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ABSTRACT:

We consider solute transport in a porous medium saturated by two immiscible liquids with

different viscosities. Liquid with high viscosity can form isolated stagnant zones (immobile liquid zone
IMLZ), whereas liquid with low viscosity forms a mobile liquid zone ~ MLZ. Diffusion properties of MLZ and
IMLZ can considerably differ. The homogenization method is used to obtain a macroscopic description of the
problem, Several cascs are defined by means of the order of magnitude of local non-dimensional Diimkohler
number, of the Péclet number and of the ratio of diffusion coefficients of liquids, For each case macroscopic
solute transport models are obtained and analyzed. It is shown that the influence of the IMLZ appears by means
of a source/sink term in the macroscopic equation, This indicates that solute mass-exchange between the MLZ
und IMLZ can considerably change the solute concentration distribution in the MLZ,

1 INTRODUCTION

During the displacement of heavy oil by water solu-
tions of chemicals, isolated stagnant oil zones sur-
rounded by water can be formed due to the great
differences in viscosities of oil and water. Thus,
the water phase forms a mobile liquid zone (MLZ)
whereas oil occupies an immobile liquid zone (IMLZ).
The solute can diffuse through the MLZ/IMLZ inter-
face, and due to high diferences in viscosities of both
liquids, the diffusion coefficients in the MLZ and in the
IMLZ can be significantly different. The presence of
IMLZ in porous media yields to significant changes of
hydrodynamic parameters of solute transport, and, in
particular, to anomalous breakthrough curves (BTCs).
One of these anomalous efTects is tail effect.

One of the first models accounting for the pres-
ence of IMLZ was introduced by Coats & Smith
(1964), where the IMLZ is presented as a dead-end
pore one, which yiclds a capacitance model. The dis-
persion equations of Coats and Smith (1964) can be
written in the form

i
a(omcu-) = V. (0yDy - Vi)
-V (U vVen), (1)

o
ﬁ(omcm) +

i
‘,T‘(”imcim) = tm(Cm = Cim), (2)

where ¢y, ¢ are the mass concentrations of solute,
Dy, is the dispersion cocfficient, v is the average veloc-
ity in the mobile liquid, 6, 6, arc the fractions of the
pore volume occupied by mobile and immobile lig-
uids, respectively, oy is a mass transfer cocfficient,
and indexes «m» and «im» correspond to mobile and
immobile liquids, respectively. Note that Egs (1), (2)
were written by Coats & Smith (1964) in the one-
dimensional case, with D = const, 6, = const and
with the coeflicient 6, absent in the RHS of (1) (it
was introduced later by subsequent authors).

Van Genuchten & Wicrenga (1976) proposed a
model generalizing the Coats & Smith (1964) model.
They introduced two regions, the dynamic and stag-
nant zones, with fraction f of the sorption sites in the
MLZ, and fraction | — fin the IMLZ. For a nonlinear
instantaneous adsorption laws = a,c™ , a,, by = const,
and when Dy, Oy, fhm, f, v are constants, resulting
cquaﬁauinone—dimkmlweminu\ermn
R 2 + B Rim o = O Do 5 = Wl

X ax 3)

O Rim "’:—" = Gal(Cer — Cn), @)

where Ry, = | +(pabych) ' /6, Rin = 1 +(1 = £) x

pabycht ! /By, and p is the bulk density of the porous
ium.



There are many works where the tail cffect of BTCs
is well described by Eqgs (1), (2) or (3), (4) (Coats &
Smith 1964, van Genuchten & Wierenga 1976, Gaudet
ctal, 1977, de Smedt & Wicrenga 1979 etc.).

Piquemal (1992) analyzed the miscible fluid dis-
placement in porous media with a mobile and immo-
bile fraction by means of volume or surface averaging
methods. The results show strong limitations: Péclet
numbers should be large interfacial arca
between mobile liquid and solid should be much larger
than that between mobile and immobile liquids. On
the other hand, during the application of the aver-
aging technique the author used a phenomenological
relation,

Adsorption of solute in porous media was investi-
gated by Auriault & Lewandowska (1993a, b, 1995,
1996, 1997), Canon et al, (1999) by using the method
of homogenization of periodic structures.

