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Sequentialization and Procedural Complexity in

Automata Networks

Florian Bridoux1⋆

Aix-Marseille Univ., Toulon Univ., CNRS, LIS, Marseille, France

Abstract. In this article we consider finite automata networks (ANs)
with two kinds of update schedules: the parallel one (all automata are
updated all together) and the sequential ones (the automata are updated
periodically one at a time according to a total order w). The cost of
sequentialization of a given AN h is the number of additional automata
required to simulate h by a sequential AN with the same alphabet. We
construct, for any n and q, an AN h of size n and alphabet size q whose
cost of sequentialization is at least n/3. We also show that, if q ≥ 4, we
can find one whose cost is at least n/2 − logq(n). We prove that n/2 +
logq(n/2 + 1) is an upper bound for the cost of sequentialization of any
AN h of size n and alphabet size q. Finally, we exhibit the exact relation
between the cost of sequentialization of h and its procedural complexity
with unlimited memory and prove that its cost of sequentialization is less
than or equal to the pathwidth of its interaction graph.

Keywords: Automata networks, intrinsic simulation, parallel update sched-
ule, sequential update schedules, procedural complexity.

1 Introduction

In this article, we study finite automata networks (ANs). They are models
classically used for representing and analyzing natural dynamical systems
like genetic or neural networks [8,5]. Moreover, they are also computa-
tional models on which we study computability and complexity properties
which is the purpose of this paper. An AN h can be seen as a transforma-
tion of An with A a finite alphabet. Here, n is the number of automata,
and the i-th component of h is the update function of the i-th automaton.
We consider them with two types of update schedules. With the paral-
lel one, automata are updated all together, at each time step. In other
words, we just apply h. With the sequential ones, automata are updated
sequentialy, according to a total order w. They have been several works
on the influence of the update schedules on the function computed by
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an AN [6,1]. Here, like in [7] we take the opposite approach. We have
an AN h with a parallel update schedule and try to find an AN f with
a sequential update schedule w which computes the same function. How-
ever, sometime it is impossible. For instance, the transformation of {0, 1}2

which exchanges the two values h : (x1, x2) 7→ (x2, x1) cannot be sequen-
tialized. The famous XOR swap algorithm, x1 ← x1 ⊕ x2, x2 ← x1 ⊕ x2,
x1 ← x1 ⊕ x2 does not apply here because we can only update one time
each automaton beetween two time steps. However, what we can do is
to consider the AN f with one additional automaton and the sequen-
tial update schedule w := (3, 2, 1) which executes the three instructions
x3 ← x1, x1 ← x2, x2 ← x3. We see that f with the update schedule w
computes the transformation h if we only consider the 2 first automata.
The goal of this paper is to determine the cost of sequentialization of an
AN h, namely, the minimum number of additional automata that an AN
f which sequentializes h will have. This paper is the direct sequel of [3]
in which the same problem was studied for an alphabet of size 2 and
with an imposed order of sequentialization. Definition 7, Theorem 1 and
Lemma 3 are straightforward generalization of results published in [3]. All
other results are new.

In Section 2, we define ANs, interaction graphs, the notion of a sequen-
tialization and we present most of the notations that we use. In Section 3,
we define the cost of sequentialization κ(h, u) of an AN h respecting an
order u. It is the minimum number of additional automata required for
any AN f with a sequential update schedule w respecting the order u to
compute h. We also define κmin(h) which is like κ(h, u) except that the
sequential update schedules we consider are not constraint anymore. In
Section 4, we give an upper and lower bounds for κ(h, u) for the couple
(h, u) which maximizes it. In Section 5, we prove different lower bounds
depending on the alphabet size for κmin(h) when h maximizes κmin(h). In
Section 6 we give the relation between κmin and the procedural complex-
ity as defined in [4]. Finally, In Section 7, we prove an upper bound for
κmin(h) depending on the pathwidth of the interaction graph of h.

2 Definitions and notations

For all i ∈ N, the interval between 1 and i is denoted by [i] := {1, 2, . . . , i}.
For all i, j ∈ N, with i ≤ j, the closed interval between i and j is denoted
by [i, j] := {i, i+1, . . . , j} and the open one by ]i, j[:= [i, j]\{i, j}. For any
q ≥ 2 and n ∈ N, let F (n, q) be the set of functions from [0, q[n to [0, q[n

(also called transformations of [0, q[n). For all I = {i1, i2, . . . , ip} ⊆ [n]
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with i1 < i2 < · · · < ip, the projection of x on I is denoted either by
prI(x) or by xI . In other words, prI(x) = xI = (xi1 , xi2 , . . . , xip). For
all vectors x := (x1, . . . , xp) and y := (y1, . . . , yt), their concatenation is
denoted by xy := (x1, . . . , xp, y1, . . . yt).

Definition 1 (Coordinate functions). Let f ∈ F (n, q). For every i ∈
[n], the i-th coordinate functions of f is the function fi := pri ◦f .

This means that we have f(x) = (f1(x), f2(x), . . . , fn(x)). In this paper,
we make particular use of the superscript of a function f .

Definition 2 (Updates of a transformation). For all i ∈ [n], f i ∈
F (n, q) is the function which updates the i-th coordinate (i.e. executes fi).
For all I ⊆ [n], f I is the function which updates the coordinates of all
elements of I synchronously. For any word w := (w1, w2, . . . , wt) on the
alphabet [n], fw is the function which updates sequentially the coordinates
w1, . . . , wt in the order given by w.

Formally, we have

∀x ∈ An, f i(x) := (x1, . . . , xi−1, fi(x), xi+1, . . . , xn).

∀x ∈ An, j ∈ [n], f I(x)j :=

{

fj(x) if j ∈ I

xj otherwise.

∀w = (w1, w2, . . . , wt) ∈ [n]t, fw := fwt ◦ · · · ◦ fw2 ◦ fw1 .

We say that fi is a trivial coordinate function if for all x ∈ An, fi(x) =

xi. The relation y = f i(x) can be expressed by x
f i

−→ y. The set of
permutations of [n] is denoted by Π([n]). Let w := (w1, w2, . . . , wt) ∈
Π([n]). If wj = i then we say that i is updated at step w(i) := j.

Definition 3 (Sequentialization). An AN f ∈ F (m, q), with the se-
quential update schedule w ∈ Π([m]) sequentializes an AN h ∈ F (n, q)
with m ≥ n if pr[n] ◦f

w = h ◦ pr[n].

Remark 1. All the results of this paper remain true if we use the more
general definition: ∃I ⊆ [m], with |I| = n such that prI ◦f

w = h ◦ prI .

Definition 4 (Interaction graph). The interaction graph IG(h) of an
AN h ∈ F (n, q) is the directed graph ([n], E) with (i, j) ∈ E if and only if
i has an influence on j. More formally, ∀i, j ∈ [n], (i, j) ∈ E if and only
if ∃x, y ∈ An such that x[n]\{i} = y[n]\{i} and hj(x) 6= hj(y).

We denote by IG∗(h) be the undirected version of IG(h).
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3 Cost of sequentialization

In this section, we define the main question tackled in this paper. For all
u ∈ Π([n]), we say that w ∈ Π([m]) respects u, if all the coordinates of [n]
are updated in the same order in u and in w. In other words, ∀i, j ∈ [n],
if u(i) < u(j) then w(i) < w(j).

Definition 5 (κ(h, u)). Let h ∈ F (n, q) and u ∈ Π([n]). The cost of
sequentialization of h respecting u, denoted by κ(h, u), is the smallest k
such that there exists f ∈ F (n+k, q) and w ∈ Π([n+k]), such that (f,w)
sequentializes h and w respects u.

Definition 6 (κmin(h)). Let h ∈ F (n, q). The cost of sequentialization of
h, denoted by κmin(h), is the smallest k such that there is a f ∈ F (n+k, q)
and a w ∈ Π([n + k]), such that (f,w) sequentializes h.

Clearly, κmin(h) = min({κ(h, u) | u ∈ Π([n])}). Given n and q, the
maximal cost of sequentilization respectively with or without imposed
order is denoted by κn,q := max({κ(h, u) | h ∈ F (n, q) and u ∈ Π([n])})
and κmin

n,q := max({κmin(h) | h ∈ F (n, q)}), respectively. Example 1 shows
that, for some (h, u), the difference between κmin(h) and κ(h, u) is large.
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Fig. 1: Interaction graph of

the AN h of Example 1.
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Fig. 2: Interaction graph of

the AN f of Example 1.
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Fig. 3: Interaction graph of

the AN g of Example 1 with

only inner edges of the au-

tomaton 5 displayed.

Example 1. Let us consider the AN h ∈ F (n, q) with n = 6 which com-
putes the swaps of the values of 3 pairs of automata. In other words,

h : x 7→ (x4, x5, x6, x1, x2, x3).
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Figure 1 displays the interaction graph of h. Now, we consider the canon-
ical sequential update schedule u = (1, 2, · · · , 6) and we want to find an
AN f and a update schedule w which sequentializes h respecting u. To
do so, let us consider an AN f ∈ F (9, 2) and w ∈ Π([9]). First, we define
the order w := (7, 8, 9, 1, 2, 3, 4, 5, 6) which updates the n/2 additional
automata of f before it updates the n first ones. Then, we take f which
copies the values of the first set of automata in the third, the second in the
first and the third in the second. Formally, f : z 7→ z[4,6]z[7,9]z[3]. Figure 2
shows the interaction graph of f . Now, a simple expansion of fw gives us

z = z[3]z[4,6]z[7,9]
f7,8,9

−−−→ z[3]z[4,6]z[3]
f1,2,3

−−−→ z[4,6]z[4,6]z[3]
f4,5,6

−−−→ h(z[6])z[3].

