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Mathematical modelling of phase change in porous media in
presence of advection: upscaling technique

J.-F. Bloch
LGP2/EFPG/INPG/CNRS UMR 5518, Grenoble France

P. Royer & J.-L.. Auriault
Laboratoire 35 - UJF INPG CNRS UMR 5321, Grenoble France

ABSTRACT: This article is devoted to the mathematical modelling of phasc change of water into vapor phase.
This physical transformation is considered to appear inside the porous medium. In analyzing two-phase flow,
the standard method of continuum mechanics is followed. Therefore, a two-phase flow is considered as a ficld,
which is subdivided into single-phase regions with moving boundaries between phases. The standard physical
equations hold for each region with appropriatc boundary and jump conditions at the interfaces. An industrial
application of such models, is to understand the complex phenomena occurring during hot paper pressing. In
such a unit operation, we have to consider coupled effects of heat and mass transfer. As the description at the
microlevel is too complex, we will consider here the macroscopic behavior. It is obtained from the microscopic
scale by an upscaling technique, namely the method of homogenization for periodic structures. It permits to
obtain a catalogue of macroscopic models. The domain of validity of each model is defined by means of orders of
magnitude of dimensionless numbers. For a specific practical problem (i.e. a given process and a given material),
the corresponding dimensionless numbers can casily be estimated by selecting the appropriate characteristic
quantities. The suitable model for describing the process under consideration can be sclected throughout the

catalogue.

I INTRODUCTION

Nowadays, industrial applications increasingly need
improved technical and scientific understanding so as
1o optimize production and competitiveness, There-
fore, developing empirical, numerical or theoretical
models has become crucial. Derivation of mathemati-
cal models consists in determining behavior laws and
the corresponding effective parameters. The knowl-
edge of the domains of validity of these models is
also important, For example, paper industry, among
other, would draw a great benelit from the improved
understanding of physical processes provided by such
theoretical investigations. In this example, deriving
knowledge models of physical processes involved in
new technology of paper pressing at high tempera-
ture will allow enhancement of both paper quality
and production rate, Indeed, during hot paper press-
ing, high temperature gradients lead to high-pressure
gradients that may give rise to violent phase change
of water into vapor. This modification may damage
the fibrous structure of the paper. The knowledge of
the conditions under which phase change may occur

would allow a better control of the destruction of the
fibrous network. For this purpose, rigorous mathe-
matical modcling of phasc change in porous media
is required. In this paper, we use an upscaling tech-
nique for determining the macroscopic behavior of
water-air flow in porous media with phasc change
of water into vapor. The upscaling technique is the
method of homogenization for periodic structures that
has initially been introduced by Bensoussan et al.
[1978) and Sanchez-Palancia [1980). In this study,
we use the approach suggested by Auriault [1991].
It permits to obtain macroscopic laws, their domain
of validity, and also their effective parameters without
any macroscopic pre-requisite. This formulation of the
method is on the basis of the analysis of the dimension-
less numbers anising from the local description under
consideration. This fundamental step is called the nor-
malization and is aimed at specifying all cases that
may be homogenized.

In this paper, attention will essentially be focused
ond\enomalwedlocdduamMﬂnm
scopic modcls obtaincd by homogenizing this local
description will be presented. We will expose in



Section 2, how the initial local description may be
obtained from Ishii analyze [1978] concerning the
physical description of phase change. The importance
of the description of the interface between water and
gas, is underlined. This description is different than
considering a source term in the continuity cquation.
Furthermore, the source term means that the phase
change may occur anywhere in the medium at the
microlevel. Considering the interface as a front, the
description involving the source term is not possible.
The dimensionless pore-scale description of water-
air flow in porous media with phase change of water
into vapor is presented in details in Section 3, The
mauss, momentum and energy balances in cach com-
ponent domain are completed by both continuity and
jump conditions in order the problem to be solved.
Homogenization of the corresponding local descrip-
tion will lead to the mechanical macroscopic behavior.
For the thermal problem, two independent dimension-
less parameters can not be determined: they constitute
the so-called free parameters of the problem under con-
sideration. Several orders of magnitude will be con-
sidered for these two dimensionless parameters which
will lead to several macroscopic behaviors for the ther-
mal problem. These macroscopic behaviors obtained
by homogenization are presented in Section 4,

