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MORE COUNTEREXAMPLES TO THE
EXTENDED COURANT PROPERTY (ECP)

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. The purpose of this note is to give new counterexam-
ples to the Extended Courant Property. More precisely, we look
at the equilateral rhombus, and at the hypercube, with either the
Neumann or the Dirichlet boundary condition.

1. Introduction

1.1. Notation. Let Ω ⊂ Rd be a bounded domain (Ω open and con-
nected), with sufficiently regular boundary (say piecewise C1 to fix the
ideas).
We assume that the boundary Γ = ∂Ω is partitioned as

(1.1) Γ =
k⊔
j=1

Γj ,

where the Γj are open subsets of ∂Ω, and where ⊔ denotes the disjoint
union.
We consider the eigenvalue problem −∆u = µu in Ω, with boundary
condition bj ∈ {d, n} on Γj, for 1 ≤ j ≤ k, where d stands for Dirich-
let boundary condition, and n for Neumann boundary condition. For
short, we will speak of the eigenvalue problem for (Ω, b1 · · · bk).
Alternatively, we can consider the variational eigenvalue problem for
the quadratic form u 7→

∫
Ω |∇u(x)|2 dx with domain H1

b1···bk
(Ω) ⊂

L2(Ω), where

(1.2) H1
b1···bk

(Ω) :=
{
u ∈ H1(Ω) | u|Γj = 0 whenever bj = d

}
.

As usual, we list the eigenvalues of (Ω, b1 · · · bk) in nondecreasing order,
with multiplicities, starting with the index 1, as
(1.3) µ1(Ω, b1 · · · bk) < µ2(Ω, b1 · · · bk) ≤ µ3(Ω, b1 · · · bk) ≤ · · ·
We also use the special notation δj(Ω) for the Dirichlet eigenvalues
of Ω (bj = d for all j), and νj(Ω) for the Neumann eigenvalues of Ω
(bj = n for all j). We denote by sp(Ω, b1 · · · bk) the spectrum of −∆
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for (Ω, b1 · · · bk). To make notation lighter, we skip mentioning Ω, or
the boundary condition b1 · · · bk, whenever the context is clear.

We denote by E (µm(Ω, b1 · · · bk)) the eigenspace of −∆ associated with
the eigenvalue µm(Ω, b1 · · · bk), and we use the notation E(µm) when the
context (domain, boundary condition) is clear. We denote by mult(µ)
the multiplicity of the eigenvalue µ, i.e., the dimension of E(µ), with
the convention that mult(µ) = 0 if µ is not an eigenvalue.

We denote by Z(u) the nodal set of a continuous function u,

(1.4) Z(u) = {x ∈ Ω | u(x) = 0} ,

and by β0(u) the number of nodal domains of u,

(1.5) β0(u) = number of connected components of Ω \ Z(u) .

Given an eigenvalue µ of (Ω, b1 · · · bk), we introduce the index

(1.6) κ(µ) := min{m | µ = µm(Ω, b1 · · · bk)} .

1.2. The extended Courant Property. A celebrated theorem of
Richard Courant (1923, see [4, § VI.6]) states that

(1.7) β0(u) ≤ κ(µm) ≤ m for any u ∈ E (µm(Ω, b1 · · · bk)) .

A footnote in [4, p. 454] states that the same inequality actually holds
for any linear combination of eigenfunctions associated with eigenvalues
less than or equal to µm,

(1.8) β0(v) ≤ κ(µm) ≤ m for any v =
∑

µj≤µm

uµj
, uµj

∈ E(µj) ,

and refers wrongly to the 1932 PhD Thesis of Horst Herrmann [6].

We call inequality (1.8) the Extended Courant Property for the domain
Ω, and refer to it as the ECP(Ω), or as the ECP(Ω, b) to insist on
the boundary condition b. It turns out that, for d ≥ 2, there exist
domains Ω for which the ECP(Ω) is false. We refer to [3] for references,
historical remarks and some counterexamples.

1.3. Purpose and organization of this note. The purpose of this
note is to give new counterexamples to the ECP. In Section 2, we
consider the case of the equilateral rhombus. We give a counterex-
ample to the ECP for the Neumann boundary condition. Numerical
simulations indicate that there are counterexamples for the Dirichlet
boundary condition as well. In Section 3, we consider the case of the
hypercube with either Dirichlet or Neumann boundary conditions.
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2. The equilateral rhombus

2.1. Preparation. Let Rhe be the equilateral rhombus with sides of
length 1, and vertices (0, 0), (1, 0), (3

2 ,
√

3
2 ) and (1

2 ,
√

3
2 ). Call D and M

its diagonals (resp. the longer one and the shorter one), see Figure 2.1.