To ourknowledge, macroscopic modelling of solute
transport in porous media with MLZ and IMLZ in
presence of adsorption, has not been still investigated.
We address this problem in the present paper. Dur-
ing the following investigations we repeatedly makc
use of the results and the methodology developed by
Auriault & Lewandowska (1993a, b, 1995, 1996,
1997), as well as by Auriault (1983, 1991), Auriault &
Adler (1995), Auriault & Royer (1993).

2 STATEMENT OF THE PROBLEM

Consider a porous medium which domain © con-
sists of three parts: Q, is the mobile liquid, where
convection-diffusion occur; Q5 is the
immobile liquid, where only diffusion can occur, and
23 is the solid domain. Domains Q4, #=1,2,3 are
assumed to be connected and Q; is undeformable
(Fig. 1).

We denote by ¢ the volume fraction of Q, i.e.

¢ = [, and by analogy - ¢, = % Obviously,

Figure 1. A porous medium with MLZ and IMLZ.
pore volume occupied by mobile liquid (€2;), vol-
ume occupied by immobile liguid (£2;), solid
volume (£23).

¢ = ¢ + ¢, represents the total porosity of the porous
medium.

Common boundarics between domains Q4,8 =1,
2,3aredenoted Ty = G,NG; NG, I'; = G,NG;NG,
I's = G; NGy NG, The domain Q is assumed 1o be
periodic, with a period of characteristic length I. Let L
be a macroscopic characteristic length. Then we can
introduce the small parameter of separation of scales
e=lL.

The fluids are incompressible and liquid motion in
Q) is quasi-static, so we neglect the initial and tran-
sicnt terms in the Navier-Stokes equation. Then at the
pore scale the fluid motion in , can be described by
Stokes’ equation and the local equation of continuity

uViv - Vp=0, V.v=0, 5
with the no-slip condition on the solid walls and on
the surface of the IMLZ Q,

v=0 onluUl;. (6)

We consider a problem of solute transport in €2,
with possible adsorption on I'; and mass-cxchange
between €2, and 23 domains through I°;. In 2, only
diffusion of the solute can occur whereas in €2, solute
is transported by both convection and diffusion. So
the concentration of the solute ¢; in @, obeys the
convection—diffusion equation
a;"— + V- (ve)) = V- (D, - Vey) ™M

and the solute concentration ¢; in €2 is described by
the diffusion equation

a
=V Ve, ®)

where Dy, D; are the molecular diffusion tensors in
gldaszw-

According to the above description, the boundary
conditions are in the form:

-li'(DI'VC|)=a% onl'y, 9)

n (D -Vey)=-m-(D;-Ve3) only, (10)

on I, an

(12)

=0
=n2:(D;-Ve) =0 only,

where « is an adsorption parameter, ny, n; are unit
vectors normal to I'y and I'; and oriented from Q, to
Q; and Q3 and from Q; o Q, and Qj, respectively.
Obviously, we have ny; = —my on Ty,




3 NORMALIZATION

We use the macroscopic point of view (Auriault 1991).
Therefore, the characteristic length in use for normal-
ising is the macroscopic characteristic length L, e.g.,
the characteristic length of the porous media sample.
We introduce the following non-dimensional variables

i e e ST ]
"l-cﬂn "2"%’ —L, —Ur

& D, el RS

D, =—, =—, t=—, 13
1= P, D, D, . (13)

where ¢y, D, D,,U,t, arc characteristic values of
ci(cz), Dy, Dy, v, 1, respectively, and the overseript «—»
shows non-dimensional variables. Then we can write
the set (7)-(12) in the following dimensionless form

after choosing t, = £, which is the characteristic
diffusion time in the MLZ

e

a‘ +Pe- V. (¥&) =V (D - VE), (7
T

a—: =D.V.(D; V%), (®)

a¢,

~my (D) - V&) = Da- o on T 9)
n (D) VE)=~Dny (D;- V&) onTy (10)
G =C onl (1)
-n; (D V&)=0 only, (12)

where Pe = [k is the Péclet number, Da = { is
the Dimcohler number, and D = . For the sake

of the simplicity we keep the same notations, but all
quantities are now dimensionless quantities.