2 LOCAL DESCRIPTION OF THE
CONSIDERED PHYSICAL PHENOMENA

2.1 Physical problem description

A periodic porous medium is considered. Its period £2
is of the order of magnitude of the microscopic scale
I, characterizing the pore scale, We assume that the
microscopic and macroscopic scales are separated, In
other words, the characteristic macroscopic length L
is such that //L = & << 1. Within the period, the solid
space is filled up by two fluids, water (wetting phase)
and vapor (non-wetting phase) that occupy domains
Q,, und ©,, respectively. We assume that phase change
may occur at the water-vapor interface (I',;) and
that the vapor-phase has no contact with the solid.
‘The water-solid interface is denoted by (I'y). This
assumption of the existence of a front will lead to a
more complicated physical deseription, as it does not
allow introducing simply a source term in the continu-
ily equation in the microscopic description. Therefore
physical propertics of the vapor-liquid interface has to
be introduced. The diflerent equations are presented in
the following paragraphs.

The main characteristic of a mixture of two immis-
cible fluids is the presence of at least onc interface
separating the phases or components. As we will con-
sider annular regimes for simplicity, we will have to
consider both water—solid and water-vapor interfaces.

We will follow the standard description involved in
continuum mechanics, Therefore, a two-phasc flow is
considered here as a field which is subdivided into
single phase regions with moving boundaries between
phases. The standard balance equations hold for each
subregion with appropriate jump and boundary condi-
tions at the interfaces. Since an interface is a singular
case of the continuous field, we have two diflerent
conditions at the interfuce. The balance at an inter-
face which corresponds to the field equation is called
a jump condition, Whereas any additional information
corresponding to the constitutive laws in space which
are also necessary at interface, is called an interfacial
boundary condition.

The balance equation may be written in the follow-
ing form:

oV 2
p;l‘ + V- (ap W)= =V - Jy + oy B M

where py represents the density and ¥ the velocity.
The first term of the above equation is the time rate of
change of the quantity per unit volume, whereas the
second term is the rate of convection per unit volume.
The right hand side terms represent the surface flux
and the volume source.

We may express the conservation equations (conti-
nuity, momentum and energy) as follows:

~ Continuity equation in the domain £2,: W =1,
@ = 0,J; = 0, This leads to the following equation:

dpy P
— oV (V] w )
ar + YV (Vipr) (2)

Momentum equation in the domain €2 considering
no body force: Wy = Vi, & =0,/ = — oy, where
ay represents the stress tensor. This quantity may
be rewritten as oy = ~ pg -+ 1, splitting the stress
tensor into the pressure term and the viscous stress,
respectively, Therefore, it leads to the equation:
?p;:i+v'(VAPka)=—VPA +V.nu 3)
~ Conservation ol energy in the domain €2;: We con-
sider here the total energy of the fluid. Therefore,
wehave: Wy =+ V22, O, =O /o1 i = =B~
ot + Vi where ug, g and Oy represent the internal
encrgy, heat Nux and body heating, respectively. We
obtain the following equation:

a + V22 7 Vv
ﬁu‘m—‘/) + V- o Viluy + V:/2)]

= -V&+V-(o- V) + O @

‘These Equations express the basic physical laws of’ b
conscrvation of mass, momentum and energy. In order
to solve these equations, it is necessary to specify the




fluxes and the body source, as well as the fundamen-
tal equation of state. Furthermore, we may introduce
here the decomposition of the total ecnergy between the
mechanical and internal energies. Indeed, multiplying
the equation of motion by the velocity, we obtain the
mechanical energy equation:

2
""a# + V- (T P2)

==V .p =V (V-u) ‘ (5)

By subtracting the mechanical energy equation from
the total energy equation, the internal energy equation
is obtained:

3(p1 ) oy (ox Vi)
=~vu—p.V-V.+r.:V-fa+Q. (6)

The enthalpy hy is defined as: hy =wy + pi/ps.
Therefore, the internal energy cquation becomes:

3(ﬂnha)+v (o Pue)

=—V-§A+-§+n:v-f’t+@ M

Hence, we obtain the following expressions of the con-
tinuity, momentum (considering no body loree) and
internal energy equations in the domain £2,:

apy

. e (mP) = =Yg =V -y
+n.V~f’.+Q. (%)
FYNY
L4V (Biadi) = =Yp + 9 ©)
Moch D,
(‘:.; ‘)+V (Vi) = =V + ,;"
+u iV B+ (10)

2.2 Equations al the interfaces

We now have to consider the different interfaces
involving the water, gas and solid phases,
2.2.1 Water solid interface ',

First, we analyse the interfuce water/solid,
Continuity of velocities

P = i (1

where ¥, is the velocity of the water phase and
it, represents the time derivative of the solid
displacement.

