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Abstract. Probabilistic Relational Models (PRMs) extend Bayesian net-
works (BNs) with the notion of class of relational databases. Because of
their richness, learning them is a difficult task. In this paper, we propose
a method that learns a PRM from data using the semantic knowledge of
an ontology describing these data in order to make the learning easier.
To present our approach, we describe an implementation based on an on-
tology of transformation processes and compare its performance to that
of a method that learns a PRM directly from data. We show that, even
with small datasets, our approach of learning a PRM using an ontology
is more efficient.
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1 Introduction

Probabilistic Relational Models (PRMs) extend Bayesian networks (BNs) with
the notion of class of relational databases. Thanks to the addition of the oriented-
object concepts (e.g. class, instantiation, reference) they offer a new expressivity
to BNs: they provide a qualitative description of the structure of complex do-
mains while representing the quantitative information provided by the probabil-
ity distribution. However, because of this richness, learning PRMs from data is
a difficult task. This is due, on the one hand, to the learning of both the high
level structure (i.e. classes and relations between them) and the low level
structure (i.e. attributes and their probabilistic dependences); that leads us to
deal with a two layers learning problem. On the other hand, their expressivity
allows the modelization of systems with a small amount of data which increases
the complexity of the learning task. These difficulties explain the complexity of
determining the best structure among all the possible ones.

Ontologies are nowadays used as a common and standardized vocabulary
for representing a domain (e.g. in life-science, geography). They organize and
structure the knowledge in terms of concepts, relations between these concepts
and instances of these concepts [13]. The aim of this paper is to show that we can
use the knowledge represented by an ontology to map the high level structure



of PRMs easing, in this way, the learning of their probability distribution. We
choose to use ontologies as opposed, for example, to relational databases, because
in the future we are interested in modeling non-stationary domains and the
structure of an ontology is more adaptable to changes in the domain than that
of a relational database.

We present, in this paper, our approach of learning a PRM using an ontology.
We propose to use the knowledge of an ontology, first, to define the high level
structure (i.e. the relational schema) of a PRM and, then, to learn this PRM
from data. Using ontology helps us by integrating the experts’ knowledge to ease
the learning in complex domains.

To illustrate our approach of learning a PRM using an ontology, we propose
to use an ontology of transformation processes where a transformation process
can be represented as a sequence of operations, receiving different inputs and
designed to obtain a specific output. Such an ontology allows the representation
of the knowledge of a complex domain with several interesting characteristics:

– it is complex, multiple operations can occur at the same time and are
linked together; inputs and outputs are characterized at multiple scales (i.e.
environment, population, cellular and molecular) and studied with different
types of measurement (e.g. physiological, biochemical, genetic);

– data is scarce, due to the difficulty to obtain results, this imposes to gather
information from various sources;

– it presents problems of missing data (e.g. a parameter is not controlled)
and missing values (e.g. the process’ instructions are not precise);

– even with complete information, it is still characterized by uncertainty,
instruments used to take measurements during a transformation process are
able to return only an estimation of the quantity observed because their
calibration cannot be entirely defined and repeated from an experiment to
another and some internal and uncontrollable parameters (from both devices
or outside the experiment) can influence the final result.

This paper is organized as follows. In Sect. 2 we present the ontology of trans-
formation processes used, PRMs and their existing learning methods. In Sect. 3
we describe our approach of learning a PRM using an ontology. In Sect. 4 we
present preliminary results where the efficiency of our approach is evaluated
through a comparison of its performance to that of a method that learns prob-
abilistic models without ontology. We conclude in Sect. 5.

2 Backgrounds

2.1 The ontology of transformation processes

To illustrate our approach, we propose to use the Process and Observation Ontol-
ogy (PO2) [9], written in OWL 2, designed to represent transformation processes.
A transformation process is denoted as a sequence of steps (i.e. operations),
receiving different participants (i.e. inputs) and designed to obtain a specific
product (i.e. output).



