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Permeability of non-inertial porous matrices or under magnetic field

J.-L. Auriault, C, Geindreau & P, Royer

Lah. 38, UIE INPG, CNRS UMR 5521, Domaine universitairve, Grenoble cedex, France

ABSTRACT:  We investigate the filtration law of an incompressible viscous Newtonian fluid through a rigid
non-inertial porous medium or when submitted to a magnetic field. The filtration law is obtained by upscaling the
flow at the pore scale. We use the method of multiple scale expansions which rigorously gives the macroscopic
behaviour without any prerequisite on the form of the macroscopic equations, The filtration laws are shown
to resemble Darcy's laws, but with a permeability tensor which depends on the angular velocity of the porous
matrix or on the magnetic field, respectively. In both cases Hall ~ Onsager relations are verified.

I INTRODUCTION

The steady-state slow flow of an incompressible lig-
uid through a rigid inertial porous matrix and in the
absence of magnetic field is described by the well
known Darcy’s law

a
v=-KVp, v = -Kﬂ'ﬁﬁ' ‘0
/

where K is the permeability tensor which is shown
to be a positive symmetrical tensor.

In the paper we investigate the steady-state slow
flow of an incompressible liquid through a rigid porous
matrix in two different situations. Firstly, we considera
non-inertial porous matrix, with an angular rotation @
with respect Lo a galilean frame and secondly we study
the case of an electrically conducting liquid which is
submitted to a magnetic field H. The question into
consideration is: what are the consequences of the exis-
tence of an angular rotation @ or of a magnetic field
H on Darcy’s law (1)?

A first answer is given by the theory on non-
equilibrium thermodynamics (de Groot & Mazur
1969). From this theory, it can be shown that the flow
law (1) is valid, but that the permeability tensor now
verifies the following Onsager relations
Klj(w) ot KI'I(_”)' Kr'i(“) = K[i( 'I)‘ (2)
which can be seen as the filtration analog of Hall's
effect which stands for the clectric conductivity of
2 material submitted to a magnetic ficld. Notc that
Onsager relations arise in a straightforward manner
from the microscopic laws of motion of the particles

constituting the material (and the time reversal invari-
ance of these laws) and the principles of statistical
mechanics.

Phenomenological approaches are also available.
InVadasz (1993), the following dimensionless isotropic
filtration law is introduced to describe flow through a
rotating porous media

q=—k(Vp+Ek 'e, x q), (3)

where q is the flow rate vector, k is the permeabil-
ity, Vp is the pressure gradient, e, is a unit vector in
the dircction of the rotational velocity and £k is the
Ek-man number, i.e. the ratio of viscous term to
Coriolis term in Navier-Stokes equations. For a flow
in presence of a magnctic ficld, Rudraiah (1975)
proposed the following macroscopic law

q=k(-Vp+J xB), 4)

where J is the electric current density and B is
the magnetic induction. Both phenomenological laws
(3) and (4) arc obtained by directly introducing the
Coriolis force and the Lorentz foree that act at the pore
scale (see below the Stokes equation) in the macro-
scopic isotropic Darcy’s law.

In the present study, we use a deterministic upscal-
ing technique, by starting from the description at
the pore scale to determine an equivalent description
which is valid at a macroscopic scale - the Darcy scale.
We use the method of multiple scale expansions. Het-
erogeneous system as lor example porous media may
be modelled by an equivalent macroscopic continu-
ous system if the condition ol separation of scales is



verified, (Bensoussan et al. 1978; Sanchez-Palencia
1980)

=~ &1, (5)

where [ and L arc the characteristic lengths ol the het-
crogencitics and of the macroscopic sample or excita-
tion, respectively, The macroscopic equivalent model
is obtained from the description at the heterogeneity
scale by (Auriault 1991): (i) assuming the medium to
be periodic, without loss of generality; (ii) writing the
local description in a dimensionless form; (iii) eval-
uating the dimensionless numbers with respect to the
scale ratio &; (iv) looking for the unknown fields in the
form of asymptotic expansions in powers of £; (v) solv-
ing the successive boundary-value problems that are
obtained after introducing these expansions in the local
dimensionless description. The macroscopic cquiva-
lent model is obtained from compatibility conditions

which are the necessary conditions for the existence ol

solutions to the boundary-value problems. The main
advantages of the method rely upon the possibility of:
(a) avoiding prerequisites at the macroscopic scale;
(b) modelling finite size macroscopic samples; (¢)
modelling macroscopically non-homogencous media
or phenomena; (d) modelling problems with several
scparations of scales; (¢) modelling several simulta-
neous phenomena; (1) determining whether the system
“medium 4 phenomena” is homogenisable or not; (g)
providing the domains of validity of the macroscopic
models.