Thus, we have pr[n] ◦f
w = h ◦ pr[n]. As a result, (f,w) sequentializes h

respecting u and κ(h, u) ≤ 3. Moreover, Lemma 3 (Section 4), shows
that there are no smaller (f,w) which would suit. Thus, we have κ6,q ≥
κ(h, u) = n/2 = 3. Next, we define g ∈ F (7, 2) and v ∈ Π([7]) such
that (g, v) (with only one more automaton than h) sequentializes h (but
without respecting u). First, we define the order v := (7, 1, 4, 2, 5, 3, 6)
which, instead of updating [n] in the order u, updates the pairs of au-
tomata (1, 4), (2, 5) and (3, 6) one by one. Then, we take g such that for
all y ∈ {0, 1}7,

g : y 7→ (y4, y5, y6, y7 − y2 − y3, y7 − y4 − y3, y7 − y4 − y5, y1 + y2 + y3).

Figure 3 depicts the interaction graph of g with only the inner edges of
the automaton 5 displayed. As above, a simple expansion of gv gives us
gv : y 7→ h(y[6])(y1 + y2 + y3). Thus, pr[n] ◦g

v = h ◦ pr[n] and g has 1 more

automata than h. As a result, (f,w) sequentializes h and κmin(h) ≤ 1.
A generalization of this example shows that for all even n and q ≥ 2,
∃h ∈ F (n, q), u ∈ Π([n]) such that κ(h, u) ≥ κmin(h) + n/2− 1.

4 Confusion graph and κn,q

In [3], the NECC graph was defined. This graph is very useful to compute
κ(h, u). We rather call it the confusion graph in this paper.

Definition 7 (Confusion graph). Let us consider h ∈ F (n, q) and the
sequential update schedule u ∈ Π([n]). We call confusion graph Gh,u the
undirected graph whose vertices are all the configurations of [0, q[n and in
which two configurations x and x′ are neighbors if and only if h(x) 6= h(x′)
and ∃ i ∈ [n], h{u1,...,ui}(x) = h{u1,...,ui}(x′).
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In the sequel, we denote by χ(G) the chromatic number of the graph G,
namely the minimum number of colors of a proper coloring of its vertices.
In [3], the exact relation between the chromatic number of the confusion
graph Gh,u and κ(h, u) was proven in the case where q = 2. We propose
in Theorem 1 a straightforward generalization for any alphabet size.

Theorem 1. Let us consider h ∈ F (n, q) and the sequential update sched-
ule u ∈ Π([n]). Then we have κ(h, u) = ⌈logq(χ(Gh,u))⌉.

In [3],the authors proved that for all n we can construct h ∈ F (n, 2)
whose cost of sequentialization respecting the order u ∈ Π([n]) is ⌊n/2⌋.
Lemma 3 bellow is a straightforward generalization for any alphabet size.

Lemma 3. For all n ∈ N and q ≥ 2 we have κn,q ≥ ⌊n/2⌋.

Moreover, in [3], the authors showed that ∀n ∈ N, κn,2 ≤ 2n/3+2. The-
orem 2 below shows that we have in fact, κn,q ≤ ⌈n/2+ logq(n/2+1)⌉ for
any q. To prove it, we regroup all the configurations of the confusion graph
Gh,u which are equal in their second half (x{un/2+1,...,un} = x′{un/2+1,...,un}

)

and have the same image (h(x) = h(x′)). We prove that a proper color-
ing of this graph is a proper coloring of the confusion graph. And then,
we prove that the maximal degree of this factorized graph is at most
⌈(n/2 + 1)qn/2⌉. Since the chromatic number of a graph is at most its
maximal degree (plus one), we deduce an upper bound for the chromatic
number and then for κn,q.

Theorem 2. For all n ∈ N, q ≥ 2 we have κn,q ≤ ⌈n/2+ logq(n/2+1)⌉.

5 Lower bounds for κ
min

n,q

The goal of this section is to construct an AN with the biggest cost of
sequentialization possible and thus deduce a lower bound for κmin

n,q . For any

set I, the set of subsets of I of size k is denoted by
(I
k

)

:= {J ⊆ I | |J | = k}.
For all x ∈ An and I ⊆ [n], let x[I] := {x′ ∈ An | x′[n]\I = x[n]\I} be the
set of configurations of An which only differ from x in I. In Lemma 4, we
prove that if we can find an encoding b :

([2k]
k

)

→ An such that the sets

b(E)[E] with E ∈
([2k]

k

)

are disjoint, then there exists h ∈ F (n, q) such
that κmin(h) ≥ k. To do so, we define the function h such that for all
x ∈ b(E)[E], hE(x) = x[2k]\E and h[2k]\E(x) = xE . For any u ∈ Π([n]), we
can define E as the k first coordinates updated by u in [2k] and consider
x = b(E). The set x[E] is a clique in the confusion graph Gh,u. Indeed, any
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function which sequentializes h respecting u has, for any configuration in
x[E], to first erase the information in E and then to restore it in [2k] \ E.
Since this clique is of size qk, we have κh,u ≥ k for any u and κmin(h) ≥ k.

Lemma 4. Let n, k ∈ N and q ≥ 2. If there is a function b :
([2k]

k

)

→

[0, q[n such that the sets b(E)[E] with E ∈
([2k]

k

)

are disjoint then there
exists a h ∈ F (n, q) without trivial coordinate functions, with κmin(h) ≥ k.

Using Lemma 4 we could easily show that for any q ≥ 2 and n ∈ N,
we have κmin

n,q ≥ ⌊n/4⌋. Indeed, if we have n = 4k, we can use the second
half of the configuration to encode the set E. In Theorem 3 we prove that
for any alphabet, we can in fact encode any E ∈

([2k]
k

)

in a configuration
x of size 3k. To do so, we use the following technique: if i ∈ E := [2k] \E
then we have xi = 0 if i+1 in E and 1 otherwise. Moreover, in [2k+1, 3k],
using the same technique, we indicate if each element of E is followed by
another element of E or not. From this encoding and Lemma 4 we deduce
a lower bound for κmin for any alphabet.

Theorem 3. For all n ∈ N and q ≥ 4, we have κmin
n,q ≥ ⌊n/2− logq(n)⌋.

Theorem 4 below states that, if we have an alphabet of size at least
4, we can encode any E ∈

([2k]
k

)

in a configuration of size 2k + logq(2k).
To do so, we encode E in [2k] \ E using the fact that in an alphabet of
size 4 each coordinate can encode twice more information than with a bit.
Then, we indicate in [2k, 2k + logq(2k)] where the reading for decoding
starts. From this encoding and Lemma 4 we deduce a lower bound for
κmin.

Theorem 4. For all q ≥ 4, n ∈ N, κmin
n,q ≥ ⌊n/2− logq(n)⌋.

6 Procedural complexity

Now, we study the relation between κmin and the procedural complexity
as defined in [4]. The procedural complexity of h is the minimum number
t of functions g(1), . . . , g(t) (each of which update at most one coordinate)
that are required for g(t) ◦ · · · ◦g(1) to compute h. For all q ≥ 2 and n ≥ 2,
let us denote by F ∗(n, q) ⊆ F (n, q) the set of functions which do not up-
date more than one coordinate. In [4], the authors first studied the mem-
oryless procedural complexity L(h). It is the necessary number of step
to compute h with g(1), . . . , g(t) of same size than h. Then, they studied
L(h|m) which is the procedural complexity using functions g(1), . . . , g(t)

of a fixed size m. More formally , ∀m ≥ n, L(h|m) := smallest t such that
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∃ g(1), . . . , g(t) ∈ F ∗(m, q) such that pr[n] ◦g
(t) ◦ · · · ◦ g(1) = h ◦ pr[n]. Here,

we also use L∗(h) := min({L(h|m) | n ≤ m}) which is the procedural
complexity with a size arbitrarily big. Let Ω(h) be the number of non-
trivial coordinate functions of h. Theorem 5 shows that the procedural
complexity of an ANh is equal to κmin(h) +Ω(h). Furthermore, it shows
that the minimum procedural complexity is reached when we use κmin(h)
additional automata. It is directly deduced from Lemma 5 and Lemma 6.

Theorem 5. Let h ∈ F (n, q) and k := κmin(h). We have L∗(h) =
L(h|n+ k) = Ω(h) + k.

In Lemma 5, we prove that L∗(h) ≤ Ω(h) + κmin(h). We use the fact
that by definition of k := κmin(h) there is f ∈ F (n + k, q) and w ∈
Π([n+ k]) such that the n+ k instructions fw1, . . . , fwn+k ∈ F ∗(n+ k, q)
compute h. With that, we already have L(h|n+ k) ≤ n+ k. Furthermore,
for each i such that hi is trivial, we can remove the function f i of the list
of instructions and still compute h. As a result, we have L(h|n + k) ≤
n + k − (n − Ω(h)) = Ω(h) + k, and by definition of L∗(h) we have
L∗(h) ≤ L(h|n + k).

Lemma 5. Let h ∈ F (n, q) and k := κmin(h). We have L∗(h) ≤ L(h|n+
k) ≤ Ω(h) + k.

In Lemma 6, we prove that Ω(h) + k ≤ L∗(h) with k := κmin(h). To
do so, we take a set of functions g(1) . . . , g(t) ∈ F ∗(m, q) which compute h.
We consider an order w ∈ Π([n]) which updates all coordinate of [n] in the
same order that g(1) . . . , g(t) update them for the last time. Then we prove
that h can be sequentialized respecting w with less than L∗(h) − Ω(h)
additional automata. Let J = {j1, . . . , jℓ} be the set of steps such that
either g(ji) updates a coordinate of ]n,m], either it updates a coordinate
of [n] that will be updated again later. We have ℓ = L∗(h)−Ω(h). Then,
we define c : An → Ak such that ci(x) equals (g

(ji) ◦ · · · ◦ g(1)(x(0)m−n))a
with a the coordinate updated by g(ji). Then, we prove that c is a proper
coloring of the confusion graph Gh,w and that Ω(h) + k ≤ L∗(h).

Lemma 6. Let h ∈ F (n, q) and k := κmin(h). We have Ω(h) + k ≤
L∗(h).

In [4], Proposition 12 states that ∀h ∈ F (n, q), we have L(h|n − 1) ≤
2n − 1. In Corollary 1 bellow, we refine this bound using Theorem 2,
Theorem 5 and the fact that ∀h ∈ F (n, q), Ω(h) ≤ n.

