, defined by the universal property of the free k-algebra $\Lambda_{\mathrm{k}}^{\ell}$, and such that, for any $1 \leqslant k \leqslant n-1$, the following two conditions hold:
i) there is a structure of k-algebra on the following k-graph

$$
\Lambda_{0} \leftleftarrows \frac{\overline{\mathrm{~s}}_{0}}{\overline{\mathrm{t}}_{0}} \Lambda_{1}^{\ell} \stackrel{\overline{\mathrm{s}}_{1}}{\overline{\mathrm{t}}_{1}} \Lambda_{2}^{\ell} \stackrel{\overline{\mathrm{s}}_{2}}{\overline{\mathrm{t}}_{2}}(\cdots) \stackrel{\overline{\mathrm{s}}_{\mathrm{k}-1}}{\overline{\mathrm{t}}_{\mathrm{k}-1}} \Lambda_{\mathrm{k}}^{\ell}
$$

ii) Λ_{k+1} is a cellular extension of the free k-algebra Λ_{k}^{ℓ}.

The free n-algebra over a linear n-polygraph Λ is the n-algebra $\Lambda_{n}^{\ell}=\Lambda_{1}^{\ell}\left[\Lambda_{2}\right] \cdots\left[\Lambda_{n}\right]$
5.2.4. Polygraphic resolutions of algebras. A polygraphic resolution of an algebra \mathbf{A} is a linear ∞ polygraph Λ such that
i) the linear 2-polygraph $\left(\Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right)$ is a presentation of \mathbf{A},
ii) for every $n \geqslant 2, \Lambda_{n+1}$ is a homotopy basis of the free n-algebra Λ_{n}^{ℓ}, that is a cellular extension

$$
\Lambda_{n}^{\ell} \underset{t_{n}}{s_{n}} \Lambda_{n+1}
$$

such that for every n-sphere (a, b) of Λ_{n}^{ℓ}, there exists an $(n+1)$-cell A in the free $(n+1)$ algebra Λ_{n+1}^{ℓ} such that $s_{n}(A)=a$ and $t_{n}(A)=b$.
As a consequence of this definition, for every $n \geqslant 2$, the quotient n-algebra $\Lambda_{n}^{\ell} / \Lambda_{n+1}$ of the free n-algebra Λ_{n}^{ℓ} by the congruence generated by the $(n+1)$-cells of Λ_{n+1} is aspherical, that is, any of its n -sphere γ is trivial: $\mathrm{s}_{\mathrm{n}}(\gamma)=\mathrm{t}_{\mathrm{n}}(\gamma)$. A linear ∞-polygraph satisfying this property for all n is said to be acyclic.

5.2.5. Higher-dimensional branchings. Let Λ be a reduced linear 2-polygraph. An n-fold branching

 of Λ is a family $\left(a_{1}, \ldots, a_{n}\right)$ of positive 2 -cells of Λ_{2}^{ℓ} with a common source:

An n-fold branching $\left(a_{1}, \ldots, a_{n}\right)$ is local when a_{1}, \ldots, a_{n} are rewriting steps. A local n-fold branching $\left(a_{1}, \ldots, a_{n}\right)$ is aspherical when there is $1 \leqslant i \leqslant n-1$ such that $\left(a_{i}, a_{i+1}\right)$ is aspherical, (resp. additive) Peiffer when there is $1 \leqslant i \leqslant n-1$ such that $\left(a_{i}, a_{i+1}\right)$ is (resp. additive) Peiffer. In all the other cases, it is said overlapping.