Continuity of temperatures

Ta=1y (12)
Continuity of heat fluxes

(AwVT) - Nogg = (AsVT3) - Nus (13)

where ITI.., is the outer normal unit vector of Ty and
where A, and A, arc the thermal conductivities of the
water and of the solid phase, respectively.

222 Water gas interface ',

2.2.2.1 Interfacial balance

The description of the interface Iy, is the delicate part
of the physical description. The presented modclisa-
tion is based on the work of Ishii (1975). The main
steps of this description are the consideration of the
mass, momentum and encrgy conscrvation, The bal-
ance equations derived previously (equations 8, 9, 10),

_may be applicd to cach phase up to an interface, but

not across it, A particular form of the balance equa-
tion should be used at an interlace in order to take into
account the singular characteristics (discontinuities) in
various variables, Special conditions, on fluid density,
energy and velocity, constitute the jump conditions

(a) Interfacial mass balance: Continuity of mass fluxes

Pa(Va = Vi) Ny + pu(V = V) - Ny = 0 (14)

where l-’, 18 the velocity of the imgri’wg. Wg may also
introduce the notation: g = pe(Ve = Vi)« Ny

(b) Interfacial Momentum balance and Interfacial
Energy balance

We first consider the momentum balance:
(PP = P Nl = (=pal + 1) - N
+[oulV = V) Nl
~(=pul+ 1) Ny =0
The internal energy may be written:

(ﬁ-(pa . f/!)‘ ﬁa) (“a 2 %.‘.'3)

+ (P = P F) (uw + lv)

(15)

2 w
+ﬁh '(" nwi.’w "éw)
| Nn'( r na‘;- "‘ia)-o
where I1; is the total stress: [T, = ~ pi[ + 1

(16)

2.2.2.2 Boundary conditions at interface

In order to state the second law of thermodynamics, it
i$ necessary to introduce the concept of a temperature
Ty and the specific entropy s, The second law may be



written as:

a(mn)

+V.- (V) + V- (g‘) _&

= A
T} T, "

(17)

where Ay is the rate of entropy production per unit
volume.

Constitutive Equations

To this extent, the number of dependent variables
exceed that of the field equations. Consequently, it
is necessary to supplement them with constitutive
equations which define the behavior of the consid-
ered medium. From their physical significances, it is
possible to classify the different constitutive equations
into three groups: Mechanical Constitutive equations,
Energetic constitutive equations, Constitutive equa-
tion of state, The first group specifies the stress tensor
and the body force, if any, whercas the second group
supplies the heat flux and the body heating. The last
equation gives a relation between entropy, the internal
CNCrgy.

(a) Mechanical Constitutive Equation.

The rheological constitutive equations may have dif-
ferent forms related to the various mechanical behay-
iors, Usually, a lincar relationship is used which
involves the viscosity u.

(h) Energetic Constitutive Equation.

We may consider here the Fourier Law, that is checked
by most fluids: & = A,.VT} in which A; is a second
order tensor of conductivity.

(¢) Fundamental Equation of state.

This relation is often given under the form both for
the fluid and the gas: py = pi(px, Ti). As in the field
domnn.thcmfuccbalaweemshouldhcmp
plemented by various constitutive laws. In order to
establish these conditions, we may introduce the con-
cept ol interfacial entropy (A, ) inequality at the inter-
face that may be written (Ishii 1978, Delhaye 1974):

g Vi - Vi
Lide =Y {iin u.-.nr.-+'—‘—’|—+'l
kew 2 P

g (Ve = W)

(- E)]o

where 7; and #, are the interfacial (or surfacc) temper-
aturc and the normal unit vector, respectively.