8



Corollary 1. For all h ∈ F (n, q), L(h|m) ≤ m with m := n + ⌈n/2 +
logq(n/2 + 1)⌉.

In the following Corollary 2, we give a lower bound for the procedural
complexity with unlimited memory. It is a direct corollary of Theorem 5,
Lemma 4, Theorem 3, Theorem 4 in which we construct an AN h without
trivial coordinate functions (and thus we have Ω(h) = n).

Corollary 2. For all n, q ≥ 2 there is h ∈ F (n, q) such that L∗(h) ≥
n + ⌊n/3⌋. Furthermore, if q ≥ 4 there is h ∈ F (n, q) such that L∗(h) ≥
n+ ⌊n/2− logq(n)⌋.

7 Bound for κ
min(h) using interaction graph

Let us now present a way to upper bound κmin(h) for an AN h using the
pathwidth of the interaction graph of h [2].

Definition 8 (Pathwidth). A path decomposition of an undirected graph
G = (V,E) is a sequence of subsets X1, . . . ,Xp of vertices such that

- ∀(v, v′) ∈ E, ∃Xi such that v, v′ ∈ Xi.
- If v ∈ Xi and v ∈ Xj with i < j then ∀k ∈ [i, j], v ∈ Xk

The size of a path decomposition is the size of the largest Xℓ minus one.
The pathwidth Pw(G) is the minimum size of a path decomposition of G.

Theorem 6 shows that the pathwidth of the graph IG∗(h) is an up-
per bound for κmin(h). It can be deduced directly from Lemma 7 and
Lemma 8.

Theorem 6. For any AN h, κmin(h) ≤ Pw(IG∗(h)).

Lemma 7 shows that from a path decomposition of a graph G of
size s, we can construct a partition c of its vertices in s sets, and an
update schedule u with properties allowing an efficient sequentialization
by Lemma 8. We define c (resp. u) using a greedy algorithm. We iterate
the subsets X1, . . . Xn of the path decomposition and choose the value
c(i) (resp. u(i)) the first (resp. last) time we see i.

Lemma 7. Let G = ([n], E) be an undirected graph and let s = Pw(G).
Then there are functions c : [n] → [s] and u ∈ Π([n]) with the following
property. For all i ∈ [n], we have either 1) for all k neighbor of i in G we
have u(i) ≤ u(k) or 2) for all j, k ∈ [n] with c(i) = c(j), u(i) < u(j) and
k neighbor of j in G we have u(i) ≤ u(k).
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Lemma 8 shows how to use c and u defined in Lemma 8 to sequen-
tialize h respecting u. Each additional automaton j (denoted from 1 to s)
computes the sum modulo q of the images { hi(x) | i ∈ [n] and c(i) = j }.
Then, each automaton of coordinate j can compute hj(x), either because
all neighbors of j in G have not be updated yet, or because it can compute
all hj(x) such that i 6= j and c(i) = c(j).

Lemma 8. Let h ∈ F (n, q). Let G = IG∗(h). If we have c : [n] → [s]
and u ∈ Π([n]) such that G, c, u have the same properties as in Lemma 7,
then we have κ(h, u) ≤ s.

8 Conclusion and future research

We have seen that ⌊n/2− logq(n)⌋ ≤ κmin
n,q ≤ κn,q ≤ ⌈n/2+ logq(n/2+1)⌉.

Thus, for any fixed n, the limit of κmin
n,q and κn,q when q tends to infinity is

n/2. It is an argument in favor of the conjecture made in [3] which states
that for any n and q, κn,q = ⌊n/2⌋ and which is still open. It would be
interesting to investigate a variant of the problem presented in this paper,
where additional automata are forbidden but several updates of the same
automaton are allowed. The task is then to know, for given n and q, the
minimum time t(q, n) such that ∀h ∈ F (n, q), ∃f ∈ F (n, q), w ∈ [n]t

′

with t′ ≤ t(q, n) such that fw = h. The value of t(2, 2) is not defined be-

cause for the AN h ∈ F (2, 2) such that (0, 0)
h
−→ (0, 1)

h
−→ (1, 1)

h
−→ (1, 0)

h
−→

(0, 0) there are no such f . However, with computers, we established that
t(3, 2) = 22. We can easily see that Ln,q := max({L(h) | h ∈ F (n, q)}) is a
lower bound for t(n, q), and in [4], it is stated that 2n−1 ≤ Ln,q ≤ 4n−3.
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A Proof of Theorem 1

We can deduce Theorem 1 directly from Lemma 1 and Lemma 2.

Theorem 1 (Theorem 1). Let us consider h ∈ F (n, q) and the sequen-
tial update schedule u ∈ Π([n]). Then we have κ(h, u) = ⌈logq(χ(Gh,u))⌉.

Lemma 1 shows that we can use any (f,w) which sequentializes h
respecting u to construct a proper coloring of Gh,u. Indeed, we can color
the vertices of the graph Gh,u using the values of the additional automata
of f after their update. Thus, this coloring does not use more than qk

colors with k the number of additional automata of f .

Lemma 1. Let us consider h ∈ F (n, q) and the sequential update sched-
ule u ∈ Π([n]). Then we have ⌈logq(χ(Gh,u))⌉ ≤ κ(h, u).

Proof. Without loss of generality, let us say that u is the canonical se-
quential update schedule (1, 2, . . . , n). Let k := κ(h, u), m := n + k,
f ∈ F (m, q) and w ∈ Π([m]) respecting u such that pr[n] ◦f

w = h ◦ pr[n].

Let x, x′ be two neighbors in the confusion graph Gh,u. Let y := (0)k (a
word of size k containing only the letter 0). Let z := xy and z′ := x′y.
Let us prove that fw(z)[n+1,m] 6= fw(z′)[n+1,m]. For the sake of contra-
diction, let us say that fw(z)[n+1,m] = fw(z′)[n+1,m]. Since x and x′ are

neighbors in Gh,u, we know that h(x) 6= h(x′) and ∃ i ∈ [n], h[i](x) =
h[i](x′). Let us consider the biggest of these i. So we have h[i+1](x) 6=
h[i+1](x′) and then hi+1(x) 6= hi+1(x

′). Let j = w(i+1). Let us prove that
fw1,...,wj−1(z) = fw1,...,wj−1(z′). First, we have fw1,...,wj−1(z)[n] = h[i](x) =

h[i](x′) = fw1,...,wj−1(z′)[n]. Furthermore, for all a ∈ [n + 1,m] which is
not updated before the step j in w we have fw1,...,wj−1(z)a = ya−n =
fw1,...,wj−1(z′)a. Finally, for all a ∈ [n + 1,m] updated before the step j
in w we have fw1,...,wj−1(z)a = fw1,...,wj−1(z′)a because we assumed that
fw(z)[n+1,m] = fw(z′)[n+1,m]. As a result, fw1,...,wj−1(z) = fw1,...,wj−1(z′).
However, fwj ◦ f

w1,...,wj−1(z) = hi+1(x) 6= hi+1(x
′) = fwj ◦ f

w1,...,wj−1(z′).
This is a contradiction. Consequently, we have, fw(z)[n+1,m] 6= fw(z′)[n+1,m].
More generally, if x and x′ are neighbors in Gh,u then fw(xy)[n+1,n+k] 6=
fw(x′y)[n+1,n+k]. In other words, c : x 7→ fw(xy)[n+1,n+k] gives a proper
coloring of the confusion graph Gh,u. As a result, the confusion graph
needs at most qk colors because fw(xy)[n+1,n+k] is a word of size k on the

alphabet q. Thus, χ(Gh,u) ≤ qk and ⌈logq(χ(Gh,u))⌉ ≤ k ≤ κ(h, u).

Conversely, Lemma 2 states that we can construct a couple (f,w)
which sequentializes h respecting u from a proper coloring of Gh,u. If this
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coloring uses less than qk colors then f is of size at most n+ k and then
the cost of sequentialization is at most k.

Lemma 2. Let us consider the AN h ∈ F (n, q) and the sequential update
schedule u ∈ Π([n]). Then we have κ(h, u) ≤ ⌈logq(χ(Gh,u))⌉.

Proof. Let k := ⌈logq(χ(Gh,u))⌉, m := n + k. Let A := [0, q[. Let w ∈
Π([m]) which first update the k last automata and then the n first au-
tomata in the same order than u. In other words, w := (n + 1, . . . , n +
k, u1, . . . , un). Let c : An → Ak be a proper coloring of Gh,u. For all
i ∈ [n], let us define p(i) : Am → P (An) with P (An) := {E | E ⊆ An}
the set of subsets of An. First, p(1) : z 7→ {z[n]} and then ∀i ∈ [2, n],

p(i) : z 7→ {x ∈ An | h{u1,...,ui−1}(x) = z[n] and c(x) = z[n+1,m]}. Let
f ∈ F (n + k, q) such that:

- ∀i ∈ [n+ 1,m], fi = ci ◦ pr[n].

- ∀i ∈ [n], fui : z 7→ zui if p(i)(z) = ∅ and hui(x) with x ∈ p(i)(z)
otherwise.

Let us prove that pr[n] ◦f
w = h ◦ pr[n]. Let x ∈ An and z ∈ Am with

z[n] = x. By, induction let us prove that,

∀i ∈ [0, n], fw1,...,wk+i(z) = h{u1,...,ui}(x)c(x).

First, for i = 0, we have,

fw1,...,wk(z) = fn+1,...,n+k(z) = x(c1(x), c2(x), . . . , ck(x)) = xc(x).

Second, let i ∈ [n] and let us suppose that,

fw1,...,wk+(i−1)(z) = h{u1,...,ui−1}(x)c(x).

We have fwk+i
◦fw1,...,wk+(i−1)(z) = hui(x

′) with x′ ∈ p(i)(fw1,...,wk+(i−1)(z)).

