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Gas flow with low gas pressure in porous media:

quasi-statics and acoustics

J. Chastanet, P. Royer & J.1.. Auriault

Lab. 38, UJE INPG, CNRS, Domaine Universitaire, France

ABSTRACT: This work deals with the mathematical modelling of gas flow with low gas pressure in porous
medin, At the pore scale, this type of flow is characterized by u wall-slip effect which at the sample scale entails
a dependence of permeability upon the pressure. This latter property is described by Klinkenberg's law. The
goal of the present work is to examine the robustness of this law. The mathematical modelling is performed
using an upscaling technique, namely the homogenisation method for multiple scales. Two distinet problems are
investigated: i) the flow of gas at low pressure in a composite porous media; ii) acoustics with wall-slip effect
of a porous medium saturated by a gas. In both cases, it is shown that, in the most general cases, Klinkenberg’s

law is not verified at the macroscopic scale.

I INTRODUCTION

In general cases, gus flow in porous media is described
by Rarcy's law: v = =k V,, in which the perme-
ability k. is an intrinsic property of the medium. At
low gas pressure, the observed gas filtration veloc-
ity is greater than that predicted by Darcy’s law. This
is due to the large value of the mean free path of gas
molecules, which is inversely proportional to the pres-
sure, In effect, a large mean free path gives rise, at the
pore scale, to a wall-slip on the solid/Muid interface.
The no-slip condition which is implicitly assumed
when considering Darcy’s law is therefore no longer
valid. For describing such flows, Klinkenberg (1941)
ntroduced the concept of gas permeability:

b=k (1452) =k (142). M

in which ¢ is a constant, A is the mean free path, j
15 the average pressure over the sample, # is the pore
size and b is a p-independent parameter. This effect
may take place even at atmospheric pressure if the
pore-size is sufficiently small. The determination of
parameter b has been the subject of a few experimental
(Bachr & Hult 1991; Jones 1972) numerical (Fun-Gau-
Ho & Strieder 1982) and theoretical works (Wu et al.
1998; Skjetne & Gudmundsson 1993). This parameter
b may take a large range of values from 0.1 for media
of great permeability (Klinkenberg 1941) to 18 for
low permeability media (Wu et al. 1998). In Skjetne
& Auriault (1999), Klinkenberg’s law is rigorously

derived by homogenisation; the luid flow equations
and the wall-slip condition are considered at the pore-
scale. Homogenisation of this local description leads
to the macroscopic model which includes a tensorial
form of (1) in which the term 1/ is replaced by p,
where p is the pressure ficld. The gas permeability is
therefore independent of the boundary conditions.
The aim of the present work is to examine whether
the structure of Klinkenberg's law does survive the
upscaling procedure. Two distinct problems are inves-
tigated: i) the flow of gas at low pressure in a composite
porous media; ii) acoustics with wall-slip effect of a
porous medium saturated by a gas. The up-scaling
technique is the homogenisation method of multiple
scale cxpansions introduced by Benssoussan et al.
(1978) and Sanchez-Palencia (1980). In section 2, we
consider the flow of gas at low pressure in a porous
composite. The local scale under consideration is the
composite scale: it consists of two interconnected con-
stituents in which Klinkenberg's law is supposed to
be valid. This local description is homogenised. We
show that the /p-form of Klinkenberg's law is not
always verified: it depends upon the medium geom-
etry. In section 3, we investigate the acoustics of
wall-slip gas flow in porous media. For this problem,
the local scale under consideration is the pore scale
and the local description consists of the equations of
lincar acoustics with a wall-slip condition over the
solid-liquid interface (Skjetne & Auriault 1999). The
macroscopic description derived by homogenisation
reveals the fragility of Klinkenberg's law. Memory
effects are obtained, but which are those derived in



the classical casc of acoustics in porous media (Levy
1979; Auriault 1980).