Call Te the equilateral triangle with vertices (0, 0), (1, 0), and (1
2 ,
√

3
2 ).

Call Th the hemiequilateral triangle with vertices (0, 0), (
√

3
2 , 0) and

(
√

3
2 ,

1
2). The diagonal M divides the rhombus into two equilateral tri-

angles Te,1 and Te,2, isometric to Te. The diagonals D andM divide the
rhombus into four hemiequilateral triangles Th,j, 1 ≤ j ≤ 4, isometric
to Th, see Figure 2.2. In the sequel, we also use the generic notation
Te (resp. Th) for any of the equilateral triangles (resp. hemiequilateral
triangles) into which the rhombus decomposes.

We also denote by D andM the mirror symmetries with respect to the
lines supporting the diagonals of the rhombus, and by D∗ and M∗ the
action of these symmetries on functions, for example D∗f = f ◦D.

Figure 2.1. The equilateral rhombus Rhe, and its diagonals

Figure 2.2. Decomposition of the equilateral rhombus Rhe

The symmetries D and M act by isometries on the rhombus, and they
commute. The eigenspaces of −∆ for (Rhe, b), with b ∈ {d, n}, decom-
pose into summands corresponding to the action of these symmetries.
The eigenfunctions in each summand correspond to eigenfunctions of
−∆ for the equilateral or hemiequilateral triangles into which the rhom-
bus decomposes, with the boundary condition b on the sides supported
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by ∂Rhe, and with mixed boundary conditions, either Dirichlet or Neu-
mann, on the sides supported by the diagonals.
To be more explicit, we need naming the eigenvalues according to Sub-
section 1.1. For this purpose, we partition the boundaries of Te and Th
into their three sides. For Th, we number the sides 1, 2, 3, in decreasing
order of length, see Figure 2.3. For example, µi(Th, ndn) denotes the
i-th eigenvalue of −∆ in Th with Neumann boundary condition on the
longest (1) and shortest (3) sides, and Dirichlet boundary condition on
the other side (2).

Figure 2.3. Labelling the sides of Te and Th

More precisely, we decompose the space L2(Rhe) into orthogonal com-
ponents,

(2.1) L2(Rhe) = S+,+
⊕
S+,−

⊕
S−,+

⊕
S−,− ,

where
(2.2) Sσ,τ :=

{
φ ∈ L2(Rhe) | D∗φ = σφ and M∗φ = τφ

}
,

for σ, τ ∈ {+,−}.
Since the isometries D∗ and M∗ commute with ∆, this orthogonal
decomposition descends to each eigenspace of −∆ for (Rhe, b), with
the boundary condition b ∈ {d, n} on the boundary ∂Rhe.

2.2. A reflection principle. In this subsection, we explain an ele-
mentary but useful “reflection principle” which we will use repeatedly
in the sequel.
Consider the decomposition Rhe = Te,1

⊔ Te,2. Note that M(Te,1) =
Te,2. Choose a boundary condition a ∈ {d, n} on ∂Rhe. Given an
eigenvalue λ of −∆ for (Rhe, a), and σ ∈ {+,−}, consider the subspace
E(λ) ∩ SM,σ of eigenfunctions φ ∈ E(λ) such that M∗φ = σφ.
If 0 6= φ ∈ E(λ) ∩ SM,σ, then φ|Te,1 is an eigenfunction of −∆ for
(Te,1, aab), with b = n if σ = +, and b = d if σ = −, associated with
the same eigenvalue λ.
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Conversely, let ψ be an eigenfunction of (Te,1, aab), with eigenvalue
µm(Te,1, aab), for some m ≥ 1. Define the function ψ̌ on Rhe such
that ψ̌|Te,1 = ψ and ψ̌|Te,2 = σ ψ ◦M . This means that ψ̌ is obtained
by extending ψ across M to Te,2 by symmetry, in such a way that
M∗ψ̌ = σψ̌. It is easy to see that the function ψ̌ is an eigenfunction of
−∆ for (Rhe, n) (in particular it is smooth in a neighborhood of M),
with eigenvalue µm(Te,1, aab), so that ψ̌ ∈ E(µm) ∩ SM,σ.
The above considerations prove the first two assertions in the following
proposition. The proof of the third and fourth assertions is similar,
using the symmetries D and M , and the decomposition of Rhe into
the triangles Th,j, 1 ≤ j ≤ 4.