An ontology is a representation of the knowledge of a domain and is com-
posed of two main components: the conceptual component where the concepts,
relations between these concepts and axioms are defined and the instance com-
ponent which contains the facts. The conceptual component of PO2 contains the
following three main parts (see Fig. 1):

– Step part: contains the concepts step, itinerary and process

– Participant part: contains the concepts method, mixture and device

– Observation part: contains the concepts observation, scale, measure, sen-
sor output and computed observation

In this ontology, a process is a whole operation: processes that are the same
share the same goal. A variation in one process is called itinerary. An itinerary
is defined as a succession of different steps linked to each other: each step is
associated to the one(s) following it according to a chronological order. A step is
defined both by its duration and its participants, that can be a method, a mix-
ture or a material. Participants are characterized by inner attributes defined by
experimental conditions; moreover, a mixture is composed of different products
that represent its composition. Finally, during each step, one or more observa-
tions can take place to make measurements of one participant: they are made
using specific participants (independently of the other step’s participants), and
at a specific scale. They have for result a sensor output and/or a computed ob-
servation, each of them can have for value a function or a simple measure. A
measure is characterized by either a quantity and a unit of measure or a symbolic
concept and a measurement scale.

Each step is defined as a concept to which a set of descriptor concepts is
linked: participants (i.e. devices, mixtures and methods) are concepts whose
parameters are set a priori ; observations are concepts whose parameters are
measured during the step. Therefore there exists for each step a compartmen-
talization between the different domain’s objects. Moreover, the time relation
linking steps gives information about their relative time (inside the process and
with other steps). The instance component of PO2 allows one to represent differ-
ent transformation processes by a succession of instances of steps and instances
of their associated descriptors.

We introduce an example of a domain ontology about the micro-organisms
stabilization transformation process denoted by PO2

stab. Fig. 2(a) gives an ex-
cerpt of the simplified conceptual component of PO2

stab where there are 3 steps:
Fermentation, Culture and Stabilization which are sub-concepts of the concepts
Step and 2 attributes: SugarQuantity and Temperature which are sub-concepts
of the concept Attribute. Fig. 2(b) gives an excerpt of the simplified instance
component of PO2

stab. In this example, there are three instances of steps linked
by a linear temporal dependency Fermentation 1 that is before Culture 1 that is
before Stabilization 1. The instance Fermentation 1 of the concept Fermentation
has for participant Mixture 1 (an instance of the concept Mixture) which has
for sugar quantity (the instance SugarQuantity 1 of the concept Attribute) the
value: 2g. Moreover, an observation (the instance Observation 1 of the concept



Fig. 1. Simplified schema of the conceptual component of PO2. The ontology is divided
in three main parts: Step, Participant and Observation. These parts interact to each
other through semantic relations.

Observation) was made on the temperature (the instance Temperature 1 of the
concept Attribute) of Mixture 1 which has for value: 5 celsius degree.

2.2 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) extend Bayesian networks (BNs) with
the notion of class of relational databases. A BN is the representation of a joint
probability over a set of random variables that uses a Directed Acyclic Graph
(DAG) to encode probabilistic relations between variables (see Fig. 3(a)). How-
ever, in the case of numerous random variables with repetitive patterns (for
instance different steps in the same transformation process), it cannot efficiently
represent every probabilistic link.

PRMs extend the BN representation with a relational structure between po-
tentially repeated fragments of BN called classes [15]. A class is defined as a DAG
over a set of attributes. These attributes can be inner attributes or attributes
from other classes referenced by so-called reference slots. The analysis of the
BNs in Fig. 3(a) reveals two recurrent patterns, that can be translated into two
interconnected classes E and F , as presented in Fig. 3(b).

The high level structure of a PRM (i.e. its relational schema, see Fig. 3(b))
describes a set of classes C, associated with attributes A(C) and reference slots
R(C). A slot chain is defined as a sequence of reference slots that allows one to
put in relation attributes of objects that are indirectly related.

The probabilistic models are defined on the low level structure (i.e. at the
class level) over the set of inner attributes, conditionally to the set of outer
attributes and represent generic probabilistic relations inside the classes. This is
the relational model of the PRM (see Fig. 3(c)).



(a) Excerpt of the simplified conceptual component of PO2
stab

(b) Excerpt of the simplified instance component of PO2
stab

Fig. 2. An example of a domain ontology about the micro-organisms stabilization
transformation process: PO2

stab

Classes can be instantiated for each specific situation (see Fig. 3 (d)). A
system in a PRM provides a probability distribution over a set of instances
of a relational schema [16]. PRMs define the high-level, qualitative description
of the structure of the domain and the quantitative information given by the
probability distribution [5].