4 HOMOGENIZATION

Since the macroscopic point of view (Auriault 1991)
was adopted, we use the following differential rule

1
V'-V,-+‘V,. (14)

For large Péclet numbers, we can introduce a sec-
ond charucteristic time t, = {5 and the corresponding
dimensionless time r. When using these two time
scales, the differentiation rule with respect to time

becomes
i i 8-
8_ 3)( e 8: (%)

We also introduce the following notations for the

volume and surface averages
o & Lo g gt am
- - R - o

1
(- dQ, -dQ, 1
e IQI/ A (16)
1

()r, = )

IQI . ds’ ()lz-

Obviously, we have (-)z = ¢s(- Ja,, A =1,2. And we
introduce the following specific surfaces of the porous
medium

_ Nl e L]l
12" [h
Tyl + T2l
= - |
m=n+n al (17)

Then, the total specific surface of the porous medium
is defined by

LY
I

Note that in general we have ¥z # Vo

Problem (5)(6) is indcpendent of problem (7)-
(12). 1t is a well-known problem, see for example
Auriault & Adler (1995). The main result is in the form

(vo)1 = =K; - Vyp°, (18)
wtlnletcl(; = (Kk¢)1, K¢ is solution to the corresponding
cel

Wcmlymwwdlﬂ'mmumdeﬁnedbylhe
orders of magnitude of the non-dimensional numbers
Pe, Da, and D. As in Auriault & Adler (1995), Auri-
ault & Lewandowska (1993b, 1996) we consider the
values Pe = O(g), O(1), (™"). In the present paper,
we restrict oursclves to small D = O(¢) and small
or moderate adsorption, i.c. Da = O(¢), O(1). Cases
with Da = O(£4), g 2 2 lead to macroscopic equations
where adsorption does not appear.

Case L. Pe = O(g), Da = O), D = )
The non-dimensional equations and the corresponding
boundary conditions are

.8_c_' + ¢V . (VC|)-V (D| VC]) in Ql. (19)
dey .

" eV (D;:Vey) in 2y, (20)
~m - (D, 'Vﬁn)-mﬁ only, 21

an



n - (DI . Vcl) = —ENy - (Dz . ch) on I‘Z, (22)
¢ =¢C on I, (23)
—nz-(D;-Ve) =0 on . (24)

We look for the unknowns in the form of asymptotic
expansions

o = cdx,y.0) +ecl(x,y, 0 + (X, ¥, 0 + -y

o2 = (%, ¥,1) + ec)(x,¥,0)
+2 (XY, 0+,

v = V0, y, 0+ evi(x,y,0) + V(XY 0 + oy

(25)

Introducing these expansions in Eq. (19) gives at the
successive orders of &

£V (D) - Vye)) =0, (26)
£V - (D - (Vae] + Vyc}))
+Vy - (Dy - Vye) =0, 27
act
e: 'a'a" + Yy (v0cd) = Yy - (D - (V] + Vye}))
+Vy - (D) - (Vye] + Vye})). (28)
In the same way, we have with Eq. (20)
e Yy (D - Vyed) =0, (29)
oct
o -&1 =V -(Dy- V) + Yy
x (D - (Vi + Vyey)). (30)

From the boundary conditions (21) (24) we have at
successive orders of ¢ on Iy

—ny - (Dy - Vye)) = 0, (31)
—n; - Dy - (Vie] + Vye)) =0, (32)
0

—n; Dy - (Vi) + V,cf) = a%;'T'. (33)
onl’:
n Dy - Vye] =0, (34)
0Dy (Vaed + Vyel) = —mp Dy Vye),  (35)
0y - Dy - (Vee] 4 Vyef) = —my - D;

x (Vch + Vye3),  (36)
d=c, ¢ =c).., (37
and on I'y:
-ny - (D; V,C%) =) (38)
=0y - (D - (Vae} + Vye3)) = 0, (39)
—n; - (D; - (Vye) + Vyed)) = 0. (40)