Proposition 2.1 (Reflection principle). For any a ∈ {d, n} and any
λ ∈ sp(Rhe, a),

(i) E(λ, (Rhe, a)) ∩ SM,+ 6= {0} if and only if λ ∈ sp(Te, aan), and
the map φ 7→ φ|Te,1 is a bijection from E(λ, (Rhe, a)) ∩ SM,+
onto E(λ, (Te, aan));

(ii) E(λ, (Rhe, a)) ∩ SM,− 6= {0} if and only if λ ∈ sp(Te, aad), and
the map φ 7→ φ|Te,1 is a bijection from E(λ, (Rhe, a)) ∩ SM,−
onto E(λ, (Te, aad)).

More generally, for any λ ∈ sp(Rhe, a), and any b, c ∈ {d, n},
(iii) E(λ, (Rhe, a)) ∩ Sε(b),ε(c) 6= {0} if and only if λ ∈ sp(Th, abc),

and the map φ 7→ φ|Th,1 is a bijection from E(λ, (Rhe, a)) ∩
Sε(b),ε(c) onto E(λ, (Th, abc)). Here ε(n) = + and ε(d) = −.

Furthermore, the multiplicity of the number λ as eigenvalue of (Rhe, a)
is the sum, over b, c ∈ {d, n}, of the multiplicities of λ as eigenvalue
of (Th, abc) (with the convention that the multiplicity is zero if λ is not
an eigenvalue).

2.3. Some useful results. In this subsection, we recall some known
results for the reader’s convenience.

2.3.1. Eigenvalue inequalities. The following proposition is a particular
case of a result of V. Lotoreichik and J. Rohleder [7, Proposition 2.3].

Proposition 2.2. For the triangle Th, and for any i ≥ 1, we have the
inequalities,

(2.3)
{
µi(Th, nnn) < µi(Th, ndn) < µi(Th, ndd) ,
µi(Th, nnn) < µi(Th, nnd) < µi(Th, ndd) ,

and

(2.4)
{
µi(Th, dnn) < µi(Th, ddn) < µi(Th, ddd) ,
µi(Th, dnn) < µi(Th, dnd) < µi(Th, ddd) .

The following inequalities are due to B. Siudeja [8, Theorem 1.1].
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Proposition 2.3. Let Tr(α) be a right triangle with smallest angle α,
such that π

6 ≤ α ≤ π
4 , and sides numbered in non-increasing order. Its

eigenvalues satisfy the following inequalities.
• If π

6 < α < π
4 ,

0 = ν1 < µ1(nnd) < µ1(ndn) < ν2 < µ1(dnn) · · ·
· · · < µ1(ndd) < µ1(dnd) < µ1(ddn) < δ1 .

• If π
6 = α,
0 = ν1 < µ1(nnd) < µ1(ndn) = ν2 < µ1(dnn) · · ·

· · · < µ1(ndd) < µ1(dnd) < µ1(ddn) < δ1 .

• If α = π
4 ,

0 = ν1 < µ1(nnd) < µ1(ndn) < ν2 = µ1(dnn) · · ·
· · · < µ1(ndd) < µ1(dnd) = µ1(ddn) < δ1 .

Remark 2.4. We do not know if there exist, for i ≥ 2, any general in-
equalities between the eigenvalues µi(Th, ndn) and µi(Th, nnd) in (2.3),
or between the eigenvalues µi(Th, ddn) and µi(Th, dnd) in (2.4).

2.3.2. Eigenvalues of some mixed boundary value problems for Th. For
later reference, we also describe the eigenvalues and eigenfunctions of
four mixed eigenvalue problems for Th. This description follows easily
for example from [3, Appendix A] and [2].
The eigenvalues of the equilateral triangle Te, with either the Dirichlet
or the Neumann boundary condition on ∂Te, are the numbers

(2.5) λ̂(m,n) = 16π2

9 (m2 +mn+ n2) ,

with (m,n) ∈ N×N for the Neumann boundary condition, and (m,n) ∈
N•×N• for the Dirichlet boundary condition (here N• = N\{0}). The
multiplicities are given by,
(2.6) mult(λ̂0) = #