2.3 Learning PRMs

PRM learning is composed of two different parts: structure selection and pa-
rameter estimation. Structure selection can be decomposed in two layers: a



(a) An example of two BNs. The gray areas represent
the repetitive patterns, but are not part of the BN
specification.

(b) The relational schema
of the PRM. It is composed
of two connected classes E and
F .

(c) The PRM relational model. Re-
lational links between attributes were
added to the relational schema in (b).

(d) A system for the PRM in (c). Instantia-
tion of the classes of the PRM representing
the BN in (a).

Fig. 3. BNs and PRMs: the analysis of the BN in (a) reveals two recurrent patterns,
that can be translated into two interconnected classes E and F of a PRM (b) and (c).
An equivalent system can, thus, be constructed through the instantiation of twice the
class E and three times the class F (d).

high level layer that organizes the knowledge under an entity-relation pattern
(using classes and references); and a lower level layer that employs a graphical
language to represent the probability distribution in a compact way by exploiting
the probabilistic dependencies between the attributes. The relational schema
is learned with the high level layer while the relational model is the final
result of structure selection. Due to these multiple layers, the number of free
parameters is high, and the target model is not unique: selecting one requires
making subjective choices. Moreover, the richness of this tool allows us to rep-
resent new and complex systems where data can be scarce or incomplete. This
can be another obstacle while learning PRMs, for example, in life science.

In [5] an algorithm based on an heuristic search, such as a greedy algo-
rithm, is proposed to select the legal structure (i.e. a structure representing a
coherent probability model) with the highest score. The score proposed has a
decomposability property that helps to analyze small parts of structures, easing
the search. Other score-based approaches have been equally proposed based on
a relational extension [6].



On the contrary of heuristic search, dependency analysis tries to discover
dependency relations from the data itself and then attempts to learn the struc-
ture. This constraint guided approach was exploited in [10] that extends to the
relational context, or in [4] that proposes an exact approach to learn PRMs.

In this paper we propose to learn a PRM starting from its relational schema.
This relational schema can be deduced from a relational database, however on-
tologies can also be used to define it. In fact, the notions of class in PRMs
and of concepts in ontologies are very similar. We therefore propose to deduce
the relational schema of a PRM from the concepts’ structuration defined in the
ontology’s conceptual component.

The use of ontology has already been proposed for learning BNs [3] [8] and
Object Oriented Bayesian Networks [1]. An approach to define a relational
schema from an ontology has been proposed in [11], but the task of learning
PRMs using an ontology has not been addressed yet.

Indeed, once the structure of the relational schema is known, learning the
relational model of a PRM can be compared to selecting the structure of a BN
[6]. The main difference is that probabilistic dependences between attributes in
the same class are forced to be identical: the PRM relational schema and the
ontology’s semantic knowledge give us patterns on which to learn.

3 Learning a PRM using an ontology

We present, in this section, our approach to learn PRMs using ontologies. We first
present the relational schema mapping from the PO2’s conceptual component
and then our ON2PRM algorithm.

3.1 Relational Schema mapping

We briefly present our relational schema mapping from the PO2’s conceptual
component that relies on the one proposed in [11]. Our mapping was motivated
both by the description of transformation processes in PO2 and the definition
of state as explained in the theory of control and expert systems.

In the theory of control, a system can be described as a succession of states
through time [14]. A state contains a set of every attributes that enables to
describe the system. Observations can be made to evaluate these attributes:
however, the act of observing is independent of the state itself. These definitions
and the semantic representation of transformation processes defined in PO2

allow us to define the following temporal dependences properties:

– Observations can be longer in time than the states they are observ-
ing. For instance, some measurement methods in biology are based on time
dependent reactions; in this case, the result of observations can be physically
obtained even if the step linked to these has ended before;

– States influence the result of observations, but observations do
not influence states’ values. From this property, we can deduce that
observations cannot influence other observations.



In the relational schema, we therefore propose to define two classes built from
the ontology’s concepts defined in its conceptual component:

– The Participant Class, P. It groups every a priori attributes: the at-
tributes of the participant concepts mixtures, devices and methods (Fig. 1).

