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ON COURANT’S NODAL DOMAIN PROPERTY FOR
LINEAR COMBINATIONS OF EIGENFUNCTIONS

PART II

PIERRE BÉRARD AND BERNARD HELFFER

To Erik Balslev, in memoriam

Abstract. Generalizing Courant’s nodal domain theorem, the
“Extended Courant property” is the statement that a linear com-
bination of the first n eigenfunctions has at most n nodal domains.
In a previous paper (Documenta Mathematica, 2018, Vol. 23, pp.
1561–1585), we gave simple counterexamples to this property, in-
cluding convex domains. In the present paper, using some input
from numerical computations, we pursue the investigation of the
Extended Courant property with two new examples, the equilat-
eral rhombus and the regular hexagon.

1. Introduction

1.1. Notation. Let Ω ⊂ R2 be a piecewise smooth bounded open do-
main (we will actually only work with convex polygonal domains), with
boundary ∂Ω = Γ1 t Γ2, where Γ1,Γ2 are two disjoint open subsets of
∂Ω. We consider the eigenvalue problem

(1.1)


−∆u = µu in Ω ,

u = 0 on Γ1 ,

ν · u = 0 on Γ2 ,

where ν is the outer unit normal along ∂Ω (defined almost everywhere).

Let {µi(Ω, dn), i ≥ 1} (resp. sp(Ω, dn)) denote the eigenvalues (resp.
the spectrum) of problem (1.1). We always list the eigenvalues in non-
decreasing order, with multiplicities, starting with the index 1. We
simply write µi, and skip mentioning the domain Ω, or the boundary
condition dn, whenever the context is clear. Examples of eigenvalue
problems with mixed boundary conditions appear in Sections 2 and 3.
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Let E (µ) denote the eigenspace associated with the eigenvalue µ.
Define the min-index κ(µ) of the eigenvalue µ as
(1.2) κ(µ) = min {m | µ = µm} .

1.2. Courant’s nodal domain theorem. Let φ be an eigenfunction
of (1.1). The nodal set Z(φ) of φ is defined as the closure of the set of
(interior) zeros of φ,
(1.3) Z(φ) := {x ∈ Ω | φ(x) = 0} .
A nodal domain of φ is a connected component of the set Ω\Z(φ).
Call β0(φ) the number of nodal domains of φ. We recall the following
classical theorem, [12, Chap. VI.6].
Theorem 1.1 (Courant, 1923). Assume that the eigenvalues of (1.1)
are listed in non-decreasing order, with multiplicities,
(1.4) µ1 < µ2 ≤ µ3 ≤ · · · .
Then, for any eigenfunction φ ∈ E(µ) of (1.1), associated with the
eigenvalue µ,
(1.5) β0(φ) ≤ κ(µ) .
In particular, any φ ∈ E(µk) has a most k nodal domains,
Courant’s theorem is a partial generalization, to higher dimensions, of
a classical theorem of C. Sturm (1836). Indeed, in dimension 1, a k-th
eigenfunction of the Sturm-Liouville operator − d2

dx2 +q(x) in ]a, b[, with
Dirichlet, Neumann, or mixed Dirichlet-Neumann boundary condition
at {a, b}, has exactly k nodal domains in ]a, b[. In dimension 2 (or
higher), Courant’s theorem is not sharp. On the one hand, A. Stern
(1925) proved that for the square with Dirichlet boundary condition,
or for the 2-sphere, there exist eigenfunctions of arbitrarily high en-
ergy, with exactly two or three nodal domains. On the other hand,
Å. Pleijel (1956) proved that, for any bounded domain in R2, there are
only finitely many Dirichlet eigenvalues for which Courant’s theorem
is sharp. We refer to [7, 24] for more details, and to [20] for Pleijel’s
estimate under Neumann boundary condition.
Another remarkable theorem of Sturm states that any non trivial linear
combination u = ∑n

k=m ajuj of eigenfunctions of the operator − d2

dx2 +
q(x) has at most (n − 1) zeros (counted with multiplicities), and at
least (m− 1) sign changes in the interval ]a, b[, see [10].
A footnote in [12, p. 454] states that Courant’s theorem may be gener-
alized as follows: Any linear combination of the first n eigenfunctions
divides the domain, by means of its nodes, into no more than n subdo-
mains. See the Göttingen dissertation of H. Herrmann, Beiträge zur
Theorie der Eigenwerten und Eigenfunktionen, 1932.
For later reference, we introduce the following definition.
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Definition 1.2. We say that the Extended Courant property is true
for the eigenvalue problem (Ω, b), or simply that the ECP(Ω, b) is true,
if, for any m ≥ 1, and for any linear combination v = ∑

µj≤µm uµj , with
uµj ∈ E

(
µj(Ω, b)

)
,

(1.6) β0(v) ≤ κ(µm) ≤ m.

The footnote statement in the book of Courant and Hilbert, amounts
to saying that ECP(Ω) is true for any bounded domain. Already in
1956, Pleijel [24, p. 550] mentioned that he could not find a proof
of this statement in the literature. In 1973, V. Arnold [2, 4] related
the statement in Courant-Hilbert to Hilbert’s 16th problem. Indeed,
should ECP(RPN , g0) be true (where g0 is the usual metric), then the
complement of any algebraic hypersurface of degree n in RPN would
have at most

(
N

N+n−2

)
+ 1 connected components. Arnold pointed out

that while ECP(RP2, g0) is indeed true, ECP(RP3, g0) is false due to
counterexamples produced by O. Viro [26]. More recently, Gladwell
and Zhu [14, p. 276] remarked that Herrmann in his dissertation and
subsequent publications had not even stated, let alone proved the ECP.
They also produced some numerical evidence that the ECP is false for
non-convex domains in R2 with the Dirichlet boundary condition, and
conjectured that it is true for convex domains.

Our motivations to look into the Extended Courant property came from
reading the papers [3, 14, 18]. In [9], we gave simple counterexamples
to the ECP for domains with the Dirichlet or the Neumann bound-
ary conditions (equilateral triangle, hypercubes, domains and surfaces
with cracks). This was made possible by the fact that the eigenvalues
and eigenfunctions of these domains are known explicitly. In [11], we
proved that ECP(Ω, n) is false for a continuous family of smooth con-
vex domains in R2, with the symmetries of, and close to the equilateral
triangle.

In the present paper, we continue our investigations of the Extended
Courant property by studying two examples, the equilateral rhombus
Rhe and the regular hexagon H, which are related to the equilateral
triangle. The eigenvalues and eigenfunctions of these domains are not
known explicitly (except for a small subset of them). Using the symme-
tries of these domains, and some input from numerical computations,
we are able to describe the nodal patterns of the first eigenfunctions,
and conclude that the equilateral rhombus and the regular hexagon
provide counterexamples to the ECP.

The paper is organized as follows. In Section 2, we analyze the structure
of the first eigenvalues and eigenfunctions of the equilateral rhombus
Rhe with either the Neumann or the Dirichlet boundary condition.
Subsections 2.1, 2.2 and 2.3 provide technical ideas which are used in
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Section 3 as well. In Subsection 2.5, we prove that ECP(Rhe, n) is
false. In Subsection 2.7, we give numerical evidence that ECP(Rhe, d)
is false as well. In Section 3, we analyze the structure of the first
eigenvalues and eigenfunctions of the regular hexagon H with either
the Neumann or the Dirichlet boundary condition. In Subsection 3.4,
we give numerical evidence that ECP(H, d) is false. In Subsection 3.6,
we give numerical evidence that ECP(H, n) is false. In Section 4, we
explain our numerical approach, and we make some final remarks and
conjectures.

2. The equilateral rhombus

2.1. Symmetries and spectra. In this subsection, we analyze how
symmetries influence the structure of the eigenvalues and eigenfunc-
tions. The analysis is carried out for the equilateral rhombus, but the
basics ideas work for the regular hexagon as well, and will be used in
Section 3.

In the sequel, we denote by the same letter L a line in R2, and the
mirror symmetry with respect to this line. We denote by L∗ the action
of the symmetry L on functions, L∗φ = φ ◦ L.

A function φ is even (or invariant) with respect to L if L∗φ = φ. It is
odd (or anti-invariant) with respect to L if L∗φ = −φ. In the former
case, the line L is an anti-nodal line for φ, i.e., the normal derivative
νL · φ is zero along L, where νL denotes a unit field normal to L along
L. In the latter case, the line L is a nodal line for φ, i.e., φ vanishes
along L.

Let Rhe be the interior of the equilateral rhombus with sides of length
1, and vertices (−

√
3

2 , 0), (0,−1
2), (

√
3

2 ), 0) and (0, 1
2). Call D and M

its diagonals (resp. the longer one and the shorter one). The diagonal
M divides the rhombus into two equilateral triangles. The diagonals
D and M divide the rhombus into four hemiequilateral triangles. In
the sequel, we use the generic notation Te (resp. Th) for any of the
equilateral triangles (resp. hemiequilateral triangles) into which the
rhombus decomposes, see Figure 2.1.

Figure 2.1. The equilateral rhombus Rhe, and its diagonals
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For L ∈ {D,M}, define the sets

(2.1)
{ SL,+ = {φ ∈ L2(Rhe) | L∗φ = +φ} ,
SL,− = {φ ∈ L2(Rhe) | L∗φ = −φ} .

Then, we have the orthogonal decomposition,

(2.2) L2(Rhe) = SL,+
⊥
⊕ SL,− ,

with respect to the L2-inner product. Indeed, any φ ∈ L2(Rhe) can be
decomposed as

(2.3) φ = 1
2(I + L∗)φ+ 1

2(I − L∗)φ ,

where I denotes the identity map.
The symmetries D and M commute
(2.4) M ◦D = D ◦M = Rπ ,

where Rθ denotes the rotation with center 0 (the center of the rhom-
bus), and angle θ. It follows that D∗ leaves the subspaces SM,± globally
invariant, and thatM∗ leaves the subspaces SD,± globally invariant. As
a consequence, we have the orthogonal decomposition,

(2.5) L2(Rhe) = S+,+
⊥
⊕ S−,−

⊥
⊕ S+,−

⊥
⊕ S−,+ ,

where
(2.6) Sσ,τ :=

{
φ ∈ L2(Rhe) | D∗φ = σ φ and M∗φ = τ φ

}
,

for σ, τ ∈ {+ ,−} .
Similar decompositions hold for H1(Rhe) and H1

0 (Rhe), the Sobolev
spaces which are used in the variational presentation of the Neumann
(resp. Dirichlet) eigenvalue problem for the rhombus.
In the following figures, anti-nodal lines are indicated by dashed lines,
and nodal lines by solid lines. Figure 3.2 displays the nodal and anti-
nodal lines common to all functions in H1(Rhe) ∩ Sσ,τ , where σ, τ ∈
{+,−}.

