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Invariant Sets for Discrete-Time Constrained Linear Systems Using
Sliding Mode Approach

N. Michel*2, S. Olaru2, G. Valmorbida2, S. Bertrand!, D. Dumur?

Abstract— Invariant set theory has been recognized as an
important tool for control design of constrained systems subject
to disturbances. Indeed, invariant sets as the minimal robustly
positively invariant set help verify whether constraints are
satisfied in closed-loop. This paper studies a class of discrete-
time linear systems under additive disturbances. We propose a
method to compute the state feedback gain that minimizes the
impact of disturbances, related to the mRPI, on the constrained
closed-loop dynamics. The method relies on the solution of
an optimization problem that is formulated using set-theoretic
methods and sliding mode control.

I. INTRODUCTION

The design of control laws for input and state constrained
systems must take into account disturbances and evaluate
their impact in closed-loop. A systematic way to assess the
influence of disturbance is to compute invariant sets based
on a description of the set of disturbance. The invariant set
may then be a certificate for robust constraints satisfaction
and recursive feasibility [1], and it has been studied in the
context of model predictive control [2], robust time-optimal
control [3] or design of reference governors [4]. Another
important set for constrained systems is the controllable
region, which has been studied with different methods [2],
[51, [6].

Constrained control in the presence of disturbance faces
two main challenges: the characterization of the controllable
region and the impact of the disturbance on the convergence
towards a nominal equilibrium. These challenges have been
addressed in several control design frameworks according
to the tools and modelling assumptions: set theoretic meth-
ods [5], interval based approaches [6], or Robust Model
Predictive Control [2].

The so called minimal Robustly Positively Invariant set
(mRPI) is the smallest invariant set for a given set of distur-
bance and a given feedback control law. It is of particular
interest as it corresponds to the limit set of trajectories for
any sequence of disturbances. From a constrained controlla-
bility point of view, the largest invariant set respecting the
constraints, denoted Maximal Robustly Positively Invariant
set (MRPI), is also an important notion for any design
methodology.

Sliding Mode Control (SMC) has been recognized as one
of the effective control strategies for systems with distur-
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bances [7]. The realization of SMC control for continuous-
time systems is performed in two steps. The first step is the
design of a sliding surface on which the system exhibits the
desired dynamics. The second step is the design of a control
law which steers and keeps the system on the sliding surface.
For Discrete-time SMC (DSMC), the first step is the same.
However, the reaching law is designed to steer and keep the
system in a neighborhood of the sliding surface, which we
call the quasi-sliding mode band [7]-[9].

This paper presents a method for the synthesis of invariant
sets tailored to the constraints of discrete-time linear systems
subject to bounded additive disturbance. We use sliding
mode to mitigate the impact of the disturbance on the
violation of state constraints. The approach proposed here
consists in designing a DSMC controller with a Linear
Reaching Law that leads to an mRPI as tight as possible
in the direction of the constraints. The paper is organized
as follows. Section II presents preliminaries and problem
formulation. Section III introduces the DSMC framework.
Section IV proposes solutions to the problem. Section V
gives illustrative examples of the results. Finally, Section VI
draws conclusion and discusses perspectives.

Notation: Given two sets X C R™ and ) C R", the
Minkowski sum and Pontryagin difference are defined as

XoY={zeR"|z=0+y,zeX,yec )},
XoY={reR"|{z}aY CXx}.

The " power of a matrix A is denoted A?, and the i*"

row of A is denoted A;. I, denotes the identity matrix of
dimension n. 0, ,, denotes the matrix of zeros of dimension
m,n, or 0,, if m = n. For a matrix A € R™" and a set
X C R™, define the set AX = {y € R |y = Az, x € X}
For two real vectors x and y, * < y (x < y) denote the
elementwise (strict) inequalities between their components.
Define the set R} = {z € R|z > 0}. The eigenvalues
of matrix A are denoted \;(A4),i = {1,...,n}. The set
of Schur matrices of dimension n is defined as C, =
{A e R™™™ | |X\(A)] <1,i={1,...,n}}. Define the set of
invertible matrices G,, = {A € R"*™ | det(A) # 0}. For a
vector h € R, define ||h||, = {max|h;|,i ={1,...,n}}.
For a matix A € R"™", define [Al, =