Eq. (26) with (31) and (34) gives

¥ = cf(x,0). (41)
Then Fq. (27) with (41) becomes

Yy - (D - (Vae] + Vye})) = 0. (42)
Fq. (29) with (37), (38) gives

¢ = SY(x, ). (43)
From (37a), (41) and (43) we have

¢ = cf(x, 1) = c3(x,1), (44)
and (35) becomes

n Dy (Ve + V) =0 onlh. (45)

Consider Eq. (42) together with (32) and (45). The
solution of this problem is well-known (Auriault 1 983)
¢! = x1 - Vae” +T}(x, 1), (46)

where the vector function x; is € periodic with
{(x1}; = 0 and is the solution of the cell problem

Yy (D - (T4 Vyx1) =0 47
with
-m - D 'vaI =0 onl NIy (48)
Integration of (28) over £, yields
ac® 0
b= =" Dy - (T4 Vyx)h + Vie?)
1
+=[ Yy (D (Vye) +Vye}).  (49)
QJq,

Let us transform the integral term in (49)

1 1 2
fl]::.v’ (D) - (Vye} + Vyeh)Q
&

Q I'yur;

— l/ n - Dy -(V;c: + V,cf)dS
Q.

n - D, - (Vye] + Vye})dS

-

lf ny Dy - (Vie] + V,e])ds
QJr

= —a ?f.?— ‘fn Dy (Vyc” + Vych)dS
= }'I‘.')t Ql‘;z 2 A y&2 .

(50)



To obtain (50) we have used (33) and (36). To inves-
tigate the last integral term in (50), we integrate (30)
over 2,

r— = — ] Yy - (D; - (Vac” + Vyc2))dR.
2

Then, using the divergence thcorem gives
3 1

an  QJp,
+lf n; - D; - (Vie” + Vych)dS.
QJr,

L DZ 3 (vxco + V,c;)dS

With (39) we obtain
: Dy (Ve 4+ W -')ds==4u>,E (51)
Q .-,"2 T A a
and according to (49), (50), (51) we have
ac’ 4 "
(R + ﬁ)‘a =V - (D} : Vi), (52)
where
|
D: - 5[ l). '(l+ Vyxl)dﬂ‘ (53)
2y
Ry =1+ay/¢. (54)

Note that the macroscopic Eq. (52) contains only the
local transient derivative ‘!ﬁ in the LHS: diffusion
does not appear in £2;. Equation (52) can be rewritten
in the form

U

)

PRupp = = Vu+ (D] - Ve (55)
where

Rugp = 1 +ap /¢. (56)

If the IMLZ is absent, the retardation factor Ry, in
(55) becomes Ry = | + o « yp 0 /9.

By comparing Ry, with Rg we obtain Ry, « Ry:
the presence ol a IMLZ leads to & smaller retardu-
tion factor. With yy,a,¢ = const, equation (55)
becomes

et D}

¢ =V Dl Vue®) Diyy = oL

P (57)

We conclude that the presence of the IMLZ yields a
larger apparent dispersion coeflicient,

Case 2. Pe=01), Da=0(s), D=0(e).
Among cquations (19) (24), only (19) is changed

%+V-(vc|)=v-(l)|-Vc|). (58)
In this casc we have
el 0
(1R + tf’z)'gt~ + Vi - ({(v")1eD)
=V, - (D] - Vi), (59)

where D] and R, are determined by (53) and (54),
respectively. By repeating the same process as above,
we obtain from (59)

e 0 0 o . 0 60
¢? + Vi ((v )lq:pc ) 'vx‘(D|w‘vxc|)v (60)

where

1
Rapo
We sce that the presence of the IMLZ yields to a weaker
reduction of the apparent fluid velocity and of the dis-
persion tensor in comparison with the case when all

porous space is lilled by mobile liquid. In the latter
situation we have (Bear, 1972)

1
<v°).,..,..=m )y Digp=—D.

| 1
(V") app = n—‘,“’o"' Dl = g D1

In other words, the presence of the IMLZ leads to a
weakening of the influence of the adsorption on the
convection dispersion phenomena.