Figure 2.2. Spaces Sσ,τ for Rhe
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Because the Laplacian commutes with the isometries D and M , the
above orthogonal decompositions descend to each eigenspace of −∆
for Rhe, with the boundary condition b ∈ {d, n} on ∂Rhe. The eigen-
functions in each summand correspond to eigenfunctions of −∆ for
the equilateral triangle (decomposition (2.2) with L = M), or for the
hemiequilateral triangle (decomposition (2.6)), with the boundary con-
dition b on the side supported by ∂Rhe, and with mixed boundary
conditions, either Dirichlet or Neumann, on the sides supported by the
diagonals.

To be more explicit, we need naming the eigenvalues as in Subsec-
tion 1.1. For this purpose, we partition the boundaries of Te and Th
into their three sides. For Th, we number the sides 1, 2, 3, in decreasing
order of length, see Figure 2.3. For example, µi(Th, ndn) denotes the
i-th eigenvalue of −∆ in Th with Neumann boundary condition on the
longest (1) and shortest (3) sides, and Dirichlet boundary condition on
the other side (2).

Figure 2.3. Labelling the sides of Te and Th

2.2. Riemann-Schwarz reflection principle. In this subsection, we
recall the “Riemann-Schwarz reflection principle” which we will use
repeatedly in the sequel.

Consider the decomposition Rhe = Te,1
⊔ Te,2, with M(Te,1) = Te,2.

Choose a boundary condition a ∈ {d, n} on ∂Rhe. Given an eigenvalue
λ of−∆ for (Rhe, a), and σ ∈ {+,−}, consider the subspace E(λ)∩SM,σ

of eigenfunctions φ ∈ E(λ) such that M∗φ = σφ .

If 0 6= φ ∈ E(λ) ∩ SM,σ, then φ|Te,1 is an eigenfunction of −∆ for
(Te,1, aab), with b = n if σ = +, and b = d if σ = −, associated with
the same eigenvalue λ .
Conversely, let ψ be an eigenfunction of (Te,1, aab), with eigenvalue
µm(Te,1, aab), for some m ≥ 1. Define the function ψ̌ on Rhe such
that ψ̌|Te,1 = ψ and ψ̌|Te,2 = σ ψ ◦M . This means that ψ̌ is obtained
by extending ψ across M to Te,2 by symmetry, in such a way that
M∗ψ̌ = σψ̌ . It is easy to see that the function ψ̌ is an eigenfunction of
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−∆ for (Rhe, a) (in particular it is smooth in a neighborhood of M),
with eigenvalue µm(Te,1, aab), so that ψ̌ ∈ E(µm) ∩ SM,σ .

The above considerations prove the first two assertions in the following
proposition. The proof of the third and fourth assertions is similar,
using the symmetries D and M , and the decomposition of Rhe into
hemiequilateral triangles Th,j, 1 ≤ j ≤ 4 .

Proposition 2.1 (Reflection principle). For any a ∈ {d, n} and any
λ ∈ sp(Rhe, a),

(i) E(λ, (Rhe, a)) ∩ SM,+ 6= {0} if and only if λ ∈ sp(Te, aan), and
the map φ 7→ φ|Te,1 is a bijection from E(λ, (Rhe, a)) ∩ SM,+
onto E(λ, (Te, aan));

(ii) E(λ, (Rhe, a)) ∩ SM,− 6= {0} if and only if λ ∈ sp(Te, aad), and
the map φ 7→ φ|Te,1 is a bijection from E(λ, (Rhe, a)) ∩ SM,−
onto E(λ, (Te, aad)).

More generally, define ε(n) = + and ε(d) = −. Then, for any λ ∈
sp(Rhe, a), and any b, c ∈ {d, n},

(iii) E(λ, (Rhe, a)) ∩ Sε(b),ε(c) 6= {0} if and only if λ ∈ sp(Th, abc),
and the map φ 7→ φ|Th,1 is a bijection from E(λ, (Rhe, a)) ∩
Sε(b),ε(c) onto E(λ, (Th, abc)).

Furthermore, the multiplicity of the number λ as eigenvalue of (Rhe, a)
is the sum, over b, c ∈ {d, n}, of the multiplicities of λ as eigenvalue
of (Th, abc) (with the convention that the multiplicity is zero if λ is not
an eigenvalue).

2.3. Some useful results. In this subsection, we recall some known
results for the reader’s convenience.

2.3.1. Eigenvalue inequalities. The following proposition is a particular
case of a result of V. Lotoreichik and J. Rohleder.

Proposition 2.2 ( [22], Proposition 2.3). Let Ω ⊂ R2 be a polygonal
bounded domain whose boundary is decomposed as ∂Ω = Γ1 t Γ2 t Γ3,
where the Γi’s are non-empty open subsets of ∂Ω. Consider the eigen-
value problems for −∆ in Ω, with the boundary condition bi ∈ {d, n}
on Γi, and list the eigenvalues µj(Ω, b1b2b3) in non-decreasing order,
with multiplicities, starting from the index 1.
Then, for any j ≥ 1, the following strict inequalities hold.

(2.7)
{
µj(Ω, nnn) < µj(Ω, ndn) < µj(Ω, ndd) ,
µj(Ω, nnn) < µj(Ω, nnd) < µj(Ω, ndd) ,

and

(2.8)
{
µi(Th, dnn) < µi(Th, ddn) < µi(Th, ddd) ,
µi(Th, dnn) < µi(Th, dnd) < µi(Th, ddd) .
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The preceding inequalities can in particular be applied to the triangle
Th. In this particular case, when j = 1, we have the following more
precise inequalities which are due to B. Siudeja.

Proposition 2.3 ( [25], Theorem 1.1). The eigenvalues of Th with
mixed boundary conditions are denoted by µi(abc), with the sides listed
in decreasing order of length. They satisfy the following inequalities.

0 = µ1(nnn) < µ1(nnd) < µ1(ndn) = µ2(nnn) < µ1(dnn) · · ·
· · · < µ1(ndd) < µ1(dnd) < µ1(ddn) < µ1(ddd) .

Remark 2.4. We do not know whether there are any general inequali-
ties between the eigenvalues µi(Th, ndn) and µi(Th, nnd), or between the
eigenvalues µi(Th, ddn) and µi(Th, dnd), for i ≥ 2.

2.3.2. Eigenvalues of some mixed boundary value problems for Th. For
later reference, we describe the eigenvalues of four mixed eigenvalue
problems for Th. This description follows easily from [8] or [9, Appen-
dix A].

The eigenvalues of the equilateral triangle Te, with either the Dirichlet
or the Neumann boundary condition on ∂Te, are the numbers

(2.9) λ̂(m,n) = 16π2

9 (m2 +mn+ n2) ,

with (m,n) ∈ N×N for the Neumann boundary condition, and (m,n) ∈
N•×N• for the Dirichlet boundary condition (here N• = N\{0}). The
multiplicities are given by,

(2.10) mult(λ̂0) = #
{

(m,n) ∈ L | λ̂(m,n) = λ̂0
}
,

with L = N×N for the Neumann boundary condition, and L = N•×N•
for the Dirichlet boundary condition.

One can associate one or two real eigenfunctions with such a pair (m,n).
When m = n, there is only one associated eigenfunction, and it is D-
invariant (here D denotes the bisector of one side of Te, see Figure 2.1).
When m 6= n, there are two associated eigenfunctions, one invariant
with respect to D, the other one anti-invariant. As a consequence, one
can explicitly describe the eigenvalues and eigenfunctions of the four
eigenvalue problems (Th, nnn), (Th, ndn) (they arise from the Neumann
problem for Te), and (Th, dnd), (Th, ddd) (they arise from the Dirichlet
problem for Te).

The resulting eigenvalues are given in Table 2.1.

Remark 2.5. As far as we know, there are no such explicit formulas
for the eigenvalues of the other mixed boundary value problems for Th.
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Table 2.1. Four mixed eigenvalue problems for Th

Eigenvalue problem Eigenvalues
(Th, nnn) λ̂(m,n), for 0 ≤ m ≤ n

(Th, ndn) λ̂(m,n), for 0 ≤ m < n

(Th, dnd) λ̂(m,n), for 1 ≤ m ≤ n

(Th, ddd) λ̂(m,n), for 1 ≤ m < n

Table 2.2. First eigenvalues for (Th, nnn) and (Th, ndn)

Eigenvalue Pairs (Th, nnn) (Th, ndn)
0 (0, 0) µ1

16π2

9 (0, 1), (1, 0) µ2 µ1

3× 16π2

9 (1, 1) µ3

4× 16π2

9 (0, 2, (2, 0) µ4 µ2

7× 16π2

9 (1, 2), (2, 1) µ5 µ3

9× 16π2

9 (0, 3), (3, 0) µ6 µ4

Table 2.3. First eigenvalues for (Th, dnd) and (Th, ddd)

Eigenvalue Pairs (Th, dnd) (Th, ddd)
3× 16π2

9 (1, 1) µ1

7× 16π2

9 (1, 2), (2, 1) µ2 µ1

12× 16π2

9 (2, 2) µ3

13× 16π2

9 (1, 3), (3, 1 µ4 µ2

19× 16π2

9 (2, 3), (3, 2) µ5 µ3

21× 16π2

9 (1, 4), (4, 1) µ6 µ4

Tables 2.1–2.3 display the first few eigenvalues, the corresponding pairs
of integers, and the corresponding indexed eigenvalues for the given
mixed boundary value problems for Th .

Remark 2.6. For later reference, we point out that the eigenvalues
which appear in Tables 2.2 and 2.3 are simple.

2.4. Rhombus with Neumann boundary condition. In this sub-
section, we choose the Neumann boundary condition on the boundary
∂Rhe of the equilateral rhombus.

2.4.1. The first Neumann eigenvalues of Rhe.

Proposition 2.7. Let νi denote the eigenvalues of (Rhe, n). Then,
(2.11) 0 = ν1 < ν2 < ν3 = ν4 < ν5 ≤ · · ·
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More precisely,
(i) The second eigenvalue ν2 is simple and satisfies

(2.12) ν2 = µ1(Th, nnd) = µ1(Te, nnd) .
If u2 ∈ E(ν2), then it is invariant under the symmetry D, anti-
invariant under the symmetry M , and Z(u2) = M ∩Rhe.
Furthermore, u2|Th is a first eigenfunction of (Th, nnd), and u2|Te
is a first eigenfunction of (Te, nnd).

(ii) For the eigenspace E(ν3) we have

(2.13)
{ dim (E(ν3) ∩ S+,+) = dim (E(ν3) ∩ S−,+) = 1 ,
E(ν3) ∩ S−,− = E(ν3) ∩ S+,− = {0} .

In particular, the eigenspace E(ν3) is spanned by two linearly in-
dependent functions u3 and u4 which are M invariant, and whose
restrictions to Te generate the eigenspace E (ν2(Te)).