In section 2, we investigate the flow through a non-
inertinl matrix, ¢.g. through a porous sumple placed
in a4 geotechnical centrifuge, (Auriault et al. 2000;
Aurigult et al, 2002), Deviations from Darcy's law
are due to Coriolis forces which tend to modify the
flow. Coriolis effects are measured by the inverse
Ekman’s number £k~ = 2pwl’/it, where  and p are
the dynamic viscosity and the density of the liquid,
respectively, @ is the angular velocity of the porous
matrix and / is the pore charncteristic size, As an
example, consider u geotechnical centrifuge with an
angular velocity @ ~ 300 rpm, and filtrating water
with s« ~ 107? Pa.s and p ~ 10° Kg/m®. Then, Ek '
number varies from 62 for I ~ 10 'm, for sand,
10 6.2 x 10 for I ~ 10 “m, for clay. We inves-
tigate £k ' numbers of O(1), i.c. ¢ « Ek™' « &~',
Upscaling yields a macroscopic deseription in the form
(1), with u pos-itive but non-symmetrical permeability
tensor which verilies Onsager relation (2).

Section 3 is devoted to the flow of an clectri-
cally conducting liquid through & rigid conducting
porous medium when submitted to a magnetic lield,
(Geindreau & Auriault 2001; Geindreau & Auriault
2002). The common characteristic of these MHD
(magneto-hydrodynamic) flows in porous media is

that they are all electromagnetically braked by the
Lorentz force

F. = 0,E x B+ 0,(v x B) x B, (6)

where g, is the electrical conductivity of the fluid,
E is the electric field, B is the magnetic induction
applied and v is the fluid velocity. The influence
of this braking force by comparison to the viscous
friction is usually measurcd by the Hartmann num-
ber Ha = (0,,/u)'/? Bl. We investigate /a numbers of
O(1), i.e. £ & Ha < &= The macroscopic description
of the Mow is again of the form (1). The permeabil-
ily tensor is positive and verifics Onsager relation (2).
However, contrary to the non-inertial case, the tensor
K is symmetrical,

2 SEEPAGE LAW IN ROTATING POROUS
MEDIA

In this section, we summarize the investigation con-
ducted in Auriault et al. (2000, 2002).The porous
medium period is denoted by €2 and is bounded by 9€2,
the fluid part of the unit cell is denoted by €2, and the
Nuid-solid interface inside the unitcell is I, Relatively
to the moving porous matrix frame, the momentum
balance for the quasi-static flow of an incompressible
viscous Newtonian liquid is

UV = Vp = ply, + ve) inRy, (W)

where v is the velocity vector relative to the matrix
frame, p is the pressure, p is the density and p is the
viscosity, Gravitational acceleration is included in the
pressure term, Vectors y, and y, are the conveetive and
the Coriolis accelerations, respectively, with respect Lo
a galilean frame

Yo = y(O) + (:—':’ ®x OM + @ x (w x OM), (8)

Ye =20 XV, 9

where @ is the angular velocity of the porous matrix,
is 4 fixed point of the porous matrix in the investigated
period and M is a current point in £2,. Equation (7) is
completed by the incompressibility condition and the
adherence condition on I’

v=0 onl,

V.v=0 inQ, (10)

