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Isaque Pimentel5

Abstract. We address a class of McKean-Vlasov (MKV) control problems with common noise,
called polynomial conditional MKV, and extending the known class of linear quadratic stochastic
MKV control problems. We show how this polynomial class can be reduced by suitable Markov em-
bedding to finite-dimensional stochastic control problems, and provide a discussion and comparison
of three probabilistic numerical methods for solving the reduced control problem: quantization, re-
gression by control randomization, and regress later methods. Our numerical results are illustrated
on various examples from portfolio selection and liquidation under drift uncertainty, and a model
of interbank systemic risk with partial observation.
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1. Introduction

The optimal control of McKean-Vlasov (also called mean-field) dynamics is a rather new topic in the area
of stochastic control and applied probability, which has been knowing a surge of interest with the emergence
of the mean-field game theory. It is motivated on one hand by the asymptotic formulation of cooperative
equilibrium for a large population of particles (players) in mean-field interaction, and on the other hand from
control problems with cost functional involving nonlinear functional of the law of the state process (e.g. the
mean-variance portfolio selection problem or risk measure in finance).

In this paper, we are interested in the context of McKean-Vlasov control (MKV) problem under partial
observation and common noise, whose formulation is described as follows. On a probability space pΩ,F ,Pq
equipped with two independent Brownian motions B and W 0, let us consider the controlled stochastic
McKean-Vlasov dynamics in Rn:

dXs “ bpXs,PW
0

Xs
, αsqds` σpXs,PW

0

Xs
, αsqdBs ` σ0pXs,PW

0

Xs
, αsqdW

0
s (1)

where PW 0

Xs
denotes the conditional distribution of Xs given W 0 (or equivalently given F0

s where F0 “ pF0
t qt

is the natural filtration generated by W 0), and the control α is F0-progressive valued in some Polish space
A. The cost functional over a finite horizon T associated to the stochastic McKean-Vlasov equation (1)
(sometimes called conditional McKean-Vlasov equation) for a control process α, is

Jpαq “ E
”

ż T

0

fpXt,PW
0

Xt
, αtqdt` gpXT ,PW

0

XT
q

ı

,

and the objective is to minimize over an admissible set A of control processes the cost functional:

V0 “ inf
αPA

Jpαq. (2)

Notice that classical partial observation control problem (without McKean-Vlasov dependence on the coef-
ficients) arises as a particular case of (1)-(2). We refer to the introduction in [19] for the details.

Let us recall from [19] the dynamic programming equation associated to the conditional McKean-Vlasov
(MKV) control problem (2). We start by defining a suitable dynamic version of this problem. Let us consider
F0 a sub σ-algebra of F independent of B,W 0, and denote by P

2
pRnq the set of all probability measures on

pRn,BpRnqq with a finite second-order moment, endowed with the 2-Wasserstein metric W2 . It is assumed
w.l.o.g. that F0 is rich enough in the sense that P2pRnq “ tLpξq : ξ P L2pF0;Rnqu, where Lpξq denotes the
law of ξ. Given a control α P A, we consider the dynamic version of (1) starting from ξ P L2pF0;Rnq at time
t P r0, T s, and written as:

Xt,ξ,α
s “ ξ `

ż s

t

bpXt,ξ,α
u ,PW

0

X
t,ξ,α
u

, αuqdu`

ż s

t

σpXt,ξ,α
u ,PW

0

X
t,ξ,α
u

, αuqdBu

`

ż s

t

σ0pX
t,ξ,α
u ,PW

0

X
t,ξ,α
u

, αuqdW
0
u t ď s ď T.

Let us then define the dynamic cost functional:

Jpt, ξ, αq “ E
”

ż T

t

fpXt,ξ,α
s ,PW

0

X
t,ξ,α
s

, αsqds` gpX
t,ξ,α
T ,PW

0

X
t,ξ,α
T

q

ı

,

for pt, ξq P r0, T s ˆ L2pF0;Rnq, α P A, and notice by the law of conditional expectations, and as α is F0-
progressive that

Jpt, ξ, αq “ E
”

ż T

t

f̂pPW
0

X
t,ξ,α
s

, αsqds` ĝpPW
0

X
t,ξ,α
s

q

ı

,
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where f̂ : P2pRnq ˆA Ñ R, ĝ : P2pRnq Ñ R are defined by

f̂pµ, aq :“ µpfp., µ, aqq :“

ż

Rn
fpx, µ, aqµpdxq, (3)

ĝpµq :“ µpgp., µqq :“

ż

Rn
gpx, µqµpdxq. (4)

Moreover, notice that the conditional law of Xt,ξ,α
s given W 0 depends on ξ only through its law Lpξq, and

we can then define for α P A:

ρt,µ,αs :“ PW
0

X
t,ξ,α
s

, for t ď s, µ “ Lpξq P P2pRnq.

Therefore, the dynamic cost functional Jpt, ξ, αq depends on ξ P L2pF0;Rnq only through its law Lpξq, and
by misuse of notation, we write Jpt, µ, αq “ Jpt, ξ, αq when µ “ Lpξq. We then consider the value function
for the conditional McKean-Vlasov control problem (2), defined on r0, T s ˆ P

2
pRnq by

vpt, µq “ inf
αPA

Jpt, µ, αq “ inf
αPA

E
”

ż T

t

f̂pρt,µ,αs , αsqds` ĝpρ
t,µ,α
T q

ı

, (5)

and notice that at time t “ 0, when ξ “ x0 is a constant, then V0 “ vp0, δx0
q.

It is shown in [19] that dynamic programming principle (DPP) for the conditional McKean-Vlasov control
problem (5) holds: for pt, µq P r0, T s ˆ P2pRnq,

vpt, µq “ inf
αPA

E
”

ż θ

t

f̂pρt,µ,αs , αsqds` vpθ, ρ
t,µ,α
θ q

ı

,

for any F0-stopping time θ valued in rt, T s. Next, by relying on the notion of differentiability with respect to
probability measures introduced by P.L. Lions [11] (see also the lecture notes [4]) and the chain rule (Itô’s
formula) along flow of probability measures (see [3], [7]), we derive the Hamilton-Jacobi-Bellman equation
for v:

#

Btv ` inf
aPA

”

f̂pµ, aq ` µ
`

Lavpt, µq
˘

` µb µ
`

Mavpt, µq
˘

ı

“ 0, pt, µq P r0, T q ˆ P
2
pRnq,

vpT, µq “ ĝpµq, µ P P2pRnq,
(6)

where for φ P C2
b pP2

pRnqq, a P A, and µ P P
2
pRnq, Laφpµq is the function Rn Ñ R defined by

Laφpµqpxq :“ Bµφpµqpxq.bpx, µ, aq `
1

2
tr
`

BxBµφpµqpxqpσσ
ᵀ ` σ0σ

ᵀ

0qpx, µ, aq
˘

, (7)

and Maφpµq is the function Rn ˆ Rn Ñ R defined by

Maφpµqpx, x1q :“
1

2
tr
`

B2
µφpµqpx, x

1qσ0px, µ, aqσ
ᵀ

0px
1, µ, aq

˘

. (8)

The Hamilton-Jacobi-Bellman (HJB) equation (6) is a fully nonlinear PDE in the infinite dimensional
Wasserstein space, and do not have in general explicit solution except the notable important class of linear-
quadratic McKean-Vlasov control problem. Numerical resolution for MKV control problem or equivalently
for the associated HJB equation is a challenging problem due to the nonlinearity of the optimization problem
and the infinite dimensional feature of the Wasserstein space. In this work, our purpose is to investigate some
classes of MKV control problems, which can be reduced to finite dimensional problems in view of numerical
resolution.
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2. Polynomial McKean-Vlasov control problem

2.1. Main assumptions

We make two kinds of assumptions on the coefficients of the model: one on the dependence on x and the
other on the dependence on µ.

