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Invariant Sets for Discrete-Time Constrained Linear Systems Using

Sliding Mode Approach

N. Michel1,2, S. Olaru2, G. Valmorbida2, S. Bertrand1, D. Dumur2

Abstract— Invariant set theory has been recognized as an
important tool for control design of constrained systems subject
to disturbances. Indeed, invariant sets as the minimal robustly
positively invariant set help verify whether constraints are
satisfied in closed-loop. This paper studies a class of discrete-
time linear systems under additive disturbances. We propose a
method to compute the state feedback gain that minimizes the
impact of disturbances, related to the mRPI, on the constrained
closed-loop dynamics. The method relies on the solution of
an optimization problem that is formulated using set-theoretic
methods and sliding mode control.

I. INTRODUCTION

The design of control laws for input and state constrained

systems must take into account disturbances and evaluate

their impact in closed-loop. A systematic way to assess the

influence of disturbance is to compute invariant sets based

on a description of the set of disturbance. The invariant set

may then be a certificate for robust constraints satisfaction

and recursive feasibility [1], and it has been studied in the

context of model predictive control [2], robust time-optimal

control [3] or design of reference governors [4]. Another

important set for constrained systems is the controllable

region, which has been studied with different methods [2],

[5], [6].

Constrained control in the presence of disturbance faces

two main challenges: the characterization of the controllable

region and the impact of the disturbance on the convergence

towards a nominal equilibrium. These challenges have been

addressed in several control design frameworks according

to the tools and modelling assumptions: set theoretic meth-

ods [5], interval based approaches [6], or Robust Model

Predictive Control [2].

The so called minimal Robustly Positively Invariant set

(mRPI) is the smallest invariant set for a given set of distur-

bance and a given feedback control law. It is of particular

interest as it corresponds to the limit set of trajectories for

any sequence of disturbances. From a constrained controlla-

bility point of view, the largest invariant set respecting the

constraints, denoted Maximal Robustly Positively Invariant

set (MRPI), is also an important notion for any design

methodology.

Sliding Mode Control (SMC) has been recognized as one

of the effective control strategies for systems with distur-
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bances [7]. The realization of SMC control for continuous-

time systems is performed in two steps. The first step is the

design of a sliding surface on which the system exhibits the

desired dynamics. The second step is the design of a control

law which steers and keeps the system on the sliding surface.

For Discrete-time SMC (DSMC), the first step is the same.

However, the reaching law is designed to steer and keep the

system in a neighborhood of the sliding surface, which we

call the quasi-sliding mode band [7]–[9].

This paper presents a method for the synthesis of invariant

sets tailored to the constraints of discrete-time linear systems

subject to bounded additive disturbance. We use sliding

mode to mitigate the impact of the disturbance on the

violation of state constraints. The approach proposed here

consists in designing a DSMC controller with a Linear

Reaching Law that leads to an mRPI as tight as possible

in the direction of the constraints. The paper is organized

as follows. Section II presents preliminaries and problem

formulation. Section III introduces the DSMC framework.

Section IV proposes solutions to the problem. Section V

gives illustrative examples of the results. Finally, Section VI

draws conclusion and discusses perspectives.

Notation: Given two sets X ⊆ R
n and Y ⊆ R

n, the

Minkowski sum and Pontryagin difference are defined as

X ⊕ Y = {z ∈ R
n | z = x+ y, x ∈ X , y ∈ Y} ,

X ⊖ Y = {x ∈ R
n | {x} ⊕ Y ⊆ X} .

The ith power of a matrix A is denoted Ai, and the ith

row of A is denoted Ai. In denotes the identity matrix of

dimension n. 0m,n denotes the matrix of zeros of dimension

m,n, or 0m if m = n. For a matrix A ∈ R
m,n and a set

X ⊆ R
n, define the set AX = {y ∈ R

m | y = Ax, x ∈ X}.

For two real vectors x and y, x ≤ y (x < y) denote the

elementwise (strict) inequalities between their components.

Define the set R
∗
+ = {x ∈ R|x > 0}. The eigenvalues

of matrix A are denoted λi(A), i = {1, ..., n}. The set

of Schur matrices of dimension n is defined as Cn =
{A ∈ R

n×n | |λi(A)| < 1, i = {1, ..., n}}. Define the set of

invertible matrices Gn = {A ∈ R
n×n | det(A) 6= 0}. For a

vector h ∈ R
n, define ‖h‖

∞
= {max|hi|, i = {1, ..., n}}.