{
(m,n) ∈ L | λ̂(m,n) = λ̂0

}
,

with L = N×N for the Neumann boundary condition, and L = N•×N•
for the Dirichlet boundary condition.
One can associate one or two real eigenfunctions with such a pair (m,n).
When m = n, there is only one associated eigenfunction, and it is D-
invariant. When m 6= n, there are two associated eigenfunctions, one
symmetric with respect to D, the other one anti-symmetric. As a con-
sequence, one can explicitly describe the eigenvalues and eigenfunctions
of the four eigenvalue problems (Th, nnn), (Th, ndn) (they arise from the
Neumann problem for Te), and (Th, dnd), (Th, ddd) (they arise from the
Dirichlet problem for Te).
The resulting eigenvalues are given in Table 2.1.
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Eigenvalue problem Eigenvalues
(Th, nnn) λ̂(m,n), for 0 ≤ m ≤ n

(Th, ndn) λ̂(m,n), for 0 ≤ m < n

(Th, dnd) λ̂(m,n), for 1 ≤ m ≤ n

(Th, ddd) λ̂(m,n), for 1 ≤ m < n

Table 2.1. Four mixed eigenvalue problems for Th

Remark 2.5. As far as we know, there are no such explicit formulas
for the eigenvalues of the other mixed boundary value problems for Th.

The following tables, display the first few eigenvalues, the correspond-
ing pairs of integers, and the corresponding indexed eigenvalues for the
given mixed boundary value problems for Th.

Eigenvalue Pairs (Th, nnn) (Th, ndn)
0 (0, 0) µ1

16π2

9 (0, 1), (1, 0) µ2 µ1

3× 16π2

9 (1, 1) µ3

4× 16π2

9 (0, 2, (2, 0) µ4 µ2

7× 16π2

9 (1, 2), (2, 1) µ5 µ3

9× 16π2

9 (0, 3), (3, 0) µ6 µ4

Table 2.2. First eigenvalues for (Th, nnn) and (Th, ndn)

Eigenvalue Pairs (Th, dnd) (Th, ddd)
3× 16π2

9 (1, 1) µ1

7× 16π2

9 (1, 2), (2, 1) µ2 µ1

12× 16π2

9 (2, 2) µ3

13× 16π2

9 (1, 3), (3, 1 µ4 µ2

19× 16π2

9 (2, 3), (3, 2) µ5 µ3

21× 16π2

9 (1, 4), (4, 1) µ6 µ4

Table 2.3. First eigenvalues for (Th, dnd) and (Th, ddd)

Remark 2.6. For later reference, we point out that all the eigenvalues
which appear in Tables 2.2 and 2.3 are simple.

2.4. Rhombus with Neumann boundary condition. In this sub-
section, we take the Neumann boundary condition on the boundary
∂Rhe of the equilateral rhombus.



8 P. BÉRARD AND B. HELFFER

2.4.1. The first Neumann eigenvalues of Rhe.

Proposition 2.7. For (Rhe, n), we have
(2.7) 0 = ν1 < ν2 < ν3 = ν4 < ν5 ≤ · · ·
More precisely,
(i) The second eigenvalue ν2 is simple and satisfies

(2.8) ν2 = µ1(Te, nnd) = µ1(Th, nnd) .
If ψ2 ∈ E(ν2), then it is invariant under the symmetry D, anti-
invariant under the symmetry M , and Z(ψ2) = M .
Furthermore, ψ2|Th is a first eigenfunction of (Th, nnd), and ψ2|Te
is a first eigenfunction of (Te, nnd).

(ii) For the eigenspace E(ν3) we have

(2.9)
{ dim (E(ν3) ∩ S+,+) = dim (E(ν3) ∩ S−,+) = 1 ,
E(ν3) ∩ S−,− = E(ν3) ∩ S+,− = {0} .

In particular, the eigenspace E(ν3) is spanned by two linearly in-
dependent functions ψ3 and ψ4 which are M invariant, and whose
restrictions to Te generate the eigenspace E (ν2(Te)).