Assumptions: dependence on x: we consider a class of models where the coefficients of the MKV
equation are linear w.r.t. the state variable X, i.e., in the form

$

&

%

bpx, µ, aq “ b0pµ, aq ` b1pµ, aqx,
σpx, µ, aq “ ϑ0pµ, aq ` ϑ1pµ, aqx,
σ0px, µ, aq “ γ0pµ, aq ` γ1pµ, aqx,

(1)

while the running and terminal cost functions are polynomial in the state variable in the sense that they are
in the form

fpx, µ, aq “ f0pµ, aq ` f1pµ, aqx`
p
ÿ

k“2

fkpµ, aq|x|
k,

gpx, µq “ g0pµq ` g1pµqx`
p
ÿ

k“2

gkpµq|x|
k,

for some integer p ě 2.

Assumptions: dependence on µ: we assume that all the coefficients depend on µ through its first p
moments, i.e., in the form

$

’

’

&

’

’

%

b0pµ, aq “ b̄0pµ̄, µ̄2, . . . , µ̄p, aq, b1pµ, aq “ b̄1pµ̄, µ̄2, . . . , µ̄p, aq
ϑ0pµ, aq “ ϑ̄0pµ̄, µ̄2, . . . , µ̄p, aq, ϑ1pµ, aq “ ϑ̄1pµ̄, µ̄2, . . . , µ̄p, aq
γ0pµ, aq “ γ̄0pµ̄, µ̄2, . . . , µ̄p, aq, γ1pµ, aq “ γ̄1pµ̄, µ̄2, . . . , µ̄p, aq
fkpµ, aq “ f̄kpµ̄, µ̄2, . . . , µ̄p, aq, gkpµq “ ḡkpµ̄, µ̄2, . . . , µ̄pq, k “ 0, . . . , p,

(2)

where, given µ P PppRnq, we denote by

µ̄ :“

ż

Rn
xµpdxq, µ̄k :“

ż

Rn
|x|kµpdxq, k “ 2, . . . , p.

Notice that in this case, the functions f̂ and ĝ defined in (3)-(4) are given by

f̂pµ, aq “ f̄0pµ̄, µ̄2, . . . , µ̄p, aq ` f̄1pµ̄, µ̄2, . . . , µ̄p, aqµ̄`
p
ÿ

k“2

f̄kpµ̄, µ̄2, . . . , µ̄p, aqµ̄k

“: f̄pµ̄, µ̄2, . . . , µ̄p, aq

ĝpµq “ ḡ0pµ̄, µ̄2, . . . , µ̄pq ` ḡ1pµ̄, µ̄2, . . . , µ̄pqµ̄``
p
ÿ

k“2

ḡkpµ̄, µ̄2, . . . , µ̄pq

“: ḡpµ̄, µ̄2, . . . , µ̄pq.

Remark 0.1. A more general class of running and terminal cost functions, would be to consider multi-
polynomial of degree p functions f and g in the form

fpx, µ, aq “
p
ÿ

|k|“0

fkpµ, aqx
k, gpx, µq “

p
ÿ

|k|“0

gkpµqx
k,
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where we use multi-index notations k “ pk1, . . . , knq P Nn, |k| “ k1 ` . . .` kn, and xk “ xk11 . . . xknn for x “
px1, . . . , xnq P Rn. Given µ P PppRnq, we denote by

µk “

ż

Rn
xkµpdxq,

and we assume that all the coefficients would depend on µ through µk, 1 ď |k| ď p. l

2.2. Markovian embedding

Given the controlled process X “ Xα solution to the stochastic McKean-Vlasov dynamics (1), denote by

X̄t “ ErXt|W
0s, Y kt “ Er|Xt|

k|W 0s, k “ 2, . . . , p.

To alleviate the notations, let us assume that n “ 1 (otherwise multi-indices should be used). From the
linear/polynomial assumptions (1)-(2), by Itô’s formula and taking conditional expections, we can derive the
dynamics of pX̄, Y 2, . . . , Y pq as

"

dX̄t “ B̄pX̄t, Y
2
t , . . . , Y

p
t , αtqdt` Σ̄pX̄t, Y

2
t , . . . , Y

p
t , αtqdW

0
t ,

dY kt “ BkpX̄t, Y
2
t , . . . , Y

p
t , αtqdt` ΣkpX̄t, Y

2
t , . . . , Y

p
t , αtqdW

0
t , k “ 2, . . . , p,

(3)

where

B̄px̄, y2, . . . , yp, aq “ b̄0px̄, y
2, . . . , yp, aq ` b̄1px̄, y

2, . . . , yp, aqx̄

Σ̄px̄, y2, . . . , yp, aq “ γ̄0px̄, y
2, . . . , yp, aq ` γ̄1px̄, y

2, . . . , yp, aqx̄,

Bkpx̄, y
2, . . . , yp, aq “ kb̄0py

2, . . . , yp, aqyk´1 ` kb̄1py
2, . . . , yp, aqyk

`
kpk ´ 1q

2
pϑ̄0py

2, . . . , yp, aqq2yk´2 `
kpk ´ 1q

2
pϑ̄1py

2, . . . , yp, aqq2yk

`kpk ´ 1qϑ̄0py
2, . . . , yp, aqϑ̄1py

2, . . . , yp, aqyk´1

`
kpk ´ 1q

2
pγ̄0py

2, . . . , yp, aqq2yk´2 `
kpk ´ 1q

2
pγ̄1py

2, . . . , yp, aqq2yk

`kpk ´ 1qγ̄0py
2, . . . , yp, aqγ̄1py

2, . . . , yp, aqyk´1

Σkpx̄, y
2, . . . , yp, aq “ k

`

γ̄0py
2, . . . , yp, aqyk´1 ` γ̄1py

2, . . . , yp, aqyk
˘

while the cost functional is written as

Jpαq “ E
”

ż T

0

f̄pX̄t, Y
2
t , . . . , Y

p
t , αtqdt` ḡpX̄T , Y

2
T , . . . , Y

p
T q

ı

. (4)

The McKean-Vlasov control problem is then reduced in this polynomial framework into a finite-dimensional
control problem with F0-adapted controlled variables pX̄, Y 2, . . . , Y pq. In the next section, we describe three
probabilistic numerical methods for solving finite-dimensional stochastic control problems, and will apply in
the last section each of these methods to three applications arising from polynomial MKV control problems
under partial observation and common noise.

3. Numerical methods

To explain our numerical methods for the resolution of (3)-(4), we choose the following setting.
Let us introduce the process Z controlled by an adapted process α taking values in A, solution to

dZαt “ bpZαt , αtqdt` σ0pZ
α
t , αtqdW

0
t

and

Jpt, z, αq “ E

«

ż T

t

fpZαt , αtqdt` fpZ
α
T q

ff

.
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Introducing now a time discretisation 0 “ t0, t1, . . . , tN “ T we can write the Euler approximation of
the SDE governing the process Zαt :

Zαtn`1
“ Zαtn ` bpZ

α
tn , αtnq∆t` σ0pZ

α
tn , αtnq∆W

0
tn (1)

and the discrete equivalent of Jpt, z, αq:

Jptn, z, αq “ E

«

N
ÿ

s“n

fpZαts , αtsq∆t` fpZ
α
tN q

ff

.