Case 3. Pe=0(s""), Da=Oe), D=0().
Since Pe is larger than O(1) we introduce a second
time scale r, and the time differentiation rule becomes
2 0 10
T TR T
The two time scales appear only in the convection-
diffusion equation in €2, and in boundary conditions
on I'y UT,. Due to v=0in £, one time scale 1 is
present in this region.

Eq. (8) is now written in the form
dey |
—va v. )=V . AN

T (vey) (D Vey)
In the present case we oblain two macroscopic
equations

(61)

(62)

3.0
=4 V(W) ") =0,

ot -

#c’  de})
(¢|R|+¢z)-a—" + ¥ -

=V, (D:' s vlco)-

F Ve (v e 4 (elv))
(64)



where

(65)

I
Dy = [ D, - (14 V, )€,
Q Jo,

and y; is a vector function of the same nature as x;.

When compared to (59), macroscopic equation (64)
shows more complex transient and convective terms.
By using (18), we can rewrite (64) in the following
form

dleih
ar
= V- (D5 Vac"),

U]
(iR, +¢z)aait+ + Vs (e + e} V)

(66)

where Do, =Dj* + A - V,p",  A=(k¢ - x2)i.
Other cases. It can be shown that case 4 with
Pe=O(e), Da=0(1), D=0(¢) and case 5§ with
Pe=0(1), Da=0(l), D=0(&) lead to situations
which are non-homogenizable (Auriault 1991, Auri-
ault & Lewandowska 1993b, 1996). In case 6 with

Pe=0(e"), Da~0(1), D=O(e) we obtain the
following macroscopic egns
0
¢|R| ?’it + {vo)| - V.Co = (). (67)
ac®  del) e,
G TR N Y
b Vs (v e’ + (el
= Vy (D : Vac"). (68)
where
Di** = -!- Dy (14 Vy xR, (69)

0

and x1 is a vector function which is the solution to the
corresponding local cell problem. Similarly to (66),
¢q. (68) can be written in the form

2" ael)r . dehr
T IR
bV (Ve + 81 (v"))

= Vs (D3 - Vae®),

¢

(70)

where Djos = Di** + A - Vip', A= (ke xa)i

The above obtained results show that only cases
with Da = O(g), D = O(¢) and Pe = O(x), O(1)
yield qualitatively similar models to phenomenolog-
ical model (3)(4). In all other cases analyzed here,
macroscopic equations are different,

5 CONCLUSIONS

Letus summarize our results. In cases with Da = O(g),
D = O(g) and Pe = O(«), O(1) the presence of the
IMLZ leads to the reduction of the retardation fac-
tor of the porous media. The macroscopic equations
are of diffusion or convection—difTusion type, with a
source/sink term. The latter characterizes the presence
of the IMLZ. At large Péclet numbers, the macroscopic
solute transport process can be divided into two stages:
1) at small times (time scale t) only solute convection
with local transient change of the macroscopic con-
centration ¢ (Egs (63), (67)) is observed; 2) at longer
times (time scale t) we have a convection-diffusion
process with complex transient phenomena (Eqgs (64),
(68)).

In presence of strong adsorption (Da=0(1))
and small or moderate Péclet numbers (Pe = O(),
(1)) the situation is non-homogenizable. When Pe =
O(#~1), both transient behaviour and dispersion tensor
are dependent on adsorption, among other parameters.

It was shown that phenomenological models
by Coats & Smith (1964), van Genuchten &
Wicrenga (1976) are in good agreement with the
macroscopic models obtained here in cases with
Da = (), D = O(g) and Pc = O(¢), O(1), only,

In conclusion, the presence ol IMLZ in porous
media can considerably alter the solute concentration
field in the MLZ and then alter the macroscopic
concentration field.
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