For sake of simplicity, we will consider only here
a limiting case when entropy production of the inter-
face A, is set to zero, which means that the transfer is
considered as reversible. In other word, cach term of
the entropy is assumed to equal to 0. This means that

(18)

there is no resistances to interfacial transfer of quanti-
ties. This also means that the exchanges between the
two phases are governed by the conditions of the bulk
fluids at each side, and not by the interface itself. By
assuming that the source is zero, we also assume that
cach term is independently equal to zero. This leads to
3 conditions.

(a) Thermal Boundary Conditions.
From the last term, we obtain the thermal equilibrium
at the interface: T, =T, =T,

This condition set the energy level of the interface,
contrary to the energy jump equation which speci-
fies the relation between the energy transfers to the
interface.

(b) Mechanical condition, No slip conditions.

It may be shown that the tangential components of the
fluid velocities are equal. This assumption means that
there is no slip at the interface. The equation may be
written (Ishii, 1975, p.35, Eq. Il 2-44):

. h’ . - hz =
N =% 4 N, N,= + Nop,

Pw o Pu -

= ~2H\ay N (19
(c) Chemical (Phase change) Boundary conditions.
'l'mmm_uwmwmumorm
entropy equation.

|i'¢- i’llz
2

ol L ‘?.—i"la
Bw = R 3

(20)

where g; is the Gibbs free energy defined as follows:

ge=up — Tese + pe/ Py

and t,,, is defined as a normal viscous stress: i - T =
Tk + Ta =My * Tmy + Tok-

The stress (1,,) are now considered as negligible.
Therefore, this condition may be written:

|;¢ -3, ;'|| X I;w o E'

2 2

The phase change is not here considered to be due
to force equilibrium but rather as a state transforma-
are negligible in respect of the pressure, it can be

Bw—8a= 21



shown that:

Pw = Pra(T) = -ZIIw.y(

)
Pw = Pa

+%(p~. NV, - i)
Pu  Pw
Pa
Pu Pml(rl) 2”»07(” i ﬂ¢)
+30 - Mal o = FaP)
" (l v l) @3)
Pw  Pa

where T, is the interlace temperature, H,,, and y rep-
resent the mean interface curvature and the surface
tension, respectively.

We may notice that we find the Laplace law if the
phase change is considered as equal to 0.

2.3 Characteristic values and dimensionless
quantities

Considering a given physical quantity, denoted by W,
for the water-phase and by W, for the vapor-phase,
their characteristic values W, and W,, are assumed
to be known. We define the two following dimension-
less quantities associated to W, and W, respectively
Vi=w,/V,, and ¥ =W, /W¥,,. The characteristic
values for all physical quantitics are shown on Table 1.

Where pi, pt, v, T, &, C,, y and A represent the vis-
cosily, density, time, pressure, velocity, temperature,
thermal conductivity, specific heat, interfacial tension
and compressibility, respectively.

Let us denote by N the measure of the ratio of W,
to Wy: N=|W,|/|W,| = (V3 /W) x(V¥,,/¥,,)=
OV, /W)

Assume for example that ¢ = (10 7). Since Wy
and ®p are given (Table 1), we are therefore able to
estimate N with respect to £: N = O(¢"). Thus, from
the characteristic values on Table | and the estimate
£=0(107?%), we deduce the orders of magnitude of
any physical properties presented on the following
table.

2.4 Normalised local description

At the pore-scale the flow of both fluids and the
phase change of water into vapour is described by
balance equations in £2,, and £2, and appropriate con-
tinuity and energy balance conditions on Iy, and
I'us. The studied process is time dependent. However,
when written in Eulerian coordinates, the equations
that deseribe the process are steady-state. Therefore,
we choose the Eulerian representation for writing the
local description. All the equations below arc cast in
a dimensionless form, but for the sake of simplic-
ity symbols *, in the dimensionless cquations, and g,
in the expressions of the dimensionless numbers, are
omitted.

24.1 Balance equations in 2, and Q,

Mass balance

For compressible fluids, the dimensionless mass-
balance cquations in Eulerian coordinates are the
following:

V(o) =0, k=wa (24)
in which oy and vy arc the density and the velocity of
the k-component, respectively.