2.1 Dimenyionless pore scale deseription

We use the local length scale of a pore /as the character-
istic length scale for the variations of the diflerential
operators: we apply the so-called microscopic point
of view (Auriault 1991). Other characteristic values



arc denoted using the subscript ¢.To be precise, we
consider a centrifuge of radius » at constant angu-
lar velocily w = we,,, @ = constant, The pore scale
description introduces four dimensionless numbers:
the ratio () of pressure to viscous forces, the ratio R
of the translational convective inertia to the viscous
force, the ratio A of the rotational to the translational
convective inertia and the ratio Ek (the Ekman num-
ber) of the viscous force to the Coriolis inertia. We have
A = O0(e*ljw*r)= O(¢) and we assume R = O(1). The
estimation of R is the consequence of the hypothesis of
separation of scales. Higher values would yield non-
homogenisable problems, i.e., problems for which
equivalent macroscopic description do not exist. As
mentioned above we assume £k = O(1). For evaluat-
ing the latter dimensionless number O, we introduce
P, which is the characteristic pressure increment in the
sample. We obtain. Q =p, I/ v, = ("), The esti-
mate for () comes from a phenomenological argument,
i.e. the viscous flow is locally driven by a macroscopic
pressure gradient (Auriault 1991).

For simplicity we use the same names for the di-
mensionless variables as for the original variables. The
formal dimensionless set that describes the flow is in
the form

uVv — e"'Wp = p(y(0) + Ek™ 20 x v 4 @

x (@ x OM)) in £, (1)

Vov=0 (12)

inQ, v=0 onT.

2.2 Upscaling

The next step is to introduce multiple scale coordinates
(Sanchez-Palencia 1980; Bensoussan et al. 1978). The
dimensionless macroscopic space variable x = X/L is
related to the dimensionless microscopic space vari-
able y = X/I by x = ¢y. By following the multiple
scale expansion technique, the velocity v and the
pressure fluctuation p are looked for in the form of
asymptotic expansions of powers of ¢

vavOy) + ey + Ay 4o (13)

p=p" () + ey + Py 4 (14)
Substituting these expunsions in the set (11-12) gives,
by identification of the like powers ol &, succes-
sive boundary value problems to be investigated. The
lowest order approximation of the pressure verifies

OP( ) (0) )
W«Op-ﬂM

The first order approximation of the velocity v\ and
the sccond order approximation of the pressure p'! are

(15)

determined by the following set
3’ ap" @
(‘.‘ - — ZpF in Q » (16)
T BN (01) nol
- (0)
i _0 in2,. V®=0 onrl, an

ay;

where v\ and p") are Q-periodic. Symbol £y is
the permutation symbol. Vector G is the macroscopic
driving force which is i of y and which is
defined by G= V‘p‘°’+py(0),whctcthcm
x denotes the derivative with respect to the vaniable x.

To investigate the above sct and to obtain properties
of'the effective coeflicients lohedel'med. we introduce

the Hilbert space W of Q-periodic, di free
vectors, where the vectors vanish on I”, with the scalar

product
al‘! Bv, d)
ap By By

Now, let us multiply Equation (16) by we W and
integrate over £2,. By using integration by parts, the
divergence theorem, periodicity, and the boundary
condition on I', one obtains:

au,a“"

VIGW/
MM'

+ f 2psuw,v, v,-dy-.- - / v, G dy.
Q2 Qp

(0, v)y = (18)

(19)

Formulation (19) is elliptic (John 1970), and
there exists a unique v\ which is a linear vector
function of G

WO = ~kG, 20

where the tensor ficld k depends on @ and y.
Finally, the volume balance (12) gives at the second

v (” av:°|

G @n

=0 inQp.
By integrating over £2,,, we obtain

W,
ax, '] .

1
@-ELMM

(V;o)) = —K. Gl'

(22)

which represents the macroscopic equivalent behav-
iour at the order O(¢) approximation. The filtration
tensor K depends on the angular velocity w.




2.3 Properties of the permeability tensor

The properties of the permeability tensor K (@) result
from the symmetries that are present in the variational
formulation (19). By following Auriault et al. (2002),
we obtain

(0)6(0)
KyG;G; = / Vi ——dy = 0,
’ S Jo oy a0

which means that tensor K(w) is positive.
Investigating now the symmetry of K, it can be
shown that

Ky — Kyp) = 40610 fw kipkig dy

which generally does not cancel out when @ #0.
Therefore, unlike the classical permeability tensor
K(0), K(w) is not a symmetric tensor. The divergence
operator in the balance (22), kills the antisymmet-
ric part of K. However, this antisymmetric part is of
importance for porous media that are heterogeneous
at the macroscopic scale or in case of flux boundary
conditions.

From (24) it is casy to show that tensor K verifies
an Onsager relation

Ky(-w), (25)

which stands for the filtration analog of Hall's effect.