Proof. According to the Reflection principle, Proposition 2.1, the first
six eigenvalues of (Rhe, n) belong to the set
(2.14) {µi(Th, nab) for 1 ≤ i ≤ 6 and a, b ∈ {d, n}} .
Among these numbers, the eigenvalues of (Th, nnn) and (Th, ndn) are
known explicitly, and they are simple, see Table 2.2.
Although the eigenvalues and eigenfunctions of (Th, nnd) and (Th, dnn)
are, as far as we know, not explicitly known, they satisfy some in-
equalities: the obvious inequalities µ1 < µ2 ≤ · · · , and the inequalities
provided by Proposition 2.2 (see [22]), and Proposition 2.3 (see [25]).
Table 2.4 summarizes what we know about the four first eigenvalues of
the problems (Th, nab), for a, b ∈ {d, n}.
In blue the known values, in red the known inequalities (Proposi-
tions 2.2 and 2.3). The gray cells contain the eigenvalues, listed with
multiplicities, for which we have no a priori information, except the
trivial inequalities (black inequality signs).

Remark 2.8. Note that we only display the first four eigenvalues in
each line, because this turns out to be sufficient for our purposes.

Remark 2.9. The reason why there are white empty cells in the 5th
row is explained in Remark 2.4.

• We know that ν1 = 0, and that this eigenvalue is simple.
• From Table 2.4, we deduce that

ν2 ∈ {µ2(Th, nnn), µ1(Th, nnd)} ,
with no other possibility. On the other hand, µ1(Th, nnd) < µ1(Th, ndn)
= µ2(Th, nnn). It follows that ν2 = µ1(Th, nnd), and that this eigenvalue
is simple, ν2 < ν3.
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Table 2.4. Rhe, Neumann boundary condition

(σ, τ) (Th, nab) µ1 µ2 µ3 µ4

(+,+) (Th, nnn) 0 < 16π2

9 < 3 16π2

9 < 4 16π2

9
Prop. 2.2 > > > >

(+,−) (Th, nnd) < ≤ ≤
Prop. 2.3 >

(−,+) (Th, ndn) 16π2

9 < 4 16π2

9 < 7 16π2

9 < 9 16π2

9
Prop. 2.2 > > > >

(−,−) (Th, ndd) < ≤ ≤

• From Table 2.4 and the knowledge of ν1 and ν2, we deduce that
ν3 ∈ {µ2(Th, nnn), µ1(Th, ndn)} ,

with no other possibility. Since µ2(Th, nnn) = µ1(Th, ndn), we have
ν3 = ν4 < ν5. The proposition follows. �

Note: For the reader’s information, Table 2.5, displays numerical values
for the eigenvalues: in the gray cells, the numerical values computed
with matlab; in the other cells, the approximate values of the known
eigenvalues.

Table 2.5. Rhe, Neumann boundary condition

(σ, τ) (Th, nab) µ1 µ2 µ3 µ4
(+,+) (Th, nnn) 0 < 17.55 < 52.64 < 70.18

> > > >

(+,−) (Th, nnd) 7.16 < 37.49 ≤ 90.06 ≤ 120.87

>

(−,+) (Th, ndn) 17.55 < 70.18 < 122.82 < 157.91

> > > >

(−,−) (Th, ndd) 47.63 < 110.36 ≤ 189.52 ≤ 224.68

Remark 2.10. One can also deduce Proposition 2.7 from the proof
of Corollary 1.3 in [25] which establishes that the first four Neumann
eigenvalues of a rhombus Rh(α) with smallest angle 2α > π

3 are sim-
ple, and describes the nodal patterns of the corresponding eigenvalues.
When 2α = π

3 the eigenvalues ν3 and ν4 become equal, see also Re-
marks 4.1 and 4.2 in [25].
2.5. ECP(Rhe, n) is false. As a corollary of Proposition 2.7, we ob-
tain,
Proposition 2.11. The Extended Courant property is false for the
equilateral rhombus with Neumann boundary condition. More precisely,
there exists a linear combination of eigenfunctions in E(ν1)⊕ E(ν3)
with four nodal domains.
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Proof. Proposition 2.7, Assertion (ii) tells us that E(ν3) contains an
eigenfunction which arises from a second D-invariant Neumann eigen-
function of Te,1 = Te. It suffices to apply the arguments of [9, Sec-
tion 3.1], where we prove that ECP(T0, n) is false. Here, T0 is the
equilateral triangle with vertices (0, 0), (1, 0) and (1

2 ,
√

3
2 ). A second

D-invariant Neumann eigenfunction for T0 is given by

(2.15) φ(x, y) = 2 cos
(2πx

3

)(
cos

(2πx
3

)
+ cos

(
2πy√

3

))
− 1.

The linear combination φ+1 vanishes on the line segments {x = 3
4}∩T0

and {x+
√

3 y = 3
2} ∩ T0.

Transplant the function φ to Te,1 by rotation and, using the symme-
try with respect to M , extend it to an M -invariant eigenfunction u3
for (Rhe, n). The linear combination u3 + 1 vanishes on two line seg-
ments which divide Rhe into four nodal domains, see Figure 2.4. The
proposition is proved. �

Figure 2.4. Nodal pattern of u3 + 1, four nodal domains

Figure 2.5 illustrates the variation of the number of nodal domains (the
eigenfunction produced by matlab is proportional to u3, not equal, so
that the bifurcation value is not 1 as in the proof of Proposition 2.11).

Figure 2.5. (Rhe, n): ECP false in E(ν1)⊕ E(ν3)

2.6. Numerical results for the ECP(Rhe, n). In Subsection 2.4,
we have identified the first four eigenvalues of (Rhe, n), in particular
ν2 = µ1(Th, nnd). The numerical computations in Table 2.5 indicate
that the next eigenvalues are ν5 = µ2(Th, nnd) = µ1(Th, ndd) = ν6, so
that the Neumann eigenvalues of the equilateral rhombus satisfy,
(2.16) 0 = ν1 < ν2 < ν3 = ν4 < ν5 < ν6 < . . . ,
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with corresponding nodal patterns shown in Figure 2.6. Looking at
linear combinations of the form u5 + au2, see Figure 2.7, we obtain the
following numerical result.
Statement 2.12. Numerical computations of the eigenvalues and of
the eigenfunctions indicate that the ECP(Rhe, n) is false in E(ν2) ⊕
E(ν5). More precisely, there exist linear combinations with six nodal
domains.

Figure 2.6. (Rhe, n): nodal patterns u2 – u5

Figure 2.7. (Rhe, n): ECP false in E(ν2)⊕ E(ν5)

Remark 2.13. This counterexample can also be interpreted as a coun-
terexample to the ECP for the equilateral triangle with mixed boundary
conditions, Neumann on two sides, and Dirichlet on the third side.
We first look at nodal patterns in E (µ1(Th, nnd)) ⊕ E (µ2(Th, nnd)),
see Figure 2.8. The corresponding nodal patterns in E (µ1(Te, nnd)) ⊕
E (µ2(Te, nnd)) are obtained using the symmetry with respect to the ho-
rizontal side.

Remark 2.14. We refer to Section 4 for comments on our numerical
approach.
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Figure 2.8. (Th, nnd): nodal patterns in E(µ1)⊕ E(µ2)

2.7. Numerical results for the ECP(Rhe, d). Table 2.6 is the ana-
logue of Table 2.4 for the Dirichlet problem in Rhe. Although one
can identify the first two Dirichlet eigenvalues of Rhe as δ1(Rhe) =
µ1(Th, dnn) and δ2(Rhe) = µ1(Th, dnd), it is not possible to rigorously
identify the following eigenvalues. We have to rely on numerical com-
putations.

Table 2.6. Rhe, Dirichlet boundary condition

(σ, τ) (Th, dab) µ1 µ2 µ3 µ4
(+,+) (Th, dnn) < ≤ ≤

Prop. 2.2 > > > >

(+,−) (Th, dnd) 3 16π2

9 < 7 16π2

9 < 12 16π2

9 < 13 16π2

9
Prop. 2.3 >

(−,+) (Th, ddn) < ≤ ≤
Prop. 2.2 > > > >

(−,−) (Th, ddd) 7 16π2

9 < 13 16π2

9 < 19 16π2

9 < 21 16π2

9

Table 2.7 provides the numerical eigenvalues computed with matlab,
and numerical approximations of the explicitly known eigenvalues.

Table 2.7. Rhe, Dirichlet boundary condition

(σ, τ) (Th, dab) µ1 µ2 µ3 µ4
(+,+) (Th, dnn) 24.90 < 83.83 ≤ 140.50 ≤ 169.20

> > > >

(+,−) (Th, dnd) 52.64 < 122.82 < 210.55 < 228.10

>

(−,+) (Th, ddn) 71.71 < 169.80 ≤ 234.10 ≤ 292.70

> > > >

(−,−) (Th, ddd) 122.82 < 228.10 < 333.37 < 368.47

From Table 2.7, we deduce that the Dirichlet eigenvalues of Rhe satisfy
(2.17) 0 < δ1 < δ2 < δ3 < δ4 < δ5 = δ6 < δ7 · · · .
More precisely, we find that δ2(Rhe) = µ1(Th, dnd) = δ1(Te) (the first
Dirichlet eigenvalue of the equilateral triangle Te). An eigenfunction u2
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associated with δ2(Rhe) arises from a first Dirichlet eigenfunction of Te.
We also find that δ5(Rhe) = µ2(Th, dnd) = µ1(Th, ddd) = δ2(Te). Eigen-
functions associated with δ5(Rhe) arise from second Dirichlet eigen-
functions of Te, one of them u5 is invariant with respect to D, the
other is anti-invariant. The nodal patterns of u2 and u5 are given in
Figure 2.9 (first and last pictures).

Figure 2.9. (Rhe, d): nodal patterns u2 – u5

In [9, Section 3], we proved that ECP(Te, d) is false: there exists a
linear combination of a first eigenfunction and a second D-invariant
eigenfunction of (Te, d), with three nodal domains. The same example
transcribed to (Rhe, d) yields a linear combination in E(δ2) ⊕ E(δ5)
with 6 nodal domains: for the Dirichlet problem in Rhe, we have the
following (numerical) analogue of Proposition 2.11, see Figure 2.10.

Statement 2.15. The numerical approximations of the eigenvalues
δj(Rhe) deduced from Table 2.7 indicate that the ECP(Rhe, d) is false
in E(δ2)⊕ E(δ5).

Figure 2.10. (Rhe, d): ECP false in E(δ2)⊕ E(δ5)

Remark. We refer to Section 4 for comments on our numerical ap-
proach.
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3. The regular hexagon

3.1. Symmetries and spectra. Let H denote the interior of the reg-
ular hexagon with center at the origin, and sides of unit length. The
diagonals Di, i = 1, 2, 3, joining opposite vertices, and the medians
Mj, j = 1, 2, 3, joining the mid-points of opposite sides, are lines of
mirror symmetry of the hexagon H, see Figure 3.1.