We can now give an alternative representation of the value function V ptn, zq “ sup
pαts q

N
s“nPA

tJptn, z, αqu

through the dynamic programming equation; given the known terminal condition gpzq:

#

V pTN , zq “ gpzq

V ptn, zq “ supα

!

fpZαtn , αq∆t` Eα
“

V ptn`1, Ztn`1
q
ˇ

ˇZtn “ z
‰

) (2)

The dynamic programming equation 2 inspires a numerical methods that approximate the value function
iteratively backward in time, starting from the terminal condition. The main difficulty in implementing
such approach lies in the estimation of conditional expectations Eα

“

V ptn`1, Z
α
tn`1

q
ˇ

ˇZtn “ z
‰

. In the present
section we will briefly introduce three numerical methods that we ought to test in the task of solving CMKV
problems. Two of these methods belong to the class of Regression Monte Carlo techniques, a family of
algorithms whose effectiveness highly relies on the choice of the basis functions used to project future time
value functions; the third algorithm, quantization, approximate the controlled process Zαtn with a particular
finite state Markov chain for which expectations can be approximated quickly.

3.1. Regression Monte Carlo

As introduced above, the family of Regression Monte Carlo algorithms is based on the idea of approxi-
mating the conditional expectation Eα

“

V ptn`1, Z
α
tn`1

q
ˇ

ˇZtn “ z
‰

by projecting the next step value function

V ptn`1, Z
α
tn`1

q onto a finite collection of functions tφku in the basis of L2pZtnq.
In the simpler, uncontrolled case, the method works as follow: starting from the known terminal condition,

we approximate E
“

gpZtN q
ˇ

ˇZtN´1
“ z

‰

„
řK
k“1 βkφkpZtN´1

q, where the regression coefficients βN “ tβku
K
k“1

are computed as follow:

βN “ argmin
β

!

E
”

`

E
“

gpZtN q
ˇ

ˇZtN´1
“ z

‰

´

K
ÿ

k“1

βkφkpZtN´1
q
˘2
ˇ

ˇ

ˇ
ZtN´1

“ z
ı)

. (3)

The procedure is iterated backward in time substituting V ptn`1, Z
α
tn`1

q, which is known at time n, with

the terminal condition g in the equation (3). In practical implementations the outer expectation in (3) is

approximated via Monte Carlo implementations, from a simulated set of M samples tZtsu
N,M
n“0,m“1 obtained

from the Euler scheme (1) from a given initial condition.
This approach, also known as regress now, unfortunately can not be directly applied to the controlled

case; intuitively this is the case because, since the control is initially unknown, it is impossible to simulate
the set of samples to be used to approximate conditional expectations and, in turn, compute the optimal
control.

Performance iteration. The performance iteration approach, was first introduced in [12] under the
name of policy iteration and gained most of the popularity Regression Monte Carlo algorithms enjoy today.
This technique builds on the value iteration method, substituting the iteration over the value function (2),

6



with an iteration over pathwise performances. In practice we solve the following problem:

#

VpTN , zq “ gpzq

Vptn, zq “
řN
i“n fpZ

α
ti , α̂tiq∆t

where α̂ti “ arg sup
α

!

fpZαti , αq∆t` Eα
“

V ptn`1, Ztn`1
q
ˇ

ˇZtn “ z
‰

)

,

where Eα
“

V ptn`1, Ztn`1
q
ˇ

ˇZtn “ z
‰

“ Eα
“

Vptn`1, Ztn`1
q
ˇ

ˇZtn “ z
‰

«
řK
k“1 βkφkpZtnq with

βn “ argmin
β

!

E
”

`

E
“

V ptn`1, Ztn`1
q
ˇ

ˇZtn “ z
‰

´

K
ÿ

k“1

βkφkpZtnq
˘2
ˇ

ˇ

ˇ
Ztn “ z

ı)

.

We retrieve the value function via Monte Carlo average: V ptn, zq “ ErVpt0, zq|Zt0 “ zs « 1
M

řM
m“1 Vmpt0, zq.

Performance iteration, albeit slower and subject to higher variance in the regression step, is able to limit the
backward propagation of the error improving the quality of the estimations. For further details see [12].

3.1.1. Regress Later

In this section we present a regress-later idea in which conditional expectation with respect to pZtnq
are computed in two stages. First, a conditional expectation with respect to pZtn`1q is approximated in a
regression step by a linear combination of basis functions of pZtn`1q. Then, analytical formulas are applied
to condition this linear combination of functions of future values on present values pZtnq. For further details
see [8], [13] or [1].

Unlike the traditional regress-now method for approximating conditional expectations, the regress-later
approach imposes conditions on basis functions:

Assumption 1. For each basis function φk, k “ 1, . . . ,K, the conditional expectation

φ̂nk pz, aq “ ErφkpZtn`1
q|Ztn “ z, αn “ as

can be computed analytically.

We will now present regress-later solution to value iteration procedure. Notice that a completely analogous
approach can be used in the case of performance iteration. Assume that at time n ` 1 the value function
V ptn`1, ¨q has been computed for a set of training points tZmtn`1

uMm“1. We perform a regression to approximate

V ptn`1, ¨q with a linear combination of basis functions:

V pn` 1, xq «
K
ÿ

k“1

βn`1
k φkpxq,

where

βn`1 “ argmin
βPRK

" M
ÿ

m“1

”

V ptn`1, Z
m
tn`1

q ´

K
ÿ

k“1

βn`1
k φkpZ

m
n`1q

ı2
*

. (4)

Moving now to time tn we would like to compute an optimal control αnpZ
m
tn`1

q which, further, determines

the value function. We select a set of training points tZmtn`1
uMm“1, which can be generated independently

from tZmn`1u
M
m“1, therefore, removing the limitation of the regress-now approach for which points at different

times must be linked through their true dynamics.
Using the regress-later approximation of the conditional expectation and recalling Assumption 1 we obtain

the optimal control αmn corresponding to the point pZmn q,

αmn “ argmax
aPU

!

fpn,Zmtn , aq `
K
ÿ

k“1

βn`1
k φ̂nk

`

Zmtn , a
˘

)

.
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Notice that we are able to exploit the linearity of conditional expectations because β is a constant with
respect to Ftn . An approximation of the value function at time n is the computed as

V pn,Zmn q “ fpn,Zmn , α
m
n q `

K
ÿ

k“1

βn`1
k φ̂nk

`

Zmtn , α
m
n

˘

.

Algorithm 1 Regress-later Monte Carlo algorithm (RLMC) - Value iteration

Inputs:

‚ M : number of training points,
‚ µ: distribution of training points,
‚ K: number of basis functions,
‚ tφku

K
k“1: family of basis functions,

‚ x: input of the value function

1: Pre-compute the inverse of the covariance matrix A
2: Generate i.i.d. training points tZ̃mN u

M
m“1 accordingly to the distribution µ.

3: Initialise the value function Ṽ pN, Z̃mN q “ gpZ̃mN q, @m “ 1, . . . ,M
4: for n “ N ´ 1 to 1 do

5: β̂n`1 “ A´1 1
M

řM
m“1

”

V̂ pn` 1, Z̃mn`1qφpZ̃
m
n`1q

ı

6: Generate a new layer of i.i.d. training points tZ̃mn u
M
m“1 accordingly to the distribution µ.

7: For all m do

Ṽ pN, Z̃mN q “ sup
aPA

!

fpn, Z̃mn , aq `
K
ÿ

k“1

βn`1
k φ̂kpZ̃

m
n , aq

)

8: Evaluate the policy to obtain V̂

Outputs: tβ̂knu
N,K
n,k“1, V̂ p0, xq

3.1.2. Control randomization

Control randomisation was introduced in [10]; it differs from the previous methods in that the control
becomes a state variable and it is simulated along trajectories of pZtq

N
t“1. We denote the initial random

control by tα̃mn u
N,M
n,m“1. In the case of value iteration, tV pn`1, Zmn`1qu

M
m“1 is regressed against basis functions

evaluated at the points tZmn , α̃
m
n u

M
m“1,i.e. Ez,α

“

V pn` 1, Zn`1q
‰

„
řK
k“1 β

n
kφpz, αq, where

βn “ argmin
βPRK

" M
ÿ

m“1

”

V pn` 1, Zmn`1q ´

K
ÿ

k“1

βkφkpZ
m
n , α̃

m
n q

ı2
*

.