Proof. According to the Reflection principle, Proposition 2.1, the first
six eigenvalues of (Rhe, n) belong to the set
(2.10) {µi(Th, nab) for 1 ≤ i ≤ 6 and a, b ∈ {d, n}} .
Among these numbers, the eigenvalues of (Th, nnn) and (Th, ndn) are
known explicitly, and they are simple, see Tables 2.2.
Although the eigenvalues and eigenfunctions of (Th, nnd) and (Th, dnn)
are, as far as we know, not explicitly known, they satisfy some in-
equalities: the obvious inequalities µ1 < µ2 ≤ · · · , and the inequalities
provided by Proposition 2.2 (see [7]), and Proposition 2.3 (see [8]).
Table 2.4 summarizes what we know about the eigenvalues which ap-
pear in (2.10). In blue the known values, in red the known inequalities.
The gray cells contain the eigenvalues, listed with multiplicities, for
which we have no a priori information, except the trivial inequalities
(black inequality signs).

Remark 2.8. Note that we only display the first four eigenvalues in
each line, because this turns out to be sufficient.

Remark 2.9. The reason why there are white empty cells in the 5th
row is explained in Remark 2.4.

Upon inspection of Table 2.4, we conclude that the Neumann eigenval-
ues of Rhe satisfy the following inequalities
(2.11) 0 = ν1 < ν2 < ν3 = ν4 < ν5 ≤ ν6 ≤ · · · ,
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(σ, τ) (Th, nab) µ1 µ2 µ3 µ4

(+,+) (Th, nnn) 0 < 16π2

9 < 3 16π2

9 < 4 16π2

9

> > > >

(+,−) (Th, nnd) < ≤ ≤

>

(−,+) (Th, ndn) 16π2

9 < 4 16π2

9 < 7 16π2

9 < 9 16π2

9

> > > >

(−,−) (Th, ndd) < ≤ ≤

Table 2.4. Rhe, Neumann boundary condition

with
ν2 = µ1(Th, nnd) , ν3 = µ1(Th, ndn) = µ2(Th, nnn) .

We can a priori not draw any conclusion on ν5, ν6, . . ..
Table 2.4 actually provides further information,

(2.12)



dim E(ν1) ∩ S+,+ = 1 ,
E(ν1) ∩ Sσ,τ = {0} if (σ, τ) 6= (+,+) ,
dim E(ν2) ∩ S+,− = 1 ,
E(ν2) ∩ Sσ,τ = {0} if (σ, τ) 6= (+,−) ,
dim E(ν3) ∩ S+,+ = dim E(ν3) ∩ S+,− = 1 ,
dim E(ν3) ∩ Sσ,τ = {0} if (σ, τ) = (−,+) or (−,−) .

The equality ν3 = ν4 comes from the fact that the second Neumann
eigenvalue of the equilateral triangle has multiplicity 2, with an eigen-
space generated by one eigenfunction which is symmetric with respect
to a side bisector, and another one which is anti-symmetric.
Note: For the reader’s information, Table 2.5, displays numerical values
for the eigenvalues: in the gray cells, the numerical values computed
with matlab; in the other cells, the approximate values of the known
eigenvalues.
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(σ, τ) (Th, nab) µ1 µ2 µ3 µ4
(+,+) (Th, nnn) 0 < 17.55 < 52.64 < 70.18

> > > >

(+,−) (Th, nnd) 7.16 < 37.49 ≤ 90.06 ≤ 120.87

>

(−,+) (Th, ndn) 17.55 < 70.18 < 122.82 < 157.91

> > > >

(−,−) (Th, ndd) 47.63 < 110.36 ≤ 189.52 ≤ 224.68

Table 2.5. Rhe, Neumann boundary condition

The proof of Proposition 2.7 is complete. �

Remark 2.10. One can also deduce Proposition 2.7 from the proof of
Corollary 1.3 in [8] which establishes that the first four Neumann eigen-
values of a rhombus Rh(α) with smallest angle 2α > π

3 are simple, and
describes the nodal patterns of the corresponding eigenvalues. When
2α = π

3 the eigenvalues ν3 and ν4 become equal, see also Remarks 4.1
and 4.2 in [8].

2.4.2. The Extended Courant Property for Rhe. As a corollary of Pro-
position 2.7, we obtain,

Proposition 2.11. The equilateral rhombus with Neumann boundary
condition provides a counterexample to the ECP. More precisely, there
is a linear combination of eigenfunctions in E(ν1)⊕ E(ν3) with four
nodal domains.

Proof. Proposition 2.7, Assertion (ii) tells us that E(ν3) contains an
eigenfunction which comes from the second Neumann eigenfunction of
Te,1 = Te which is symmetric with respect to D. It then suffices to
apply the same arguments as in [3, Section 6.1]. A second Neumann
eigenfunction for Te is given by

(2.13) φN2 (x, y) = 2 cos
(2πx

3

)(
cos

(2πx
3

)
+ cos

(
2πy√

3

))
− 1.