Figure 3.1. The hexagon and its mirror symmetries

We consider the diagonals D1 and M2, and the associated mirror sym-
metries of H. They commute,

(3.1) M2 ◦D1 = D1 ◦M2 = Rπ ,

and we can therefore apply the methods of Subsection 2.1.
It follows that D∗1 leaves the subspaces SM2,± globally invariant, and
that M∗

2 leaves the subspaces SD1,± globally invariant. As a conse-
quence, we have the following orthogonal decomposition of L2(H),

(3.2) L2(H) = S+,+
⊥
⊕ S−,−

⊥
⊕ S+,−

⊥
⊕ S−,+ ,

where
(3.3) Sσ,τ :=

{
φ ∈ L2(H) | D∗1φ = σ φ and M∗

2φ = τ φ
}
,

for σ, τ ∈ {+ ,−} .
Similar decompositions hold for the Sobolev spaces H1(H) and H1

0 (H),
which are used in the variational presentation of the Neumann (resp.
Dirichlet) eigenvalue problem for the hexagon. Since the Laplacian
commutes with the isometries D1 and M2, such decompositions also
hold for the eigenspaces of −∆ in H, with the boundary condition
b ∈ {d, n} on the boundary ∂H.
In the following figures, anti-nodal lines are indicated by dashed lines,
and nodal lines by solid lines. Figure 3.2 displays the nodal and anti-
nodal lines common to all functions in H1(H) ∩ Sσ,τ , where σ, τ ∈
{+,−}.
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Figure 3.2. Spaces Sσ,τ for σ, τ ∈ {+,−}

Denote by R the rotation R 2π
3
,

(3.4)
{
R = D2 ◦D1 = M2 ◦M1 = . . . ,

R−1 = D1 ◦D2 = M1 ◦M2 = . . . .

This is an isometry of H, and the action R∗ of R on functions is an
isometry of L2(H) with respect to the L2-inner-product.

Lemma 3.1. Let

(3.5)
{ S0 := ker(R∗ − I) , and
S1 := ker(R∗2 +R∗ + I) ,

as subspaces of L2(H). Then

(3.6)


S0 = img (R∗2 +R∗ + I) = ker (R∗2 +R∗ + I)⊥ ,
S1 = img(R∗ − I) = ker(R∗ − I)⊥ ,

and we have the orthogonal decomposition

(3.7) L2(H) = S0 ⊥⊕ S1 .

Here, as usual, img(f) and ker(f) denote respectively the image and
the kernel of the linear map f , and E⊥ the subspace orthogonal to E.

Proof. The following polynomial identities hold.
(3.8) x3 − 1 = (x− 1)(x2 + x+ 1) ,

(3.9) 3 = (x2 + x+ 1)− (x− 1)(x+ 2) .
Furthermore, the rotation R satisfies
(3.10) R3 = I .
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From (3.8) and (3.10), we deduce that
(3.11) img(R∗2 +R∗ + I) ⊂ ker(R∗ − I) ,
and
(3.12) img(R∗ − I) ⊂ ker(R∗2 +R + I) .
From (3.9), we deduce that
(3.13) L2(H) = img(R∗ − I) + img(R∗2 +R + I) ,
and hence, using (3.11) and (3.12)
(3.14) L2(H) = ker(R∗ − I) + ker(R∗2 +R + I) .
Clearly,
(3.15) ker(R∗ − I) ∩ ker(R∗2 +R + I) = {0} ,
so that, using (3.11) and (3.12),
(3.16) img(R∗ − I) ∩ img(R∗2 +R + I) = {0} .
Let φ ∈ img(R∗− I) and ψ ∈ img(R∗2 +R+ I). Using the fact that R∗
is an isometry and (3.10), we conclude that 〈φ, ψ〉 = 0 (the L2 inner
product). Therefore,
(3.17) img(R∗ − I) = img(R∗2 +R + I)⊥ .
From the previous identities, we deduce that

(3.18) L2(H) = img(R∗ − I)
⊥
⊕ img(R∗2 +R + I) ,

(3.19) L2(H) = ker(R∗ − I)
⊥
⊕ ker(R∗2 +R + I) ,

(3.20) img(R∗ − I) = ker(R∗2 +R + I) ,

(3.21) img(R∗2 +R + I) = ker(R∗ − I) .
The lemma is proved. �

Lemma 3.2. For σ, τ ∈ {+,−}, using the notation (3.5), define the
subspaces

(3.22)

 S
0
σ,τ := Sσ,τ ∩ S0 ,

S1
σ,τ := Sσ,τ ∩ S1 .

Define the map

(3.23)
{
T : L2(H)→ L2(H) ,
T (φ) = R∗φ−R∗2φ .

Then,
(1) ker(T ) = S0 and ker(T )⊥ = S1.
(2) T 2 = (R∗2 +R∗ + I)− 3I ; T ◦ T |S1 = −3I ; T (S1) = S1 ; T

is a bijection from S1 onto S1.
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(3) T ◦ ∆ = ∆ ◦ T , so that T leaves the eigenspaces of ∆ globally
invariant.

(4) For all σ, τ ∈ {+,−}, the subspace S0
σ,τ satisfies

(3.24) S0
σ,τ =

{
φ ∈ L2(H) | D∗i φ = σ φ ,M∗

j φ = τ φ , 1 ≤ i, j ≤ 3
}
.

(5) For all σ, τ ∈ {+,−}, T (Sσ,τ ) ⊂ S−σ,−τ .
(6) For all σ, τ ∈ {+,−}, ker (T |Sσ,τ ) = S0

σ,τ , and img(T |Sσ,τ ) ⊂
S1
−σ,−τ .

(7) For all σ, τ ∈ {+,−},

(3.25) Sσ,τ = S0
σ,τ

⊥
⊕ S1

σ,τ ,

and T is a bijection from S1
σ,τ onto S1

−σ,−τ .

Proof. Assertion (1) If φ ∈ ker(T ), then R∗2φ = R∗φ, so that φ =
R∗3φ = R∗2φ = R∗φ, and φ ∈ S0. The converse is clear. The second
equality follows from Lemma 3.1.
Assertion (2) The first two equalities are clear. If φ ∈ S1, then (R∗2 +
R∗+I)T (φ) = (R∗2+R∗+I)(R∗−I)R∗φ = 0, and T (φ) ∈ S1. If φ ∈ S1,
then T (T (φ)) = −3φ, so that φ = T (ψ) with ψ = −1

3T (φ) ∈ S1. This
implies that T (S1) = S1. On the other hand, if T (φ) = 0 and φ ∈ S1,
then φ ∈ S0 ∩ S1 = {0}.
Assertion (3) This assertion is clear because R is an isometry, so that
R∗ commutes with ∆. It follows that T commutes with ∆ as well, and
hence that T leaves each eigenspace E(λ) globally invariant.
Assertion (4) Let φ ∈ S0

σ,τ . Then R∗φ = φ and D∗1φ = σφ. Since
R = D1 ◦ D3, it follows that φ = R∗φ = D∗3D

∗
1φ = σD∗3φ, so that

D∗3φ = σφ. The other equalities are established in a similar way. On
the other hand, if D∗1φ = D∗3φ = σφ, then

R∗φ = (D1 ◦D3)∗φ = σ2φ = φ .

Assertion (5) Let φ ∈ Sσ,τ , i.e., D∗1φ = σφ and M∗
2φ = τφ. Then,

D∗1 (T (φ)) = D∗1R
∗φ−D∗1R∗2φ

= D∗1(D2 ◦D1)∗φ−D∗1(D3 ◦D1)∗φ
= D∗2φ−D∗3φ
= (D1 ◦D1 ◦D2)∗φ− (D1 ◦D1 ◦D3)∗φ
= (D1 ◦D2)∗D∗1φ− (D1 ◦D3)∗D∗1φ
= σR∗2φ− σR∗φ
= −σT (φ) .

Similarly, one shows that M∗
2 (T (φ)) = −τT (φ).

Assertion (6) The first equality follows from Assertion (1). The second
equality follows from Assertion (5) and the fact that img(T ) ⊂ S1

because R∗3 = I.
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Assertion (7) Take φ ∈ Sσ,τ . Then T (φ) ∈ S1 ∩ S−σ,−τ and hence
T 2(φ) ∈ S1 ∩ Sσ,τ . We also have T 2(φ) = (R∗2 + R∗ + I)(φ) − 3φ,
which implies that (R∗2 + R∗ + I)(φ) ∈ S0 ∩ Sσ,τ . The initial equality
can be rewritten φ = 1

3(R∗2 + R∗ + I)(φ)− 1
3T

2(φ) which implies that
Sσ,τ = S0 ∩ Sσ,τ ⊕ S1 ∩ Sσ,τ .
We have T (S1 ∩ Sσ,τ ) ⊂ S1 ∩ S−σ,−τ . If φ ∈ S1 ∩ Sσ,τ and T (φ) = 0,
then φ ∈ S0 ∩ S1 = {0}. If φ ∈ S1 ∩ S−σ,−τ , then φ = T (ψ) with
ψ = −1

3T (φ) ∈ S1 ∩ Sσ,τ . This proves that T is bijective. �

Figure 3.3 displays the nodal and anti-nodal lines common to all func-
tions in H1(H) ∩ S0

σ,τ , with σ, τ ∈ {+,−}.

Figure 3.3. The spaces S0
σ,τ for σ, τ ∈ {+,−}

The Laplacian ∆ commutes with isometries. It follows that the eigen-
spaces of the Laplacian ∆ in H, with either the Neumann or Dirichlet
boundary condition on ∂H, decompose orthogonally according to the
spaces Sσ,τ , S0 and S1. More precisely, if E(λ) is the eigenspace of −∆
for the eigenvalue λ in the Neumann (resp. Dirichlet) spectrum of ∆,
then

(3.26) E(λ) =
⊥⊕
σ,τ∈{+ ,−}

(
E(λ) ∩ S0

σ,τ

) ⊥
⊕
(
E(λ) ∩ S1

σ,τ

)
.

Remark 3.3. If E(λ) ∩ S1
σ,τ has dimension p, then by Lemma 3.2,

E(λ) ∩ S1
−σ,−τ has dimension p. It follows that E(λ) has dimension at

least 2p.

Remark 3.4. Let λ be a simple eigenvalue. Then, any associated
eigenfunction φ is either invariant or anti-invariant under any mirror
symmetry L which leaves H invariant, and invariant under R∗. It
follows that φ ∈ S0

σ,τ for some pair (σ, τ).
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Remark 3.5. Assume that φ ∈ E(λ) ∩ S0
σ,τ . Then, by Courant’s the-

orem, we have 6 ≤ β0(φ) ≤ κ(λ) if (σ, τ) = (+,−) or (−,+), and
12 ≤ β0(φ) ≤ κ(λ) if (σ, τ) = (−,−). If φ ∈ S0

+,+, then φ arises from
an eigenfunction of Th with Neumann boundary condition on the sides
1 and 2.

