Feature uncertainty bounds for explicit feature maps and large robust nonlinear SVM classifiers - Archive ouverte HAL
Article Dans Une Revue Annals of Mathematics and Artificial Intelligence Année : 2020

Feature uncertainty bounds for explicit feature maps and large robust nonlinear SVM classifiers

Résumé

We consider the binary classification problem when data are large and subject to unknown but bounded uncertainties. We address the problem by formulating the nonlinear support vector machine training problem with robust optimization. To do so, we analyze and propose two bounding schemes for uncertainties associated to random approximate features in low dimensional spaces. The proposed techniques are based on Random Fourier Features and the Nyström methods. The resulting formulations can be solved with efficient stochastic approximation techniques such as stochastic (sub)-gradient, stochastic proximal gradient techniques or their variants.
Fichier principal
Vignette du fichier
1706.09795.pdf (266.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01718729 , version 1 (27-02-2018)

Identifiants

Citer

Nicolas Couellan, Sophie Jan. Feature uncertainty bounds for explicit feature maps and large robust nonlinear SVM classifiers. Annals of Mathematics and Artificial Intelligence, 2020, 88 (1-3), pp.269-289. ⟨10.1007/s10472-019-09676-0⟩. ⟨hal-01718729⟩
198 Consultations
174 Téléchargements

Altmetric

Partager

More