A critical n-fold branching of Λ is an overlapping local n-fold branching of Λ with a monomial source and that is minimal for the relation on n-fold branchings defined by

$$
\left(a_{1}, \ldots, a_{n}\right) \sqsubseteq\left(w a_{1} w^{\prime}, \ldots, w a_{n} w^{\prime}\right)
$$

for any monomials w, w^{\prime} in Λ_{1}^{*}. For instance, a 3-fold critical branching can have two different shapes:

or

5.2.6. Theorem ([GHM17, Thm. 6.2.4]). Any convergent linear 2-polygraph \wedge extends to a Tietzeequivalent acyclic linear ∞-polygraph whose n-cells, for $n \geqslant 3$, are indexed by the critical $(n-1)$-fold branchings of Λ.
5.2.7. Example. Consider the algebra A presented by the linear 2-polygraph given in Example 2.1.9 We have seen in Example 5.1 .10 that any Squier's completion of Λ is empty. In particular, the polygraph Λ can be extended into a coherent presentation with an empty homotopy bases, and as a consequence, into a polygraphic resolution with an empty set of k-cell, for $k \geqslant 3$:

5.2.8. A free bimodules resolution. Let Λ be a linear ∞-polygraph whose underlying 2-polygraph is a presentation of an algebra \mathbf{A}. For $k \geqslant 1$, we denote by $\mathbf{A}^{e}\left[\Lambda_{k}\right]$ the free \mathbf{A}-bimodule on Λ_{k}, given by the linear combinations of $f[\alpha] g$, where f and g are 1-cells in \mathbf{A} and α is a k-cell in Λ_{k}.

The mapping of every 1 -cell χ in Λ_{1} to the element $[x]$ in $\mathbf{A}^{e}\left[\Lambda_{1}\right]$ is uniquely extended into a derivation, denoted by $[\cdot]$, from Λ_{1}^{ℓ} with values in the \mathbf{A}-bimodule $\mathbf{A}^{e}\left[\Lambda_{1}\right]$, sending a 1-cell f in Λ_{1}^{ℓ} on the element $[\mathrm{f}]$ in $\mathbf{A}^{e}\left[\Lambda_{1}\right]$, defined by linearity and by induction on the length of monomials as follows

$$
[1]=0, \quad[u+v]=[u]+[v], \quad[u v]=[u] \bar{v}+\bar{u}[v], \quad[\lambda u]=\lambda[u]
$$

for any monomials u and v in Λ_{1}^{ℓ} and scalar λ in \mathbb{K}. We extend the bracket notation to \mathbf{A}-bimodules $\mathbf{A}^{e}\left[\Lambda_{k}\right]$, for $k>1$ as follows. The mapping of every k-cell α of Λ_{k} to the element $[\alpha]$ in $\mathbf{A}^{e}\left[\Lambda_{k}\right]$ is extended to any k-cell a of Λ_{k}^{ℓ} by induction on the size of a. For any $(k-1)$-cell u, any k-cells a and b in $\Lambda_{\mathrm{k}}^{\ell}$ and scalar λ, we set

$$
\left[1_{u}\right]=0, \quad[a+b]=[a]+[b], \quad[a b]=[a] \bar{b}+\bar{a}[b], \quad[\lambda a]=\lambda[a]
$$

5. Higher-dimensional linear rewriting

To the linear ∞-polygraph Λ, we associate a complex of \mathbf{A}-bimodules

$$
0 \longleftarrow \mathbf{A} \stackrel{\mu}{\longleftarrow} \mathbf{A}^{e}\left[\Lambda_{0}\right] \stackrel{\delta_{0}}{\longleftarrow} \mathbf{A}^{e}\left[\Lambda_{1}\right] \longleftarrow \cdots \longleftarrow \mathbf{A}^{e}\left[\Lambda_{k}\right] \stackrel{\delta_{k}}{\longleftarrow} \mathbf{A}^{e}\left[\Lambda_{k+1}\right] \longleftarrow \cdots
$$

where the boundary maps are defined as follows. The maps μ is defined by $\mu(f \otimes g)=f g$, for any 1 -cells f and g in \mathbf{A}. For any triple $f[x] g$ in $\mathbf{A}^{e}\left[\Lambda_{1}\right]$, we define

$$
\delta_{0}(f[x] g)=f \otimes x g-f x \otimes g
$$

For $k \geqslant 1$, for any triple $f[\alpha] g$ in $\mathbf{A}^{e}\left[\Lambda_{k+1}\right]$, we define

$$
\delta_{k}(f[\alpha] g)=f\left[s_{k}(\alpha)\right] g-f\left[t_{k}(\alpha)\right] g
$$