2 GAS FLOW AT LOW PRESSURE IN
A POROUS COMPOSITE

2.1  Medium description

We consider a periodic composite which consists of
two interconnected rigid porous constituents. Both
constituents are saturated by gas at low pressure. Let
denote by €2 the period of characteristic size O().
Within the period both constituents occupy domains
€, and €2, and their common interface is denoted by
I'. The porositics of both constituents are assumed to
be of same order ¢y = (XN¢hy). The whole structure is
subject to a macroscopic pressure gradient of charac-
teristic length L. Assuming that Klinkenberg's law is
valid in both constituents, over the period the isother-
mal flow of gas at low pressure is described by the
lollowing equations:

APy

b THbG V. (puKuVpa) =0 inSQ,, (2)
[PKVplr -m=0 onT, (3)
n=py onl, C))
in which

K,gk,,(w%).»o (a=1,2). (5)

and where p, represents the gas pressure in 2, k,
denotes the intrinsic permeability of 2., ¢, is the
porosity, A is a constant, # is a unit vector normal
to I' and [¢]; denotes the discontinuity of ¢ over I'.
Constants b and b depend upon the pore geometries,
Let now apply the homogenisation procedure with
the approach suggested by Auriault (1991), The funda-
mental assumption behind homogenisation is that the
scales must be separated: [ <« £ and the key param-
cter of the method is ¢ = I/L. The first step consists in
normalizing the local deseription and the non- dimen-
sional numbers must be estimated with respect to
powers ol &, Considering / as the reference character-
istic length and assuming that both permeabilities are
of same order, two non-dimensional numbers remain
to be estimated:
dpy
\C il

Co s gwpay i (4 TP w

Both parameters () and (); characterize the tran-
sient behaviour of the flow in both consituents and
are of same order: Q) = O(Q)) = O(Q;). It can be

shown (Auriault 1983) that a macroscopic transient
regime, which is the case of greatest interest, corre-

sponds to: Oy = O(£?). Therelore, the dimensionless
local description is written as follows:
4.~V (puKVp)=0 i, ()
[pKVpl-n=0 onTl, (8)
pi=p» onT. (9)

For simplicity we have kept the same notations, but all
quantities in equations (7) (9) are now dimensionless
quantities.

2.2 Homogenisation

As a result of the separation of scales, two dimen-
sionless space variables may be defined: y -~ X// and
x~ X/L, where X is the physical space variable.
Since / has been chosen as the reference characteristic
length, the dimensionless gradient operator is there-
fore V, + ¢V,, where V, and V, are the gradient
operators with respect to variables y and x, respec-
tively. The homogenisation method is based upon the
fundamental statement that if the scales are well sep-
arated, then all physical variables can be looked for in
the form of asymptotic expansions in powers of ¢:

(10)

in which the functions ¢' are y-periodic. Thus, the
method consists in incorporating these asymplotic
expansions in the dimensionless local description
(7)-(9). Then, solving the boundary-value problems
arising at the successive orders of £ leads to the
macroscopic description.

@ =9 "(px) + 69V (p.x) + e P(p 2+

2.2.1  First-order pressure fields
The first-order boundary-value problem reads
V,  (pVKOV My =0 in 82, (1)
[V Y] om0 on T, (12)
p\"=pd" onr, (13)
in which pi” and K& arc y-periodic and where
K‘"’-k,,(H- b") (14)

“ ]

Pa

This is u well-poscd problem of unknowns p W and
A", As a result of the positivity of p., , we get:

(15)
(16)

p\" = py = pVix, 1),

K‘"’ ‘"'(x.:) und Km’ K‘,"’(x.t).




222 Second-order pressure fields
At the next order, the set (7)~9) gives the following

boundary value problem of unknown pf,') .

V, - (KO, + V. p")=0 inQ,, (17)
KV,pY 4 Vo ™)) -m=0 onT, (18)
P =p onr, (19)

in which p)’ y-periodic. It can be shown that the
solution is written as:

PV =ty p”) Vep® + 5V (x, 1),

where p'(x,r) is an arbitrary function. Vector t
is the solution to the well-posed local problem,
which is obtained by introducing cxpression (20) into
(17)-(19).