For a matrix A ∈ R
n×n, define ‖A‖

∞
=

{

max
(
∑n

j=1 |Ai,j |
)

, i = {1, ..., n} , j = {1, ..., n}
}

.



II. PROBLEM STATEMENT

A. System description

Consider the class of linear discrete-time systems

x+ = Ax+B(u+ w), (1)

A =

[
A11 A12

A21 A22

]

, B =

[
0n−m,m

Im

]

,

with A11 ∈ R
(n−m)×(n−m), A12 ∈ R

(n−m)×m, A21 ∈
R

m×(n−m), A22 ∈ R
m×m, x ∈ X ⊆ R

n, u ∈ R
m, and

w ∈ W ⊆ R
m, where x is the system state, u is the control

input, and w is the exogenous disturbance. Note that any

system x+ = Āx+ B̄(u+w) with a full rank matrix B̄ can

be written as (1). The set of state constraints is defined as

X =
{
x ∈ R

n| − g ≤ Fx ≤ g
}
, (2)

where g ∈ R
∗m
+ , g ∈ R

∗m
+ , and F ∈ R

m×n can be partitioned

as follows

F =
[
FB⊥ FB

]
,

with FB⊥ ∈ R
m×(n−m), and FB ∈ R

m×m. The disturbance

set W is assumed to be polytopic, bounded and to contain

the origin in its interior.

Let us introduce a standard definition that will be used to

establish criteria for the feedback design.

Definition 1 (Robustly Positively Invariant Set): A set

Z ⊆ R
n is said Robustly Positively Invariant (RPI)

for the system (1) with the control law u = Kx if

(A+BK)Z ⊕BW ⊆ Z , i.e.

∀x ∈ Z, ∀w ∈ W, (A+BK)x+Bw ∈ Z.

Definition 2 (minimal Robustly Positively Invariant set):

The minimal Robustly Positively Invariant (mRPI) set for

the system (1) with the control law u = Kx is defined

as the RPI set contained in any closed RPI set [10]. If

A + BK ∈ Cn, the mRPI exists, is compact, contains the

origin, and is given by the following infinite Minkowski

sum

Z∞(K) =

∞⊕

i=0

(A+BK)iBW. (3)

Remark 1: The polytopic assumption on W does not

imply Z∞(K) to be polytopic. For computational purposes,

polytopic RPI outer approximations are sought [11].

Definition 3 (Maximal Robustly Positively Invariant set):

The set O∞(K) is the maximal RPI (MRPI) for the

system (1) with the control law u = Kx if it is RPI and if

it contains every RPI set under the state constraints (2).

The algorithm proposed in [10] to compute the Maximal

Output Admissible Set can be adapted to compute the MRPI

O0(K) = X ,

Oi+1(K) = {x ∈ X | (A+BK)x ∈ Oi(K)⊖BW} ,

The algorithm stops if and only if O∞(K) is finitely deter-

mined. This set defines the region of attraction of the linear

feedback gain K under the constraints (2).

B. Problem statement

The objective of this paper is to propose a methodology

to synthesis invariants sets for system (1) that are minimal in

the direction of the state constraints (2), that is to compute

the linear feedback gain K that minimizes the projection of

the mRPI (3) on the constraints X . Let us introduce

h(Z∞(K)) =
[
h1(Z∞(K)) ... hm(Z∞(K))

]⊤
,

where

hi(Z∞(K)) = max
x∈Z∞(K)

|Fix|.

We note that

‖h(Z∞(K))‖
∞

= max
x∈Z∞(K)

‖Fx‖
∞

= max
y∈FZ∞(K)

‖y‖
∞

.

With the above definitions we can formulate the problem

Problem 1: Given the system (1) and the sets W and

X , find a stabilizing feedback gain K that minimizes

‖h(Z∞(K))‖
∞

.

The corresponding optimization problem is the following

minimize
K∈Rm×n

max
y∈FZ∞(K)

‖y‖
∞

(4)

subject to A+BK ∈ Cn.