By induction on the length of f, we prove that $\delta_{0}([f])=1 \otimes f-f \otimes 1$, for all 1 -cell f in Λ_{1}^{ℓ}. We have $\mu \delta_{0}=0$, and for any k-cell α in Λ_{k} with $k \geqslant 2$, we have

$$
\delta_{k-1} \delta_{k}[\alpha]=\left[s_{k-1} s_{k}(\alpha)\right]+\left[t_{k-1} s_{k}(\alpha)\right]-\left[s_{k-1} t_{k}(\alpha)\right]-\left[t_{k-1} t_{k}(\alpha)\right]
$$

It follows from the globular relations that $\delta_{k-1} \delta_{k}=0$. Moreover, we prove that the acyclicity of the polygraph induces the acyclicity of the complex $\mathbf{A}^{e}[\Lambda]$.
5.2.9. Theorem ([GHM17, Thm. 7.1.3]). If Λ is a (finite) polygraphic resolution of an algebra \mathbf{A}, then the complex $\mathbf{A}^{e}[\Lambda]$ is a (finite) free resolution of the \mathbf{A}-bimodule \mathbf{A}.
5.2.10. Example. Consider the algebra \mathbf{A} presented by the linear 2-polygraph given in Example 2.1.9 The resolution of \mathbf{A}-bimodules induced by the polygraphic resolution of Λ given in Example 5.2.7is

$$
0 \longleftarrow \mathbf{A} \stackrel{\mu}{\longleftarrow} \mathbf{A}^{e} \stackrel{\delta_{0}}{\longleftarrow} \mathbf{A}^{e}[x, y, z] \stackrel{\delta_{1}}{\longleftarrow} \mathbf{A}^{e}[\gamma] \longleftarrow 0 \longleftarrow \cdots
$$

It follows that this algebra is of cohomological dimension 2. Note that the Anick resolution for the algebra \mathbf{A} computed with the same presentation is of infinite length.
5.2.11. Exercise. Consider the algebra A presented by the linear 2-polygraph $\Lambda=\langle *| x, y\left|x^{2} \xrightarrow{\alpha_{0}} y x\right\rangle$.

1) Compute the first four steps of a polygraphic resolution of the algebra \mathbf{A} starting with Λ.
2) Compare the resolution of \mathbf{A}-bimodules induced by this resolution with the Anick resolution $\mathcal{A}(\Lambda)$ computed in Example 4.3.7
3) Compute a polygraphic resolution of the algebra \mathbf{A} using the linear 2-polygraph $\langle *| x, y\left|y x \Rightarrow x^{2}\right\rangle$.
[Hint. Here a 4-cell

$$
\left\|\left\|\| F_{n, m, k}\right.\right.
$$

6. Confluence and Koszulness

In this section we recall the notion of Koszulness for graded associative algebras. We show how Anick's resolution leads to relate this property for an algebra to the existence of a quadratic Gröbner basis for its ideal of relations. Finally, we show how polygraphic resolutions can be used to prove this property, allowing to relate Koszulness with polygraphic convergence.