{max (z;;l |Ai_j|) vi={1,..n},5=1{1, n}}



II. PROBLEM STATEMENT
A. System description

Consider the class of linear discrete-time systems

T = Az + B(u + w), (D
All A12 On—m m

A= B= ,
)= ]

with A1 € R(n—m)x(n—m)’ Ao € R(n—m)xm’ Ay €
R™X(=m) - Ayy € R™™, g € X C R, u € R™, and
w € W C R™, where x is the system state, u is the control
input, and w is the exogenous disturbance. Note that any
system z+ = Az + B(u+w) with a full rank matrix B can
be written as (1). The set of state constraints is defined as

X={zeR" —g<Fz<g}, 2)

where g € RY™, g € RY™, and F' € R™*" can be partitioned
as follows

F=[Fg: Fg],

with Fgo € R™X(=m) “and Fp € R™*™, The disturbance
set W is assumed to be polytopic, bounded and to contain
the origin in its interior.

Let us introduce a standard definition that will be used to
establish criteria for the feedback design.

Definition 1 (Robustly Positively Invariant Set): A set
Z C R™ is said Robustly Positively Invariant (RPI)
for the system (1) with the control law v = Kz if
(A+ BK)Z® BW C Z, ie.

Ve € Z,YweW,(A+ BK)x+ Bw € Z.
Definition 2 (minimal Robustly Positively Invariant set):
The minimal Robustly Positively Invariant (mRPI) set for
the system (1) with the control law uv = Kz is defined
as the RPI set contained in any closed RPI set [10]. If
A+ BK € C,, the mRPI exists, is compact, contains the
origin, and is given by the following infinite Minkowski

sum

oo

Z(K) = (A + BK)'BW. 3)

Remark 1: The polytolp_ig assumption on YW does not
imply Z.(K) to be polytopic. For computational purposes,
polytopic RPI outer approximations are sought [11].

Definition 3 (Maximal Robustly Positively Invariant set):
The set O (K) is the maximal RPI (MRPI) for the
system (1) with the control law u = K if it is RPI and if
it contains every RPI set under the state constraints (2).
The algorithm proposed in [10] to compute the Maximal
Output Admissible Set can be adapted to compute the MRPI

Ou(K) =X,
Oit1(K)={z € X |(A+ BK)x € O;(K)© BW},
The algorithm stops if and only if O (K) is finitely deter-

mined. This set defines the region of attraction of the linear
feedback gain K under the constraints (2).

B. Problem statement

The objective of this paper is to propose a methodology
to synthesis invariants sets for system (1) that are minimal in
the direction of the state constraints (2), that is to compute
the linear feedback gain K that minimizes the projection of
the mRPI (3) on the constraints X. Let us introduce

T
MZu(K)) = [P1(Z2(K)) hin(Zo(K))]
where
hi(Zs0(K)) = xeglg((K)\le-
We note that
h(Z (K = F = .
h(Zoe () o = max[Fall = max vl

With the above definitions we can formulate the problem
Problem 1: Given the system (1) and the sets W and
X, find a stabilizing feedback gain K that minimizes

[[7(Z00 (K)o -

The corresponding optimization problem is the following
minimize max ||yl 4)
KeRmxn yeEFZ, (K)
subject to A+ BK €C,.

This optimization problem cannot be solved analytically
without an explicit characterization of the set Z.(K) for
all stabilizing feedback gains K.

In this paper we solve Problem 1 using discrete-time
sliding mode control. The framework, as presented in [8],
is briefly recalled in the next section. We use set-theoretic
methods to show that SMC can be designed to obtain mRPI
sets accounting for the constraints X'

The results presented in this paper are obtained under the
following assumptions.

Assumption 1: The pair (A, B) is controllable.