– The Observation Class, O. It groups every measured attributes.

At each time step t, we instantiate these two classes: Pt and Ot. We call Step,
denoted by St, the couple Pt and Ot.

The temporal dependences properties introduced above can be formalized
between the two classes Pt and Ot as the following temporal dependences
constraints: Pt can have none or multiple P parents at time t-1 (that we call
altogether Pt−1), but always maximum one child at time t+1 (Pt+1). Ot only
depends on Pt. To each P class an O class is linked. Through slot chain, each
PT class has access to every attributes of Pt with t<T, and each Ot has only
access to the attributes of Pt.

The relational schema mapped from the PO2 ontology is represented in Fig. 4:
the arrows represent the reference slots; given two classes Pt and Pt−1, Pt−1

o→Pt means that Pt’attributes can depend on Pt−1’s, attributes of Pt−1 can
be parents of attributes of Pt. However, according to the temporal dependences
constraints, attributes of Ot−1 cannot be parents of attributes of Ot.

Fig. 4. Relational Schema mapped from the PO2 ontology for two steps.

This relational schema has two interesting properties we use in the learning.
First, it preserves the compartmentalization between the different steps and
between participants in the process and observations about the process. In the
relational schema the attributes of an observation class only depend on the
attributes of the participant class it is associated with. This will allow us to
consider, while learning the relational model, only meaningful attributes, which
are defined in the conceptual component of the ontology. In example of Fig. 2,



we can deduce from the instance component of PO2
stab that the SugarQuantity

is an attribute of the mixture in the Participant class and the Temperature is
an attribute of the Observation class. Moreover, we can deduce that these two
attributes are specific to the Fermentation step.

Second, it preserves the integrity of the steps through time: a choice made at
time t (i.e. the value of an attribute of Pt) cannot influence an observation at
time t-1. This leads us to define the direction learning constraint used in the
learning presented below: if attributes are dependent in the instance component
of PO2, the learnt links between them can only have one direction. In example
of Fig. 2, we can deduce from the instance component of PO2

stab that the sugar
quantity, an attribute of the mixture, can have an influence on the tempera-
ture, an observation attribute of the mixture. Moreover, considering that the
fermentation step is before the culture step, the sugar quantity can also have an
influence on the values of the attributes associated with the culture step.

In the next subsection, we present our algorithm for learning PRMs’ rela-
tional models using its relational schema and the ontology PO2.

3.2 Our ON2PRM algorithm

The learning approach we propose for learning a PRM given its relational schema
is very similar to a classic approach for learning BNs. However, we propose to
use the semantic knowledge of the ontology: the concepts’ structure defined in
its conceptual component and the links between concepts defined in its instance
component, as presented in the mapping defined above.

Let us consider a database D about a transformation process, where each
attribute using concepts defined in the conceptual component of the ontology is
represented (e.g. fermentation is a step according to the concepts’ hierarchy of
PO2

stab as presented in Fig. 2). Following the compartmentalization property
introduced in the relational schema, several sub-databases are created, during
the learning from D, each containing the data of one step: only the attributes
of this step (i.e. attributes from the Pt and the Ot classes) and their parents
(i.e. attributes from the Pt−1 class) are considered. This ensures that the or-
ganization between participant and observation is preserved. Afterwards, using
the direction learning constraint, we force a learning order over the attributes
of the same sub-database. This ensures that the temporal order between steps is
preserved. However preserving organization and temporal order does not imply
links existence but only that, if they exist, the orientation of the links is de-
fined by the direction and the organization given. In example of Fig. 2, we can
deduce from the instance component of PO2

stab that the attribute quantity of
sugar is included both in the fermentation Pt and the culture Pt−1, while the
temperature is only included in the fermentation Ot class.

We call ON2PRM(M) our algorithm of learning a PRM’s relational model
from an ontology where M is a learning method for Bayesian Networks that can
be used to draw probabilistic dependencies between attributes from a database.
For each step (e.g. the steps fermentation, culture and stabilization in Fig. 2), the
ON2PRM(M) algorithm uses M over the attributes (e.g. the attribute quantity



of sugar in the fermentation Pt and the culture Pt−1 and the attribute tem-
perature in the fermentation Ot class) following the established learning order
to learn a small BN for each identified class of the PRM. Once every class
has been learnt, the PRM relational model is defined and can be instantiated.