These regression basis functions are dependent now on the random control α̃n, in addition to Zn so that
the estimated continuation value will depend on the choice of the control (which is different on each sample
trajectory).

An optimal control at time n given Zn “ Zmn is approximated by the expression

αmn “ argmax
aPA

!

fpn,Zmn , aq ` Ên,Zmn ,a
“

V pn` 1, Zn`1qq
‰

)

, (5)

where, with a slight abuse of notation, we included in the approximate conditional expectation Ê the depen-
dence on the control α. In general multiple runs of the method could be needed to obtain precise estimates
because the initial choice of the dummy control could drive the training points far from where the optimal
control would have driven them. In practice, after having computed an approximated policy backward in
time, such policy is used to drive M simulations of the process Zα forward in time, which in turn produce
control paths that can be fed as random control in a new backward procedure, leading to more accurate
results.
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Algorithm 2 Control randomization algorithm (CR) - Value iteration

Inputs:

‚ M : number of training points,
‚ µ: initial distribution of training points,
‚ K: number of basis functions,
‚ tφku

K
k“1: family of basis functions,

‚ x: input of the value function

1: Generate m trajectories, tZ̃mn u
N,M
n,m“1, starting with i.i.d. initial distribution µ.

2: Initialise the value function Ṽ pN, Z̃mN q “ gpZ̃mN q, m “ 1, . . . ,M
3: for n “ N ´ 1 to 1 do
4: Approximate ErV pn`1, Z̃n`1q | Z̃n, α̃ns by regressing tV pn`1, Z̃mn`1qum against tZ̃mn , α̃

m
n um. Denote

by tβ̂kn`1u
K
k“1 the family of regression coefficients.

5: Compute α̃pn, Z̃mn q :“ argmaxaPA

!

fpn, Z̃mn , aq δt`
řK
k“1 β̂

k
n`1φkpZ̃

m
n , aq

)

.

6: Evaluate the policy to obtain V̂

Outputs: tβ̂knu
N,K
n,k“1, V̂ p0, xq

3.2. Quantization

In this section we present a method that relies on Markovian quantization to solve control problems.
Markovian quantization methods has been proven to be very efficient for solving control problems associated
with high-dimensional processes (see e.g. [15]). We first recall the general idea of the quantization.

In the spirit of the Markov chain approximation method, we approximate the Euler scheme Ztk at every

date k P t0, ..., tNu by a process pZtk taking finitely many states. Lets fix a control pαtkqkPt0,..,Nu. At each

discrete time tk, we consider a grid Γk “
 

z1
k, ..., z

Nk
k

(

on the state space Rd of Zαtk . We denote by πk the

projection on the grid Γk, and define the quantized controlled process
`

Zαtk
˘

k
as follows:

#

pZα0 “ Z̄α0 p“ Z0 “ z0q

pZαk`1 “ πk`1

´

G∆t

`

tk, pZ
α
k , αk, εk`1

˘

¯

, k “ 0, ...., N ´ 1
(6)

where Ghpt, z, a, εq :“ z ` bpz, aq∆t` σ0pz, aq
?

∆tε (see the notations in (1)).
`

pZαk
˘

k
is called the quantized

process associated to
`

Zαtk
˘

k
. We now consider the stochastic control problem in discrete time:

pV pn, zq “ inf
α

Eαn,z

«

N´1
ÿ

k“n

∆tf
`

k, Ẑtk , αk
˘

` g
`

ẐtN
˘

ff

. (7)

One can find results in the literature that show that the quantized value function v̂ converges to the value
function v under reasonable conditions on the drift and volatility of the controlled process. (see e.g. [15]).

The value function associated to the quantized process
`

pZαk
˘

k
can be recursively computed using the

dynamic programming principle:

$

&

%

pV pN, zq “ gpzq for z P ΓN

pV pn, zq “ inf
aPA

„

∆tfpn, z, aq ` Ean,z
“

pV
`

n` 1, pZn`1

˘‰



.
(8)

Notice that the conditional expectation in (8) is a finite sum. More precisely

Ean,z
“

pV
`

n` 1, pZn`1

˘‰

“
ÿ

z1PΓn`1

pzz1paqpV pn` 1, z1q,

9



where we denoted by pzz1paq the transition probabilities: pzz1paq :“ Pa
`

Ẑk`1 “ zjk`1

ˇ

ˇẐk “ z
˘

. However, in
general, there is no closed-form formulas to compute these conditional expectations. One needs to efficiently
approximate these expectations to solve (8).
A natural way to approximate the conditional expectations is to quantize the noise ε. Doing so, the quanti-
zation algorithm becomes a two steps quantization algorithm: the first step is the quantization of pZtq, and
the second is the quantization of the noise.

In all the applications that we consider in the next section, the noise is a 1D-Brownian Motion W .
So we just need to have an optimal grid Γ1 of quantization for N p0, 1q to quantize the noise. Indeed, if

ε „
?

∆tN p0, 1q then
?

∆tΓ1 “: Γε is an optimal grid of quantization of ε, and the sequence pΓtiqiďN is an
optimal grid for pWtiq0ďiďN . Note that this sequence is actually not optimal for the markovian quantized
Brownian motion. The reader can find a procedure in [15] to build such optimal grids.
Doing a markovian quantization of the Brownian motion gives the following approximation for the conditional
expectation:

Ean,z
“

pV
`

n` 1, pZn`1

˘‰

«
ÿ

ePΓε

Pppε “ eqpV
´

n` 1, πn`1

`

Gpn, z, a, eq
˘

¯

This approximation is fast to compute. Indeed, when considering a 1D Brownian Motion, one just needs to
take no more than 50 terms in Γε to get a good quantization of the noise. So the conditional expectation
can be approximated by a sum of only 50 terms. First, note that there are procedures in the literature to
compute the optimal grids for the noise Ndp0, 1q and the weights of the Voronoi cells. (see e.g. the CLVQ
algorithm section in [16], or [14]). Secondly, note that this approximation is not continuous with respect to
a. In some situations, it may be useful to have continuity with respect to the control. One can proceed as
explained in the remarks for the Q algorithm designed for the portfolio liquidation problem at subsection
4.1.2.

Algorithm 3 Quantization algorithm (Q) - Value iteration

Inputs:

‚ Γk : a Nk-quantizer of Z̄k
‚ Ẑk : the quantization of Z̄k on the grid Γk,
‚ Γε : a quantizer for the noise.

1: Initialise the value function Ṽ pN, zq “ gpzq, @z P ΓN
2: for n “ N ´ 1 to 1 do
3: Update the value function with:

pV pn, zq “ inf
aPA

„

fpn, z, aq∆t`
ÿ

ePΓε

Pppε “ eqpV
´

n` 1, πn`1

`

Gpn, z, a, eq
˘

¯

@z P Γn

4: Define the optimal strategy a˚pn, .zqzPΓn as the minimizers of (3):

@z P Γn, a˚pn, zq “ argmin
aPA

„

fpn, z, aq δt`
ÿ

ePΓε

Pppε “ eqpV
´

n` 1, πn`1

`

Gpn, z, a, eq
˘

¯



Outputs:
`

a˚pn, zqzPΓn
˘

1ďnďN´1
, V̂ p0, xq
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4. Applications and numerical results

4.1. Portfolio optimization under drift uncertainty

4.1.1. The model

We consider a financial market model with one risk-free asset, assumed to be equal to one, and d risky
assets of price process S “ pS1, . . . , Sdq governed

dSt “ diagpStqpβtdt` σdB
0
t q,

where B0 is a d-dimensional Brownian motion on a filtered probability space pΩ,F ,F,P0q, σ is the d ˆ d
invertible matrix volatility coefficient, assumed to be a known constant. However, the drift pβtq of the asset
(which is typically a diffusion process governed by another independent Brownian motion B) is unknown
and unobservable like the Brownian motion B0. The agent can actually only observe the stock prices S, and
we denote by FS the available information filtration FS , i.e., the filtration generated by S.