(20)

2.2.3  Derivation of the macroscopic description
At the third order, equation (7) in ,, rcads:

ap'" 0) (0 1 0
S = Vo (POKLV,p + V™))

¢ vy 1 [pw’l(f,o’(V,p‘“z’-#V‘p“,”)]
kX v" 2 [(F(D)Kl(lﬂ +#"|)K(0))

x(V,pl 4 v, p'") =0, (1)
Integrating equation (21) over 2, and €, and then
using the divergence theorem, the condition of perio-
dicity und the appropriate boundary conditions leads
1o the macroscopic description

ap'"

®) =5 = Vu (PORY ) =0, 22)

where (¢) = 1y ¢ + N2, is the composite bulk poros-
ity and n, = |R,/|22| is the volume fraction of con-
stituent &, The tensor of effective permeability K is
defined by:

| dr,
I -—/K“”(l +—1)dn.
iRl Ja "7y

It can be shown that K is symmetrical and positive.
Since r depends on p'V and also upon the composite
geometry, it can be scen from (23) that in the most
general cases, the effective permeability doesn't verily
Klinkenberg's law: depending on the geometry, the
structure of expression (23) may strongly differ from
the structure of (14). Therefore, Klinkenberg's law is
ot always preserved after upscaling.

(23)

Figurc 1. Bilaminated composite.

2.3 [lustration on a simple geometry:
bilaminated composite

In order to illustrate the above results on a simple
geometry, Ict consider a periodic bilaminated porous
composite (Figure 1): it consists of two
porous layers Q; and £2; of thickness 5/ and (1 — )i,
respectively, where n denotes the volume fraction of
layer €2,. Each layer is assumed to be

and isotropic and of permeability K, (e = 1,2). The
cffective permeability K is given by:

Kn=Kny=Ky=0 (24)
Kz = Ky = nKy + (1 = n)K; = K);, (25)
K, K;
Ky = — =K, 2
L T W At S

where K|, and K denote the permeabilities for flows
parallel and perpandicular to the layers, respectively.
Introducing expression (5) for K, and K into (25) and
(26) yiclds

Ky =Ky ’kn(l+%).

fie2)(1+8)

Ky = -
k» B,
+ i
ks P

where

(1 = nkzby + nkiby

= (]l - g = ———
kay = (L= nhky + nky; By |y e o
Therefore, K 3; verifies Klinkenberg's law whercas K,
docesn’t, which shows that for the flow in a bilaminated
composite, Klinkenberg's law survives upscaling for
a flow parallel to the layers but it doesn't for a Now
perpendicular to the layers,

3 ACOUSTICS OF GAS AT LOW PRESSURE
IN A POROUS MEDIUM

3.1 Medium description

In this section we consider a periodic rigid porous
medium saturated by a gas at low pressure and
which is submitted to a monochromatic excitation of



wave-length L. We assume that the gas pressure is suf-
ficiently low to give risc to-a wall-slip effect at the
pore scale. The goal of this work consists in applying
hcmogenisau'on 1o the description at the pore scale
that consists of the equations of lincar acoustics as in
(Levy 1979) and (Auriault 1980), but with the wall-
slip condition on the solid-liquid interface which is
used in (Skjetne & Auriault 1999) in the case of qua-
sistatics. The period which corresponds to the pore
scale is denoted by Q and is of characteristic length
I & L. Within the period, 2, and ©, represent the
domains occupied by the pore space and by the solid,
respectively, and I denotes their common boundary.
In harmonic regime, we thus consider the following
local description:

InQ,:

Vv 4 (n + V(Y - v) ~ Vp = iwp®y, @27
ipw+ p°V . (v) =0, (28)
p=Ap, (29)
Onl:

V= —city - (Vv) nt,, (30)

where 1 and n are the viscositics, p° is the density at
the equilibrium, ¢ is a constant and A is the mean free
path. Vectors #; and i represent the unit tangential and
the unit normal to I°, respectively.

Let now normalise the above local description: it
consists in defining the set of dimensionless numbers
that characterize the local description and then in esti-
mating them with respect to the scale ratio € =1/L.
From the above local description we define the four
following dimensionless numbers:

IVpl  Jiwp*y]

e Wit T ey
S L R L R\ AL
2 A v '

In order to estimate these dimensionless numbers, let
consider [ as the reference length. The dimensionless
number Q is the ratio of the pressure gradient to the
viscous forces. It can be shown (Auriault 1991) that
() = O(¢~"), The transient Reynolds number, R, ,is the
ratio of the transient term to the viscous term, Under
acoustic perturbations the inertial term does act at the
local scale, which reads R, = O(1). The Strouhal
number, S, characterizes the transient behaviour of
flow and a macroscopic transient behaviour corre-
sponds to §; = O(1), The Knudsen number X, is a
measure ol a the wall-slip effect, By definition, it is
also written as:

u/aRT72
_—Ip‘ ‘
Let us assume, in the first place, that K, = O(1).