We have x ∈ p(i)(fw1,...,wk+(i−1)(z)) because (fw1,...,wk+(i−1)(z))[n+1,m] =

c(x) and (fw1,...,wk+(i−1)(z))[n] = h{u1,...,ui−1}(x). Let us prove that hui(x
′) =

hui(x). For the sake of contradiction let us say that hui(x
′) 6= hui(x). Thus,

h(x) 6= h(x′). However, x, x′ ∈ p(i)(fw1,...,wk+(i−1)(z)) thus h{u1,...,ui−1}(x) =
h{u1,...,ui−1}(x′) and c(x) = c(x′). Consequently, x and x′ are neighbors
in the confusion graph but they have the same color. This is a contra-
diction. As a result, hui(x

′) = hui(x). Thus, ∀i ∈ [0, n], fw1,...,wk+i(z) =
h{u1,...,ui}(x)c(x). As a consequence, fw(z) = h(x) c(x) and pr[n] ◦f

w =
h ◦ pr[n]. And since f has k additional automata, we have κ(h, u) ≤ k =
⌈logq(χ(Gh,u))⌉.
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B Proof of Lemma 3

To prove Lemma 3, we can construct a couple (h, u) such that Gh,u has
a clique of size qn/2. Since the chromatic number of a graph is at least
the size of its biggest clique, we have χ(Gh,u) ≥ qn/2. As a result, κh,u =
log(χ(Gh,u)) ≥ n/2 and we get Lemma 3 from that.

Lemma 3 (Lemma 3). For all q ≥ 2 and n ∈ N, we have κn,q ≥ ⌊n/2⌋.

Proof. Let k := ⌊n/2⌋. Let us consider h ∈ F (n, q) such that:

- ∀i ∈ [k], hi : x 7→ xi+k

- ∀i ∈ [k + 1, 2k], hi : x 7→ xi−k

- If n is odd let hn : x 7→ xn.

We also consider the canonical sequential update schedule u := (1, 2, . . . , n).
Let us consider the set of all configurations X which have only 0 in their
second half. In other words, X := {x ∈ An | x[k+1,n] = (0)n−k} ((0)n−k

beeing a word of size n − k containing only the letter 0). Let x, x′ ∈ X
such that x 6= x′. We have x[k+1,n] = (0)n−k = x′[k+1,n]. Thus, x[k] 6= x′[k]
and ∃i ∈ [k] such that xi 6= x′i and hi+k(x) = xi 6= x′i = hi+k(x

′). Thus,
h(x) 6= h(x′). However, when we update the first half of the automata,
x and x′ both become the configuration (0)n. Indeed, ∀i ∈ [k], fi(x) =
xi+k = 0. Then, we have h[k](x) = (0)n = h[k](x′). As a result, (x, x′) are
neighbors in Gh,u. As a consequence, every two distinct vertices of X are
neighbors. Thus, X is a clique. Moreover, X is a clique of size qk. Thus,
χ(Gh,u) ≥ qk and κ(h, u) ≥ ⌈logq(χ(Gh,u))⌉ ≥ ⌈logq(q

k)⌉ = k = ⌊n/2⌋.
Hence, ∀q ≥ 2,∀n ∈ N, κn,q ≥ ⌊n/2⌋.

Remark 2. In [4], Theorem 5 shows that if h ∈ F (n, q) is a permutation,
then for any u ∈ Pi([n]) we have κ(h, u) ≤ n/2 if n is even and ⌊n/2⌋+1
otherwise. As a result, the problem is almost solved for the permutations.

C Proof of Theorem 2

Theorem 2 (Theorem 2). For all n ∈ N, q ≥ 2 we have κn,q ≤ ⌈n/2+
logq(n/2 + 1)⌉.

Proof. Let h ∈ F (n, q) and A := [0, q[. Without loss of generality, let us
say that u is the canonical sequential update schedule (1, 2, . . . , n). Let
E be the set of edges of the confusion graph Gh,u. Let X = {X1, . . . ,Xp}
be a partition of An, such that x, x′ are in the same set Xi if and only if
the two following conditions are respected:
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- They are equal on the second half of the coordinates which will be
updated in u. In other words, x{u(n/2+1),...,u(n)} = x′{u(n/2+1),...,u(n)} or,

more simply, x]n/2,n] = x′]n/2,n] because we said that u = (1, 2, . . . , n).

- They have the same image by h. In other words, h(x) = h(x′).

For all x ∈ An, let us denote by X(x) the set Xi ∈ X which contains x.
Let x(1) ∈ X1, x(2) ∈ X2, . . . , x(p) ∈ Xp. Let us consider the undirected
graph G′ = (X,E′) where two sets Xi and Xi′ are neighbors in G′ if and
only if there are two configurations x ∈ Xi and x′ ∈ Xi′ neighbors in
the confusion graph Gh,u. Without loss of generality, let us consider the
neighbors N of X1 in G′. If Xj ∈ N then ∃x ∈ X1, x

′ ∈ Xj such that
∃i ∈ [n], h[i](x) = h[i](x′) and h(x) 6= h(x′). Let us split N in n/2+1 sets:

- Let us denote by N[n/2] the set of sets Xj such that ∃i ∈ [n/2], x ∈

X1, x
′ ∈ Xj such that h[i](x) = h[i](x′) and h(x) 6= h(x′). Since

h[i](x′) = h[i](x), we have x′]i,n] = x]i,n] and x′]n/2,n] = x]n/2,n] = x
(1)
]n/2,n]

because i ≤ n/2. In other words, ∀Xj ∈ N[n/2], we have x′ ∈ Xj such

that x′]n/2,n] = x
(1)
]n/2,n]. However, there is only qn/2 such configurations

x′. Thus, |N[n/2]| ≤ qn/2.
- For all i ∈ [n/2 + 1, n], let us denote by Ni, the set of sets Xj such
that, ∃x ∈ X1, x

′ ∈ Xj such that h[i](x) = h[i](x′) and h(x) 6= h(x′).
Let Xj ∈ Ni and let x ∈ X1, x

′ ∈ Xj such that h[i](x) = h[i](x′). Thus,

we have x
(j)
]i,n] = x′]i,n] = x]i,n] = x

(1)
]i,n] because i > n/2. Thus, the value

of x
(j)
[n/2+1,n] is fixed on the interval [i, n] and can vary only on the

interval [n/2+1, i]. As a result,the second half of x(j) can take qi−n/2

values. Furthermore, h[i](x
(j)) = h[i](x) = h[i](x

′) = h[i](x
(1)). Thus,

the value of h(x(j)) is fixed on the interval [i] and can vary only on
the interval [i, n]. As a result, h(x(j)) can take qn−i different values.
Now if two configurations x′ and x′′ have the same image by h and are
equal one their second half then they are in the same set Xj . Thus,
|Ni| ≤ qi−n/2 ∗ qn−i = qn/2.

We have N = N[n/2] ∪Nn/2+1 ∪ · · · ∪Nn. Thus, |N | ≤ (n/2 + 1)qn/2. As

a consequence, the degree of X1 in G′ is less than (n/2 + 1)qn/2 (strictly
less because X1 is in N but is not neighbor of himself). As a result,
χ(G′) ≤ d(G′)+1 ≤ (n/2+1)qn/2 with d(G′) the degree of G′. We can see
that any coloring of this graph G′ gives a proper coloring of the confusion
graph. Indeed, we can color all the configurations of a set Xi in Gh,u as we
colorXi inG′. If two configurations x and x′ are neighbors in the confusion
graph Gh,u, thenX(x) andX(x′) are neighbors in G′ and will not have the
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same color. Thus, χ(Gh,u) ≤ χ(G′) ≤ (n/2 + 1) ∗ qn/2. As a consequence,
according to Theorem 1, we have, κ(h, u) ≤ ⌈n/2+ logq(n/2+1)⌉. Hence,
∀n ∈ N, κn,q ≤ ⌈n/2 + logq(n/2 + 1)⌉.

D Proof of Lemma 4

Lemma 4 (Lemma 4). Let n, k ∈ N and q ≥ 2. If there is a function

b :
([2k]

k

)

→ [0, q[n such that the sets b(E)[E] with E ∈
([2k]

k

)

are disjoint
then there exists h ∈ F (n, q) without trivial coordinate function, with
κmin(h) ≥ k.

Proof. Let B :=
⋃

E∈([2k]k )
b(E)[E]. Let a : B → [0, q[n such that ∀E ∈

([2k]
k

)

, ∀x ∈ b(E)[E], a(x) = E. Let h ∈ F (n, q) such that: ∀x ∈ B,

- ha(x)(x) = x[2k] \ a(x).

- h[2k] \ a(x)(x) = xa(x).

- ∀i ∈ [2k + 1, n], hi(x) = 0.

and ∀x ∈ [0, q[n \ B, h(x) = (0)n. We can see that h does not have
any trivial coordinate function. Indeed, for all i ∈ [2k + 1, n] we have
hi : x 7→ 0 which is nontrivial. Furthermore, if we take x, y ∈ b(E)[E]
with E = [k + 1, 2k], and xE = (0)k and yE = (1)k, we see that

∀i ∈ [k], hi(x) = xn/2+i = 1 6= 0 = yn/2+i = hi(y).

However, ∀i ∈ [k], i /∈ E and thus xi = yi because x, y ∈ E. Thus,
either hi(x) 6= xi or hi(y) = yi. Either way, hi is nontrivial. Thus, for
all i ∈ [k], hi is nontrivial. The same way, we can prove that there are
no trivial coordinate functions whose index is in [k + 1, 2k]. As a result,
h does not have any trivial coordinate function. Let us prove that ∀u ∈
Π([n]), κ(h, u) ≥ k. Let us consider the sequential update schedule u ∈

Π([n]). Let E ∈
([2k]

k

)

be the set of the k first automata of [2k] updated
in u. Let E′ = [2k] \ E. Furthermore, let i be the first step at which all
automata of E are updated in u. In other words, we have E ⊆ {u1, . . . , ui}
and E′∩{u1, . . . , ui} = ∅. Let z = b(E). We will prove that z[E] is a clique
in the confusion graph Gh,u. Let x, y ∈ z[E] with x 6= y. First let us prove
that h{u1,...,ui}(x) = h{u1,...,ui}(y). We have:

- h{u1,...,ui}(x)E = h{u1,...,ui}(x)a(x) = x[2k]\a(x) = xE′ = zE′ = yE′ =

y[2k]\a(y) = h{u1,...,ui}(y)a(y) = h{u1,...,ui}(y)E .
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- h{u1,...,ui}(x)E′ = (x)E′ = zE′ = yE′ = h{u1,...,ui}(y)E′ because E′ ∩
{u1, . . . , ui} = ∅.