Finally, the permeability tensor of an isotropic
porous medium of galilean permeability & and sub-
mitted o an angular velocily @ = we; takes the form

K@) Kp(w) 0
K=|—-Kpe Kn@) 2

(23)

(24)

Km(w) =

(26)
0 0

Note that tensor K is invariant under any rotation of
e axis. Typical behaviours of K;;(w) and K,2(w) are
shown in Figure 1.
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Figure 1. Dimensionless permeabilities K,,=Kn(w)/lx

and K, = Ky>(w)/k versus dimensionless frequency o =
plPwjdp.

3 MAGNETOHYDRODYNAMIC FLOWS IN
POROUS MEDIA

The porous medium is the onc described in sec-
tion 2, see also Geindreau & Auriault (2001, 2002) for
more information. In the pores, the governing equa-
tions for the flow of an electrically conducting and
incompressible Newtonian fluid are

~Vp+uViv+IxB=0 inQ, @7

V.v=0 inQp, v=0 onT, (28)
where v is the velocity, p is the pressure, j is the vis-
cosity and B is the magnetic induction in the fluid.
The current density J in the fluid is related to the fluid
velocity v and the electric field E by Ohm’s law, and
to the magnetic ficld H by Maxwell’s relation
J=0o(E+vxB)=VxH inQ (29)
where 0 =g, is the clectrical conductivity of the lig-
uid and the solid, respectively and v =0 in the solid.
The conducting solid skeleton €, is assumed to be
rigid. From (29) we have

V:-J=0 inQ. (30)
The following rclations arc also valid

VxE=0 inQ, 31
V-B=0 with B=p'H inQ. (32)

For simplicity, we have assumed that the conductiv-
ity o and the magnetic permeability p* are isotropic.
In particular we do not consider Hall cffect at the
microscale. Finally, the sct of cquations (27)+32) is
completed by the continuity on I' of the normal compo-
nents of the magnetic induction and the current density,
and of the tangential components of the magnetic field
and the electric field

(B,—B,)N=0 onl, (33)

J,—J3)-N=(0,E, —aE;))-N=0 onl, (34)

(H,—H;)x N=0,(E;, —E)xN=0 onT,
(35)
where N is the unit outward vector of I".

3.1 Dimensionless pore scale description

The pore scale description shows the following dimen-
sionless numbers, where we use [ as the characteristic



length
Vol _ Bd

0 |93 v’
R M)"’
[ V3v|

a,v x B
=————l’ l-u'
|V x H| ”

Rm

As for the flow in rotating porous media, it can be
shown that Q = O(e '). The other dimensionless
numbers depend on the problem under consideration,
For example, the characteristic values in a metallic
mushy zone (Moreau 1990; Lehmann et al. 1998) are
O & Ope = 10°Q7" m~!, iy, & ui, and plo, =
Im™2s, w2~ 102 Pas, B, = 1T, E ~10"2Vm ',
I 2 100um, L = 10em, v, &= 107" ms~'. Thus
we obtain ¢ & 107 and Ha= (1), Rm = O(s?),
K =0(1), S =0O(1) and M = O(1). For simplicity we
usc similar notations for dimensionless and dimen-
sional quantities. The microscopic dimensionless set
of equations that describes the MHD flow in a porous
medium is the following, in which all quantities are
now dimensionless quantities (O(1)):

UV £V, o (E+ v x B)

xB=0 inQ, (36)
V.v=m0 inQ, (37)
Co(E+vxB)=VxH inQ, (38)
Vil=V.|o(E+vxB)=0 inQ, (39)
V.B=0, B=u'H inQ, (40)
VxE=0 inQ, (41)
v=0 (B, -B)N=0 onT, (42)
(Jp~J)-N=(a,E, —0,E,) N=0 onl, (43)
(H,-H)xN=0 onl, (44)
(E,~E)xN=0 onl, (45)

where N is a unit normal to I", In the above equations,
the velocity v vanishes in ©,. Equation (38) shows
that up to the second order of approximation, V x H is
null and H is the gradient of a potential ¥ which can
be chosen such as it is continuous everywhere, We
have in view a macroscopic description, at the scale L.,
Therefore we have the following estimation

1m0(¥)-o(3%).