3.2. Symmetries and boundary conditions on sub-domains. Let
Q (resp. P) denote the interior of the quadrilateral (resp. the penta-
gon) which appears in Figure 3.4. Let R (resp. Th) denote the interior
of the quadrilateral (resp. of the hemiequilateral triangle) which ap-
pears in Figure 3.5. Then, Q (resp. P) is a fundamental domain of the
action of the mirror symmetry D1 (resp. M2), and R is a fundamental
domain for the action of the group generated by D1 and M2.
Using the notation of Subsection 2.1, we consider the following mixed
eigenvalue problems in the domains H,P ,Q and R.
• For the hexagon H, we do not decompose the boundary,
(3.27) ∂H = ΓH,1 ,
and we consider the eigenvalue problem (H, b) with b ∈ {n, d}.
• For the quadrilateral Q, we decompose the boundary as

(3.28)


∂Q = ΓQ,1 t ΓQ,2 , with
ΓQ,1 = Q∩D1 ,

ΓQ,2 = Q∩ ∂H ,
and we consider the eigenvalue problems (Q, ab), with a, b ∈ {n, d}.
• For the pentagon P , we decompose the boundary as

(3.29)


∂P = ΓP,1 t ΓP,2 , with
ΓP,1 = P ∩M2 ,

ΓP,2 = P ∩ ∂H ,
and we consider the eigenvalue problems (P , ab), with a, b ∈ {n, d}.
• For the quadrilateral R, we decompose the boundary as

(3.30)



∂R = ΓR,1 t ΓR,2 t ΓR,3 , with
ΓR,1 = R∩M2 ,

ΓR,2 = R∩D1 ,

ΓR,3 = R∩ ∂H ,
and we consider the eigenvalue problems (R, abc), with a, b, c ∈ {n, d}.

• We also consider the hemiequilateral triangle Th, its sides ordered in
decreasing order of length, and the eigenvalue problems (Th, abc), with
a, b, c ∈ {n, d}. For the equilateral triangle Te, up to isometry, it is not
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necessary to order the sides, and we consider the eigenvalue problems
(Te, abc) with a, b, c ∈ {n, d}.

The boundary decompositions for the domains P ,Q,R, and for the
hemiequilateral triangle Th, are illustrated in Figures 3.4 and 3.5.

Figure 3.4. The sub-domains Q and P

Figure 3.5. The sub-domains R and Th

Consider the eigenvalue problem (H, c) for the hexagon, with c ∈ {n, d}.
Let E(µ, c) be an eigenspace of −∆ for (H, c). If φ ∈ E(µ, c) ∩ Sσ,τ ,
then the restriction φ|R, of the function φ to the domain R, is an
eigenfunction of −∆ in (R, ε(σ)ε(τ)c), where

(3.31) ε(+) = n and ε(−) = d ,

associated with the same eigenvalue µ.

Conversely, let ψ be an eigenfunction of −∆ in (R, abc), associated
with the eigenvalue µ, where c is the given boundary condition on ∂H,
and a, b ∈ {d, n} are boundary conditions on the sidesM2, D1. Extend
ψ to a function ψ̌ defined on H, by symmetry (resp. anti-symmetry)
with respect to M2, if a = n (resp. if a = d), and by symmetry (resp.
anti-symmetry) with respect to D1, if b = n (resp. if b = d). Then,
the function ψ̌ is an eigenfunction of −∆ for (H, c), associated with
the eigenvalue µ, and belongs to Sσ,τ with ε(σ) = a and ε(τ) = b.

As in Subsection 2.1, we have,
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Proposition 3.6. The eigenvalues and eigenfunctions of (H, c) in Sσ,τ
are in bijection with the eigenvalues and eigenfunctions of (R, abc),
with the boundary condition a on M2, with a = d, if σ = −, and a = n,
if σ = +; and, similarly, with the boundary condition b on D1, with
b = d, if τ = −, and b = n, if τ = +. Similar statements hold for P,
Q and Th respectively.
3.3. Identification of the first Dirichlet eigenvalues of the regu-
lar hexagon. Throughout this section, we fix the Dirichlet boundary
condition d on ∂H, and we denote the Dirichlet eigenvalues of H by
(3.32) δ1(H) < δ2(H) ≤ δ3(H) ≤ · · · ≤ δ6(H) ≤ δ7(H) ≤ · · · ,
and the Dirichlet spectrum of the hexagon by sp(H, d).

3.3.1. Numerical computations. Numerical approximations for the Di-
richlet eigenvalues of the regular hexagon have been obtained by several
authors, see for example [5, 16, 13], or the recent paper [17].
The main idea, in order to make the identification of multiple Dirichlet
eigenvalues of H easier, is to take the symmetries of H (see Section 3.2)
into account from the start. For this purpose, one computes the eigen-
values of the domains R and Th, for mixed boundary conditions abd,
with a, b ∈ {d, n}.
Table 3.1 displays the first four eigenvalues of (R, abd), as computed
with matlab, and contains some useful relations between these eigen-
values.

Table 3.1. R-shape, mixed boundary conditions, first
four approximate eigenvalues

(R, abd) µ1 < µ2 ≤ µ3 ≤ µ4
nnd 7.16 < 32.45 ≤ 37.49 ≤ 70.14

> > > >

dnd 18.13 < 47.63 ≤ 60.11 ≤ 94.33
? ? ? ?

ndd 18.13 < 52.64 ≤ 60.11 ≤ 94.33

> > > >

ddd 32.45 < 70.14 ≤ 87.53 ≤ 122.82

Remark 3.7. The eigenvalues in Table 3.1 are partially ordered ‘ver-
tically’. Indeed, for i ≥ 1, we have the strict inequalities,

(3.33)
{
µi(R, nnd) < µi(R, dnd) < µi(R, ddd) ,
µi(R, nnd) < µi(R, ndd) < µi(R, ddd) ,

which follow from Proposition 2.2, see [22, Proposition 2.3]. These
inequalities are indicated in the table by the (rotated) strict inequality
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signs. Note that it is in general not possible to compare the eigenvalues
µi(R, dnd) and µi(R, ndd). This is indicated in the table by the black
question marks.
Table 3.2 displays some eigenvalues of (Th, abd), for a, b ∈ {d, n}. The
lower bound in the second line follows from Dirichlet monotonicity (see
Subsection 3.3.2). In the third line, we have used the fact due to Pólya
(see [19]) that the first Dirichlet eigenvalue of a kite-shape is bounded
from below by the first Dirichlet eigenvalue of a square with the same
area. In the last two lines, the eigenvalues are known explicitly.

Table 3.2. Some eigenvalues of the hemiequilateral triangle

S (Th, abd) Eigenvalue Value

S0
+,+ (Th, nnd) µ1 µ1 ≈ 7.16

S0
+,+ (Th, nnd) µ2 µ2 ≈ 37.49 > 26.37

S0
+,− (Th, ndd) µ1 µ1 ≥ 4π2

√
3 ≈ 22.79

S0
−,+ (Th, dnd) µ1 µ1 = 3 16π2

9 ≈ 52.64

S0
−,− (Th, ddd) µ1 µ1 = 7 16π2

3 ≈ 122.82

Remark 3.8. The figures in Table 3.1 suggest that the Dirichlet eigen-
values of H come into four well separated sets {δ1(H)}, {δ2(H), δ3(H)},
{δ4(H), δ5(H)} and {δ6(H)}.
3.3.2. Lower and upper bounds for the Dirichlet eigenvalues. The hexa-
gon H is inscribed in the unit disk D, and contains the disk with radius√

3
2 . By domain monotonicity for the Dirichlet eigenvalues, we have the
following lower and upper bounds for the Dirichlet eigenvalues of H,

(3.34) δj(D) < δj(H) < 4
3 δj(D) for any j ≥ 1 .

The Dirichlet eigenvalues of the unit disk D satisfy the relations

(3.35)


j2

0,1 = δ1(D) < j2
1,1 = δ2(D) = δ3(D)

< j2
2,1 = δ4(D) = δ5(D) < j2

0,2 = δ6(D)
< j2

3,1 = δ7(D) = δ8(D) < · · ·
where jm,n is the n-th positive zero of the Bessel function Jm .
Corresponding eigenfunctions are given by

(3.36)



δ1(D) ! J0(j0,1r) ,
δ2(D) ! J1(j1,1r) cos(θ) and J1(j1,1r) sin(θ) ,
δ4(D) ! J2(j2,1r) cos(2θ) and J2(j2,1r) sin(2θ) ,
δ6(D) ! J0(j0,2r) ,
δ7(D) ! J3(j3,1r) cos(3θ) and J3(j3,1r) sin(3θ) .
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with the nodal patterns represented in Figure 3.6.

Figure 3.6. Nodal patterns in the first five Dirichlet
eigenspaces of the unit disk

The lower and upper bounds (3.34) for the first eight eigenvalues are
summarized in Table 3.3.

Table 3.3. Bounds for the first eight Dirichlet eigenval-
ues of the hexagon, using domain monotonicity

Eigenvalue Lower bound Upper bound
δ1(H) 5.78 7.72

δ2(H), δ3(H) 14.68 19.58
δ4(H), δ5(H) 26.37 35.17

δ6(H) 30.47 40.63
δ7(H), δ8(H) 40.70 54.28

Similar bounds can be given for the first Dirichlet eigenvalues of the
domains P , Q and R, see Table 3.4.

Table 3.4. Bounds for the first Dirichlet eigenvalues of
P , Q and R, using domain monotonicity

Eigenvalue Lower bound Upper bound
δ1(Q), δ1(P) 14.68 19.58

δ1(R) 26.37 35.17

It is easy to compute the eigenvalues of a sector of the unit disk, with
Neumann boundary condition on the sides of the sector, and Dirichlet
boundary condition on the arc of circle. In particular, the first (resp.
second) eigenvalue of such a mixed Neumann-Dirichlet problem in the
circular sector of angle π

6 is j2
0,1 (resp. j2

0,2). From domain monotonic-
ity, we can compare the eigenvalues of (Th, nnd) with the eigenvalues
of the sectors with angle π

6 , and respective radii
√

3
2 and 1, with the

Neumann boundary condition on the boundary radii, and with the
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Dirichlet boundary condition on the arc of circle, see Figure 3.7. We
obtain the inequalities

(3.37)

 5.78 < j2
0,1 < µ1(Th, nnd) ≈ 7.16 < 4

3j
2
0,1 < 7.72 ,

30.47 < j2
0,2 < µ2(Th, nnd) ≈ 37.49 < 4

3j
2
0,2 < 40.63 .