- ∀j ∈ [2k+1, n], with j ∈ {u1, . . . , ui} we have h
{u1,...,ui}(x)j = hj(x) =

0 = hj(y) = h{u1,...,ui}(y)j .

- ∀j ∈ [2k + 1, n], with j 6∈ {u1, . . . , ui} we have h{u1,...,ui}(x)j = xj =
zj = yj = h{u1,...,ui}(y)j .

As a result, h{u1,...,ui}(x) = h{u1,...,ui}(y). Now, x 6= y and x, y ∈ z[E].
Thus, xE 6= yE and h(x)E′ = xE 6= yE = h(y)E′ . As a result, x and y
are neighbors in Gh,u and then z[E] is a clique. Furthermore, z[E] is of
size qk. Thus , χ(Gh,u) ≥ qk. As a consequence, for any sequential update
schedule u we have κ(h, u) ≥ k and then κmin(h) ≥ k.

E Proof of Theorem 3

Theorem 3 (Theorem 3). For all q ≥ 2 and n ∈ N, κmin
n,q ≥ ⌊n/3⌋.

Proof. Let A := [0, q[. In this proof, ci refers to i times the composition
of c. Let n = 3k. (if n = 3k + 1 or n = 3k + 2 we just add one or two

useless automata and the demonstration is the same). Let b :
([2k]

k

)

→ An

such that ∀E = {e1, e2, . . . , ek} ∈
([2k]

k

)

, ∀x ∈ b(E)[E] we have:

- ∀e ∈ E = [2k] \ E, xe = 0 if e+ 1 ∈ E and 1 otherwise.

- x2k+1 = 0 if 1 ∈ E and 1 otherwise.

- ∀ℓ ∈ [k − 1], x2k+ℓ+1 = 0 if j + 1(mod 2k)∈ E and 1 otherwise with
j = eℓ.

Let a : B →
([2k]

k

)

be the function which decodes the subset encoded in a
configuration such that a = g ◦ c2k ◦ h with:

- h : x 7→ (x, {1}, {}, 1) if x2k+1 = 0 and (x, {}, {1}, 1) otherwise.

- c such that for all x ∈ B, I, I subsets of [n] and e ∈ [2k]:

• If e ∈ I :

∗ If xe = 0 then c(x, I, I, e) = (x, I ∪ {e+ 1}, I, e+ 1).
∗ If xe = 1 then c(x, I, I, e) = (x, I, I ∪ {e+ 1}, e + 1).

• e ∈ I :

∗ If |I| = k then c(x, I, I, e) = (x, I, I ∪ {e+ 1}, e + 1).
∗ Otherwise, let ℓ = |I| and b = x2k+ℓ+1.

· If b = 0 then c(x, I, I, e) = (x, I ∪ {e+ 1}, I , e+ 1).
· If b = 1 then c(x, I, I, e) = (x, I, I ∪ {e+ 1}, e + 1).

- g : (x, I, I, q) 7→ I.
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By induction, let us prove that:

∀i ∈ [2k], ∀x ∈ b(E)[E], ci−1(h(x)) = (x,E ∩ [i], E ∩ [i], i).

First, for i = 1 we have ci−1(h(x)) = c0(h(x)) = h(x). There are 2 cases:

- If 1 ∈ E, then x2k+1 = 0 because x2k+1 = 0 if 1 ∈ E and 1 otherwise.
Thus, h(x) = (x, {1}, {}, 1). Furthermore, E ∩ [1] = {1} and E ∩ [1] =
{}. As a result, we have ci−1(h(x)) = (x,E ∩ [1], E ∩ [1], 1).

- If 1 ∈ E, then x2k+1 = 1 because x2k+1 = 0 if 1 ∈ E and 1 otherwise.
Thus, h(x) = (x, {}, {1}, 1). Furthermore, E ∩ [1] = {} and E ∩ [1] =
{1}. As a result, we have ci−1(h(x)) = (x,E ∩ [1], E ∩ [1], 1).

Next, let us suppose that for i ∈ [2k[, we have ci−1(h(x)) = (x,E∩ [i], E∩
[i], i). Let I = E ∩ [i], I = E ∩ [i], e = i. Let ci−1(h(x)) = (x, I, I, e).

- if e ∈ E, then we have e ∈ I. There are two cases:
• If e+ 1 ∈ E then xe = 0 because ∀e ∈ E, xe = 0 if e+ 1 ∈ E and
1 otherwise. Then ci(h(x)) = (x, I ∪ {e+ 1}, I, e+ 1). As a result,
ci(h(x)) = (x,E ∩ [i+ 1], E ∩ [i+ 1], i+ 1).

• If e+ 1 ∈ E then xe = 1 because ∀e ∈ E, xe = 0 if e+ 1 ∈ E and
1 otherwise. Then ci(h(x)) = (x, I, I ∪ {e+ 1}, e + 1). As a result,
ci(h(x)) = (x,E ∩ [i+ 1], E ∩ [i+ 1], i+ 1).

- if e ∈ E then we have e ∈ I. There are two cases:
• If e + 1 ∈ E. Then we have |I| < k because I = E ∩ [i] ⊆ E and
|E| = k and (e+ 1) ∈ E \ I. Let ℓ = |I|. We have e = eℓ. We have
x2k+ℓ+1 = 0 because ∀j ∈ [k − 1], x2k+ℓ+1 = 0 if j + 1 ∈ E and
1 otherwise with j = eℓ. Then ci(h(x)) = (x, I ∪ {e+ 1}, I, e + 1).
As a result, ci(h(x)) = (x,E ∩ [i+ 1], E ∩ [i+ 1], i + 1).
• e+ 1 ∈ E. There are two cases:
∗ If e = ek. Then |I| = k, thus ci(h(x)) = (x, I, I ∪{e+1}, e+1).
As a result, ci(h(x)) = (x,E ∩ [i+ 1], E ∩ [i+ 1], i + 1).
∗ If e = ei with i < k. Then we have |I| < k. Let ℓ = |I|. We have
e = eℓ. We have x2k+ℓ+1 = 1 because ∀j ∈ [k−1], x2k+ℓ+1 = 0
if j + 1 ∈ E and 1 otherwise with j = eℓ. Then ci(h(x)) =
(x, I, I ∪ {e + 1}, e + 1). As a result, ci(h(x)) = (x,E ∩ [i +
1], E ∩ [i+ 1], i + 1).

By induction, we have ∀x ∈ An, ∀i ∈ [2k],

ci−1(h(x)) = (x,E0∩V (i), E1∩V (i), E
0
∩V (i), E

1
∩V (i),m+i+1, r(m+i+1)).

In particular, we have c2k(h(x)) = (x,E,E, q). As a consequence, a(x) =

E. Thus, all the sets b(E)[E] with E ∈
([2k]

k

)

are disjoint. Using Lemma 4,
we conclude that κmin

n,q ≥ ⌊n/3⌋.
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F Proof of Theorem 4

Theorem 4 (Theorem 4). For all q ≥ 4, n ∈ N, κmin
n,q ≥ ⌊n/2−logq(n)⌋.

Proof. Let A := [0, q[. Let n = 2k + ⌈logq(2k)⌉. Only in this proof, to
simplify the use of modulo, we index the coordinates starting from 0 and
not from 1. Furthermore, each addition or subtraction is done modulo
2k, and we will consider that if a < b then [b, a] = [a, 2k[∪[0, b]. For all
I ⊆ [0, 2k[, let △I : E 7→ |I∩E|−|I \E|. Let us consider the two functions

M :
([0,2k[

k

)

→ [−k, k] and m :
([0,2k[

k

)

→ [0, 2k[ such that ∀E ∈
([0,2k[

k

)

,

- M(E) := max({△[i](E)) | i ∈ [0, 2k[}).
- △[m(E)](E) = M .

For instance if we have k := 4, and E := {2, 4, 5, 6} then,

i 0 1 2 3 4 5 6 7

∈ E No No Y es No Y es Y es Y es No

△[0,i](E) −1 −2 −1 −2 −1 0 1 0

.

Furthermore, m(E) = 6 and M(E) = △[0,6](E) = 1. For all E ∈
([0;2k[

k

)

,

let us denote by E0, E1, E
0
, E

1
the subsets of [0, 2k[ such that

- E0 = {e ∈ E | e− 1 ∈ E}.
- E1 = E \E0 = {e1, e2, . . . , ep} with e1−m(E)− 1 < e2−m(E)− 1 <
· · · < ep −m(E)− 1.

- E
0
= {e′ ∈ E | e′ + 1 ∈ E}.

- E
1
= E \E

0
= {e′1, e

′
2, . . . , e

′
p} with e′1−m(E)− 1 < e′2−m(E)− 1 <

· · · < e′p −m(E)− 1.

In other words, we sort the elements of E1 and E
1
in the order m+1,m+

2, . . . , 2k − 1, 0, 1, . . . ,m. If we take again our example where k := 4, and

E := {2, 4, 5, 6} we have E0 = {2, 4}, E1 = {e1 = 5, e2 = 6}, E
0
= {1, 3}

and E
1
= {e′1 = 7, e′2 = 0}. Inded we have e1 −m(E) − 1 = 5 − 6 − 1 =

6 ≤ e2 −m(E)− 1 = 6− 6− 1 = 7 and e′1 −m(E)− 1 = 7− 6− 1 = 0 ≤
e′2 −m(E) − 1 = 0 − 6 − 1 = 1. Let v : [0, 2k[→ An−2k be an injective

function and let v−1 be the inverse function of v. Let b :
([0,2k[

k

)

→ An

such that if x = b(E) then we have,

- xE = (0)k.