K, = (31

Thus, we obtain the following dimensionless local

V4 V(V-v)—¢ 'Vp=iwp'y nQ, (32)
iwep +p°V-v=0 inQ,, (33)
p=4, nQ, (34)
v=—-K,y -(Vv)-nt;y onl. (35)

3.2 Homogenisation

The procedure in the same as in 2.2: 1) the physical vani-
ables (pressure, velocity and density) are looked for in
the form of asymptotic expansions in powers of & and
these expansions are i in the local descrip-
tion (32)(35); ii) the boundary-value problems that
arise at the successive orders of ¢ arc solved.

3.2.1 First-order pressure, density and

velocity fields
From equations (32) and (34) at the first order, we
deduce:

PV =px,1) and p=p"x,1).

The sccond-order problem reads:

Vi v - V") =iV inQ, (36)
V, v =0 inQ, @7
VO = Kt Y r® onr. (38)

The solution to this system may be written as follows:
v = —k(y, K @)V 0.

Its average over the period yiclds:

(V) = K (K, @)V 07, (39)
where the effective dynamic permeability tensor K is
a complex-valued and depends upon the pulsation and
the Knudsen number,

3.2.2  Small Knudsen number

In order to get more insight into the expression of K,
we consider the case of low Knudsen number:

f KKy 1. (40)

As in (Skjetne & Auriault 1999), v and p'") are looked
for in the form of asymptotic expansions of K,,:

VO o 4 K+ K 4
PV =p" 4 Kp' KP4

@n
(42)



Substituting the above cxpansions into boundary-
valuc problem (36)—~(38) yields at the first order:

Vi — V50 —V,p" = iwmp™® in 2, (43)
v, =0 nQ, “4
vo =0 onTl. (45)

The solution to this linear well-posed problem is:
W = Ky, 0)Vp',

and its average over the period is written as:

') = =K"(w)Vp'”, (46)
where
K= I—SITI mt’ dQ. (47)

The second rank complex permeability tensor KV is
symmetrical and positive (Sanchez-Palencia 1980).

At the second order, we obtain the following wall-
slip correction problem:

Vv = V,p' = iwp’y' inQ,, (48)
Vv, v'=0 inQ, (49)
Ve v nl® onr, (50)

The average over the period of the solution »' to the
above well-posed problem is written as:
W) = -K'(@)Vp, (51)
in which K" is a complex permeability tensor.

According to (46) and (51), the average of expan-
sion (41) up to the second order leads to:

) = ~(K° + K.K")Vp, (52)
which can also be wnitten as:
W) = K@) + K H () V. (53)

Considering the definition of the Knudsen number
(31), it uppears that the structure of Equation (53)
seems 10 be similar to Klinkenberg's law (1), but
with the difference that constants k,, and ¢ have been
replaced by the pulsation dependent tensors K and
H, respectively,

When tuking @ = 0, the inertial terms in systems
(43)-(45) and (48)-(50) vanish, 1t corresponds to the

quasi-statics case investigated in (Skjctne & Auriault
1999).

Written in time space, Equation (53) would include
a convolution product which characterizes memory
effects. The presence of these effects is a well-known
result in the classical case of acoustics in porous media
(Auriault 1980) and, thereforc, they arc not due to the
wall-slip flow. In order to illustrate the above results,
and to cxamine the influence of the wall-slip effect
upon the effective tensors K® and H, we now consider
the problem on the simple geometry of a bundlc of
capillaries.

3.3 [lllustration on a simple geometry: bundle of
capillary tubes

The purpose of this section is to cxamine the macro-
scopic law for the acoustics with wall-slip effects
of a bundle of capillarics of radius a saturated by a
gas (Figurc 2). According to the results obtained in
the previous scction, the macroscopic behaviour is
described by

0
V) = —K.«(w)‘%'- (54)
The dynamic permeability K.q is defined by
Kar = L, / a2nrk(r,w)dr,
na* Jo
where k is such that v = — k% is the solution to

the local boundary-value problem (36)-(38), which in

a single capillary tube reduces to:
‘l‘d%" =0, (56)
v9a) = -cxdme. (57)

(a) (b)

Figure 2. Bundle of cylindrical capillaries: (u) a single
capillary y-variable; (b) Medium cross-section in x-variable,
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Figure3. Variations of Hy and /7> with respect to the dimen-

sioless pulsation. Plain line: 0.1 H; (dissipative term); Dashed
line: @ ' H; (inertial term).