Under this assumption, the pair (Aj;,—Aj2) is control-
lable [12].
Assumption 2: Rank(Fg) = m.

III. DISCRETE SLIDING MODE CONTROL

To introduce the sliding mode strategy we propose, con-
sider the partition of the state as follows

. rpL
rB ’

with zg. € R"™ xp € R™. As a first step of the
control design procedure, let us consider a matrix C =
[Cpr  Cgl, with Cpr € R™*("=™) ‘and Cp € G,,,. This
matrix defines the sliding variable s = C'x € R™ and the
sliding surface S = {x € R" | Cx = 0}.

The following change of coordinates

(&)

Onfm,m
S

_ _ |ZTBL _ In_m
P A
gives an equivalent representation of system (1)

€+ — |: ACl Aio :|§+ |:On—m,m:| (u_’_w)) (6)

CAQ™ 1 Cg



where Ag1 = A1 — AlQCgchJ_. A Linear Reaching Law
exploits this structure using the invertibility of C'g. With

u=—Cg' (CAQ™" + [Omn—m Aca))&,
in (6), we obtain

A A 0p—
+ C1 12 n—m,m
6 N |:07rz,n,—m AC4:| €+ |: CB :| v (7)

—_—

Ac

Matrix Acqs € R™*™ is a parameter to be designed. In
the original coordinates the control law is given by u =
Ozt (—CA+Ac4sC)z, therefore defining the linear feedback
gain

K = Cg'(—=CA+ AcyC). (8)
The matrix A + BK is Schur provided
ACI € Cn7m7AC4 € Cm7 (9)

hold. The definition below relates to the matrices C' such
that Ac1 € Cp—im.

Definition 4: For any pair of matrices Aj; €
R(n—m)x(n—m)’ Ay € R(n—m)xnz, the set

]C(All,Alg) = {C e Rmxn | C= I:CBJ. CB} s
Cpg € Gm, A — AlzcéchL €Cpm}

is called stabilizing set for the pair (A11, A12).

Remark 2: The change of coordinates (5) and the associ-
ated gain (8), leading to Agy = 0,,, were discussed in [8]
and [13]. In these papers the goal was to define stability
conditions with regard to the design of the sliding surface
and to reject a constant disturbance. This paper instead uses
SMC to mitigate the impact the disturbance on the violation
of the state constraints.

The mRPI associated to the feedback gain (8) is given by

Zoo(K (@Al {m” m] W)
o (@ F] o 1Aj46:112A2 1} CBW>'

i=0
(10)
Since CQ~' = [Om,n—m Im], we have
=P At.Csw. (11)
=0

Remark 3: Note that CZ.,(K) depends on the design
parameter Acy.
The closed-loop dynamics of the sliding variable s verifies

st = Acys + Cpw,w € W. (12)
Let Voo(Acs) € R™ be the mRPI set for closed-loop
system (12), i.e.

o(Acy) = @A OW = CZ,(K),

and define the quasi-sliding mode band as the V. -vicinity
of the sliding surface,

SVOQ(AC’4) = {.I‘ cR" ‘ s=Czre VOO(AC4)} .

Proposition 1: The set Sy_(a.,) is RPI for the system
(1) with the linear feedback gain (8).
Proof: For any x € Sy_(a.,). the sliding variable
verifies

s =Cx € Voo (Aca).
Given that Vo (Ac4) is RPI for system (12), we have
Yw € W, st = Oz = Acys + Cpw € Voo (Acy).

Hence, Yw € W, 2" € Sy_(a0,)- ]

The results presented above are used in the next section to
tackle Problem 1 based on set-theoretic notions and taking
into account the structural constraints (9).

IV. MAIN RESULTS

Let us introduce the following Lemma

Lemma 1: Consider system (1) and the feedback gain
K € R™*" as in (8) with C' € K(A11, A12) and Agy = 0,
For any feedback gain L € R™*"™ such that A+ BL € C,,
the set inclusion

CZu(K) € CZ(L)

holds.