Extend this function, by symmetry with respect toM , to a function φ2
in Rhe. The linear combination φ2 + 1 vanishes on the line segments
{x = 3

4} ∩ Rhe and {x +
√

3 y = 3
2} ∩ Rhe, so that it has four nodal

domains, see Figure 2.4, contradicting Courant’s theorem. �

Figure 2.5 displays the matlab rendering of the variation of the num-
ber of nodal domains (the eigenfunction produced by matlab is pro-
portional to φ2, not equal, so that the bifurcation value is not 1 as in
the proof of Proposition 2.11).
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Figure 2.4. Nodal pattern of some linear combination
in E(ν1)⊕ E(ν3), with four nodal domains

Figure 2.5. Nodal patterns of linear combinations in
E(ν1)⊕ E(ν3) around the bifurcation

2.4.3. A numerical result for Rhe with Neumann boundary condition.
Numerical computations for the first Neumann eigenvalues of the equi-
lateral rhombus give,
(2.14) 0 = ν1 < ν2 < ν3 = ν4 < ν5 < ν6 < ν7 . . . ,

with the first five nodal patterns shown in Figure 2.6. Numerical com-
putations of the eigenfunctions show that there are linear combinations
in E(ν2)⊕E(ν5) with six nodal domains, thus providing another (numer-
ical) counterexample to the ECP(Rhe, n), see Figure 2.7. This coun-
terexample can also be interpreted as a counterexample to the ECP
for the equilateral triangle with mixed boundary conditions, Neumann
on two sides, and Dirichlet on the third side.



12 P. BÉRARD AND B. HELFFER

Figure 2.6. Rhombus Rhe, Neumann boundary condition

Figure 2.7. Nodal patterns of some linear combina-
tions in E(ν2)⊕ E(ν5)

2.5. Rhombus with Dirichlet boundary condition. We now de-
scribe the first three eigenvalues of (Rhe, d), although this does not
produce any counterexample to the ECP(Rhe, d).

Proposition 2.12. The first three eigenvalues of (Rhe, d) satisfy
(2.15) δ1 < δ2 < δ3 ≤ δ4 · · ·
More precisely,
(i) δ1(Rhe) = µ1(Te, ddn) = µ1(Th, dnn) is simple, with eigenfunction

in S+,+.
(ii) δ2(Rhe) = δ1(Te) is simple, with eigenfunction in S+,−.
(iii) We have δ3(Rhe) = δ1(Th, ddn), with a corresponding eigenfunc-

tion in S−,+.

Proof. Assertion (i) is clear.
According to the Reflection principle, Proposition 2.1, the first four
eigenvalues of (Rhe, d) belong to the set
(2.16) {µi(Th, dab) for 1 ≤ i ≤ 4 and a, b ∈ {d, n}} .
Among these numbers, the eigenvalues of (Th, dnd) and (Th, ddd) are
known explicitly, they are simple eigenvalues, see Tables 2.3.
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As in Section 2.4, we have trivial inequalities between these eigenvalues
and some non trivial ones provided by Propositions 2.2 and 2.3.
Table 2.6 summarizes what we know about the eigenvalues in (2.16).
In blue the known values, in red the known inequalities. The unknown
values should fit in the gray cells.

(σ, τ) (Th, dab) µ1 µ2 µ3 µ4
(+,+) (Th, dnn) < ≤ ≤

> > > >

(+,−) (Th, dnd) 3 16π2

9 < 7 16π2

9 < 12 16π2

9 < 13 16π2

9
>

(−,+) (Th, ddn) < ≤ ≤

> > > >

(−,−) (Th, ddd) 7 16π2

9 < 13 16π2

9 < 19 16π2

9 < 21 16π2

9

Table 2.6. Rhe, Dirichlet boundary condition

From Table 2.6, we conclude that the first Dirichlet eigenvalue for Re

must be µ1(Th, dnn), and that this eigenvalue is simple (which is a
well-known fact). The table shows that the second eigenvalue could be
µ1(Th, dnd) or µ2(Th, dnn).
Claim. δ2 < µ2(Th, dnn). Assume that δ2 = µ2(Th, dnn), and let u
be an eigenfunction associated with δ2. Call v its restriction to Th. If
the nodal set of v contains a closed curve, or a curve from one side to
another, except the case of a curve from side 2 to side 3, then u would
have too many nodal domains for a second eigenfunction. The only
possible case is when the nodal set of v goes from side 2 to side 3, so
that u has a closed nodal line. This case is excluded by the “closed
nodal line theorem” which holds for any convex set, see [1].
It follows that δ2 = µ1(Th, dnd) = 3× 16π2