Since there is an analytical solution to the above
boundary-value problem, it can easily be deduced that:

¢ Jaa) + Kyaed (aa)

g fwp* Jolwa) — Kyawy(aa)’

(58)

where J, are Bessel functions and a = i/imp® /jt.

It can be seen from Equation (58) that Klinkenberg's
law (1) is not verified.

Let us define the inverse permeability by K =
11, = H, + ilf. The term H, represents the dissipa-
tion whereas Hyw ' is the inertial term. The curves
of H, and Haw ' with respect to the dimensionless
pulsation w* =wp*a’ /i are plotted on figure 3 for
different values of K,. When K, =0 the profiles of
both curves are those obtained in the case of acoustics
without Klinkenberg's effect: the inertial term tends
towards 1 whereas the dissipation term increases with
the pulsation. The enhanced value of H, (i.e. greater
than 1) at low pulsation is due to the added mass effect.
When Knudsen number is increased, both the dissipa-
tive and the inertial term decrease as a result of the
increasc of the wall-slip effect.

4 CONCLUSIONS

We have derived mathematical models that describe
mﬂuwwithlowguptunminmuumcdinfor

twodwmtpwblum'i)'hcﬂowofpulowuu-
in a composite porous media; ii) acoustics with wall-
slipeﬁ‘ectorapammediunsauumdbyap.
Inbothpmblemswchveshownthahlhell‘
gemulcms&linkznbetg'shwisnotvaiﬁednb
macroscopic scale. In the first problem, we have seen
that Klinkenberg’s law may be verified on specific
gcouwttks.hﬂ\esccondmblun.ilisdtwnu
the macroscopic behaviour is slightly modified when
awall-slipeﬂ'ectisconsidetedanhepomsale:bo‘
the added mass cffect and the energy dissipation are
reduced.

REFERENCES ,

Auriault, J.-L. 1980. Dynamic behaviour of a porous medium
ww-mmrmxm_sf_lt
775-785. e

Auriault. J.-L. 1983. Effective macroscopic description for
heat conduction in periodic composites. /nt. J. Hmllq
Transfer 26(6): 861-869.

Auriault,J.-L. 1991, Heterogencous medium: is an equivalent
m:lsmpic description possible? Int. J. Engng Sci. 29,
n7: 785 795. s

Baehr, A.L. & M.F. Hult 1991. Evaluation of the unsatu-
mdmﬁpawlnywmw”
Resourc. Res. 27 (10): 2605-2617. ?

Benssoussan, A., J.-L. Lions, & G. Papanicolaou 1978
MMM&-MWMMW.W
North-Holland Publishing Company.

Fun-(iurllo&W.Suiedalm.Amﬁeepuiwyd
void diffusion in a porous medium with surface di
11: Numerical evaluation of the effective diffusivity for
arbitrary knudsen number. Journal of Chemical Physics
76, no. 1: 673-677.

Jones, S-C. 1972. A mpid accurate
klinkenberg . Petrol: Engrs.: 383-397.

Klinkenberg, L.-J. 1941, The permeability of porous media
1 liquids and gas. Drilling and Production Practice,
American Petroleum Inst.: 200-213.

Levy, T. 1979. Propagation of waves in a fluid saturated
porous elastic solid. /nt. J. Engn. Sci. 17: 1005 1014,
Sanchez-Palencia, E. 1980. Non-homogeneous media and
vibration theory. Lecture Notes in Physics, Springers

Verlag Berlin 127,

Skjetne, E. & J.-L. Auriault 1999, IHomogenization of wall-
slip gas flow through porous media. Transport in Porous
Media 36: 293-306.

Skjetne, E. & 1.8, Gudmundsson 1993. Model for wall-ship in
the darcy and forchheimer gas flow regimes. Norwegian
Institut of Technology, pp. 111=122. Tapir Publishers.

Wu, Y.-S., K. Pruess, & P. Persofl 1998. Gas flow in porous
media with klinkenberg cffects. Transport in Porous
Media 32: 117 137,