Input: ontology PO2 + relational schema + database D + learning
method M

Result: a PRM relational model
//the for loop is justified by the compartmentalization property of the

relational schema
//the identification of the steps relies on the concepts and concepts’

hierarchy defined in the conceptual component of PO2

for each step at time t do
//the identification of the attributes relies on the concepts and concepts’

hierarchy defined in the conceptual component of PO2 ;
identify attributes for Pt ;
identify attributes for Pt−1 ;
identify attributes for Ot ;

create a sub-database from D from the identified attributes;

//the learning order is defined from the instance component of PO2

as defined in the direction constraint ;
define the learning order ;

learn a BN of a PRM class from sub-database + learning order +
method M ;

end
//the PRM relational model is the set of the PRM classes generated above,

linked to each other following the PRM relational schema ;
create the PRM relational model ;

Algorithm 1: ON2PRM(M): Learning a PRM using an ontology

As explained in section 2.2, the PRM relational model can be instantiated
with data in D providing the system of the PRM. In the following we use the
instantiated PRM to compare the performance of our approach to that of a
method that learns BNs directly from data. We demonstrate that, thanks to the
use of the semantic knowledge represented in an ontology, learning a PRM with
an ontology is more efficient than learning without an ontology. We compare the
performance of learning with our algorithm ON2PRM(M) to the performance
of learning only with the method M .



4 Experiments

In order to validate our approach we propose to compare the performance of
learning with and without ontology implementing two learning methods3:

– Greedy Hill Climbing algorithm with BIC score, denoted by M1;
– Local Search with Tabu List algorithm with BDeu score, denoted by M2.

The proposed experiment consists in comparing the instantiated PRM, learnt
with ON2PRM from a database D of transformation processes and PO2, with a
BN learnt from D, using both methods M1 and M2. All our experiments were
implemented using the PyAgrum Python library [7].

In order to have an experiment as generic as possible, we perform our learn-
ings from several randomly generated databases Di. We first present the gener-
ation of our test databases and then our results.

4.1 Databases generation

The databases generation (1) generates PRM relational models representing
transformation processes using the PRM relation schema of Fig. 4 and (2) builds
the domain ontologies corresponding to the generated PRM relational models.
We first present the generation of the PRM relational models, then the construc-
tion of the corresponding domain ontologies, finally the databases generation.

The PRM relational models generation One of our motivations to study
transformation processes is their complexity (of which we presented the main
characteristics in the introduction section. One process cannot therefore encom-
pass alone the entire diversity spectrum of processes. We define five process
complexity degrees criteria to randomly generate PRM relational models
representing transformation processes as much as possible generic :

1. the number s of steps in a process;
2. the maximal number p of parallel steps, representing how many parents a

step can have;
3. the number n of attributes in a class;
4. the number m of modalities for the attributes;
5. the number d of probabilistic dependencies an attribute may have.

The higher the process complexity degrees criteria are, the harder to learn
the corresponding PRM relational models are. As a matter of fact, during the
learning phase of a PRM relational model:

– a high number of steps induces more PRMs’ classes to learn;
– a high number of parallel steps, attributes and probabilistic dependencies

induces more possible links to draw;

3 These are two standard well known methods for learning BN. These and others
methods can be found in [12]



– a high number of modalities induces a more difficult learning.

In the following, we assume that the process complexity degrees criteria are
better addressed by ON2PRM where the ontology semantic knowledge reduces
the learning’s complexity. Therefore, we argue that if the results of our approach
outperforms that of a standard method for simple processes, it will have better
results in learning more complex processes. Considering this assumption and to
be as close as possible to the modelization of real transformation processes,

we decided to fix two process complexity degrees criteria: m = 2 (i.e. bi-
nary attributes) and d = 3, and to have three criteria that vary: s ∈ {3, 5, 8},
p ∈ {1, 2, 3} and n ∈ {2, 4}. This leads us to have 16 different configurations
of possible processes, not considering the case s = 3 and p = 3 (i.e. a pro-
cess composed of only three parallel steps without interaction) because it is not
interesting.