9 . The next smallest eigenval-
ues are µ2(Th, dnn) and µ1(Th, ddn), possibly with multiplicity as far as
µ2(Th, dnn) is concerned.
It follows that
(2.17) 0 < δ1 < δ2 < δ3 ≤ δ4 ≤ · · · ,
and we can a priori not decide whether δ3 = δ4 or not.
Table 2.6 actually provides further information,

(2.18)



dim E(δ1) ∩ S+,+ = 1 ,
E(δ1) ∩ Sσ,τ = {0} if (σ, τ) 6= (+,+) ,
dim E(δ2) ∩ S+,− = 1 ,
E(δ2) ∩ Sσ,τ = {0} if (σ, τ) 6= (+,−) .
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For the reader’s convenience, in Table 2.7, we filled the gray cells with
the numerical valued computed with matlab, and inserted the numer-
ical values of the eigenvalues which are explicitly known.

(σ, τ) (Th, dab) µ1 µ2 µ3 µ4
(+,+) (Th, dnn) 24.90 < 83.83 ≤ 140.50 ≤ 169.20

> > > >

(+,−) (Th, dnd) 52.64 < 122.82 < 210.55 < 228.10

>
(−,+) (Th, ddn) 71.71 < 169.80 ≤ 234.10 ≤ 292.70

> > > >

(−,−) (Th, ddd) 122.82 < 228.10 < 333.37 < 368.47

Table 2.7. Rhe, Dirichlet boundary condition

The proof of Proposition 2.12 is complete. �

Numerical computations show that

(2.19) 0 < δ1 < δ2 < δ3 < δ4 < δ5 = δ6 < δ7 · · ·

with corresponding nodal patterns given by Figure 2.8.

Figure 2.8. Rhombus Rhe, Dirichlet boundary condition

Numerical computations also indicate that there are linear combina-
tions in E(δ2) ⊕ E(δ5) with 6 nodal domains, thus providing a coun-
terexample to the ECP(Rhe, d), see Figure 2.9. This counterexample,
can also be interpreted as a counterexample to the ECP for the equi-
lateral triangle with mixed boundary conditions, Dirichlet on two sides,
and Neumann on the third one.
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Figure 2.9. Counterexample to the ECP(Rhe) with
Dirichlet boundary condition

Remark 2.13. Looking at the nodal patterns, and in analogy with what
we did in the Neumann case, one could think of testing a linear com-
bination in E(δ1) ⊕ E(δ4). This gives a linear combination with four
nodal domains, which does not contradict Courant’s theorem.

3. The hypercube

3.1. Preparation. Let Cn(π) :=]0, π[n be the hypercube of dimension
n, with either the Dirichlet or Neumann boundary condition on ∂Cn(π).
A point in Cn(π) is denoted by x = (x1, . . . , xn).
A complete set of eigenfunctions of −∆ for (Cn(π), d) is given by the
functions

(3.1)
n∏
j=1

sin(kj xj) with eigenvalue
n∑
j=1

k2
j , for kj ∈ N\{0} ,

at the point x = (x1, . . . , xn) ∈]0, π[n.
A complete set of eigenfunctions of −∆ for (Cn(π), n) is given by the
functions

(3.2)
n∏
j=1

cos(kj xj) with eigenvalue
n∑
j=1

k2
j , for kj ∈ N .

3.2. Hypercube with Dirichlet boundary condition. In this sec-
tion, we make use of the classical Chebyshev polynomials Uk(t), k ∈ N,
defined by the relation,

sin ((k + 1)t) = sin(t)Uk (cos(t)) ,

and such that

U0(t) = 1, U1(t) = 2t, U2(t) = 4t2 − 1 .