- ∀e ∈ E
0
, xe = 0 if e+ 2 ∈ E and 1 otherwise.

- ∀e′j ∈ E
1
, xe′j = 2 if ej + 1 ∈ E and 3 otherwise.
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- x[2k,n[ = v(m(E)).

Again, with the same example, for all y ∈ b(E)[E] we have:

i 0 1 2 3 4 5 6 7

∈ E No No Y es No Y es Y es Y es No

yi 3 1 y2 0 y4 y5 y6 2

.

Indeed,

- y3 = 0 because 3 ∈ E
0
and 3 + 2 ∈ E.

- y1 = 1 because 1 ∈ E
0
and 1 + 2 /∈ E.

- y7 = 2 because e′1 = 7 ∈ E
1
and e1 + 1 = 5 + 1 ∈ E.

- y0 = 3 because e′2 = 0 ∈ E
1
and e2 + 1 = 6 + 1 /∈ E.

Let B =: {x ∈ b(E)[E] | E ∈
([2k]

k

)

} be the set of configuration which

encodes a set E. Let us consider the function a : B →
([2k]

k

)

which decodes
the set encoded by any configuration of B such that a = g ◦ c2k ◦ h with:

- h : x 7→ (x, ∅, ∅, ∅, ∅,m + 1, 0) with m = v−1(x[2k,n[).

- c such that for all I0, I1, I
0
, I

1
subsets of [0, 2k[, e ∈ [0, 2k[ and q ∈

[0, 3[,

• if q = 0:

∗ if xe = 0 or 1 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0, I1, I

0
∪

{e}, I
1
, e+ 1, 1).

∗ if xe = 2 or 3 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0, I1, I

0
, I

1
∪

{e}, e + 1, 0).

• if q = 1:

∗ if xe−1 = 0 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0∪{e}, I1, I

0
, I

1
, e+

1, 2).

∗ if xe−1 = 1 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0∪{e}, I1, I

0
, I

1
, e+

1, 0).

• if q = 2, let j = |I1|, e′ = I
1
j (the j-th element of I

1
when we sort

them it in the order m+ 1,m+ 2, . . . , 2k − 1, 0, 1, . . . ,m ).

∗ if xe′ = 2 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0, I1∪{e}, I

0
, I

1
, e+

1, 2).

∗ if xe′ = 3 then c(x, I0, I1, I
0
, I

1
, e, q) = (x, I0, I1∪{e}, I

0
, I

1
, e+

1, 0).

- g : (x, I0, I1, I
0
, I

1
, e, q) 7→ I0 ∪ I1.
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With the same example, let y ∈ b(E)[E] and let us compute a(y).

y = (3, 1, y2, 0, y4, y5, y6, 2)v(m(E))

h
−→ (y, ∅, ∅, ∅, ∅, 7, 0)
c
−→ (y, ∅, ∅, ∅, {7}, 0, 0)
c
−→ (y, ∅, ∅, ∅, {7, 0}, 1, 0)
c
−→ (y, ∅, ∅, {1}, {7, 0}, 2, 1)
c
−→ (y, {2}, ∅, {1}, {7, 0}, 3, 0)
c
−→ (y, {2}, ∅, {1, 3}, {7, 0}, 4, 1)
c
−→ (y, {2, 4}, ∅, {1, 3}, {7, 0}, 5, 2)
c
−→ (y, {2, 4}, {5}{1, 3}, {7, 0}, 6, 2)
c
−→ (y, {2, 4}, {5, 6}{1, 3}, {7, 0}, 7, 0)

g
−→ {2, 4, 5, 6} = E.

Thus, we have ∀y ∈ b(E)[E], a(y) = E. If we can prove that for all E ∈
([0,2k[

k

)

and for all y ∈ b(E)[E], we have a(y) = E, then we prove that the
sets b(E)[E] are disjoint. Furthermore, with Lemma 4, we can conclude
that κmin

2k+log(k),q ≥ k. In the remaining of the proof, we prove it formally

for all k and E. Let k ∈ N, E ∈
([0,2k[

k

)

. Let rE : ℓ 7→











0 if ℓ ∈ E

1 if ℓ ∈ E0

2 otherwise

. By

induction, let us prove that for all i ∈ [0, 2k],

ci(h(x)) = (x,E0∩V (i), E1∩V (i), E
0
∩V (i), E

1
∩V (i),m+i+1, r(m+i+1)).

with V (0) = ∅, and ∀i ∈ [2k], V (i) = [m + 1,m + i]. First, let us prove
that m+ 1 /∈ E. For the sake of contradiction, let us say that m+1 ∈ E.
Then we have △[m+1] (E) =△[m] (E)+ △[m+1,m+1] (E) = M(E) + 1.
This is absurd because M(E) = max({△[i](E)) | i ∈ [2k]}). As a result
m+ 1 /∈ E. Thus, rE(m+ 0 + 1) = 0. Furthermore,

c0(h(x)) = h(x) = (x, {}, {}, {}, {},m + 0 + 1, 0)

= (x,E0 ∩ V (0), E1 ∩ V (0), E
0
∩ V (0), E

1
∩ V (0),m+ 0 + 1, rE(m+ 0 + 1)).

Next, let us suppose that the induction hypothesis hold for i ∈ [0, 2k[.
Let I = E ∩ V (i), I = E ∩ V (i), I0 = E0 ∩ V (i), I1 = E1 ∩ V (i),
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I
0
= E

0
∩ V (i), I

1
= E

1
∩ V (i), e = m + i + 1 and q = rE(e). Thus,

ci(h(x)) = (x, I0, I1, I
0
, I

1
, e, q). There are four cases:

- e = m + i + 1 ∈ E
0
. As a consequence, we have q = rE(e) = 0.

Furthermore, we have xe = 0 or 1 because ∀e ∈ E
0
, xe = 0 if e+2 ∈ E

and 1 otherwise. Thus, ci+1(h(x)) = (x, I0, I1, I
0
∪{e}, I

1
, e+1, 1). By

definition of E
0
, we have e + 1 ∈ E0 and then rE(e + 1) = 1. Thus,

ci+1(h(x)) = (x,E0 ∩ V (i + 1), E1 ∩ (V (i + 1)), E
0
∩ V (i + 1), E

1
∩

V (i+ 1),m+ i+ 2, rE(m+ i+ 2)).

- e = m + i + 1 ∈ E
1
. As a consequence, we have q = rE(e) = 0.

Furthermore, we have xe = 2 or 3 because ∀e′i ∈ E
1
, xe′i = 2 if ei+1 ∈

E and 3 otherwise. Thus, ci+1(h(x)) = (x, I0, I1, I
0
, I

1
∪ {e}, e+1, 1).

By definition of E
1
, we have e+ 1 ∈ E and then rE(e+1) = 0. Thus,

ci+1(h(x)) = (x,E0 ∩V (i+1), E1 ∩V (i+1), E
0
∩V (i+1), E

1
∩V (i+

1),m+ i+ 2, rE(m+ i+ 2)).

- e = m+ i+ 1 ∈ E0. By induction hypothesis, we have q = rE(e) = 1.

Furthermore, by definition of E0, e− 1 ∈ E
0
. There are two subcases:

• e + 1 ∈ E. We have xe−1 = 0 because ∀(e − 1) ∈ E
0
, xe−1 = 0

if (e − 1) + 2 = e + 1 ∈ E and 1 otherwise. Thus, ci+1(h(x)) =

(x, I0∪{e}, I1, I
0
, I

1
, e+1, 2). And since e+1 ∈ E and e /∈ E, then

e+1 ∈ E1 and rE(e+1) = 2. As a result, ci+1(h(x)) = (x,E0∩V (i+

1), E1∩V (i+1), E
0
∩V (i+1), E

1
∩V (i+1),m+i+2, rE(m+i+2)).

• e + 1 ∈ E. We have xe−1 = 1 because ∀(e − 1) ∈ E
0
, xe−1 = 0

if (e − 1) + 2 = e + 1 ∈ E and 1 otherwise. Thus, ci+1(h(x)) =

(x, I0 ∪ {e}, I1, I
0
, I

1
, e+1, 0). And since e+1 ∈ E, rE(e) = 0. As

a result, ci+1(h(x)) = (x,E0 ∩ V (i+ 1), E1 ∩ V (i+ 1), E
0
∩ V (i+

1), E
1
∩ V (i+ 1),m+ i+ 2, rE(m+ i+ 2)).

- e = m+ i+1 ∈ E1. As a consequence, we have q = rE(e) = 2. Let j =

|I1|. Let us prove that |I
1
| < |I1|. First, we have |I0| = |I

0
|. Indeed,

for all u ∈ I
0
, we have also u ∈ E

0
and then u+1 ∈ E0. Furthermore,

e ∈ E1 and thus e − 1 = m + i /∈ E
1
. Thus, u ∈ [m + 1,m + i + 1[,

u+1 ∈ [m+1,m+ i+ 1]. Consequently, u+1 ∈ V (i) and u+1 ∈ I0.

As a result, for all u ∈ I
0
, we have u + 1 ∈ I0. As a consequence,

|I
0
| ≤ |I0|. Reversely, for all v ∈ I0, v ∈ E0 and then v − 1 ∈ E

0
.

Furthermore, m + 1 ∈ E. Thus, v ∈]m + 1,m + i + 1] and v − 1 ∈

[m+1,m+i+1]. As a result, v−1 ∈ V (i) and v−1 ∈ I
0
. Consequently,

for all v ∈ I0, we have v − 1 ∈ I
0
. As a consequence, |I0| ≤ |I

0
| and

22



then |I0| = |I
0
|. Now, △[m+i+1] (E) = △[m] (E) + △[m+1,m+i] (E) +

|{e}| = M(E) + |I| − |I |+ 1 = M(E) + |I0|+ |I1| − |I
0
| − |I

1
|+ 1 =

M(E)+ |I1|− |I
1
|+1. If |I1| ≥ |I1| then △[m+i+1] (E) > M(E) which

is absurd. Thus, |I1| < |I1|. Let e′ = |I
1
j |. We have e = ej and e′ = e′j .