With these 16 configurations, we can generate several different PRM rela-
tional models because of the possible relations between attributes. For example,
links between steps are decided randomly, given s and p (see Fig. 5 (a)); more-
over, even inside the same class or sequence of two steps, links between attributes
are decided randomly given n (see Fig. 5 (b)). We generate 10 PRM relational
models for each configuration, that corresponds to a total of 160 processes.

(a) Fixed s = 5
and fixed p = 3

(b) Fixed n = 2 and fixed d = 3

Fig. 5. Possible differences with fixed parameters

These PRM relational models will be on the one hand used to generate the
test databases and on the other hand considered as the original models, i.e. the
ground truths in the experiments’ evaluation.

The domain ontologies generation In parallel to the generation of these
PRM relational models, we build several domain ontologies, denoted by PO2

domi
,

necessary for our ON2PRM learning algorithm. The domain ontology’s genera-
tion is done using the same process complexity degrees criteria defined above.
The number s of steps and the number n of attributes are used to create the



conceptual component of each domain ontology PO2
domi

; the number p of par-
allel steps are used to create its instance component. For example, the domain
ontology PO2

stab of Fig. 2 has s = 3, n = 2 and p = 1.

Databases generation From each of the 160 PRM relational models, we gener-
ate 100 times four databases of different sizes as presented in Fig.6: 100 databases
of size 50, 100 databases of size 100, 100 databases of size 150 and 100 databases
of size 200. The database size refers to the number of examples in it. We therefore
generated 16 ∗ 10 ∗ 400 = 64 000 databases for experiments.

Fig. 6. Databases generation

4.2 Results

We evaluate the performance of ON2PRM in learning the relational model of a
PRM by comparing its performance with that of a method that learns proba-
bilistic models without using an ontology.

The learning is performed on the 64 000 databases Di generated above.
We compare the instantiation of the relational models learnt by our algorithm
ON2PRM using both learning methods M1 and M2, denoted by ON2PRM(M1)
and ON2PRM(M2), with the BNs learnt by M1 and M2 alone. With the stan-
dard approach, the learning is done directly from the database.

The performance of our algorithm is evaluated using structural analysis (i.e.
recall, precision and f-score scores) by comparing the structure of the graph
learnt to the one of the ground truth. More precisely, let Ci, i ∈ [1, 16], be one
of the 16 possible process configurations, P i

j , j ∈ [1, 10], be one of the 10 PRM

relational models generated from the configuration Ci and Di,j
k , k ∈ [1, 4], be one

of the 400 databases generated from the PRM relational model P i
j . The model

(relational model or BN) learnt from the database Di,j
k with one of the four



different methods ON2PRM(M1), ON2PRM(M2), M1 and M2 is compared
with its ground truth P i

j .
Let us notice that due to the semantic value added, edges orientation is

crucial: that is why we consider the presence of arcs as well as their orientation
while evaluating the performance.

Three different structural parameters were evaluated: recall, precision and
F-score [2]. Recall is used to estimate the number of links found out of the total
we have to find. Precision allows the estimation of the proportion of true links
among the ones found. F-score is the average of recall and precision. In order
to compute these parameters, we have to count the number of true positive and
true negative (i.e. right learning), and false positive and false negative (i.e. wrong
learning). These are defined following the heuristic reported in Table 1.

Table 1. Heuristic used to compare two BNs. TN: True negative. FN: False negative.
TP: True positive. FP: False positive

Learned
Model ∅ → ←

∅ TN FN FN
→ FP TP FN
← FP FN TP

Precision, recall and F-score are computed with the following equations:

Recall =
TP

TP + FN
Precision =

TP

TP + FP

F-score =
2 ∗Recall ∗ Precision

Recall + Precision
In Table 2 we report the F-score of ON2PRM(M1) compared with M1 and

ON2PRM(M2) compared with M2 on a database of size 50. In all cases, results
with ontology are significantly better than without. This can be explained by the
two properties of the ontology that are preserved by the relational schema (as
explained in Sect. 3.1): both compartmentalization and the direction constraint
drastically reduce the number of possibilities the method M can consider in the
ON2PRM(M) algorithm.