6.1. Koszulness of associative algebras

6.1.1. Koszulness of quadratic algebras. Recall that a connected graded algebra \mathbf{A} is Koszul if the Tor spaces $\operatorname{Tor}_{n,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ vanish for $\mathfrak{i} \neq n$, where the grading n is the homological degree and the grading i corresponds to the internal grading of the algebra A. Koszul algebras were introduced by Priddy, [Pri70]. In particular, Priddy proved that quadratic algebras having a Poincaré-Birkhoff-Witt basis are Koszul, [Pri70]. The property can be also be stated in terms of existence of a linear minimal graded free resolution of \mathbb{K} seen as a A-module, see [PP05]. Backelin gave a characterization of the Koszul property in term
of lattice, $\overline{\mathrm{Bac} 83}, \overline{\mathrm{BF} 85}$, and the Backelin condition were interpreted in term of confluence by Berger, [Ber98], using reduction operator theory.
6.1.2. Koszulness of N -homogeneous algebras. Koszulness was generalized by Berger to the case of N -homogeneous algebras, Ber01, Def. 2.10.]. A graded N -homogeneous algebra \mathbf{A}, with $\mathrm{N} \geqslant 2$, is left-Koszul if the ground field \mathbb{K} considered as a graded left \mathbf{A}-module admits a graded projective resolution of the form

$$
0 \longleftarrow \mathbb{K} \longleftarrow P_{0} \longleftarrow P_{1} \longleftarrow P_{2} \longleftarrow \cdots
$$

such that every P_{i} is generated (as a graded left \mathbf{A}-module) by $P_{i}^{\left(\ell_{N}(i)\right)}$, where $\ell_{N}: \mathbb{N} \longrightarrow \mathbb{N}$ is a map defined by

$$
\ell_{N}(i)= \begin{cases}p N & \text { if } i=2 p \\ p N+1 & \text { if } i=2 p+1\end{cases}
$$

Similarly, one can define the properties right-Koszul and bi-Koszul by considering projective resolutions of right and bi-modules respectively. The graduation on the algebra \mathbf{A} induces a graduation on the vector spaces $\operatorname{Tor}_{n,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$. The spaces $\operatorname{Tor}_{n,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ for a left-Koszul (or right-Koszul) algebra \mathbf{A} vanish for $i \neq \ell_{N}(n)$ This property of the Tor groups is an equivalent definition of Koszul algebras, as Berger proved in [Ber01, Thm. 2.11]. Finally, the following result shows that the Koszul property corresponds to a limit case.
6.1.3. Proposition ([BM06, Prop. 2.1]). Let A be an N -homogeneous algebra. The graded vector space $\operatorname{Tor}_{n,(\mathrm{i})}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ always vanish for $\mathrm{i}<\ell_{\mathrm{N}}(\mathrm{n})$, for $\mathrm{n} \geqslant 0$.

6.2. Confluence and Koszulness

6.2.1. Koszulness of monomial algebras. Given a monomial linear 2-polygraph Λ which is quadratic, that is its 2 -cells are of the form $x_{i} x_{j} \Rightarrow 0$, with x_{i}, x_{j} in Λ_{1}. Then the Anick resolution $\mathcal{A}(\Lambda)$ is concentrated in the diagonal in the following sense. The set of 0 -chains is Λ_{1} and they are of degree 1 . The set of 1 -chains is $s_{1}(\Lambda)$ and they are of degree 2 . More generally, an n-chains $x\left|t_{1} \ldots\right| t_{n-1} \mid t_{n}$ is of degree $n+1$. As a consequence, we have the following result.
6.2.2. Theorem. A quadratic monomial algebra is Koszul.

More generally, the Anick resolution can be used to prove Koszulness of an algebra whose set of relations forms a quadratic Gröbner basis. In that case, the Anick resolution is concentrated in the right bidegree. Hence we have the following sufficient condition for Koszulness of quadratic algebras.