There are two cases:

• e + 1 ∈ E. Then xe′ = 2 because ∀e′j ∈ E
1
, xe′j = 2 if ej + 1 ∈ E

and 3 otherwise. Thus, ci+1(h(x)) = (x, I0, I1∪{e}, I
0
, I

1
, e+1, 2).

Furthermore, e+1 ∈ E and e /∈ E then e+1 ∈ E1 and rE(e+1) = 2.

As a result, ci+1(h(x)) = (x,E0∩V (i+1), E1∩V (i+1), E
0
∩V (i+

1), E
1
∩ V (i+ 1),m+ i+ 2, rE(m+ i+ 2)).

• e + 1 ∈ E. Then xe′ = 3 because ∀e′j ∈ E
1
, xe′j = 2 if ej + 1 ∈ E

and 3 otherwise. Thus, ci+1(h(x)) = (x, I0, I1∪{e}, I
0
, I

1
, e+1, 0).

Furthermore, e+1 ∈ E and e /∈ E then e+1 ∈ E1 and rE(e+1) = 0.

As a result, ci+1(h(x)) = (x,E0∩V (i+1), E1∩V (i+1), E
0
∩V (i+

1), E
1
∩ V (i+ 1),m+ i+ 2, rE(m+ i+ 2)).

By induction, we can see that ∀i ∈ [2k[, ci+1(h(x)) = (x,E0 ∩ V (i +

1), E1 ∩V (i+1), E
0
∩V (i+1), E

1
∩V (i+1),m+ i+2, rE(m+ i+2)). As

a result, a(x) = g(c2k(h(x))) = g(x,E0, E1, E
0
, E

1
,m + 2k, rE(m + 2k +

1)) = E0 ∪ E1 = E. Since there is a function a such that ∀E ∈
([0,2k[

k

)

,
∀x ∈ b(E)[E], a(x) = E, we know that all the sets b(E)[E] are disjoint.
Using Lemma 4, we conclude that κmin

2k+log(k),q ≥ k.

G Proof of Lemma 5

Lemma 5 (Lemma 5). Let h ∈ F (n, q) and k := κmin(h). We have
Ω(h) + k ≤ L∗(h).

Proof. Let h ∈ F (n, q), k := κmin(h), A := [0, q[ and m := n + k. By
definition of κmin(h) there exists f ∈ F (m, q) and w ∈ Π([m]) such
that fw simulates h. Thus, pr[n] ◦f

wn ◦ . . . fw1 = h ◦ pr[n]. By defini-

tion, ∀i ∈ [m], f i does not update more than one coordinate. Then,
fw1 , . . . , fwm ∈ F ∗(m, q). Let us consider the set T of the coordinates of
the trivial functions of h and let w′ ∈ Π([m]\T ) be an order respecting w
which does update the coordinates of T . In other words, ∀i, j ∈ Π([m]\T ),
if w(i) < w(j) then w′(i) < w′(j). Let us prove that fw′

= fw. Let hi
be a trivial coordinate function. Thus, ∀x ∈ An, hi(x) = xi. And for all
y ∈ Ak and z := xy, we have (fw(z))i = hi(x) = xi = zi. Furthermore,
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since w ∈ Π([m]), the coordinate i is updated only one time in w in step
j := w(i). Thus, fwj ◦ f

w1,...,wj−1(z) = (fw(z))i = zi. Furthermore, since
i is not updated before the step j, we have (fw1,...,wj−1(z))i = zi. As a
result, fwj ◦ fw1,...,wj−1 = fw1,...,wj−1 , fw = fw1,...,wj−1,wj,...,wm. Using the
same method for all j such that hwj is trivial we get fw = fw′

. The order
w′ is of size Ω(h) + k. As a result, we have L(h|n + k) ≤ Ω(h) + k. And
by definition of L∗(h) we have L∗(h) ≤ L(h|n + k).

H Proof of Label 6

Lemma 6 (Label 6). Let h ∈ F (n, q) and k := κmin(h). We have Ω(h)+
k ≤ L∗(h).

Proof. Let ℓ := L∗(h), m ≤ n and g(1), . . . , g(ℓ) ∈ F ∗(m, q) such that
pr[n] ◦g

(ℓ) ◦ · · · ◦ g(1) = h ◦ pr[n]. We can assume that for all i ∈ [ℓ], the

function g(i) updates one coordinate. Otherwise, gi would be the identity
function and we could remove it and have ℓ > L∗(h) which is absurd. Let
u ∈ [m]t such that, for all i ∈ [ℓ], ui is the coordinate updated by g(i).
Let I = {i1, i2, . . . , ip} with i1 < i2 < · · · < ip the set of steps where a
coordinate of [n] is updated for the last time in u. In other words, ∀j ∈
[p], uij ∈ [n] and ∀i ∈ [ij+1, ℓ], ui 6= uij . We know that Ω(h) ≤ p because,
to compute h, each coordinate of a nontrivial function of h needs to be
updated at least once. Indeed, if hi is nontrivial, then ∃x ∈ An, hi(x) 6= xi.
If i is not updated in u, then ∀y ∈ Am−n, pri ◦g

(ℓ) ◦ · · · ◦ g(1)(xy) = xi 6=
hi(x) and h is not computed. Let k := ℓ− p ≤ L∗(h)−Ω(h). Let v be an
oder which updates all the coordinates of [n] not updated by g(1), . . . , gℓ.
Let u′ := (ui1 , ui2 , . . . , uip) be an order which updates the coordinates

of [n] updated by g(1), . . . , gℓ in the same order that u updates them
for the last time. Let w := uv ∈ Π([n]) be a permutation of [n]. Let
J = {j1, j2, . . . , jk} = [ℓ] \ I with j1 < j2 < · · · < jk. For all i ∈ [n], let
g̃(i) : Am → A be the function which return the value of the coordinate
updated by g(i). In other words, g̃(i) = prui ◦ g

(i). Let y := (0)m−n (a
word of size m − n containing only the letter 0). Let c : An → Ak,
such that, ∀x ∈ An, ∀i ∈ [k], ci(x) = g̃(ji) ◦ g(ji−1) ◦ ... ◦ g(1)(xy). Let
us prove that c give a proper coloring of the confusion graph Gh,w. Let
x, x′ ∈ An,be neighbors in the confusion graph Gh,w. In other words,
h(x) 6= h(x′) but ∃i ∈ [n], h{w1,w2,...,wi}(x) = h{w1,w2,...,wi}(x′). For the
sake of contradiction, let us say that c(x) = c(x′). Let z := xy and
z′ := x′y. Let e = max({i ∈ [n] | h{w1,...,wi}(x) = h{w1,...,wi}(x′)}). Let
b ∈ [p] be the last step of u in which the coordinate we is updated. Let
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r := g(b) ◦· · · ◦g(1)(z) and r′ := g(b) ◦· · ·◦g(1)(z′). Let us prove that r = r′.
For all a ∈ [m] not yet updated in u at step b:

- if a ∈ [n] then ra = xa = x′a = r′a because h{w1,w2,...,we}(x) =
h{w1,w2,...,we}(x′) and thus x[n]\{w1,...,we} = x′[n]\{w1,...,we}

.

- if a ∈ [n+ 1,m] then ra = za = ya−n = z′a = r′a.

For all a ∈ [m] already updated in u at step b:

- if a ∈ [n] and a is updated for the last time then ra = ha(x) =
ha(x

′) = r′a because h{w1,w2,...,wi}(x) = h{w1,w2,...,wi}(x′) and thus
h(x)[n]\{w1,...,we} = h(x′)[n]\{w1,...,we}.

- Otherwise, let d < b be the last step in u before b such that a is
updated. In other words, ud = a and ∀i ∈]d, b[, ui 6= a. We have
ra = g̃(d) ◦ g(d−1) ◦ · · · ◦ g(1)(z) = cd(x) = cd′(x) = g̃(d) ◦ g(d−1) ◦ · · · ◦
g(1)(z′) = r′a.

Thus, we have g(b) ◦ · · · ◦ g(1)(z) = g(b) ◦ · · · ◦ g(1)(z′) and thus g(ℓ) ◦
· · · ◦ g(1)(z) = g(ℓ) ◦ · · · ◦ g(1)(z′). However, pr[n] ◦ g

(ℓ) ◦ · · · ◦ g(1)(z) =

h(x) 6= h(x′) 6= g(ℓ) ◦ · · · ◦ g(1)(z′). This is absurd, so if two configurations
x, x′ are neighbors in the confusion graph then c(x) 6= c(x′). Thus, c
gives a proper coloring of the confusion graph Gh,w and it uses at most
qk = qℓ−p ≤ qL

∗(h)−Ω(h) colors. As a result, κ(h,w) ≤ L∗(h) −Ω(h).

I Proof of Lemma 7

Lemma 7 ( Lemma 7 ). Let G = ([n], E) be an undirected graph and
let s = Pw(G). Then there are functions c : [n]→ [s] and u ∈ Π([n]) with
the following property. For all i ∈ [n], we have either 1) for all k neighbor
of i in G we have u(i) ≤ u(k) or 2) for all j, k ∈ [n] with c(i) = c(j),
u(i) < u(j) and k neighbor of j in G we have u(i) ≤ u(k).

Proof. Let G = ([n], E), s = Pw(G) and X1, . . . ,Xp a minimal path
decomposition of G. In other words:

- ∀i ∈ [n],∀a, b ∈ [p] with a < b, if i ∈ Xa and i ∈ Xb then ∀ℓ ∈ [a, b],
i ∈ Xℓ.

- ∀(i, j) ∈ E,∃a ∈ [p] such that i ∈ Xa and j ∈ Xa.
- ∀i ∈ [n],∃a ∈ [p] such that i ∈ Xa.
- ∀i ∈ [p], |Xi| ≤ s+ 1.