The first Dirichlet eigenvalues (as points in the spectrum) are listed in
the following table, together with their multiplicities, and eigenfunc-
tions.
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Table 3.1. First Dirichlet eigenvalues of Cn(π)

Eigenv. Mult. Eigenfunctions
n 1 φ1(x) := ∏n

j=1 sin(xj)
n+ 3 n φ1(x)U1 (cos(xi)) for 1 ≤ i ≤ n

n+ 6 n(n−1)
2 φ1(x)U1 (cos(xi)) U1 (cos(xj)) for 1 ≤ i < j ≤ n

n+ 8 n φ1(x)U2 (cos(xi)) for 1 ≤ i ≤ n

Figure 3.1. 3-dimensional cube

For the above eigenvalues, the index defined in Subsection 1.1 is given
by,

(3.3) κ(n+ 3) = 2, κ(n+ 6) = n+ 2, κ(n+ 8) = n(n+ 1)
2 + 2 .

As in [3], in order to study the nodal set of the above eigenfunctions
or linear combinations thereof, we use the diffeomorphism

(3.4) (x1, . . . , xn) 7→ (ξ1 = cos(x1), . . . , ξn = cos(xn)) ,

from ]0, π[ onto ]− 1, 1[, and factor out the function φ1 which does not
vanish in the open hypercube. We consider the function

Ψa(ξ1, . . . , ξn) = ξ2
1 + · · ·+ ξ2

n − a

which corresponds to a linear combination Φ in E(n)⊕E(n+8). Given
some a, (n − 1) < a < n, this function has 2n + 1 nodal domains, see
Figure 3.1 in dimension 3. For n ≥ 3, we have 2n + 1 > κ(n+ 8). The
function Φ therefore provides a counterexample to the ECP for the
hypercube of dimension at least 3, with Dirichlet boundary condition,
thus generalizing [3, Section 2].

Proposition 3.1. For n ≥ 3, the hypercube of dimension n, with
Dirichlet boundary condition, provides a counterexample to the ECP.



ECP MORE EXAMPLES 17

Remark. An interesting feature of this example is that we get coun-
terexamples to the ECP for linear combinations which involve eigenval-
ues with high energy while the examples in [3] only involve eigenvalues
with low energy. This is also in contrast with the fact that, in dimen-
sion 3, Courant’s nodal domain theorem is sharp only for δ1 and δ2,
[5].

3.3. Hypercube with Neumann boundary condition. In this sec-
tion, we make use of the classical Chebyshev polynomials Tk(t), k ∈ N,
defined by the relation,

cos(kt) = cos(t)Tk (cos(t)) ,
and such that

T0(t) = 1 , T1(t) = t , T2(t) = 2t2 − 1 .
The first Neumann eigenvalues (as points in the spectrum) are listed
in the following table, together with their multiplicities, and eigenfunc-
tions.

Table 3.2. First Neumann eigenvalues of Cn(π)

Eigenv. Mult. Eigenfunctions
0 1 ψ1(x) := 1
1 n T1 (cos(xi)) for 1 ≤ i ≤ n

2 n(n−1)
2 T1 (cos(xi)) T1 (cos(xj)) for 1 ≤ i < j ≤ n

3 n(n−1)(n−2)
6 T2 (cos(xi)) for 1 ≤ i ≤ n

4 n+
(
n
4

)
T2 (cos(xi)) for 1 ≤ i ≤ n and . . .

For the above eigenvalues, the index defined in Subsection 1.1 is given
by,

(3.5) κ(2) = n+ 2 , κ(3) = n(n+ 1)
2 + 2 , κ(4) = n(n2 + 5)

6 + 2 .

As in [3], in order to study the nodal set of the above eigenfunctions
or linear combinations thereof, we use the diffeomorphism
(3.6) (x1, . . . , xn) 7→ (ξ1 = cos(x1), . . . , ξn = cos(xn)) ,
from ]0, π[ onto ]− 1, 1[, and factor out the function φ1 which does not
vanish in the open hypercube. We consider the function

Ψa(ξ1, . . . , ξn) = ξ2
1 + · · ·+ ξ2

n − a ,
which corresponds to a linear combination Φ in E(0)⊕E(4). Given some
a, (n−1) < a < n, this function has 2n+1 nodal domains. For n ≥ 4, we
have 2n+1 > κ(4). The function Φ therefore provides a counterexample
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to the ECP for the hypercube of dimension at least 4, with Neumann
boundary condition, thus providing a new counterexample.

Proposition 3.2. For n ≥ 4 , the hypercube of dimension n, with
Neumann boundary condition, provides a counterexample to the ECP.

Remark. An interesting feature of this example is that we get coun-
terexamples to the ECP for linear combinations which involve eigenval-
ues with high energy while the examples in [3] only involve eigenvalues
with low energy.
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