Figure 3.7. Domain monotonicity

Taking into account the bounds given in Table 3.3, we have the rela-
tions,

(3.38)



]5.78 , 7.72[∩σ(H, d) = {δ1(H)} ,
]14.68 , 19.58[∩σ(H, d) = {δ2(H), δ3(H)} ,
]26.37 , 40.63[∩σ(H, d) = {δ4(H), δ5(H), δ6(H)} ,

40.70 ≤ δ7(H) .
Subsection 3.2, the bounds provided by Table 3.4, and inequalities
(3.37), imply that

(3.39)


µ1(Th, nnd) = δ1(H) ,

{δ1(P), δ1(Q)} ⊂ {δ2(H), δ3(H)} ,
{δ1(R), µ2(Th, nnd)} ⊂ {δ4(H), δ5(H), δ6(H)} .

We have the following proposition.

Proposition 3.9. The first eigenvalues of (H, d), satisfy the inequali-
ties,

(3.40) δ1(H) < δ2(H) = δ3(H) < δ4(H) ≤ δ5(H) ≤ δ6(H) < δ7(H) .

More precisely,
(1) A first eigenfunction u1 of (H, d) arises from a first eigenfunc-

tion of (R, nnd). It also arises from a first eigenfunction of
(Th, nnd).

(2) The eigenspace E(δ2) has dimension 2. It is generated by an
eigenfunction u2 arising from a first eigenfunction of (P , d),
and by an eigenfunction u3 arising from a first eigenfunction of
(Q, d). These eigenfunctions also arise from first eigenfunctions
of (R, dnd) and (R, ndd) respectively.
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(3) The sum E(δ4(H))⊕ E(δ5(H))⊕ E(δ6(H)) has dimension 3. It
is generated by eigenfunctions {u, v, w}, where u arises from a
first eigenfunction of (R, ddd), v = T (u), and w arises from a
second eigenfunction of (Th, nnd). The nodal set of w is a closed
simple curve around the center of the hexagon.

Proof. We use the ideas of Subsection 2.2.
Assertion 1. The first Dirichlet eigenvalue is simple, and an associated
eigenfunction u1 does not change sign. A first eigenfunction must be
invariant under all the symmetries Di,Mj. This implies that u1 arises
from a first eigenfunction of (R, nnd), and from a first eigenfunction of
(Th, nnd).
Assertion 2. Let ψ be a first eigenfunction of (Q, d). It does not
change sign in Q, and must be invariant with respect to M2. This
means that it arises from a first eigenfunction of (R, ndd). Extend ψ
to u3 on H, so that it is anti-invariant under D1. The function u3 is an
eigenfunction of (H, d). It is associated with δ1(Q), belongs to S−,+,
and its nodal set is D1∩H, so that u3 6∈ S0

−,+. Similarly, let θ be a first
of (P , d). It does not vanish in P , and is invariant with respect to D1.
It arises from a first eigenfunction of (R, dnd), and can be extended to
u2 on H, an eigenfunction of (H, d), associated with δ1(P), belonging
to S+,−, and whose nodal set is M2 ∩ H, so that u2 6∈ S0

+,−. Applying
Lemma 3.2, and (3.39), we conclude that we can choose u3 = T (u2),
and hence that
(3.41) δ2(H) = δ3(H) = δ1(P) = δ1(Q).
Assertion 3. We reason as in the proof of Assertion 2. From a first
eigenfunction φ of (R, d), we obtain an eigenfunction u of (H, d), associ-
ated with δ1(R), belonging to S−,− , whose nodal set is (D1∪M2)∩H .
Then u does not belong to S0

−,− . Applying Lemma 3.2, and (3.39),
we can choose v = T (u). Using (3.39), more precisely the fact that
µ2(Th, nnd) ∈ sp(H, d), we now choose w to arise from a second eigen-
function ξ of (Th, nnd).
Because w is a Dirichlet eigenfunction of the convex set H, the nodal
set of w has the properties described in [1]. The function ξ has two
nodal domains, and its nodal set must be a single simple line which is
either closed inside Th, or goes from one side to another side (including
the possibility to start or arrive at a vertex). Looking at all the possible
configurations, we see that the function w would have at least seven
nodal domains (this is prohibited by Courant’s theorem), except in one
case, when the nodal set of ξ is a curve from the open side of Th labelled
1, to the open side labelled 2. In this case, the function w has a closed
nodal line and two nodal domains.
Note: We know that dim (E(δ4)⊕ E(δ5)⊕ E(δ6)) = 3. According to
Remark 3.3, this implies that (E(δ4)⊕ E(δ5)⊕ E(δ6)) ∩ S0 6= {0}.



28 P. BÉRARD AND B. HELFFER

The proposition is proved. �

Remark 3.10. We can determine which eigenvalues among the first
four eigenvalues of (R, abd), a, b ∈ {d, n}, might possibly be δ4(H).
Table 3.5 takes Remark 3.7 and Assertions 1 and 2 into account. The
word “no” in a cell means that the corresponding eigenvalue µi(R, abd)
cannot be equal to δ4(H) due to the known inequalities on these eigen-
values. The only remaining possibilities are δ4(H) = µ2(R, nnd) (which
might be a multiple eigenvalue), and δ4(H) = µ1(R, ddd).

Table 3.5. Possible choices for δ4(H)

(R, abd) µ1 < µ2 ≤ µ3 ≤ µ4
nnd δ1(H) < ≤ ≤

> > > >

dnd δ2(H) = δ3(H) < no ≤ no ≤ no
ndd δ2(H) = δ3(H) < no ≤ no ≤ no

> > > >

ddd < no ≤ no ≤ no

3.4. Numerical results and ECP(H, d). Using the numerical ap-
proximations given in Table 3.1, we infer the (numerical) lower bound
δ6(H) > 35.17. This implies that δ6(H) is simple. It follows that
u6 arises from the second eigenfunction of Th, with mixed boundary
condition nnd (Dirichlet on the smaller side of Th, Neumann on the
other sides). This provides the following numerical extension of Propo-
sition 3.9,

Statement 3.11. The Dirichlet eigenvalues of H satisfy,
(3.42) δ1(H) < δ2(H) = δ3(H) < δ4(H) = δ5(H) < δ6(H) < δ7(H) ,
and
(3.43) δ4(H) = δ5(H) = δ1(R) ,
The eigenspace E(δ4) has dimension 2, and is generated by an eigen-
function u4 which arises from the first eigenfunction of (R, ddd) and
the function u5 = T (u4). The eigenfunction u6 associated with δ6(H)
arises from the second eigenfunction of (Th, nnd), and its nodal set is
a simple closed curve enclosing the center of the hexagon.

Figure 3.8 displays the nodal patterns of first six Dirichlet eigenfunc-
tions of H.
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Figure 3.8. (H, d): nodal structure for the first six eigenfunctions

Plotting the nodal set of the linear combination u6 + a u1 for several
values of a, one finds some values of a for which this function has 7
nodal domains, see Figure 3.9.

Figure 3.9. (H, d): the ECP is false in E(δ1)⊕ E(δ6)

Statement 3.12. Figure 3.9 provides a numerical evidence that the
ECP(H, d) is false.

Remark 3.13. For Statement 3.12, we do not really need to separate
δ6(H) from δ5(H). It suffices to use Proposition 3.9, and more precisely
the fact that there exists an eigenfunction in E(δ4) ⊕ E(δ5) ⊕ E(δ6),
which arises from a second eigenfunction of (Th, nnd). As in Subsec-
tion 2.6, we then need to know the nodal patterns in E (µ1(Th, nnd))⊕
E (µ2(Th, nnd)), or equivalently the nodal patterns in E (µ1(Te, nnd)) ⊕
E (µ2(Te, nnd)), see Remark 2.13 and Figure 2.8.
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3.5. Identification of the first Neumann eigenvalues of the reg-
ular hexagon.

3.5.1. Numerical computations and preliminary remarks. We did not
find numerical computations of the Neumann eigenvalues of the hexa-
gon in the literature. We use the same method as in Subsection 3.3.
Given an eigenspace E(λ) of −∆ for (H, n), we apply Lemma 3.2, and
write

(3.44) E(λ) =
⊥⊕
σ,τ∈{+,−}

(
E(λ) ∩ S0

σ,τ

) ⊥
⊕
(
E(λ) ∩ S1

σ,τ

)
.

This means that to determine the eigenvalues of (H, n), it suffices to
list the eigenvalues of (R, abn), with a, b ∈ {d, n}, and to re-order them
in non-decreasing order.
Table 3.6 displays the approximate values of the first four eigenvalues
of (R, abn), as calculated by matlab.

Table 3.6. First four eigenvalues for (R, abn), a, b ∈ {d, n}

(R, abd) µ1 < µ2 ≤ µ3 ≤ µ4
nnn 0 < 10.87 ≤ 17.55 ≤ 33.45

> > > >

dnn 4.04 < 17.55 ≤ 32.91 ≤ 49.90
? ? ? ?

ndn 4.04 < 24.90 ≤ 32.91 ≤ 49.90

> > > >

ddn 10.87 < 33.45 ≤ 54.77 ≤ 71.71

Remark 3.14. The following inequalities follow from Proposition 2.2,
see [22],

(3.45)
{
µi(R, nnn) < µi(R, dnn) < µi(R, ddn) ,
µi(R, nnn) < µi(R, ndn) < µi(R, ddn) .

These inequalities are indicated in Table 3.6 by the (rotated) strict
inequality signs. The question marks indicate that one cannot compare
the other values.
Eigenfunctions in E(λ) ∩ S0

σ,τ correspond to eigenfunctions of −∆ for
(Th, abn) with a = d (resp. a = n) if τ = − (resp. τ = +), and similarly
for b, with σ. Table 3.7 displays the first non trivial eigenvalue of
(Th, abn).

Remarks 3.15. (1) The first eigenvalue µ1(Th, nnn) is 0. The second
eigenvalue µ2(Th, nnn) is also the second eigenvalue of an equilateral
triangle with Neumann boundary condition. The corresponding eigen-
function has a nodal line which is a curve from side 1 to side 2 of Th.
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Table 3.7. Least non trivial eigenvalues for the
hemiequilateral triangle

S (Th, abn) Eigenvalue Value

S0
+,+ (Th, nnn) µ2 µ2 = 16π2

9 ≈ 17.55

S0
+,− (Th, ndn) µ1 µ1 = 16π2

9 ≈ 17.55

S0
−,+ (Th, dnn) µ1 µ1 >

4π2
√

3 > 22.79

S0
−,− (Th, ddn) µ1 µ1 >

16π2

3 > 52.64

(2) In the third line of Table 3.7, we use the fact that µ1(Th, dnn) is the
first Dirichlet eigenvalue of an equilateral rhombus. It is bounded from
below by the first Dirichlet eigenvalue of a square with the same area
(Pólya, see [19]).
(3) In the fourth line of Table 3.7, we use the fact that µ1(Th, ddn) is the
first Dirichlet eigenvalue of an isosceles triangle with sides (1, 1,

√
3). It

is bounded from below by the first Dirichlet eigenvalue of the equilateral
triangle with the same area (Pólya, see [19]). Note that µ1(Th, ddn) >
µ1(Th, dnn) according to Proposition 2.2.