This optimization problem cannot be solved analytically

without an explicit characterization of the set Z∞(K) for

all stabilizing feedback gains K.

In this paper we solve Problem 1 using discrete-time

sliding mode control. The framework, as presented in [8],

is briefly recalled in the next section. We use set-theoretic

methods to show that SMC can be designed to obtain mRPI

sets accounting for the constraints X .

The results presented in this paper are obtained under the

following assumptions.

Assumption 1: The pair (A,B) is controllable.

Under this assumption, the pair (A11,−A12) is control-

lable [12].

Assumption 2: Rank(FB) = m.

III. DISCRETE SLIDING MODE CONTROL

To introduce the sliding mode strategy we propose, con-

sider the partition of the state as follows

x =

[
xB⊥

xB

]

,

with xB⊥ ∈ R
n−m, xB ∈ R

m. As a first step of the

control design procedure, let us consider a matrix C =
[
CB⊥ CB

]
, with CB⊥ ∈ R

m×(n−m), and CB ∈ Gm. This

matrix defines the sliding variable s = Cx ∈ R
m and the

sliding surface S = {x ∈ R
n | Cx = 0}.

The following change of coordinates

ξ = Qx =

[
xB⊥

s

]

, Q =

[
In−m 0n−m,m

CB⊥ CB

]

(5)

gives an equivalent representation of system (1)

ξ+ =

[[
AC1 A12

]

CAQ−1

]

ξ +

[
0n−m,m

CB

]

(u+ w), (6)



where AC1 = A11 −A12C
−1
B CB⊥ . A Linear Reaching Law

exploits this structure using the invertibility of CB . With

u = −C−1
B

(
CAQ−1 +

[
0m,n−m AC4

])
ξ,

in (6), we obtain

ξ+ =

[
AC1 A12

0m,n−m AC4

]

︸ ︷︷ ︸

AC

ξ +

[
0n−m,m

CB

]

w. (7)

Matrix AC4 ∈ R
m×m is a parameter to be designed. In

the original coordinates the control law is given by u =
C−1

B (−CA+AC4C)x, therefore defining the linear feedback

gain

K = C−1
B (−CA+AC4C). (8)

The matrix A+BK is Schur provided

AC1 ∈ Cn−m, AC4 ∈ Cm, (9)

hold. The definition below relates to the matrices C such

that AC1 ∈ Cn−m.

Definition 4: For any pair of matrices A11 ∈
R

(n−m)×(n−m), A12 ∈ R
(n−m)×m, the set

K(A11, A12) = {C ∈ R
m×n | C =

[
CB⊥ CB

]
,

CB ∈ Gm, A11 −A12C
−1
B CB⊥ ∈ Cn−m}

is called stabilizing set for the pair (A11, A12).
Remark 2: The change of coordinates (5) and the associ-

ated gain (8), leading to AC4 = 0m, were discussed in [8]

and [13]. In these papers the goal was to define stability

conditions with regard to the design of the sliding surface

and to reject a constant disturbance. This paper instead uses

SMC to mitigate the impact the disturbance on the violation

of the state constraints.

The mRPI associated to the feedback gain (8) is given by

Z∞(K) = Q−1

(
∞⊕

i=0

Ai
C

[
0m,n−m

CB

]

W

)

= Q−1

(
∞⊕

i=0

[∑j=i−1
j=0 A

j
C1A12A

i−j−1
C4

Ai
C4

]

CBW

)

.

(10)

Since CQ−1 =
[
0m,n−m Im

]
, we have

CZ∞(K) =

∞⊕

i=0

Ai
C4CBW. (11)

Remark 3: Note that CZ∞(K) depends on the design

parameter AC4.

The closed-loop dynamics of the sliding variable s verifies

s+ = AC4s+ CBw,w ∈ W. (12)

Let V∞(AC4) ⊆ R
m be the mRPI set for closed-loop

system (12), i.e.

V∞(AC4) =

∞⊕

i=0

Ai
C4CBW = CZ∞(K),

and define the quasi-sliding mode band as the V∞-vicinity

of the sliding surface,

SV∞(AC4) = {x ∈ R
n | s = Cx ∈ V∞(AC4)} .

Proposition 1: The set SV∞(AC4) is RPI for the system

(1) with the linear feedback gain (8).