In this context, we shall consider two important classes of optimization problems in finance:

(1) Portfolio liquidation. We consider the problem of an agent (trader) who has to liquidate a large
number y0 of shares in some asset (we consider one stock d “ 1) within a finite time T , and faces
execution costs and market price impact. In contrast with frictionless Merton problem, we do not
consider mark-to-market value of the portfolio and instead consider separately the amount on the
cash account and the inventory Y , i.e., the position or number of shares held at any time. The
strategy of the agent is then described by a real-valued FS-adapted process α, representing the
velocity at which she buys (αt ą 0) or sells (αt ă 0) the asset, and the inventory is thus given by

Yt “ y0 `

ż t

0

αudu, 0 ď t ď T.

The objective of the trader is to minimize over α the total liquidation cost

J2pαq “ E0
“

ż T

0

αt
`

St ` fpαtq
˘

dt` `pYT q
‰

where fp.q is an increasing function, fp0q “ 0, representing a temporary price impact, and `p.q is a
loss function, i.e. a convex function with `p0q “ 0, penalising the trader when she does not succeed
to liquidate all her shares.

(2) Portfolio selection. The set A of portfolio strategies, representing the amount invested in the assets,

consists in all FS-adapted processes α valued in some set A of Rd, and satisfying
şT

0
|αt|

2dt ă 8.
The dynamics of wealth process X “ Xα associated to a portfolio strategy α is then governed by

dXt “ αt.βtdt` α
ᵀ

tσdB
0
t , X0 “ x0 P R,

and as in Merton portfolio selection problem, the objective of the agent is to maximise over portfolio
strategies the utility of terminal wealth

J1pαq “ E0rUpXT qs,

where U is an utility function on R, e.g. CARA function Upxq “ ´ expp´pxq, p ą 0.

Let us show how one can reformulate the above problems into a McKean-Vlasov type problem under
partial observation and common noise as described in Section 1. We first introduce the so-called probability
reference P, which makes the observation price process a martingale. Let us then define the process

Zt “ exp
`

´

ż t

0

σ´1βudB
0
u ´

1

2

ż t

0

|σ´1βu|
2du

˘

, 0 ď t ď T,

11



which is a pP0,Fq-martingale (under suitable integrability conditions on β), and defines a probability measure

P „ P0 through its density: dP
dP0

ˇ

ˇ

ˇ

Ft
“ Zt, and under which the process

W 0
t :“ B0

t `

ż t

0

σ´1βudu, 0 ď t ď T,

is a pP,Fq-Brownian motion by Girsanov’s theorem, and the dynamics of S is

dSt “ diagpStqσdW
0
t .

Notice that FS “ F0 the filtration generated by W 0. We also denote by Lt “ 1{Zt, which is pP,Fq-martingale,
governed by

dLt “ Ltσ
´1βt.dW

0
t .

Next, we use Bayes formula and rewrite the gain (resp. cost) functionals of our two portfolio optimization
problems as

J1pαq “ E
“

LTUpXT q
‰

“ E
“

L̄0
TUpXT q

‰

“ E
“

L̄0
TUpX̄

0
T q
‰

J2pαq “ E
“

ż T

0

LtαtpSt ` γαtqdt` ηLTY
2
T

‰

“ E
“

ż T

0

L̄0
tαtpSt ` fpαtqqdt` L̄

0
T `pYT q

‰

“ E
“

ż T

0

L̄0
tαtpS̄

0
t ` fpαtqqdt` L̄

0
T `pȲ

0
T q

‰

where L̄0
t :“ ErLt|W 0s “

ş

`PW 0

Lt
pd`q, X̄0

t :“ ErXt|W
0s “

ş

xPW 0

Xt
pdxq “ Xt, Ȳ

0
t :“ ErYt|W 0s “

ş

yPW 0

Yt
pdyq

“ Yt S̄
0
t :“ ErSt|W 0s “

ş

sPW 0

St
pdsq “ St, and we used the law of conditional expectations and the fact that

S, X and Y are F0-adapted. This formulation of the functional J1 (resp. J2) fits into the MKV framework
of Section 1 with state variables pX,L, βq (resp. pY, S, L, βq)

We now consider the special case when β is an F0-measurable random variable distributed according to
some probability distribution νpdbq: this corresponds to a Bayesian point of view when the agent’s belief
about the drift is modeled by a prior distribution. In this case, let us show how our partial observation
problem can be embedded into a finite-dimensional full observation Markov control problem. Indeed, by
noting that β is independent of the Brownian motion W 0 under P, we have

L̄0
t “ E

“

exp
`

σ´1β.W 0
t ´

1

2
|σ´1β|2t

˘
ˇ

ˇW 0
‰

“ F pt,W 0
t q,

where

F pt, wq :“

ż

exp
`

σ´1b.w ´
1

2
|σ´1b|2t

˘

νpdbq.

Hence, the functionals J1 and J2 can be written as

J1pαq “ E
“

F pT,W 0
T qUpXT q

‰

(1)

J2pαq “ E
“

ż T

0

F pt,W 0
t qαtpSt ` fpαtqqdt` F pT,W

0
T q`pYT q

‰

. (2)

We are then reduced to a pP,F0q-control problem with state variables pW 0, Xq for problem (1) and pW 0, S, Y q
for problem (2) with dynamics under P:

dSt “ diagpStqσdW
0
t

dXt “ αᵀ

tσdW
0
t

dYt “ αtdt.
12



4.1.2. Numerical results

Let us now illustrate numerically the impact of uncertain Bayesian drift on the portfolio liquidation
problem and the portfolio selection problem, by considering a Gaussian prior distribution β  ν “ N pb0, γ2

0q.
In this case, F is explicitly given by:

F pt, wq “
σγ0

a

σ2 ` γ2
0t

exp
´ 1

2pσ2 ` γ2
0tq
p´b20t` 2b0σw ` γ

2
0w

2q

¯

.

1. Portfolio liquidation. Let us first consider the portfolio liquidation problem (2) with a linear price
impact function fpaq “ γa, γ ą 0, and a quadratic loss function `pyq “ ηy2, η ą 0. The optimal trading
rate is given by (see [18])

α˚t “ ´
Y ˚t

T ´ t` γ{η
`

1

2γ

´ 1

T ´ t` γ{η

ż T

t

E0rSu|FS
t sdu´ St

¯

where Y ˚ is the associated inventory with feedback control α˚: dY ˚t “ α˚t dt, Y
˚
0 “ y0. Since we consider a

Gaussian prior N pb0, γ2
0q for β, the optimal trading rate is explicitly given by

α˚t “ ´
1

T ´ t` γ{η

#

Y ˚t `
1

2γ

„

´
1

γ0

c

π

2
e
´

b20
2γ20

ˆ

erfi

ˆ

b0 ` γ
2
0pT ´ tq?
2γ0

˙

´ erfi

ˆ

b0
?