One can also compute the eigenvalues of (H, n) directly, without taking
the symmetries into account. The first Neumann eigenvalues of the
hexagon are given in Table 3.8.

Table 3.8. First non-trivial Neumann eigenvalues of H

Eigenvalue of H Approximation Eigenvalue of R
ν2(H) ≈ 4.04 µ1(R, dnn)
ν3(H) ≈ 4.04 µ1(R, ndn)
ν4(H) ≈ 10.87 µ1(R, ddn)
ν5(H) ≈ 10.87 µ2(R, nnn)
ν6(H) ≈ 17.55 µ2(R, dnn)
ν7(H) ≈ 17.55 µ3(R, nnn)
ν8(H) ≈ 24.90 µ2(R, ndn)

Figure 3.10 displays the nodal patterns of eigenfunctions associated
with the eigenvalues νi(H), 2 ≤ i ≤ 7.
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Figure 3.10. (H, n): nodal patterns u2 – u7

Remark 3.16. The figures in Table 3.6 suggest that the Neumann
eigenvalues of the hexagon come into well separated sets:

ν1(H) = 0 ,
{ν2(H), ν3(H)} ⊂ ]3, 5[ ,
{ν4(H), ν5(H)} ⊂ ]6, 14[ ,
{ν6(H), ν7(H)} ⊂ ]15, 20[ ,

ν8(H) > 21 .

In the following subsections, we analyze the possible eigenspaces and,
more precisely, the double eigenvalues. Note that for Neumann eigen-
values we do not have monotonicity inequalities as the ones we used
for Dirichlet eigenvalues in Subsection 3.3.2, so that we have to rely on
the numerical evidence provided by Remark 3.16.

3.5.2. Analysis of the possible eigenspaces of (H, n). We divide the
analysis into several steps.

Step 1: eigenvalue ν1(H). The first Neumann eigenvalue is zero,
and simple, with a corresponding eigenfunction u1 which is constant.
We have u1 ∈ S0

+,+, and ν1(H) = µ1(Th, nnn).

Step 2: eigenvalue ν2(H). Let E2 = E (ν2(H)) be the corresponding
eigenspace.
� We claim that

(3.46) E2 ∩ S0 = {0} .
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Indeed, Courant’s nodal domain theorem and Lemma 3.2 imply that
E2 ∩ S0

σ,τ = {0} unless (σ, τ) = (+,+). Assume that there exists some
0 6= φ ∈ E2∩S0

+,+. The restriction of φ to Th would be an eigenfunction
of −∆ for (Th, nnn). Because ν2(H) is the least non zero eigenvalue, we
would have ν2(H) = µ2(Th, nnn), whose eigenfunction is known, with
nodal set an arc from the side 1 to the side 2. The function φ would
have a closed nodal line bounding a nodal domain strictly contained in
the interior of H, and we would have ν2(H) > δ1(H), contradicting the
fact that ν3(H) ≤ δ1(H) according to [21, Theorem 4.2].
As a by-product of (3.46), Lemma 3.2 tells us that the map T , defined
by (3.22), is a bijection from E2 to E2.
� We claim that
(3.47) E2 ∩ S1

−,− = {0} and E2 ∩ S1
+,+ = {0} .

The first assertion is clear by Courant’s theorem. The second assertion
follows from the fact that the map T is a bijection from S1

+,+ onto S1
−,−

which commutes with ∆.
� We claim that
(3.48) dim

(
E2 ∩ S1

+,−

)
= dim

(
E2 ∩ S1

−,+

)
= 1 ,

and hence that mult (ν2(H)) = 2 .
Indeed, using the map T again, we see that the spaces E2 ∩ S1

+,− and
E2∩S1

−,+ have the same dimension. According to [15], see the statement
p. 1170, line (-8), the multiplicity of ν2(H) is less than or equal to 3, and
we can conclude that this dimension must be 1. Here is an alternative
argument for the case at hand. It suffices to prove that the dimension of
E2 cannot be larger than or equal to 4. Indeed, assume that dim E2 ≥ 4.
One could then find a point x0 ∈ H, and an eigenfunction u4 ∈ E2
such that u4(x0) 6= 0. The subspace E2,x0 = {u ∈ E2 | u(x0) = 0}
would have dimension 3, with a basis u1, u2, u3. The three vectors
∇u1(x0),∇u2(x0),∇u3(x0) ∈ R2 would be linearly dependent, and we
would then find a nontrivial u ∈ E2 such that u(x0) = ∇u(x0) = 0. The
nodal set of u would contain at least four semi-arcs emanating from x0,
and we would reach a contradiction with the fact that u has only two
nodal domains by Courant’s theorem.
Because µ2(R, nnn) is an eigenvalue of (H, n), we have proved the fol-
lowing lemma.

Lemma 3.17. The eigenvalue ν2(H) has multiplicity 2,
(3.49) ν2(H) = µ1(R, dnn) = µ1(R, ndn) ,
and corresponding eigenfunctions u2, u3 arise from the first eigenfunc-
tions of −∆ for (R, dnn) and (R, ndn). Furthermore,

ν2(H) = ν3(H) < µ2(R, nnn) .
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Step 3: eigenvalue ν4(H). Let E4 = E (ν4(H)) be the eigenspace
associated with the eigenvalue ν2(H).
� We claim that
(3.50) E4 ∩ S0 = {0} .
Indeed, by Courant’s theorem and Lemma 3.2,
(3.51) E4 ∩ S0

σ,τ = {0},
unless (σ, τ) = (+,+). Assume that there exists some 0 6= φ ∈ S0

+,+.
Then, we would have ν4(H) = µ2(Th, nnn) = 16π2

9 . Observe that
ν2(Te) = µ2(Th, nnn) = µ1(Th, ndn). This means that E4 would also
contain a function in S0

+,− having 6 nodal domains which would con-
tradict Courant’s theorem.
From (3.50) and Proposition 2.3 ([25, Theorem 1.1]), we deduce that
(3.52) ν4 < µ2(Th, nnn) = µ1(Th, ndn) < µ1(Th, dnn) < µ1(Th, ddn) .
� We claim that
(3.53) E4 ∩ S1

+,− = {0} and E4 ∩ S1
−,+ = {0} .

Indeed, assume that E4 ∩S1
+,− 6= {0} or, equivalently using the map T ,

that E4 ∩ S1
−,+ 6= {0}. Then, we would have

(3.54) ν4 = µ2(R, ndn) = µ2(R, dnn) .
These eigenvalues are strictly larger than µ2(R, nnn) by (3.45), and
this would contradict the fact that ν3(H) < µ2(R, nnn), see Step 2,
because µ2(R, nnn) is an eigenvalue for (H, n).
As a by-product, we have the inequalities

(3.55)
{
ν4 < µ2(R, dnn) < µ2(R, ddn) ,
ν4 < µ2(R, ndn) < µ2(R, ddn) .

� It follows from the above arguments that we must have,
(3.56) dim

(
E4 ∩ S1

−,−

)
= dim

(
E4 ∩ S1

+,+

)
> 0 ,

and hence that dim E4 ≥ 2, so that ν4(H) = ν5(H) = µ1(R, ddn) =
µ2(R, nnn), with corresponding eigenfunction u4, u5 for (H, n).

Remark 3.18. According to Table 3.6 and Remark 3.16, dim E4 = 2.
Step 4: eigenvalue ν6(H). So far, we have established the following
facts

ν1(H) < ν2(H) = ν3(H) < ν4(H) = ν5(H) ≤ · · ·
or

µ1(R, nnn) < µ1(R, dnn) = µ1(R, ndn) < µ2(R, nnn) = µ1(R, ddn) .
The next eigenvalue ν6(H) should belong to the set,
(3.57) {µ2(R, dnn), µ2(R, ndn), µ2(R, ddn), µ3(R, nnn)}
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We can exclude µ2(R, ddn) because it is larger than both µ2(R, dnn)
and µ2(R, ndn) according to (3.45) ([22, Proposition 2.3]).
The eigenvalues of (Th, abn), a, b ∈ {d, n}, are eigenvalues of (H, n).
Using Table 3.7 and Remark 3.16, we can conclude that
(3.58) ν6(H) = ν7(H) = µ1(Th, ndn) = µ2(Th, nnn) ,
and that associated eigenfunctions u6, u7 arise from the first and second
eigenfunctions of (Th, ndn).

Statement 3.19. From the numerical evidence in Remark 3.16, we
conclude that νi(H) have multiplicity 2 for i ∈ {2, 4, 6}, and that ν6(H)
and ν7(H) arise from eigenvalues of (Th, abn).

3.6. Numerical computations and ECP(H, n). The first Neumann
eigenvalue of the hexagon, ν1(H), is 0, with associated eigenfunction
u1 ≡ 1. As sixth Neumann eigenfunction u6 of the hexagon, we can
choose the function which arises from an eigenfunction for µ2(Th, nnn),
or equivalently from a D-invariant second eigenfunction ψ of (Te, n).
It follows from [9, Section 3] that ECP(Te, n) is false, i.e., that there
exists some real value a such that ψ+a has three nodal domains in Te.
It follows that u6 + a has seven nodal domains, so that ECP(H, n) is
false.
Alternatively, we can look at µ3(R, nnn) = µ2(Th, nnn). Figure 3.11
displays the nodal pattern and the level lines of an eigenfunction for
µ3(R, nnn). By reflection with respect to the lines D1 and M2, one
obtains a Neumann eigenfunction uH of H, associated with ν6(H) =
ν7(H), whose nodal set is a closed simple curve around O, and whose
level lines are displayed in Figure 3.12; some level lines of uH have
six connected components, one component near each vertex of the
hexagon, so that ECP(H, n) is false.

Statement 3.20. The ECP(H, n) is false in E(ν1)⊕ E(ν6).

Figure 3.11. (R, nnn): nodal set and level lines for u3
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Figure 3.12. Level lines of uH

4. Final comments

4.1. Numerical computations. In Subsection 3.6, we used numer-
ical approximations of the first eigenvalues of the problems (R, nab)
and (Th, abn) in order to identify the first eight eigenvalues of (H, n),
and to conclude that ECP(H, n) is false (we also used the fact that
some eigenfunctions are known explicitly), see Table 4.1.