Momentum balance

For both fluids, the momentum balance is cxpressed
by Navier-Stokes equation. In Eulcrian coordinates the

Table 1. Characteristic values of physical properties,
Variables Units Water Air Fibres
m Pa.§ {1 19 x 107%
p kg om? 10 1,23 1,5 x 100
t 5 10°* 107} [
P Pa 10° r0 10° 10% 10 10" 10° 10 10°
v mos~! 1077 102
T K 293 10373 293 10 373 29310 373
A m .yt K 0.602 0,026 0.33
Cy Jokg™' K™ 4.18 x 10 10 1.33 x 10
Y N-m! 72.75 x 10° 58.8 % 10°

(293) 375
A kg m'.y? 2 x 10 8.1 x 10




equations for (k =w,a), reduce to:

He(AVk + V(V ) — Qe Vipr = Rey py (Vs - V)i
(25)

We have introduced here two dimensionless param-

cters Qf and Rep defined classically as follows;

Ov = O(Pil /g Vi ); Rex = O(ppd Vi [ ).

It can be shown () by a simple physical reason-
ing that: Oy = O(¢ '). Furthermore, there arc some
restrictions on the order of magnitude of Re ():
the situation is homogenizable if Re < O(1) and for
Re = 0(1) non-linearitics appear and the drag law
becomes non-linear, We therefore consider the case:
Rey = O(e).

Energy balance

The total energy is the sum of the mass internal
encrgy and of the mechanical cnergy. When the vis-
cous dissipation is neglected and when there is no heat
source lerm, the energy-balance equation is written for
(k= w,a), as:

Peyvy - \'7(p.lu)
= =V . & + Ey PerE., (Vs - Vpy)

where g; is the heat flux and h; is the enthalpy.
We may define the following quantitics:

Euler Number: E,, = O(Py)/(mV])
Eckert Number: E,, = ()(V,’)/(C,,l Ty)
Peclet Number: Pey = O(IpyCp, Vi) /(A1)

Ittumns outthat £, = Oy /Rey. Thus, since () = (¢ ')
and since we consider Rey = O(¢), we get: £, =
O(s~%). Morcover, it can be shown that for the
cases of interest, the Eckert number is always such
that: £, < O(¢"). We therefore assume: £, = O(c*).
Finally, there is no possible estimation for the Peclet
numbers Pe,, and Pe,. However, from the considered
values, we deduce: (Pe, /Pe,) = O(1). These numbers
are the parameters of the modelisation.

Equations of State of the Fluids
We consider linear equations of state:

(26)

pe=Aypy,  Agisconstant, k = w,a (27)

24.2  Conditions on solid/MNquid interface 1",
Continuity of velocitics

The conditions on the solid/liquid interface y,,, are
considered below.

D = t,( = 0 if the medium is rigid) (28)

where v,, is the velocity of the water phase and &, is
the time derivative of the solid displacement,

Continuity of temperatures

Ty =T, (29)

Continuity of heat fluxes

Cuus(MwVT) - Nuy = (A, VTL) « Nie (30)
where ﬁ..,, is the outer normal unit vector of I',,, and
where A, and A, arc the thermal conductivities of the
water phase and of the solid, respectively. Thus we
have: C,, = O(A,/As) = O(1).

243 Conditions on liguid/vapour interface T,
The analysis of the physics at the liquid/vapour inter-
face is taken from ().

Continuity of mass fluxes
Nppu(Pa = %) Na 4 pu(y — %) - Ny = 0 @31

Where v, is the velocity of the interface. N, =
O(paf pw) = Oe).

Capillary equilibrium conditions
| Pw )

—(py = ) = -2H, _—
N,"’ Pua(Ti)) wy (p..- —Nyp

| ey daear
B 2(:I4m4ll’wNw (Vg = Vl)z)
¢ ( 1 1 )
Nota  Pw

1 y Pw
= (Pu = Prat(T}) = <2l g
Ny(P P I( I Y (9’; _pa)

(32)

1 VAl -
+§Can‘[prw (W = Vl)zl

(2E fs)

We have introduced here the following parameters:
Np - o(pulpw);Ny - |Hw)'|/|l’w = Psu |3 CLmu =
() 1/ | Hua ¥ | Heere, we get: N, = O(1). It can be
shown () that for NV, « 1, there is no capillary effect.
We therefore consider Ny = O(1). There is no possible
estimation for the phase change number.