6.2.3. Theorem ([Ani86, Sect. 3]). An algebra presented by a quadratic Gröbner basis is Koszul.

Another way to prove this result is that the existence of a quadratic Gröbner basis implies the existence of a Poincaré-Birkhoff-Witt basis of A, [Gre99].
6.2.4. Example. The algebra $\mathbb{K}\left[x_{1}, \ldots, x_{k}\right]$ of commutative polynomials on k variables can be presented by the following linear 2-polygraph:

$$
\Lambda=\langle *| x_{1}, \ldots, x_{k}\left|x_{i_{1}} x_{i_{2}} \xrightarrow{\tau_{i_{1} i_{2}}} x_{i_{2}} x_{i_{1}}, \quad 1 \leqslant i_{1}<i_{2} \leqslant k\right\rangle
$$

For any triple $\left(i_{1}, i_{2}, \mathfrak{i}_{3}\right)$ such that $1 \leqslant i_{1}<\mathfrak{i}_{2}<i_{3} \leqslant k$, there is a critical branching on the monomial $x_{i_{1}} x_{i_{2}} x_{i_{3}}$ which is confluent

It follows that the linear 2-polygraph Λ is convergent and quadratique, hence the algebra $\mathbb{K}\left[x_{1}, \ldots, x_{k}\right]$ is Koszul.
6.2.5. Example, [DC17]. Dotsenko and Roy Chowdhury show that the algebra A presented by

$$
\langle *| x, y, z\left|y x+x^{2}, z y, x z\right\rangle
$$

is Koszul. Their proof in [DC17] is based on the computation of Anick's resolution with respect to the degree-lexicographic ordering induced by the alphabetic order $x>y>z$. The three quadratic relations can be completed into the following infinite Gröbner basis:

$$
x z \Rightarrow 0, \quad z y \Rightarrow 0, \quad x y^{k} x \Rightarrow y^{k+1} x, \quad \text { for } k \geqslant 0
$$

Using Anick's resolution they show that the homology of the algebra \mathbf{A} is concentrated on the diagonal, proving that the algebra \mathbf{A} is Koszul.
6.2.6. A sufficient polygraphic condition. In GHM17], a graded version of Theorem 5.2.9 is given. For that, a notion of graded linear polygraph is introduced, that generalizes in higher dimensions the notion of graded presentation for a graded algebra. As an application, one deduces the following polygraphic condition of Koszulness of graded algebras.
6.2.7. Theorem ([GHM17, Prop. 7.2.2]). Let A be an N-homogeneous algebra. If A has a ℓ_{N}-concentrated polygraphic resolution, then \mathbf{A} is bi-Koszul (resp. left-Koszul, resp. right-Koszul).

From this sufficient condition, one deduces the following consequence. Suppose that an algebra \mathbf{A} has a polygraphic resolution Λ such that $\left(\Lambda_{0}, \Lambda_{1}, \ldots, \Lambda_{k-1}\right)$ is ℓ_{N}-concentrated, for some $k \geqslant 3$, and such that for some $i>\ell_{N}(k)$ the number of $(k+1)$-cells in $\Lambda_{k+1}^{(i)}$ is strictly less than the number of k-cells in $\Lambda_{\mathrm{k}}^{(\mathrm{i})}$. Then the algebra \mathbf{A} is not Koszul, [GHM17, Prop. 7.2.7].

Theorem 6.2.7 can be also used to extend the sufficient condition of Theorem 6.2.3 to linear 2-polygraph with an orientation that is not compatible with a monomial order.
6.2.8. Corollary ([GHM17]). Let A be an algebra presented by a quadratic left-monomial convergent linear 2-polygraph Λ. Then Λ can be extended into a ℓ_{2}-concentrated polygraphic resolution and the algebra \mathbf{A} is Koszul.