Table 4.1. Neumann eigenvalues of H

We did not find tables providing the first eigenvalues of (H, n) in the
literature. We used the symmetries, and computed the eigenvalues of
the problems (R, abn) and (Th, abn) with matlab. We checked the
accuracy of our computations in two ways.

(1) First, using the symmetries, we computed the eigenvalues of
(R, abd) and (Th, abd) in order to obtain the Dirichlet eigen-
values of the hexagon. We then compared the results with the
tables in [13], see Table 4.2.

(2) Second, we computed the eigenvalues of (Th, abc), and compared
the results both with explicitly known eigenvalues, and with the
tables in [16], see Tables 4.3 and 4.4.

Remark 4.1. The tables in [13, 16] are organized according to the
symmetries, and they provide the square roots of the eigenvalues. In
[16], the labelling of the sides of Th is different from ours: we use
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Table 4.2. Dirichlet eigenvalues of H

Table 4.3. Eigenvalues of Th (Dirichlet on shortest side)

d, n to indicate the boundary condition on each side, while Jones uses
the notation e, o (for even and odd). For the reader’s convenience,
we indicate both labellings in the first column of Tables 4.3 and 4.4.
The fourth column of each table contains the eigenvalues which are
known explicitly; the fifth column contains our computations. The sixth
column of each table contains the values deduced from [16], Tables 7–14.

Remark 4.2. Our purpose in this paper is to identify eigenvalues, and
their relations with the symmetries, not to find high precision approx-
imations as in [16, 17]. The approximated values which appear in the
tables indicate that the approximations are indeed sufficient to iden-
tify the eigenvalues (because we took the symmetries into consideration
from the start, and identified multiple eigenvalues).
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Table 4.4. Eigenvalues of Th (Neumann on shortest side)

In Subsections 2.5 and 3.4, we also used numerical approximations of
the first and second eigenfunctions of (Th, nnd) in order to show that
the ECP(Rhe, n) is false in E(ν2)⊕E(ν5), and that ECP(H, d) is false
in E(δ1)⊕ E(δ6).

4.2. Final remarks.

4.2.1. The estimates in Table 3.3 are valid for the regular polygon Pn
with n sides, inscribed in the circle of radius 1. The upper bounds get
better when n increases, and for n ≥ 9, they are sufficient to separate
δ6(Pn) from δ5(Pn). This shows that δ6(Pn) is a simple eigenvalue for
n ≥ 6, and that an associated eigenfunction u6 arises from the first
eigenfunction of a right triangle with smallest angle π

n
, hypotenuse of

length 1, with Dirichlet condition on the smallest side and Neumann
condition on the other sides. Equivalently, the eigenfunction u6 arises
from a first eigenfunction of an isosceles triangle whose apex angle is 2π

n
,

with equal sides of length 1, Dirichlet condition on the smallest side and
Neumann condition on the equal sides. Note that δ6(D) corresponds
to the second radial eigenfunction of the disc.

4.2.2. Based on our computations, we conjecture that the ECP(Pn, a)
is false for any regular polygon Pn ⊂ R2 with n ≥ 6 sides, and a ∈
{d, n}, with some linear combination u6 + au1 of a sixth and a first
eigenfunctions providing a counterexample with (n+1) nodal domains.
Using [23, Theorem B], one can show that ECP(Pn, n) is false for
n sufficiently large, see [6]. The simulations show that the first six
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Dirichlet eigenfunctions of Pn look very much like the first six Dirichlet
eigenfunctions of the disk D.

4.2.3. The above considerations do not provide any counter-example
to the ECP when the number of sides is 4 or 5. It is not clear whether
the ECP is false for the square and for the regular pentagon. It is not
clear either whether the ECP is false for the disk.

4.2.4. In the Neumann case, the present paper is also relevant to the
investigation of the level lines of Neumann eigenfunctions. Such inves-
tigations arise when studying the hot spots conjecture.

References
[1] G. Alessandrini. Nodal lines of eigenfunctions of the fixed membrane problem

in general convex domains. Comment. Math. Helvetici 69 (1994) 142–154. 27
[2] V. Arnold. The topology of real algebraic curves (the works of Petrovskii and

their development). Uspekhi Math. Nauk. 28:5 (1973) 260–262. English trans-
lation in [4]. 3

[3] V. Arnold. Topological properties of eigenoscillations in mathematical physics.
Proceedings of the Steklov Institute of Mathematics 273 (2011) 25–34. 3

[4] V. Arnold. Topology of real algebraic curves (Works of I.G. Petrovskii and
their development). Translated by Oleg Viro. In Collected works, Volume II.
Hydrodynamics, Bifurcation theory and Algebraic geometry, 1965–1972. Edited
by A.B. Givental, B.A. Khesin, A.N. Varchenko, V.A. Vassilev, O.Ya. Viro.
Springer 2014. 3, 39

[5] L. Bauer and E.L. Reiss. Cutoff Wavenumbers and Modes of Hexagonal Waveg-
uides. SIAM Journal on Applied Mathematics 35:3 (1978) 508–514. 23

[6] P. Bérard, P. Charron and B. Helffer. Non-boundedness of the number of nodal
domains of a sum of eigenfunctions. arXiv:1906.03668. 38

[7] P. Bérard and B. Helffer. Nodal sets of eigenfunctions, Antonie Stern’s results
revisited. Séminaire de théorie spectrale et géométrie (Grenoble) 32 (2014–2015)
1–37. http://tsg.cedram.org/item?id=TSG_2014-2015__32__1_0 . 2

[8] P. Bérard and B. Helffer. Courant-sharp eigenvalues for the equilateral torus,
and for the equilateral triangle. Letters in Math. Physics 106 (2016) 1729–1789.
8

[9] P. Bérard and B. Helffer. On Courant’s nodal domain property for linear combi-
nations of eigenfunctions, Part I. Documenta Mathematica 23 (2018) 1561–1585.
arXiv:1705.03731. 3, 8, 12, 15, 35

[10] P. Bérard and B. Helffer. Sturm’s theorem on zeros of linear combinations of
eigenfunctions. Expositiones Mathematicae, in press. doi https://doi.org/
10.1016/j.exmath.2018.10.002 . arXiv:1706.08247 (expanded version). 2

[11] P. Bérard and B. Helffer. Level sets of certain Neumann eigenfunctions un-
der deformation of Lipschitz domains. Application to the Extended Courant
Property. To appear in Annales de la Faculté des Sciences de Toulouse. http:
//afst.cedram.org/ . arXiv:1805.01335. 3

[12] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. 1. First
English edition. Interscience, New York 1953. 2

[13] L.M. Cureton and J.R. Kuttler. Eigenvalues of the Laplacian on regular poly-
gons and polygons resulting from their disection. Journal of Sound and Vibra-
tion 220:1 (1999) 83–98. 23, 36

http://tsg.cedram.org/item?id=TSG_2014-2015__32__1_0
https://doi.org/10.1016/j.exmath.2018.10.002
https://doi.org/10.1016/j.exmath.2018.10.002
http://afst.cedram.org/
http://afst.cedram.org/


40 P. BÉRARD AND B. HELFFER

[14] G. Gladwell and H. Zhu. The Courant-Herrmann conjecture. ZAMM–Z.
Angew. Math. Mech. 83:4 (2003) 275–281. 3

[15] T. Hoffmann-Ostenhof, P. Michor and N. Nadirashvili. Bounds on the multi-
plicities of eigenvalues for fixed membranes. GAFA, Geom. Func. Anal. 9 (1999)
1169–1188. 33

[16] R.S. Jones. The one-dimensional three-body problem and selected wave-guide
problems: solutions of the two-dimensional Helmholtz equation. PhD Thesis,
The Ohio State University, 1993. Retyped 2004, available at
http://www.hbelabs.com/phd/ . 23, 36, 37

[17] R.S. Jones. Computing ultra-precise eigenvalues of the Laplacian with poly-
gons. Adv. Comput. Math. 43 (2017) 1325–1354. arXiv:1602.08636v1. 23, 37

[18] N. Kuznetsov. On delusive nodal sets of free oscillations. Newsletter of the
European Mathematical Society 96 (2015) 34–40. 3

[19] R. Laugesen and B. Siudeja. Triangles and other special domains. Chapter 1
in Shape optimization and spectral theory. A. Henrot, ed. De Gruyter, Berlin
2017. 24, 31

[20] C. Léna. Pleijel’s nodal domain theorem for Neumann and Robin eigenfunc-
tions. Annales de l’institut Fourier 69:1 (2019) 283–301. arXiv:1609.02331. 2

[21] H. Levine and H. Weinberger. Inequalities between Dirichlet and Neumann
eigenvalues. Arch. Rational Mech. Anal. 94 (1986) 193–208. 33

[22] V. Lotoreichik and J. Rohledder. Eigenvalue inequalities for the Laplacian with
mixed boundary conditions. J. Differential Equations 263 (2017) 491–508. 7, 10,
23, 30, 35

[23] Y. Miyamoto. A planar convex domain with many isolated “hot spots” on the
boundary. Japan J. Indust. Appl. Math. 30 (2013) 145–164. 38

[24] Å. Pleijel. Remarks on Courant’s nodal theorem. Comm. Pure. Appl. Math. 9
(1956) 543–550. 2, 3

[25] B. Siudeja. On mixed Dirichlet-Neumann eigenvalues of triangles. Proc. Amer.
Math. Soc. 144 (2016) 2479–2493. 8, 10, 11, 34

[26] O. Viro. Construction of multi-component real algebraic surfaces. Soviet Math.
dokl. 20:5 (1979) 991–995. 3

PB: Université Grenoble Alpes and CNRS, Institut Fourier, CS 40700,
38058 Grenoble cedex 9, France.
E-mail address: pierrehberard@gmail.com

BH: Laboratoire Jean Leray, Université de Nantes and CNRS, F44322
Nantes Cedex, France, and LMO, Université Paris-Sud.
E-mail address: Bernard.Helffer@univ-nantes.fr

http://www.hbelabs.com/phd/

	1. Introduction
	1.1. Notation
	1.2. Courant's nodal domain theorem

	2. The equilateral rhombus
	2.1. Symmetries and spectra
	2.2. Riemann-Schwarz reflection principle
	2.3. Some useful results
	2.4. Rhombus with Neumann boundary condition
	2.5. ECP(Rhe,n) is false
	2.6. Numerical results for the ECP(Rhe,n)
	2.7. Numerical results for the ECP(Rhe,d)

	3. The regular hexagon
	3.1. Symmetries and spectra
	3.2. Symmetries and boundary conditions on sub-domains
	3.3. Identification of the first Dirichlet eigenvalues of the regular hexagon
	3.4. Numerical results and ECP(H,d) 
	3.5. Identification of the first Neumann eigenvalues of the regular hexagon
	3.6. Numerical computations and ECP(H,n)

	4. Final comments
	4.1. Numerical computations
	4.2. Final remarks

	References