Proof: For any x ∈ SV∞(AC4), the sliding variable

verifies

s = Cx ∈ V∞(AC4).

Given that V∞(AC4) is RPI for system (12), we have

∀w ∈ W, s+ = Cx+ = AC4s+ CBw ∈ V∞(AC4).

Hence, ∀w ∈ W, x+ ∈ SV∞(AC4).

The results presented above are used in the next section to

tackle Problem 1 based on set-theoretic notions and taking

into account the structural constraints (9).

IV. MAIN RESULTS

Let us introduce the following Lemma

Lemma 1: Consider system (1) and the feedback gain

K ∈ R
m×n as in (8) with C ∈ K(A11, A12) and AC4 = 0m.

For any feedback gain L ∈ R
m×n such that A+ BL ∈ Cn,

the set inclusion

CZ∞(K) ⊆ CZ∞(L)

holds.

Proof: Take (11) with AC4 = 0m to obtain

CZ∞(K) =

∞⊕

i=0

Ai
C4CBW = CBW = CBW.

We also have, from (3),

CZ∞(L) =

∞⊕

i=0

C(A+BL)iBW

= CBW ⊕

(
∞⊕

i=1

C(A+BL)iBW

)

= CZ∞(K)⊕

(
∞⊕

i=1

C(A+BL)iBW

)

.

Since 0 ∈ W , ∀i ∈ {1, 2, ...} , 0 ∈ C(A+BL)iBW . Hence,

CZ∞(K) = CZ∞(K)⊕ {0} ⊆ CZ∞(L).

From this result it is possible to solve Problem 1 under the

following assumption on matrix F .

Assumption 3: The matrix F satisfies F ∈ K(A11, A12).
Proposition 2: Under Assumption 3,

i) the linear feedback gain K as in (8) with C = F and

AC4 = 0m solves Problem 1,

ii) if Z∞(K) ⊆ X then the robust asymptotic stability

of the set Z∞(K) is achieved with a region of attraction

O∞(K) = X . Moreover, the quasi-sliding mode band

SV∞(0m) is reached in one step.

Proof: i) Let us prove that the linear feedback gain K

is a solution of Problem 1. Since C = F ∈ K(A11, A12),



then K is a stabilizing feedback gain for (1). Let L ∈ R
m×n

be a stabilizing feedback gain for (1). According to Lemma 1

with C = F ,

FZ∞(K) = CZ∞(K) ⊆ CZ∞(L) = FZ∞(L).

Hence

max
y∈FZ∞(K)

‖y‖
∞

≤ max
y∈FZ∞(L)

‖y‖
∞

.

This shows that the feedback gain K is a solution of

Problem 1.

ii) Since Z∞(K) ⊆ X , we have g ≤ Fx ≤ g, ∀x ∈
Z∞(K). This relation can be rewritten as

g ≤ s ≤ g, ∀s ∈ FZ∞(K). (13)

Let x ∈ X . From (12) we have s+ = FBw. Thus s+ ∈
FBW . Using (11) with AC4 = 0m, we obtain FZ∞(K) =
FBW . Thus we have s+ ∈ Z∞(K). From (13), we conclude

that g ≤ s+ ≤ g. Therefore, g ≤ Fx+ ≤ g, that is x+ ∈ X .

Hence, X is RPI. From the definition of the MRPI, we have

O∞(K) = X . Moreover, the set SV∞(0m) is reached in one

step.

We have presented a solution of Problem 1 under the assump-

tion that F ∈ K(A11, A12) using set-theoretic methods.

We now propose a strategy to compute a feedback gain

K when Assumption 3 does not hold. The fact that F 6∈
K(A11, A12) prevents us from using the feedback gain K

as in (8) with C = F since, in this case, (9) does not

hold. The approach proposed here, when Assumption 3

does not hold, is to determine an alternative optimization

problem that does not require the computation of the set

Z∞(K). The underlying strategy is to obtain the closest

matrix C ∈ K(A11, A12) to the matrix F .

In the following, we impose K as in (8), with C =
[
CB⊥ FB

]
. Thus the design parameters are CB⊥ and AC4.