Proof: Take (11) with Acy = 0,,, to obtain

K) =P AL CsW = CsW = CBW.
We also have, from (3),

=@ ca+BL)yBW
=0

= CBW®& (é C(A+ BL)iBW>

i=1

= CZu (@c A+ BL) BW)

=1

CZ.(L)

Since 0 € W, Vi € {1,2,...} ,0 € C(A+ BL)!BW. Hence,
CZo(K) = CZo(K) & {0} C CZo(L).

|
From this result it is possible to solve Problem 1 under the
following assumption on matrix F'.

Assumption 3: The matrix F satisfies F' € K(A;1, A12).

Proposition 2: Under Assumption 3,

i) the linear feedback gain K as in (8) with C' = F' and
Acy = 0,, solves Problem 1,

ii) if Z,(K) C X then the robust asymptotic stability
of the set Z,,(K) is achieved with a region of attraction
Ox(K) = X. Moreover, the quasi-sliding mode band
Sy (0,,) 1s reached in one step.

Proof: 1) Let us prove that the linear feedback gain K
is a solution of Problem 1. Since C = F € (411, A12),



then K is a stabilizing feedback gain for (1). Let L € R™*"
be a stabilizing feedback gain for (1). According to Lemma 1
with C = F,

Hence

max

ma <
X(K) 19lloo = YEF Zoo (L

e X 9l -

This shows that the feedback gain K is a solution of
Problem 1.
ii) Since Z,,(K) C X, we have ¢ < Fa < g,Va €

Z(K). This relation can be rewritten as
g<s<g,Vsc FZ,(K). (13)

Let z € X. From (12) we have st = Fpw. Thus st ¢
FgW. Using (11) with Acy = 0,,, we obtain FZ,(K) =
FpW. Thus we have sT € Z,,(K). From (13), we conclude
that g < s < g. Therefore, g < FzT < g, that is 2T € X.
Hence, X is RPI. From the definition of the MRPI, we have
O (K) = X. Moreover, the set Sy,_(o,,) is reached in one
step. |
We have presented a solution of Problem 1 under the assump-
tion that F' € C(A11, A12) using set-theoretic methods.

We now propose a strategy to compute a feedback gain
K when Assumption 3 does not hold. The fact that F' ¢
KC(A11, A1) prevents us from using the feedback gain K
as in (8) with C = F since, in this case, (9) does not
hold. The approach proposed here, when Assumption 3
does not hold, is to determine an alternative optimization
problem that does not require the computation of the set
Z+(K). The underlying strategy is to obtain the closest
matrix C' € K(A11, A12) to the matrix F.

In the following, we impose K as in (8), with C =
[C gL F B]. Thus the design parameters are Cg1 and Acy.

Remark 4: Note that using C = [Cpr  Fp] and Acy
in (8) does not introduce conservatism with respect to the
choice C' = [C’BT C’B], /104 with arbitrary C’B since
OBT = éBFB_chT, /104 = CBF§1A04FBC~’BT, lead to
the same gain K.

We have
y=Fx=(F—-C)z+Cx
= (FBL —CBL)xBL +Cx (14)

From (14) and (9), the optimization problem (4) becomes

inimi Fg. —C C 15
e 30 (- = oo +Col 09
subject to C = [Cpr  Fp| € K(A11, Ar2)

AC4 € Cm

K =Fz' (—CA+ AcsO).

The objective function can be upper-bounded as follows

max |[(Fpr —Cpgi)zge + Cz||
T€EZ(K)
< Fg. - C
hS xegﬁK)H( B+ )T |lo
+ max |[|Cz| . (16)
T€EZ(K)

The optimization variables Ac4 and C'z. both impact

max Cil I ;
and
F - C .
ma)(( )H( BL BL):I;BL”

According to Proposition 2, for a given matrix C &€
K(A11,A12), (17) is minimized with Ag4 = 0,,. Thus, we
impose Acy = Oy, in the following. Minimizing the upper
bound (16) leads to

o FC

mifimize L [(Fpr — Cpr)rpe]lo

subject to C=[Cps Fp| €K(A1, A1)
K =-F3'CA.