Recall and precision are both as significant as F-score; however depending on
the methods, performance varies. Precision tends to be, in fact, better with M1,
while recall is better with M2. Since the difference between recall and precision
for M2 is smaller than for M1, it explains why M2 has the best F-score. Table 3
shows performances’ comparison between different databases’ sizes (50, 100, 150
and 200) and between different process complexities (high-complexity processes
(b) and low-complexity processes (a)). This score rises with the augmentation
of the size of the database.

Even with few data a difference between the two learning approaches appears.
Moreover while raising the size of the database, every score increases. In order to
quantify and compare the performance of learning with ontology and without,



Table 2. Variation of F-score in function of different parameters tested with a database
of size 50 with 100 repetitions: (mean [confidence interval 99%]). bold: highest value
in column, italic: lowest value in column. s: number of steps, p: maximal number of
parallel steps, n: number of attributes

s p n ON2PRM(M1) ON2PROM(M2) M1 M2

3
1

2 0.40 [0.03] 0.27 [0.03] 0.56 [0.03] 0.33 [0.03]
4 0.33 [0.02] 0.25 [0.02] 0.45 [0.02] 0.26 [0.02]

2
2 0.24 [0.03] 0.17 [0.03] 0.43 [0.03] 0.26 [0.03]
4 0.25 [0.01] 0.20 [0.01] 0.38 [0.02] 0.24 [0.02]

5

1
2 0.40 [0.02] 0.29 [0.02] 0.54 [0.02] 0.27 [0.02]
4 0.30 [0.01] 0.22 [0.01] 0.43 [0.01] 0.22 [0.01]

2
2 0.37 [0.02] 0.27 [0.02] 0.54 [0.02] 0.27 [0.02]
4 0.29 [0.01] 0.21 [0.01] 0.42 [0.01] 0.21 [0.01]

3
2 0.37 [0.02] 0.28 [0.02] 0.52 [0.02] 0.27 [0.02]
4 0.28 [0.01] 0.22 [0.01] 0.41 [0.01] 0.21 [0.01]

8

1
2 0.45 [0.01] 0.29 [0.02] 0.58 [0.01] 0.25 [0.01]
4 0.31 [0.01] 0.21 [0.01] 0.43 [0.01] 0.17 [0.01]

2
2 0.37 [0.02] 0.25 [0.02] 0.52 [0.02] 0.22 [0.01]
4 0.31 [0.01] 0.22 [0.01] 0.44 [0.01] 0.18 [0.01]

3
2 0.34 [0.02] 0.24 [0.02] 0.52 [0.02] 0.22 [0.01]
4 0.31 [0.01] 0.22 [0.01] 0.43 [0.01] 0.18 [0.01]

we introduce the following ratio of the performances:

ratio =
performance with ON2PRM

performance without ON2PRM

The more the ratio is above 1, the more the learning with the ON2PRM
algorithm is efficient. We have used this value to compare the evolution of scores
with processes complexity and the different complexity degrees defined (number
of step s, number of parent p and number of attribute n).

(a)
Simple process (s = 3, p = 1, n = 5)

(b)
Complex process (s = 8, p = 3, n = 5)

Fig. 7. Evolution of F-score ratio for two different processes with the database length



Table 3. Comparison of performances for recall, precision and F-score for M1 and M2
with different sizes of the database (mean [confidence interval 99%]).

Method Length
Recall Precision Fscore

ON2PRM(M) M ON2PRM(M) M ON2PRM(M) M

M1
50 0.26 [0.04] 0.16 [0.03] 0.95 [0.05] 0.81 [0.09] 0.4 [0.05] 0.27 [0.04]
100 0.39 [0.04] 0.24 [0.04] 0.97 [0.02] 0.87 [0.07] 0.54 [0.05] 0.37 [0.05]
150 0.47 [0.04] 0.28 [0.04] 0.97 [0.02] 0.86 [0.06] 0.62 [0.04] 0.41 [0.05]
200 0.51 [0.04] 0.31 [0.04] 0.97 [0.02] 0.88 [0.06] 0.66 [0.04] 0.44 [0.05]