Remark 4: Note that using C =
[
CB⊥ FB

]
and AC4

in (8) does not introduce conservatism with respect to the

choice C̃ =
[

C̃B⊤ C̃B

]
, ÃC4 with arbitrary C̃B since

C̃B⊤ = C̃BF
−1
B CB⊤ , ÃC4 = C̃BF

−1
B AC4FBC̃B⊤ , lead to

the same gain K.

We have

y = Fx = (F − C)x+ Cx

= (FB⊥ − CB⊥)xB⊥ + Cx (14)

From (14) and (9), the optimization problem (4) becomes

minimize
C

B⊥ ,AC4

max
x∈Z∞(K)

‖(FB⊥ − CB⊥)xB⊥ + Cx‖
∞

(15)

subject to C =
[
CB⊥ FB

]
∈ K(A11, A12)

AC4 ∈ Cm

K = F−1
B (−CA+AC4C).

The objective function can be upper-bounded as follows

max
x∈Z∞(K)

‖(FB⊥ − CB⊥)xB⊥ + Cx‖
∞

≤ max
x∈Z∞(K)

‖(FB⊥ − CB⊥)xB⊥‖
∞

+ max
x∈Z∞(K)

‖Cx‖
∞

. (16)

The optimization variables AC4 and CB⊥ both impact

max
x∈Z∞(K)

‖Cx‖
∞

(17)

and

max
x∈Z∞(K)

‖(FB⊥ − CB⊥)xB⊥‖
∞

.

According to Proposition 2, for a given matrix C ∈
K(A11, A12), (17) is minimized with AC4 = 0m. Thus, we

impose AC4 = 0m in the following. Minimizing the upper

bound (16) leads to

minimize
C

B⊥

max
x∈Z∞(K)

‖(FB⊥ − CB⊥)xB⊥‖
∞

subject to C =
[
CB⊥ FB

]
∈ K(A11, A12)

K = −F−1
B CA.

Since the objective function above does not depend on xB ,

using (10) with AC4 = 0m leads to the problem

minimize
C

B⊥

max
x
B⊥∈

⊕
∞

i=0
Ai

C1
A12FBW

‖(FB⊥ − CB⊥)xB⊥‖
∞

subject to
[
CB⊥ FB

]
∈ K(A11, A12)

AC1 = A11 −A12F
−1
B CB⊥ .

Since it is not possible to parametrize the set
⊕∞

i=0 A
i
C1A12FBW in terms of CB⊥ , we propose to

approximate the solution by

a) upper-bounding the eigenvalues of AC1, thus limiting the

terms in the set
⊕∞

i=0 A
i
C1A12FBW ,

b) minimizing ‖FB⊥ − CB⊥‖
∞

,

relying on the inequality

‖(FB⊥ − CB⊥)xB⊥‖
∞

≤ ‖FB⊥ − CB⊥‖
∞

‖xB⊥‖
∞

.

Let λ ∈]0, 1[, and define M = λ−1AC1. If M ∈ Cn−m,

|λi(AC1)|< λ, ∀i = {1, ..., n−m} .

Hence, CB⊥ is chosen as the solution of the following

optimization problem

minimize
C

B⊥

‖FB⊥ − CB⊥‖
∞

(18)

subject to λ−1(A11 −A12F
−1
B CB⊥) ∈ Cn−m.

The constraint in (18) is characterized with the the Schur-

Cohn criterion (see [14] and [15]), as presented below. The

characteristic polynomial of a matrix M ∈ R
(n−m)×(n−m)

is given by

det(qIn−m −M) =

qn−m + a1q
n−m−1 + ...+ an−m−1q + an−m,

where aj = (−1)jmj(M), ∀j = {1, ..., n−m} and mj(M)

is the sum of the

(
n

j

)

leading minors of order j of M . These



leading minors are polynomial in the elements of CB⊥ . Let

us define the following matrix

Σ =







a0
. .

. .

an−m−1 . . a0













a0 . . an−m−1

. .

. .

a0







−







an−m

. .

. .

a1 . . an−m













an−m . . a1
. .

. .

an−m






.