Since the objective function above does not depend on z g,
using (10) with Agy = 0,,, leads to the problem

minimize max Fp. —Cpgi)x
aim zBle@zoAglAmFBwH( pr —Cpr)rpi|
subject to I:CBL FB] € IC(AH, A12)

Aot = Ay — AFg'Cpe.

Since it is not possible to parametrize the set
D AL AioFpW in terms of Cpi, we propose to
approximate the solution by

a) upper-bounding the eigenvalues of A1, thus limiting the
terms in the set ;- AL A12FEWV
b) minimizing ||[Fpr — Cp1| .

relying on the inequality
|(Fpr — Cp1)rpilly < [[Fpr — Cpilly 25 [l o -
Let A €]0, 1, and define M = A\ A¢cy. If M € C,p_pn,
INi(Ac)|< A\, Vi={1,...,n—m}.

Hence, Cz. is chosen as the solution of the following
optimization problem

minimize |Fpr —Cpe|l o (18)
CBL
subject to A1 (Ay — A1aF5'Cpi) € Coom.

The constraint in (18) is characterized with the the Schur-
Cohn criterion (see [14] and [15]), as presented below. The
characteristic polynomial of a matrix M € R(»—m)x(n—m)
is given by

det(qlp—m — M) =
""" +aiq

n—m—1

+ ..t an—m-19 + @n—m,
where a; = (—1)Pm;(M),Vj = {1,....,n —m} and m;(M)

is the sum of the n leading minors of order j of M. These
J



leading minors are polynomial in the elements of Cg.. Let
us define the following matrix

ao ao Ap—m—1
E =
anp—m-1 - - 0G0 ao
Gp—m Up—m ai
ai Ap—m Gp—m

It can be shown that M € C,_,, if and only if X is
positive definite [14], and that X is positive definite if
and only if its n — m principal leading minors are strictly
positive [15]. These principal leading minors are polynomial
in the m;(M),j € {1,...,n —m}, and thus are polynomial
in the coefficients of C'z1. Let py(Cp1) denote the n — m
dimensional vector of those n —m polynomials. The matrix
verifies M € C,,_,, if and only if px(Cpr) > Oy 1.
The optimization problem (18) can then be written as

minimize |Fpr —Cpe|l o (19)
CBL
subject to PA(Cpi) > 01

We denote its solution C%, (M), and define C(A\) =
[Cro(A) Fg|, K(\) the linear feedback (8) with C' =
C(A) and Acy = 0pny Sy_(0,,)(A) the quasi-sliding mode
band, and Z. (K (X)) the mRPI of the closed-loop system.

Proposition 3: Assume that Z.,(K()\)) C X. The robust
asymptotic stability of Z.,(K(\)) is achieved with an non-
empty region of attraction O, (K (\)). Finite determination
of O (K (X)) is guaranteed. The quasi-sliding mode band
Sy (0,,)(A) is reached in one step.

Proof: By construction, the matrix A + BK(\) is
Schur. The proof for the finite determination of Ou. (K (X))
is not reported here, the reader is referred to [10]. By
definition of the MRPI, Z,,(K(\)) C O (K (X)), thus the
region of attraction is non-empty. The one-step reachability
of Sy_(0,,)(A) is deduced from

Vo € X,Cat = FpW € Vao (0).

|
To verify the assumption Z.(K(\)) C X, an approach
based on outer approximations of the set Z.,(K(\)) and
their support functional [16] is to be privileged. Such an

approach avoids the construction of outer approximations of
Zo(K(V)).

V. EXAMPLE

The impact of the design parameter A on
(20 (K (N))]| o, on the mRPI and on the region of
attraction is studied in this section.