For all i ∈ [n], let X(i) = {X ∈ {X1, . . . ,Xp} | i ∈ X}. Let b : i 7→
min({j | Xj ∈ X(i)}) and e : i 7→ max({j | Xj ∈ X(i)}). We will assume
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that ∀{a, b} ⊆ [p], we do not have Xa ⊆ Xb since otherwise we could
remove Xa and still have a valid path decomposition of same size. As a
result, for all a ∈ [p], there exists j ∈ Xa such that e(j) = a. Indeed, if
that was not the case, we would have Xa ⊆ Xa+1. Let u ∈ Π([n]) be
an order respecting e and v ∈ Π([n]) be an order respecting b. In other
words, for all {i, j} ⊆ [n], if e(i) < e(j) then u(i) < u(j) and if b(i) < b(j)
then v(i) < v(j). For all j in [n] taken in the order v, let us define c(j) as
such:

- If, in the set of images by c of Xb(j) already defined, there are value
of [s] not used then let c(j) be the minimal of them. More formally,
if {c(k) | k ∈ Xb(j) and v(k) < v(j)} 6= [s] then let c(j) := min( [s] \
{c(k) | k ∈ Xb(j) and v(k) < v(j)} ).

- Otherwise, if there is k ∈ Xb(j) such that v(k) < v(j) and e(k) = b(j),
then let us consider the i which minimize u(i). In other words, let us
consider i such that u(i) = min({u(k) | k ∈ Xb(j)}) and let c(j) := c(i).
We remark that since ∀k ∈ Xb(j), b(j) ≤ e(k), we have e(i) = b(j) (and
not e(i) < b(j)).

- Otherwise, let c(j) := 0. In this case, we have b(j) = e(j) because
∀k ∈ Xb(j) \ {j}, b(j) < e(k) and by hypothesis ∀a ∈ [p], there exists
j ∈ Xa such that e(j) = a.

We remark that with this construction of c, ∀a ∈ [p] there is at most
one {i, j} ⊆ Xa such that c(i) = c(j) because |Xa| ≤ s + 1. Let i ∈ [n].
First, let us consider the case where c(i) is defined using the third case.
Then, we have b(i) = e(i) and thusX(i) = {Xb(i)}. By definition of a path
decomposition, for all neighbor k of i inG, we have k ∈ Xb(i). Furthermore,
∀k ∈ Xb(i), e(i) = b(i) < e(k). Thus, ∀k ∈ Xb(i), u(i) < u(k). As a result,
i respects the condition 1) for all k neighbor of i in G we have u(i) ≤ u(k).
Next, let us assume that c(i) is not defined using the third case. Let j ∈ [n]
such that c(i) = c(j) and u(i) < u(j). Let us prove that for all k neighbor
of j in G, u(i) ≤ u(k). First let us prove that we have e(i) ≤ b(j). For the
sake of contradiction, let us say that b(j) < e(i). There are 2 cases:

- v(i) < v(j). Thus, b(i) ≤ b(j) < e(i). However,
• Since, b(i) ≤ b(j) < e(i), we have b(j) ∈ [b(i), e(i)] and thus

i ∈ Xb(j). Thus, there exists k ∈ Xb(j) (k := i) such that c(k) = c(j)
and v(k) < v(j). As a result, c(j) cannot have been defined using
the first case of the definition.

• We have b(j) < e(i). Furthermore, by hypothesis, we know that
there is k ∈ Xb(j), such that e(k) = b(j). Thus, e(k) < e(i) and
then u(k) < u(i). As a consequence, we have c(i) = c(j) but

26



u(i) 6= min({u(k)|k ∈ Xb(j)}). As a result, c(j) cannot have been
defined using the second case of the definition.

• We have b(j) < e(i) ≤ e(j) and thus b(j) 6= e(j). As a result, c(j)
cannot have been defined using the third case of the definition.

- v(j) < v(i) Thus, b(j) ≤ b(i) < e(i). However,

• Since, b(j) ≤ b(i) < e(i) ≤ e(j), we have b(i) ∈ [b(j), e(j)] and
thus j ∈ Xb(i). Thus, there is k ∈ Xb(i) such that c(k) = c(i) and
v(k) < v(i). As a result, c(i) cannot have been defined using the
first case of the definition.

• We have b(i) ≤ b(j) < e(i) ≤ e(j) and thus b(i) < e(j). Fur-
thermore, we know that there is k ∈ Xb(i), such that e(k) = b(j).
Thus, e(k) < e(j) and then u(k) < u(j). As a consequence, we
have c(j) = c(i) but u(j) 6= min({u(k)|k ∈ Xb(i)}). As a result,
c(i) cannot have been defined using the second case of the defini-
tion.

• By hypothesis, c(i) is not defined using the third case of the defi-
nition.

All cases raise a contradiction. As a result, we have e(i) ≤ b(j). There
are 2 cases:

- If e(i) < b(j), then let us prove that for each k neighbor of j in G,
u(i) < u(k) (and then u(i) ≤ u(k) ). Let k be a neighbor of j in
G. Thus, ∃a ∈ [p], k ∈ Xa and j ∈ Xa and thus b(j) ≤ b(k). As a
consequence, e(i) < b(j) ≤ b(k) ≤ e(k) and then u(i) < u(k).

- If e(i) = b(j), then let us prove that for each k neighbor of j in G,
u(i) ≤ u(k). Let k be a neighbor of j in G. If b(j) < b(k), then like
in the previous case, we have e(i) = b(j) < b(k) ≤ e(k) and thus
u(i) < u(k). Otherwise, let us prove that k ∈ Xe(i). We have b(k) ≤
b(j) = e(i) and since k is a neighbor of j then e(i) = b(j) ≤ e(k). Thus,
e(i) ∈ [b(k), e(k)] and thus k ∈ Xe(i). We remark that i and j are in
Xb(j) = Xe(i) and c(i) = c(j). Then, the value c(j) corresponds to the
second cases in the definition and we have ∀k ∈ Xb(j), u(i) ≤ u(k)
(the only case where u(i) = u(k) being when i = k).

J Proof of Lemma 8

Lemma 8 ( Lemma 8 ). Let h ∈ F (n, q). Let G = IG∗(h). If we have
c : [n]→ [s] and u ∈ Π([n]) such that G, c, u have the same properties as
in Lemma 7, then we have κ(h, u) ≤ s.
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Proof. For all j ∈ [n], let v(j) := {k ∈ [n] | (k, j) ∈ E}. For all i ∈ [n],
let gi : A

|v(i)| → A such that gi ◦ prv(i) = hi. In other words, ∀x ∈ An,
gi(xv(i)) = hi(x). We know that such a function exists by definition of
the interaction graph. Let I1, I2, . . . , Is a partition of [n] such that ∀ℓ ∈
[s], Iℓ := {i ∈ [n] | c(i) = ℓ}. For all j ∈ [n], let I(j) = Ic(j). Let w =
(n + 1, n + 2, . . . , n + s, u(1), . . . , u(n)). Without loss of generality, let us
say that u is the canonical update schedule (1, . . . , n). Let f ∈ F (n+ s, q)
such that ∀z = xy ∈ An+s,

- ∀i ∈ [n], fi(z) =







hi(x) if ∀k ∈ v(i), u(i) ≤ u(k)

yc(i) −
∑

j∈I(i) with u(j)<u(i)

xj −
∑

j∈I(i) with u(i)<u(j)

hj(x) otherwise
.

- ∀ℓ ∈ [s], fn+ℓ(z) =
∑

j∈Iℓ

hj(x).

Let y′ = fw1,...,ws(z)[n+1,n+s] = (
∑

j∈I1

hj(x), . . . ,
∑

j∈Is

hj(x)). Let us prove

by induction that, being assumed that [0] = ∅, we have ∀i ∈ [0, n],
fw1,...,ws+i(z)[n] = h[i](x). First fw1,...,ws(z)[n] = (xy′)[n] = x = h∅(x).

Next, let i ∈ [n], let us suppose that fw1,...,ws+i−1(z)[n] = h[i−1](x). Let
z′ = x′y′ = fw1,...,ws+i−1(z). There are two cases. If ∀k ∈ v(i), u(i) ≤
u(k) then fi(z

′) = hi(x
′). In this case we have, x′v(i) = xv(i). Thus,

fi(z
′) = hi(x). Otherwise, we have ∀j ∈ I(i) with u(i) < u(j),∀k ∈

v(j), u(i) < u(k). In other words, for each such k we have x′k = xk and
thus x′v(j) = xv(j). Let ℓ = c(i). We have f i(z′) = y′ℓ−

∑

j∈Iℓ with u(j)<u(i)

x′j−

∑

j∈Iℓ with u(i)<u(j)

hj(x
′)

We know that:

- y′ℓ =
∑

j∈Iℓ

hj(x).

- ∀j ∈ Iℓ with u(j) < u(i), x′j = hj(x)

- ∀j ∈ Iℓ with u(i) ≤ u(j), hj(x
′) = gj(x

′
v(j)) = gj(xv(j)) = hj(x)

(because ∀k ∈ v(j), (k, j) ∈ E, and then, by hypothesis of this lemma,
u(i) ≤ u(k)).
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Thus,

fi(z
′) = y′ℓ −

∑

j∈Iℓ with u(j)<u(i)

x′j −
∑

j∈Iℓ with u(i)<u(j)

hj(x
′)

=
∑

j∈Iℓ

hj(x)−
∑

j∈Iℓ with u(j)<u(i)

hj(x)−
∑

j∈Iℓ with u(i)<u(j)

hj(x)

=
∑

j∈Iℓ with u(j)=u(i+1)

hj(x)

= hi(x)
.

As a result, in both case we have fi(z
′) = hi(x). Moreover, fw1,...,ws+i(z)[n] =

f s+i(z′)[n] = h[i+1](x) and by induction ∀i ∈ [0, n], fw1,...,ws+i(z)[n] =

h[i](x). In particular, we have fw(z)[n] = h(x) and then pr[n] ◦f
w =

h ◦ pr[n]. Thus, κ(h,w) ≤ s. As a result, κmin(h) ≤ s.

29


	 Sequentialization and Procedural Complexity in Automata Networks 