2γ0

˙˙

` pT ´ t`
γ

η
q



St

+

,

where erfi is the imaginary error function, defined as:

erfipxq “
2
?
π

ż x

0

et
2

dt.

Remark. In particular, when the price process is a martingale, i.e. b0 “ 0, and in the limiting case when the
penalty parameter η goes to infinity, corresponding to the final constraint YT “ 0, we see that α˚t converges
to ´Y ˚t {pT ´ tq, hence independent of the price process, and leading to an explicit optimal inventory: Y ˚t
“ y0

T´t
T with constant trading rate α˚t “ ´y0{T . We retrieve the well-known VWAP strategy obtained in

Almgren-Criss.
We solve the problem numerically, taking N “ 100 for the time discretization, and fixing the other

parameters as follows: γ=5, S0=6, Y0=1, η=100 and σ=0.4. We run two sets of forward Monte Carlo
simulations for β0 “ 0.1, T “ 1 and β0 “ ´0.1, T “ 0.5 changing the value of γ0. We tested the Regress
Later Monte Carlo algorithm (RLMC), the Control Randomization algorithm (CR) and the quantization
algorithm (Q). In particular we wanted to compare the performance of these algorithms with the optimal
strategy (Opt). We also tested a benchmark strategy (Bench) which consists in liquidating the inventory
at a constant rate ´y0{T . The test consisted in computing a forward Monte Carlo with 500000 samples,
following these different strategies, to estimate the value functions at time 0.
We display the results obtained by the different algorithms in table 1. Plots of the tables are available in
figure 1. One can observe from figure 1 that the algorithms perform better than the optimal strategy (Opt)
in some cases. This is due to the fact that discretizing in time the initial problem, and Opt is not optimal
for the time-discretized portfolio liquidation problem. Also, it can be observed from the same table that the
quality of the policy estimated by Regress Later decreases with increasing uncertainty on the drift γ0 at a
faster pace than quantization, showing that the latter is better suited for highly unstable situations. The
policy estimated by Control Randomisation deteriorates likewise when γ0 is increased.
Figure 2 shows a sample of the inventory pYtqtPr0,T s when the agent follows the optimal strategy and the
quantization algorithm. On can see that the strategies differ a little bit when the drift is high. Also, one can
notice that given the penalization parameters that we took, it is optimal to short some stocks at terminal
time, when the drift is high. Finally, notice that the concaveness of the curves comes from the fact that the
running cost does not penalize the inventory. In the latter case, we expect the curves of the inventory w.r.t
time to be convex.
Remarks on the RL and CR algorithms The implementation of Regression Monte Carlo algorithms
has required intense tuning and the use of the performance iteration technique introduced in Section 3.1
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Table 1. Portfolio Liquidation results. Value functions at time 0 when the agent follows
the different strategies.

β0 “ 0.1, T “ 1 β0 “ ´0.1, T “ 1{2
γ0 Opt RLMC CR Q Bench Opt RLMC CR Q Bench
0.1 -1.347 -1.356 -1.278 -1.368 -1.318 3.689 3.687 3.995 3.686 4.144
0.2 -1.385 -1.390 -1.283 -1.401 -1.348 3.682 3.682 3.847 3.679 4.138
0.3 -1.445 -1.446 -1.314 -1.460 -1.402 3.670 3.674 4.034 3.667 4.126
0.4 -1.523 -1.524 -1.323 -1.556 -1.485 3.655 3.674 4.128 3.650 4.108
0.5 -1.642 -1.637 -1.348 -1.673 -1.585 3.636 3.664 4.243 3.630 4.088
0.6 -1.783 -1.777 -1.425 -1.826 -1.711 3.611 3.640 4.386 3.607 4.064
0.7 -1.973 -1.927 -1.513 -2.018 -1.870 3.581 3.613 4.783 3.572 4.029
0.8 -2.213 -2.003 -1.637 -2.243 -2.057 3.545 3.575 5.142 3.537 3.992
0.9 -2.526 -2.457 -1.819 -2.516 -2.288 3.5 3.530 5.345 3.498 3.952
1 -2.918 -2.801 -1.806 -2.829 -2.56 3.453 3.513 6.765 3.452 3.903

in order to obtain satisfactory results. Paramount is, in addition, the distribution chosen for the training
points in Regress Later and for the initial control in Control Randomisation. The problem of finding the best
set of data to provide to the backward procedure is similar in the two Regression Monte Carlo algorithms
however little study is available in literature; for more details on this problem in the Regress Later setting
see [13] and [1]. Finally note that we observed very high volatility in the quality of the policy estimated by
control randomisation, for this reason we estimated the policy 50 times, and report in table 1 the results
provided by the best performing one; increasing the number of training points further affects the variability
only marginally.
Remarks on the Q algorithm The quantization algorithm had to be modified a little bit to perform well
in these simulations. We decided to smooth the previous approximations of the conditional expectations
with respect to the control. The previous approximation was as follows:

Ean,w,y
“

pV
`

n` 1,xWn`1, pYn`1

˘‰

«
ÿ

ePΓε

Pppε “ eqpV
´

n` 1, πWn`1

`

Gpn,w, y, a, eq
˘

, πYn`1

`

Gpn,w, y, a, eq
˘

¯

.

One can notice that we quantized each dimension of the process pWt, Ytq separately. This multidimen-
sional quantization method as already been studied before (see e.g. [17]). Denote by Gwpn,w, y, a, eq and
Gypn,w, y, a, eq the noise component and the portfolio components of Gpn,w, y, a, eq, ie: Gpn,w, y, a, eq “
`

Gwpn,w, y, a, eq, Gypn,w, y, a, eq
˘

. See (6) for the definition of G.
The improved approximation is as follows:

Ean,w,y
“

pV
`

n` 1,xWn`1, pYn`1

˘‰

«
ÿ

ePΓε

Pppε “ eq
”

λe,ŵ,y pV
`

n` 1, y`
˘

` p1´ λe,ŵ,yqpV
`

n` 1, ŵ, y´
˘

ı

,

where y´ and y` are the two closest states in ΓYn`1 from Gypn,w, y, a, eq, such that y´ ă Gypn,w, y, a, eq ă

y`; and λe,ŵ,y :“
Gypn,w,y,a,eq´y´

y`´y´
. This approximation is continuous with respect to the control a. In

particular, this feature will be useful when using usual algorithms to solve the minimization problems that
come up from the Bellman equation.

2. Portfolio selection. Consider the portfolio selection problem (1) with one risky asset. We choose a
CARA utility function Upxq “ ´ expp´pxq, with p ą 0. It has been shown in [9] (see their Corollary 1) that
the optimal portfolio strategy is explicitly given by

α˚t “
σ2 ` γ2

0t

σ2 ` γ2
0T

β̂t
pσ2

14



γ
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
(t

=
0

,Y
0
=

1
)

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

Opt
RLMC
Q
Bench

β0 “ 0.1 and T “ 1.

γ
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
(t

=
0

,Y
0
=

1
)

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

Opt
RLMC
Q
Bench

β0 “ ´0.1 and T “ 0.5.

Figure 1. Results for the portfolio liquidation problem. Value functions at time 0 when
the agent follows different strategies w.r.t γ0. We took γ=5, S0=6, Y0=1, η=100 and σ=0,4.
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Figure 2. Simulation of pYtqtPr0,T s using the optimal strategy (Opt), the quantization algo-
rithm (Q), and the Benchmark strategy (Bench) to solve the portfolio liquidation problem.
We took T “ 1, σ “ 0.4, γ0 “ 1, b0 “ 0.1, S0 “ 6, Y0 “ 1, N “ 100, γ “ 5, η “ 100. We
notice that when the drift is high, the inventory at terminal time YT is negative if the agent
follows both the optimal strategy and the quantization strategy.

where

β̂t “ E0rβ|FS
t s “

σ2

σ2 ` γ2
0t
b0 `

γ2
0

σ2 ` γ2
0t

´

ln
St
S0
`

1

2
σ2t

¯

,

is the posterior mean of the drift (Bayesian learning on the drift), and the optimal performance by

J1pα
˚q “ ´ exp

”

´ p
´

x0 `
1

2p

`

ln
`σ2 ` γ2

0T

σ2

˘

´
γ2

0T

σ2 ` γ2
0T

˘

`
b20

2pσ2

σ2T

σ2 ` γ2
0T

¯ı

.