M2
50 0.44 [0.04] 0.27 [0.04] 0.82 [0.04] 0.46 [0.05] 0.56 [0.04] 0.33 [0.04]
100 0.53 [0.04] 0.33 [0.04] 0.90 [0.03] 0.61 [0.06] 0.66 [0.04] 0.42 [0.05]
150 0.57 [0.04] 0.38 [0.05] 0.92 [0.03] 0.69 [0.05] 0.70 [0.03] 0.48 [0.05]
200 0.61 [0.04] 0.4 [0.04] 0.94 [0.02] 0.72 [0.05] 0.73 [0.03] 0.50 [0.05]

(a) Parameters of the process: s = 3, p = 1, n = 2

Method Length
Recall Precision Fscore

ON2PRM(M) M ON2PRM(M) M ON2PRM(M) M

M1
50 0.19 [0.01] 0.13 [0.01] 0.91 [0.02] 0.61 [0.03] 0.31 [0.02] 0.22 [0.01]
100 0.29 [0.01] 0.21 [0.01] 0.93 [0.01] 0.73 [0.03] 0.44 [0.01] 0.33 [0.02]
150 0.36 [0.01] 0.27 [0.01] 0.94 [0.01] 0.77 [0.02] 0.52 [0.02] 0.40 [0.02]
200 0.42 [0.01] 0.32 [0.02] 0.94 [0.01] 0.8 [0.02] 0.58 [0.02] 0.46 [0.02]

M2
50 0.33 [0.02] 0.19 [0.01] 0.61 [0.02] 0.16 [0.01] 0.43 [0.02] 0.18 [0.01]
100 0.42 [0.02] 0.26 [0.02] 0.78 [0.02] 0.32 [0.02] 0.54 [0.02] 0.29 [0.02]
150 0.48 [0.02] 0.32 [0.02] 0.84 [0.02] 0.44 [0.02] 0.61 [0.02] 0.37 [0.02]
200 0.52 [0.02] 0.36 [0.02] 0.87 [0.01] 0.52 [0.02] 0.65 [0.01] 0.42 [0.02]

(b) Parameters of the process: s = 8, p = 3, n = 4

Fig. 7 illustrates the evolution of the ratio for two processes. The ratio is
always above 1, but it is also decreasing with the augmentation of the database
size. Depending on the methods this decrease can be narrower or wider: while M1
stays practically stable M2 drops faster. Moreover the ratio varies equally with
the complexity for M2: ON2PRM efficiency is higher with a complex process.

s 3 5 8

n 3 5 3 5 3 5

Ratio 1.70 1.95 2.35 2.45

Fig. 8. Evolution of F-score in function of n (p = 1, D size = 50) and ratio evolution
in function of n and s for M2.



Fig. 8 shows correlation between the number of attributes and the number
of steps: the more a process is complex in terms of attributes, the lower is the
F-score. Moreover, for the same number of attribute, the F-score decreases in
case of the learning without ontology while it stays stable with ON2PRM. This
explains that the ratio measure increases with the number s of steps (b).

5 Conclusion

In this paper, we presented an approach to learn a PRM by using expert knowl-
edge extracted from an ontology. The advantage of our approach is that (i) the
high level knowledge structure organization needed to construct the relational
schema can be found directly in the ontology and (ii) this relational schema com-
bined with the semantic knowledge represented by the ontology eases the learn-
ing afterward. Thanks to the addition of this semantic knowledge the learning’s
complexity is reduced and the learnt models are more meaningful than those
learnt with a simple direct learning. In our experiments we demonstrated the
efficiency of our approach compared to the one without prior knowledge, even
in low-complexity processes or with few data.

In future works, we will generalize this approach to consider different tempo-
ral relations such as, for example, the time duration of the observations. In this
paper, we identified the mapping between classes in the ontology and the PRM,
and the temporal dependency properties from the concepts’ structuration and
the relations of an ontology, following the approach presented in [11]. A global
framework of completely automated ON2PRM extraction from an ontology con-
ceptual component and its instance component will face two main challenges:
the discovery of oriented relations in ontologies (from data, from expert, etc.)
and more complex relations between concepts in ontology and classes in PRM
(more complex than a one-to-one mapping). We intend to address these issues
by testing our approach and its limits on different ontologies.
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