REFERENCES

6.2.9. Exercise. Let \mathbf{A} be the algebra presented by $\langle *| x, y\left|x^{2}=y^{2}=x y\right\rangle$. Prove that \mathbf{A} is not Koszul. [Hint. Consider the rules $x y \Rightarrow x^{2}$ and $y^{2} \Rightarrow x^{2}$, compute a convergent presentation of \mathbf{A} and its set of critical triple branchings.]
6.2.10. Remark. Note that, for an N -homogeneous algebra, that is whose relations are concentrated in degree N, the existence of a Gröbner basis concentrated in degree N is not enough to imply Koszulness. Indeed, an extra condition has to be checked as shown by Berger in [Ber01].
6.2.11. Homogeneous coherent presentations. A coherent ℓ_{N}-concentrated presentation of an algebra \mathbf{A} having an empty homotopy basis can be extended into a polygraphic resolution with an empty set of k-cells for $k \geqslant 3$, thus a ℓ_{N}-concentrated polygraphic resolution. Hence, by Theorem 6.2.7, we have
6.2.12. Corollary ([GHM17]). If a N -homogeneous algebra has a coherent ℓ_{N}-concentrated presentation with an empty homotopy basis, then it is Koszul. In particular, an algebra having a terminating presentation by a N -homogeneous polygraph without any critical branching is Koszul.

The second statement is a consequence of Squier's Theorem 5.1.6 Indeed, if Λ is a convergent left-monomial linear 2-polygraph, then it can be extended into a coherent presentation whose homotopy basis is made of generating confluences. In particular, when the polygraph \wedge has no critical branching, this homotopy basis is empty, and thus trivially ℓ_{N}-concentrated.
6.2.13. Example, [GHM17, Ex. 7.2.5]. Consider the algebra A presented by the linear 2-polygraph given in Example 2.1.9. From the resolution computed in Example 5.2.10, we have $\operatorname{Tor}_{0,(0)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}$, $\operatorname{Tor}_{1,(1)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}^{3}, \operatorname{Tor}_{2,(3)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}$ and $\operatorname{Tor}_{k,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ vanishes for other values of k and i. It follows that the algebra \mathbf{A} is Koszul.
6.2.14. Exercice [PP05, 4.3]. Show that the algebra presented by the following linear 2-polygraph, see 5.1.12,

$$
\langle *| x, y, z\left|y z \stackrel{\alpha}{\Longrightarrow}-x^{2}, z y \xrightarrow{\beta}-\lambda^{-1} x^{2}\right\rangle
$$

where $\lambda \in \mathbb{K} \backslash\{0,1\}$, is Koszul. In particular, show that $\operatorname{Tor}_{0,(0)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}$, $\operatorname{Tor}_{1,(1)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}^{3}$, $\operatorname{Tor}_{2,(2)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K}) \simeq \mathbb{K}^{2}$ and $\operatorname{Tor}_{k,(i)}^{\mathbf{A}}(\mathbb{K}, \mathbb{K})$ vanishes otherwise.