The Portfolio Selection problem, even though in many aspects similar to the Portfolio Liquidation problem,
it is interesting in his own merit because the control acts only on the variance of the controlled wealth process.
We tested the Regress Later Monte Carlo algorithm (RLMC), the Control Randomization algorithm (CR),
the quantization algorithm (Q) on the portfolio selection problem. Similarly to what has been done for
Portfolio Liquidation problem, we discretised time choosing N “ 100 and solved the discrete time problem
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Table 2. Portfolio Selection results. Value functions at time 0 when the agent follows Opt
and Q strategies.

β0 “ 0.1, T “ 1 β0 “ ´0.1, T “ 1{2
γ0 Opt RLMC CR Q Opt RLMC CR Q
0.1 -0.98522 - - -0.98522 -0.99239 - - -0.99239
0.2 -0.98272 - - -0.98272 -0.99138 - - -0.99138
0.3 -0.97302 - - -0.97301 -0.98847 - - -0.98847
0.4 -0.95401 - - -0.95398 -0.98115 - - -0.98115
0.5 -0.92764 - - -0.92757 -0.96911 - - -0.96911
0.6 -0.89678 - - -0.89666 -0.95219 - - -0.95218
0.7 -0.86370 - - -0.86350 -0.93219 - - -0.93217
0.8 -0.83035 - - -0.83007 -0.91080 - - -0.91076
0.9 -0.79795 - - -0.79758 -0.88655 - - -0.88650
1 -0.76703 - - -0.76658 -0.86311 - - -0.86304

associated. We considered two set of experiments, β0 “ 0.1, T “ 1 and β0 “ ´0.1, T “ 1{2, for values of
γ0 P r0, σs, P “ 1, σ “ 0.4. Given all these different parameters, we compared the performance of these
algorithms with the one of the optimal strategy (Opt). The general test consists in computing a forward
Monte Carlo with 500000 samples, following these different strategies, to estimate the value function at
time 0. We present the results of our numerical experiments in table 2. One can see that the quantization
algorithm is doing slightly better than the theoretical optimal strategy (Opt) for the continuous time problem.
This is due to the fact that Opt is not optimal for the time-discretized portfolio selection problem. We also
present figure 3 which shows a sample of the wealth of the agent following the optimal strategy and the
quantization algorithm. One can see that the strategies slightly differ when the drift is high, and remain the
same when the drift is low.
Remarks on the RL and CR algorithms When implementing Regression Monte Carlo algorithms, and
choosing basis functions, the control on variance implies that low order polynomial can not be used alone,
as they can easily cause the control to be bang bang between the boundaries of its domain. Similarly
piecewise approximations are not very effective, as the dependence on the control is very weak requiring
an high number of local supports, making the computational complexity overwhelming. We tested both
value and performance iteration and tried to employ different kinds of basis functions and training points,
unfortunately both Regress Later and Control Randomisation do not cope well with controlling the dynamics
of a process through the variance only. A tailor made implementation of Regression Monte Carlo to deal
with these sort of problems is outside the scope of this paper and further investigation will follow in future
work.
Remarks on the Q algorithm We designed the same quantization algorithm as the one built to solve the
portfolio liquidation problem. We nevertheless had to take more points in the grids to avoid problems in the
borders of the grids.

4.2. A model of interbank systemic risk with partial observation

4.2.1. The model

We consider a model of systemic risk inspired by the model in [6]. The monetary reserves of N banks
lending to and borrowing from each other are governed by the system

dXi
t “

κ

N

N
ÿ

j“1

pXj
t ´X

i
tqdt` σX

i
tp
a

1´ ρ2dW i
t ` ρdW

0
t q, i “ 1, . . . , N,

where W i, i “ 1, . . . , N , are independent Brownian motions, representing the idiosyncratic risk of each bank,
W 0 is a common noise (systematic risk) independent of W i, and ρ P r´1, 1s. The mean-reversion coefficient
κ ą 0 models the strength of interaction between the banks where bank i can lend to and borrow from banks
j with an amount proportional to the difference of their reserves. In the asymptotic regime when N Ñ 8,
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Figure 3. 3 simulations of the agent’s wealth pXtqtPr0,T s when the latter follows the optimal
strategy (Opt) and the quantized strategy (Q) to solve the portfolio selection problem. We
took σ=0.4, T=1, P=0.1, γ0=5, b0=0.1. One can see that the two strategies are the same
when the drift is low, but Q performs slightly better than Opt when the drift is high.

the theory of propagation of chaos implies that the reserve state Xi of individual banks become independent
and identically distributed conditionally on the common noise W 0, with a state governed by

dXt “ κpErXt|W
0s ´Xtqdt` σXtp

a

1´ ρ2dBt ` ρdW
0
t q,

for some Brownian motion B independent of W 0.
Let us now consider a central bank, viewed as a social planner, who only observes the common noise and

not the reserves of each bank, and can influence the strength of the interaction between the individual banks,
through an F0-adapted control process αt. The reserve of the representative bank in the asymptotic regime
is then driven by

dXt “ pκ` αtqpErXt|W
0s ´Xtqdt` σXtp

a

1´ ρ2dBt ` ρdW
0
t q,

and the objective of the central bank is to minimize

Jpαq “ E
”

ż T

0

1

2
α2
t `

η

2
pXt ´ ErXt|W

0sq2dt`
c

2
pXT ´ ErXT |W

0sq2
ı

,

where η ą 0 and c ą 0 penalize the departure of the reserve from the average. This is a McKean-Vlasov
control problem under partial observation, but notice that it does not belong to the class of LQ MKV
problems due to the control α which appears in a multiplicative form with the state. However, it fits into
our class of polynomial MKV problem, and can be embedded into standard control problem as follows: We
set X̄t “ ErXt|W

0s and Yt “ ErpXt ´ X̄tq
2|W 0s. The cost functional is then written as

Jpαq “ E
”

ż T

0

1

2
α2
t `

η

2
Ytdt`

c

2
YT

ı

where (after some straightforward calculations) the dynamics of X̄ and Y are governed by

dX̄t “ σρX̄tdW
0
t

dYt “
“`

σ2 ´ 2pκ` αtq
˘

Yt ` σ
2p1´ ρ2qX̄2

t

‰

dt` 2ρσYtdW
0
t .

We have then reduced our problem to a pP,F0q-control problem in dimension two with state variables pX̄, Y q,
which is neither LQ, but can be solved numerically.