Enthalpy

(33)

0 = i, [(C,,, 1o 'S CATY+ K, I(-;-;a -0l ;.,)

- (5% )]]

+ (-'Imw(.‘.'u B + Ny;'v gﬁ) (34)

where ¥, = (¥ + Nug)Nowa + Vi, = oy (Vs = ) « Ny
Crv and Cp, are the specific heat coellicients for both




phases, Therefore we have : N, =0 (f:) =O(¢);and
Clu, =0 (i) = 0P,
Continuity of temperatures

li=T.=T (35)

2.5 Cases of interest

Note that for the mechanical problem, defined by
equations (24), (25), (27), (28), (31), (32) and (33),
all dimensionless numbers have been estimated. As a
result, only one mechanical macroscopic behaviour
will be obtained. For the thermal problem, which
is defined by equations (26), (29), (30), (34) and
(35), two independent dimensionless numbers are
remaining: the phase change number CL,,, and
the waterphase Peclet number Pe,. We will con-
sider the following cases: CL,,, = O(e")p=0,1,
2,3,),Pe, = 0(e")(g=0,1,2).

3 MACROSCOPIC BEHAVIOURS

3.1 Mechanical problem

The derived macroscopic mechanical description is
written as a steady-state behaviour with coupled
Darcy's laws:

VWm0, Vo(pV)=0; pe=py—pui
Ve = "kwvl’w - kuvl'a;
Vo= ~KuVp, = kavan-

where k'ﬁ represents the permeability of the porous
medium considering both phases o and f.

3.2 Thermal problem

321 ClLu,=0()

This situation can occur physically but is not homog-
enizable, This means that there is no equivalent
macroscopic description.

322" Clyg, = O(s?), Pe,=0(s%)

The macroscopic behaviour is purely diffusive and is
given by:

V.09, T)=0.

323 ' Clyg, =0(g%), Pe,=O(s)
In this case a convective term due to the wetting phase
does appear:

P V(G puT) = =V . 79T)

(36)

(37

324 Clys, =0, Pe,=0(1)

In this case we obtain a phase change term, a diffusive
term and a convective term. The non-wetting phasc
does appear in the convective term.

Vi V(Cp, puT) + £V, - V(C,, p,T)

= i
= eV . (A*VT) + G, Ty, — Iﬂl (38)
lﬂl./ [l"( 8)'1
x50 (39)

X, 1s the particular solution of a boundary-value prob-
lem defined over the period. W(0) represents the first
order of the development of the velocity.

325 Cly,=0(c"), Pe,=0()
The macroscopic behaviour is purcly diffusive and is
given by equation (36).

326 Clyg, =0(s), Pe, =)
We get diffusive, convective and phase change terms:

Vu  V(Cpu o) = =V . (AFVT)
LY
IQI

Note that in this case all terms arc of the same order
of magnitude.

327 Clyg,=0(F), Pey=0(1)

The influence of the non-wetting phasc now appears
in the phase-change term, but is negligible at the first
order.

'ilu (4’. rl'.. (‘0)

Vi « V(Cp, puT) + 8V - V(Cp 0,T)
-V . (A7) + %—?—'M( e — 8Cp)Tre,

(41)

328 Cly,=0(")

The macroscopic behaviour is purely diffusive and
described by equation (36), without any phase change
eflect.

4 CONCLUSIONS

We have presented the results obtained by an homoge-
nization technique for water-gas flow in porous media
with phase change of water into vapor. The macro-
scopic behaviors are obtained from the description
at the pore level. For the thermal problem, different



macroscopic behaviors were obtained depending on
the order of magnitude of two dimensionless numbers,
Thus, for a given practical situation, the knowledge
of the order of magnitude of these two dimension-
less numbers will indicate which mathematical model
should be chosen for describing the evolution of the
physical processes. As an example of application, we
considered hot pressing of paper on an industrial point
of view in which a phase change may appear in the
paper web due to the high tempertaure ol the rolls,
Consequently, the use of such models had improved
to build and optimize this new technology. The pre-
sented results may also be used so as to model any
other technical process that involves porous media,
corresponding to the hypotheses presented in this
study.
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