References

[AG87] David J. Anick and Edward L. Green. On the homology of quotients of path algebras. Comm. Algebra, 15(1-2):309-341, 1987.
[Ani85] David J. Anick. On monomial algebras of finite global dimension. Trans. Amer. Math. Soc., 291(1):291310, 1985.
[Ani86] David J. Anick. On the homology of associative algebras. Trans. Amer. Math. Soc., 296(2):641-659, 1986.
[Bac78] Jörgen Backelin. La série de Poincaré-Betti d'une algèbre graduée de type fini à une relation est rationnelle. C. R. Acad. Sci. Paris Sér. A-B, 287(13):A843-A846, 1978.
[Bac83] Jörgen Backelin. A distributiveness property of augmented algebras, and some re- lated homological results. Ph.D. thesis, Stockholm University, 1983.
[BC14] Leonid A. Bokut and Yuqun Chen. Gröbner-Shirshov bases and their calculation. Bull. Math. Sci., 4(3):325-395, 2014.
[BD16] Murray R. Bremner and Vladimir Dotsenko. Algebraic operads. CRC Press, Boca Raton, FL, 2016. An algorithmic companion.
[Ber78] George M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178-218, 1978.
[Ber98] Roland Berger. Confluence and Koszulity. J. Algebra, 201(1):243-283, 1998.
[Ber01] Roland Berger. Koszulity for nonquadratic algebras. J. Algebra, 239(2):705-734, 2001.
[BF85] Jörgen Backelin and Ralf Fröberg. Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl., 30(2):85-97, 1985.
[BM06] Roland Berger and Nicolas Marconnet. Koszul and Gorenstein properties for homogeneous algebras. Algebr. Represent. Theory, 9(1):67-97, 2006.
[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
[BO93] Ronald Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in Computer Science. Springer-Verlag, 1993.
[Bok76] Leonid A. Bokut. Imbeddings into simple associative algebras. Algebra i Logika, 15(2):117-142, 245, 1976.
[Bro92] Kenneth S. Brown. The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem. In Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), volume 23 of Math. Sci. Res. Inst. Publ., pages 137-163. Springer, New York, 1992.
[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4, Pages 475-511, 2006.
[Buc70] Bruno Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math., 4:374-383, 1970.
[Buc87] Bruno Buchberger. History and basic features of the critical-pair/completion procedure. J. Symbolic Comput., 3(1-2):3-38, 1987. Rewriting techniques and applications (Dijon, 1985).
[Buc06] Bruno Buchberger. An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symbolic Comput., 41(3-4):475-511, 2006. Translated from the 1965 German original by Michael P. Abramson.
[Bur93] Albert Burroni. Higher-dimensional word problems with applications to equational logic. Theoret. Comput. Sci., 115(1):43-62, 1993. 4th Summer Conference on Category Theory and Computer Science (Paris, 1991).