When using / to normalize, we obtain in the dimen-
sionless form

H=—¢'Vy +0(). (46)
Similarly, equation (41) shows that the electric field
E derives from a potential V. By following the
same route as for H, this is written in the following
dimensionless form
E=-s'VV. (47)
‘The orders of magnitude of the Hartmann number
Ha and the load factor K insurc the coupling of the
velocity ficld and of the clectric flux at the pore scale.
Thercfore, we can anticipate that the macroscopic cor-

responding fluxes, that are averages of these local
fluxes, are also coupled.

3.2 Macroscopic behaviour

The upscaling is conducted as in section 2. Details of
analysis can be found in Geindreau and Auriault (2001,
2002). When returning to dimensional quantitics, the
equivalent macroscopic description is given within an
approximation O(¢) by

Vx(H) =0, (H)=-Vy,
V.(B)=0, (B)=p""(N),
Vx(E)=0, (E)=-V/V,

V. =0 §)=-0""VV-3Vp,
V.ivy=0, (v)=-KV,- x“'VV,

where K is the permeability, 0" is the effective
electric oonmctmty X" is the electro-osmotic con-
ductivity and 5" is the electric conductivity associ-
ated with the streaming potential effect. Under typical
conditions as thosc encountered in magnetohydrody-
namic flows, the mass flow and the electric current
are described by two coupled equations which are
both linear relations of the macroscopic gradient of
pressure and of electric potential. Due to the small
value of the magnetic Reynolds number in consider-
ation, the macroscopic magnetic ficld is described by
an independent classical magnetic field equation.

3.3 Properties of the effective coefficients

The properties of the effective coefficients are inves-
tigated from the equivalent variational formula-
tions to the pore scale boundary valuc problems
that arc obtained during the upscaling process, see
Geindreau & Auriault (2002).

As already mentioned in Hartmann (1937), the per-
meability K is strongly affected by the presence of
a magnetic field. However, contrary to the case of



& rotating porous medium the permeability tensor is
symmetric, as it is for seepage flows in absence of
magnetic field. It is positive. The effective conductiv-
ity tensor o which depends on the magnetic field is
also positive and symmetric.

K,o((B)) = Ky ((B)),

(48)
s ((B) = aly ((B)).
Finally, it is possible to show that the different effec-
tive coeflicients verily classical Onsager relations. In
particular, the permeability K and the effective con-
ductivity o verify the filtration analog of thc Hall

effect and the Hall effect, respectively (Landau &
Lifshitz 1960)

Kpo(—(B)) = Kg((B)),

ell efl (49)
Opg (—(B)) = o5 ((B)).
Relations (48) and (49) show that K and o7
even tensorial functions of the magnetic induction (B).
Morcover, the coupling between the macroscopic mass
flux and electric current is characterized by,

";: - -x::v
x*"((B) = —x*"(-(B)),
" ((B)) = —n*T(~(B)),

Tensors 7*™ and %" are odd tensorial functions of (B).
Finally, the permeability tensor of an isotropic porous
medium of permeability & in the absence of a mag-
netic field and submitted to a macroscopic magnctic
induction (B) = Be, takes the form

Kn(8) 0 0
K=| 0 Kn(B) 0
' Mgl

(50)

(51
0

Typical behaviour of Ky, (B) is similar to behaviour of
Kyi(w) in Figure 1.

4 CONCLUSIONS

The method of multiscale asymptotic expansions gives
the macroscopic behaviours of a liquid flow through a
rigid porous medium in rotation relatively to an incrtial
frame or submitted to a magnetic ficld, under the only
condition of separation of scales. It is of interest to
note that the ic behaviours verify Onsager
relations which are obtained from quite diffcrent anal-
yses. Onsager relations arise from the time reversal

invariance at the microscalc and the upscaling is con-
ducted using the principles of statistical mechanics
whereas the present study is character-ized by irre-
versible behaviours at the microscale (the pore scale)
and the upscaling process is deterministic. Note also
that some of the above results cannot be deduced
from Onsager’s theory, c.g. thc symmetries of the
ility and of the clectric conductivity under a
magnetic ficld or the decoupling of the magnetic field.
Finally, phenomenological approaches cannot give
realistic resulls as it can be seen, e.g., in the casc of
parallel capillary pores for which (3) gives ki # 0,
whereas it should cancel out since perpendicular flow

10 pore axis is prevented.
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