17



4.2.2. Numerical results

For this problem, no analytical solution is available, so we decided to compare the policies estimated by
our algorithms with a benchmark (Bench) obtained by solving the corresponding 2-dimensional Hamilton-
Jacobi-Bellman equation by deterministic methods. To compare the different algorithms, we computed the
value functions at time 0 following each strategy. We run a forward Monte Carlo with 500 000 samples, using
the following parameters T “ 1, σ “ 0.1, κ “ 0.5 and X0 “ 10 to estimate the different value functions. In
table 3 we display the results of our numerical experiments for two situations η “ 10, c “ 100 and η “ 100,
ρ “ 0.5 varying the value of ρ in the first case, and the value of c in the second. Plots of the two tables are
available in figure 4. One can see that Q performs often better than Bench. This is due to the fact that
Bench is not optimal for the time-discretized systemic risk controlled problem. Also, notice that Regression
Monte Carlo algorithms perform well and in particular RLMC obtains very fast and stable estimations of
the optimal strategy.
Figure 5 shows two examples of paths pXtqtPr0,T s controlled by RLMC (RLMC), pXtqtPr0,T s naively controlled

by α “ 0 (uncontrolled), and the conditional expectation of X pX̄tqtPr0,T s (EpX|W q). One can see in these
two examples that the optimal control given by RLMC is to:

‚ do nothing when the terminal time is far, i.e. take α “ 0, to not to pay any running cost.
‚ catch X̄ when the terminal time is getting close, to minimize the terminal cost.

Finally we present a sample of paths pYtqtPr0,T s controlled by the decisions given by Q in figure 6. One
can see that the optimal Q-strategy minimizes the running cost first by letting Y grow; and deals with the
terminal cost later by making Y small when the terminal time is approaching.
Remarks on the RL and CR algorithms

‚ RLMC has been designed using only linear and quadratic functions as basis functions. That is why
the latter is able to provide fast results.

‚ A requirement for the convergence of the scheme is a careful generation of the training points for
the process Y which should be relatively concentrated around zero.

Remarks on the Q algorithm Given the dynamic of pYtqtPr0,T s, it is straightforward that Y ą 0 on
p0, T s. However, the Euler scheme used to approximate the dynamic of Y does not prevent the associated
process pYtiq0ăiďN to be non-positive. When implementing the Q algorithm for the systemic risk problem,

we forced pŶtiq0ăiďN to remain positive by choosing positive points for the grids ΓYi that quantize the states
of Yti , 0 ă i ď N .
Also, given the expression of the instantaneous and terminal reward, one can expect Y to stay close to 0,
but we do not have any idea of how small Y should stay for the strategy to be optimal (see figure 6 to see
a posteriori where Y lies). To deal with this situation, we decided to use a method of boostrapping: first,
we chose some random grids with lot of points near 0, and computed the optimal strategy on these grids.
Then, we run forward Monte Carlo simulations and generated an empirical distribution of the quantized
Y . Secondly, we build new grids of quantization for Y by generating new points according to the empirical
distribution that we got from in the previous step. Finally, we computed the optimal strategy on the new
grids and compute the corresponding optimal strategy. The Q strategy performed better after Bootstrapping,
but not significantly since our first naive guess for the grids (i.e. before bootstrapping) was already good
enough.

5. Conclusion

In this work we have investigated how to use probabilistic numerical methods for some classes of mean field
control problem via Markovian embedding. We focused on two types of Regression Monte Carlo methods
(namely, Regress Later and Control Randomization) and Quantization. We have then presented three
different examples of applications.

We found that the Regression Monte Carlo algorithms perform well in problems of control of the drift.
In such problems they are much faster than Quantization for similar precision. In particular we noticed
that Regress Later is usually more reliable than Control Randomisation; often the choice of an uniform
distribution of the training points on an appropriate interval is sufficient to obtain high quality estimations.
On the other hand Control Randomisation is very sensitive to the choice of the distribution of the randomised
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ρ RLMC CR Q Bench
0.1 8.88 9.12 8.76 8.94
0.2 8.73 8.98 8.69 8.77
0.3 8.42 8.69 8.32 8.48
0.4 8.02 8.25 7.91 8.06
0.5 7.61 7.73 7.37 7.51
0.6 6.93 6.97 6.68 6.79
0.7 5.94 6.07 5.78 5.87
0.8 4.86 4.82 4.62 4.67
0.9 3.32 3.10 3.02 2.97

c “ 100 and η “ 10.

c RLMC CR Q Bench
0 7.79 7.78 7.77 7.79
1 7.88 7.87 7.86 7.88
5 8.22 8.23 8.21 8.23
10 8.63 8.64 8.61 8.62
25 9.69 9.76 9.61 9.62
50 11.08 11.27 10.94 10.97

ρ “ 0.5 and η “ 100.

Table 3. Results for the systemic risk problem. Value functions at time 0 when the agent
follows different strategies. We took T “ 1, N “ 100, σ “ 0.1, κ “ 0.5, X0 “ 10.
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Figure 4. Results for the systemic risk problem. Value function at time 0 when the agent
follows different strategies with respect to ρ and c. We took T=1, N=100, σ=0.1, κ=0.5,
X0=10.
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Figure 5. Sample of pXtqtPr0,T s controlled by RLMC (RLMC), pXtqtPr0,T s naively con-

trolled taken α “ 0 (uncontrolled), and X̄ (EpX|W q). The optimal control for the systemic
risk problem (computed by RLMC) is to do nothing at first, and catch X̄ when the terminal
time is getting close.
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Figure 6. Sample of pYtqtPr0,T s controlled by Q. The optimal control for the systemic risk
problem is to let Y get large at first, and make it small when terminal time is approaching.

control, and often few repetition are necessary before finding a good control distribution. We have also tried
to use the performance iteration, or path recomputation method, but on the examples we considered it was
very time consuming and did not help much in terms of accuracy. Despite the success of Regression Monte
Carlo methods in problems with control on the drift, the example of Portfolio Selection highlighted a possible
weakness of these algorithms. When the control acts on the variance only we found difficult to make the
numerical scheme converge to sensible results within the computational resources available. We realised that
the study of these problems and the solution via Regression Monte Carlo methods is outside the scope of
this paper. This is probably related to another limitation of this family of methods: the choice of the basis
functions for the regression. Indeed, for some problems the basis might be very large or might require several
steps of trials and errors.

Quantization, on the other hand, provided the most stable and accurate results for the three different
kinds of control problems that has been considered. An interesting feature of the quantization methods is
that one has to choose the grids to quantize the controlled process. It is possible to exploit this feature
in the cases where one has, a priori, a rough idea of where the controlled process should be driven by the
optimal strategy (see e.g. the liquidation problem). In this case, one should build grids with many points
located where the process is supposed to go. In the case where one has no guess of where the optimal process
goes, it is always possible to use bootstrapping methods to build better grids iteratively, starting from a
random guess for the grid (see e.g. systemic risk). However, note that this second alternative require more
computation-time. In both cases, one has to be particularly attentive to the borders of the grids that have
been built. Indeed, the decisions computed by Q at the borders might easily be wrong if the grids do not
have a good shape at the borders. Except in very special cases, it seems not possible to avoid the use of
deterministic algorithms (such as gradient descent methods or extensive search) to find the optimal action
at each point of the grid. A smooth expression of the conditional expectations of the quantized processes is
necessary for the deterministic algorithms to converge properly. Use of parallel computing can alleviate the
time consuming task of searching for the optimal control.
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[18] Pham H. (2016): Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and

applications, Probability, Uncertainty and Quantitative Risk, 1-7.

[19] Pham H. and Wei X. (2017): Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics, SIAM
Journal on Control and Optimization, 55(2),1069-1101.

21


	1. Introduction
	2. Polynomial McKean-Vlasov control problem
	2.1. Main assumptions
	2.2. Markovian embedding

	3. Numerical methods
	3.1. Regression Monte Carlo
	3.1.1. Regress Later
	3.1.2. Control randomization

	3.2. Quantization

	4. Applications and numerical results
	4.1. Portfolio optimization under drift uncertainty
	4.1.1. The model
	4.1.2. Numerical results

	4.2. A model of interbank systemic risk with partial observation
	4.2.1. The model
	4.2.2. Numerical results


	5. Conclusion
	References