REFERENCES

[Bur01] Serge Burckel. Syntactical methods for braids of three strands. J. Symbolic Comput., 31(5):557-564, 2001.
[BW93] Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993. A computational approach to commutative algebra, In cooperation with Heinz Kredel.
[Coh65] Paul Moritz Cohn. Universal algebra. Harper \& Row, Publishers, New York-London, 1965.
[DC17] Vladimir Dotsenko and Soutrik Roy Chowdhury. Anick resolution and Koszul algebras of finite global dimension. Comm. Algebra, 45(12):5380-5383, 2017.
[DK09] Vladimir Dotsenko and Anton Khoroshkin. Free resolutions via Gröbner bases. ArXiv e-prints, 2009.
[DK10] Vladimir Dotsenko and Anton Khoroshkin. Gröbner bases for operads. Duke Math. J., 153(2):363-396, 2010.
[DK13] Vladimir Dotsenko and Anton Khoroshkin. Quillen homology for operads via Gröbner bases. Doc. Math., 18:707-747, 2013.
[GGM15] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos. Math., 151(5):957-998, 2015.
[GHM17] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. Convergent presentations and polygraphic resolutions of associative algebras. arXiv:1406.0815v2, December 2017.
[GM12a] Yves Guiraud and Philippe Malbos. Coherence in monoidal track categories. Math. Structures Comput. Sci., 22(6):931-969, 2012.
[GM12b] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math., 231(3-4):2294-2351, 2012.
[GM18] Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Math. Structures Comput. Sci., 28(2):155-201, 2018.
[Gra72] Hans Grauert. Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math., 15:171-198, 1972.
[Gre99] Edward L. Green. Noncommutative Gröbner bases, and projective resolutions. In Computational methods for representations of groups and algebras (Essen, 1997), volume 173 of Progr. Math., pages 29-60. Birkhäuser, Basel, 1999.
[Gro90] John R. J. Groves. Rewriting systems and homology of groups. In Groups-Canberra 1989, volume 1456 of Lecture Notes in Math., pages 114-141. Springer, Berlin, 1990.
[Hir64] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109-203; ibid. (2), 79:205-326, 1964.
[HM17] Nohra Hage and Philippe Malbos. Knuth's coherent presentations of plactic monoids of type A. Algebr. Represent. Theory, 20(5):1259-1288, 2017.
[Hue80] Gérard Huet. Confluent reductions: abstract properties and applications to term rewriting systems. J. Assoc. Comput. Mach., 27(4):797-821, 1980.
[Jan20] Maurice Janet. Sur les systèmes d'équations aux dérivées partielles. Journal de mathématiques pures et appliquées, 8(3):65-151, 1920.
[JW09] Michael Jöllenbeck and Volkmar Welker. Minimal resolutions via algebraic discrete Morse theory. Mem. Amer. Math. Soc., 197(923):vi+74, 2009.
[KB70] Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263-297. Pergamon, Oxford, 1970.
[Klo92] Jan Willem Klop. Term rewriting systems. In Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1-117. Oxford University Press, 1992.
[Kob90] Yuji Kobayashi. Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra, 65(3):263-275, 1990.
[Kob05] Yuji Kobayashi. Gröbner bases of associative algebras and the Hochschild cohomology. Trans. Amer. Math. Soc., 357(3):1095-1124 (electronic), 2005.
[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra. 1. Springer-Verlag, Berlin, 2000.
[Mit72] Barry Mitchell. Rings with several objects. Advances in Math., 8:1-161, 1972.
[MM16] Philippe Malbos and Samuel Mimram. Homological computations for term rewriting systems. In $1 s t$ International Conference on Formal Structures for Computation and Deduction, volume 52 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 27, 17. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.
[Mor94] Teo Mora. An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci., 134(1):131-173, 1994. Second International Colloquium on Words, Languages and Combinatorics (Kyoto, 1992).
[New42] Maxwell Newman. On theories with a combinatorial definition of "equivalence". Ann. of Math. (2), 43(2):223-243, 1942.
[Pom78] Jean-Francois Pommaret. Systems of partial differential equations and Lie pseudogroups, volume 14 of Mathematics and its Applications. Gordon \& Breach Science Publishers, New York, 1978. With a preface by André Lichnerowicz.
[PP05] Alexander Polishchuk and Leonid Positselski. Quadratic algebras, volume 37 of University Lecture Series. American Mathematical Society, Providence, RI, 2005.
[Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39-60, 1970.
[Shi62] Anatoly Illarionovich Shirshov. Some algorithmic problems for Lie algebras. Sib. Mat. Zh., 3:292-296, 1962.
[Skö06] Emil Sköldberg. Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc., 358(1):115-129, 2006.
[SOK94] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoret. Comput. Sci., 131(2):271-294, 1994.
[SST00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama. Gröbner deformations of hypergeometric differential equations, volume 6 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000.

REFERENCES

[Str76] Ross Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra, 8(2):149-181, 1976.
[Str87] Ross Street. The algebra of oriented simplexes. J. Pure Appl. Algebra, 49(3):283-335, 1987.
[Ter03] Terese. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003.
[Tho37] Joseph Miller Thomas. Differential systems. IX + 118 p. New York, American Mathematical Society (American Mathematical Society Colloquium Publications Vol. XXI) (1937)., 1937.
[Thu14] Axel Thue. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Kristiania Vidensk. Selsk, Skr., 10:493-524, 1914.
[Ufn95] Victor A. Ufnarovskij. Combinatorial and asymptotic methods in algebra. In Algebra, VI, volume 57 of Encyclopaedia Math. Sci., pages 1-196. Springer, Berlin, 1995.
[Ufn98] Victor A. Ufnarovskij. Introduction to noncommutative Gröbner bases theory. In Gröbner bases and applications (Linz, 1998), volume 251 of London Math. Soc. Lecture Note Ser., pages 259-280. Cambridge Univ. Press, Cambridge, 1998.

Philippe Malbos

malbos@math.univ-lyon1.fr
Univ Lyon, Université Claude Bernard Lyon 1
CNRS UMR 5208, Institut Camille Jordan
43 blvd. du 11 novembre 1918
F-69622 Villeurbanne cedex, France