Consider the double integrator in regular form

L =B ]+ [erw

Quasi-sliding mode band Sy mRPI Z(K(\))

5
80
-5
-5 0 5 -5 0 5
T T
Region of attraction O (K (X))

5

g0

-5

5 0 5
X1
Fig. 1. The set of state constraints X'1 (grey), the quasi-sliding mode

bands (top left), the mRPI (top right) and the region of attraction (bottom)
for A = 0.2 (red) A = 0.4 (orange), and A = 0.6 (yellow).

hence A1; = A15 = 1, with
W={weR-1<w<1}.

We consider two different state constraints sets as defined
in (2),

Xl={z|-g<Fla<g},X2={z| —g < F2z <7},
F1=[26 1],F2=[-01 1],5=g=3.

Recall that the proposed method aims at computing the linear
feedback gain K that minimizes
17(Zo0 (K)o =

00 max

[1Fz]
TEZo (K)

for a given matrix F'. The matrices F'1 and F'2 are chosen
to violate Assumption 3 (F' &€ K(A11, A12)).

The optimization problem (19) is solved for different
values of A and successively for the state constraints sets X' 1
and X'2. We present the mRPI, the quasi-sliding mode band
and the region of attraction, when it exists, in Figure 1 and
Figure 2 for F'1 and F'2 respectively. These figures indicate
that the objective function of the original problem (4),
|20 (K (N))]| ., decreases with A, while the region of
attraction is enlarged as A increases.

To guarantee robust asymptotic stability of the mRPT it
is mandatory to have Z.(K(\)) C X. Hence, A has to be
chosen such that [|h(Z.(K()N))|l, < min(g,g). Figure 3
shows the relation between A and ||h(Zoc (K (X))||,,, while
the red line corresponds to |h(Z (K (N))|,, = min(g, g).

These results might indicate that the minimization of
(200 (K (N)))|l, is obtained by picking A as small as
possible. However, this choice can have a negative impact
on the size of the region of attraction.

Another indicator of interest for further research on control
input constraints handling is

[(Zoe (K)o =

max | Kzl
TE€EZoo (K (X))



Quasi-sliding mode band Sy,

mRPI Z,.(K(\))

5
80
-5
-10 0 10
1
Region of attraction O (K (X))
5
g0
-5
-10 0 10
X1
Fig. 2. The set of state constraints X2 (grey), the quasi-sliding mode

bands (top left), the mRPI (top right) and the region of attraction (bottom)
for A = 0.2 (red) A = 0.4 (orange), and A = 0.6 (yellow).

8 4

e 235 /

< < 3

g g
w4 N,
~= = =
2 2
0 05 1 0 05 1
A A

Fig. 3.

Relation between ||h(Zo0(K (N)))]lo, and A for X1 (left) and
X2 (right). The red-line corresponds to h(Zs (K (M) =g=9=3.

the maximal control input in the set Z.,(K(\)). Figure 4
illustrates the relation between the maximal control input
value in the mRPI set and A for both state constraints sets As.
It was expected to observe a decrease of ||u(Z. (K (N)))]] o,
with the decrease of A, but the example shows that such
a property can not be generically obtained and should be
further investigated.

VI. CONCLUSION

This paper proposed the design of a state feedback gain
for a class of constrained linear systems subject to bounded
matched additive disturbance, based on set-theoretic and
DSMC frameworks. The proposed strategy was known to

40 3
5 30 5 25
P < 2
o o
= 10 = 1.5

0 1

0 0.5 1 0 0.5 1
A A

Fig. 4. Relation between [|[u(Zc0 (K (N)))|| and A for X1 (left) and X2
(right).

mitigate the impact of the disturbance on the violation of the
state constraints. A measure of the impact on the state con-
straints is proposed and an exact solution is presented where
the state constraints matrix belongs in the stabilizing set of
a particular pair of matrices in the system characterization.
In the general case an alternative optimization-based method
is proposed based on Schur matrices characterization. The
impact of the scalar design parameter on the minimal and
maximal robustly positively invariant sets and on the max-
imal control input is illustrated. The obtained invariant sets
will be used as part of a more complex control strategy,
for instance as terminal sets in robust MPC with the goal
to extend the region of attraction. Further research includes
taking into accounts input constraints.
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