It can be shown that M ∈ Cn−m if and only if Σ is

positive definite [14], and that Σ is positive definite if

and only if its n − m principal leading minors are strictly

positive [15]. These principal leading minors are polynomial

in the mj(M), j ∈ {1, ..., n−m}, and thus are polynomial

in the coefficients of CB⊥ . Let pλ(CB⊥) denote the n−m

dimensional vector of those n−m polynomials. The matrix

verifies M ∈ Cn−m if and only if pλ(CB⊥) > 0m,1.

The optimization problem (18) can then be written as

minimize
C

B⊥

‖FB⊥ − CB⊥‖
∞

(19)

subject to pλ(CB⊥) > 0m,1.

We denote its solution C∗

B⊥(λ), and define C(λ) =
[
C∗

B⊥(λ) FB

]
, K(λ) the linear feedback (8) with C =

C(λ) and AC4 = 0m, SV∞(0m)(λ) the quasi-sliding mode

band, and Z∞(K(λ)) the mRPI of the closed-loop system.

Proposition 3: Assume that Z∞(K(λ)) ⊆ X . The robust

asymptotic stability of Z∞(K(λ)) is achieved with an non-

empty region of attraction O∞(K(λ)). Finite determination

of O∞(K(λ)) is guaranteed. The quasi-sliding mode band

SV∞(0m)(λ) is reached in one step.

Proof: By construction, the matrix A + BK(λ) is

Schur. The proof for the finite determination of O∞(K(λ))
is not reported here, the reader is referred to [10]. By

definition of the MRPI, Z∞(K(λ)) ⊆ O∞(K(λ)), thus the

region of attraction is non-empty. The one-step reachability

of SV∞(0m)(λ) is deduced from

∀x ∈ X , Cx+ = FBW ∈ V∞(0m).

To verify the assumption Z∞(K(λ)) ⊆ X , an approach

based on outer approximations of the set Z∞(K(λ)) and

their support functional [16] is to be privileged. Such an

approach avoids the construction of outer approximations of

Z∞(K(λ)).

V. EXAMPLE

The impact of the design parameter λ on

‖h(Z∞(K(λ))‖
∞

, on the mRPI and on the region of

attraction is studied in this section.

Consider the double integrator in regular form

[
x1

x2

]+

=

[
1 1
0 1

] [
x1

x2

]

+

[
0
1

]

(u+ w),

Fig. 1. The set of state constraints X1 (grey), the quasi-sliding mode
bands (top left), the mRPI (top right) and the region of attraction (bottom)
for λ = 0.2 (red) λ = 0.4 (orange), and λ = 0.6 (yellow).

hence A11 = A12 = 1, with

W = {w ∈ R| − 1 ≤ w ≤ 1} .

We consider two different state constraints sets as defined

in (2),

X1 =
{
x| − g ≤ F1x ≤ g

}
,X2 =

{
x| − g ≤ F2x ≤ g

}
,

F1 =
[
2.6 1

]
, F2 =

[
−0.1 1

]
, g = g = 3.

Recall that the proposed method aims at computing the linear

feedback gain K that minimizes

‖h(Z∞(K))‖
∞

= max
x∈Z∞(K)

‖Fx‖
∞

for a given matrix F . The matrices F1 and F2 are chosen

to violate Assumption 3 (F 6∈ K(A11, A12)).
The optimization problem (19) is solved for different

values of λ and successively for the state constraints sets X1
and X2. We present the mRPI, the quasi-sliding mode band

and the region of attraction, when it exists, in Figure 1 and

Figure 2 for F1 and F2 respectively. These figures indicate

that the objective function of the original problem (4),

‖h(Z∞(K(λ))‖
∞

, decreases with λ, while the region of

attraction is enlarged as λ increases.

To guarantee robust asymptotic stability of the mRPI it

is mandatory to have Z∞(K(λ)) ⊆ X . Hence, λ has to be

chosen such that ‖h(Z∞(K(λ))‖
∞

≤ min(g, g). Figure 3

shows the relation between λ and ‖h(Z∞(K(λ))‖
∞

, while

the red line corresponds to ‖h(Z∞(K(λ))‖
∞

= min(g, g).
These results might indicate that the minimization of

‖h(Z∞(K(λ)))‖
∞

is obtained by picking λ as small as

possible. However, this choice can have a negative impact

on the size of the region of attraction.

Another indicator of interest for further research on control

input constraints handling is

‖u(Z∞(K(λ)))‖
∞

= max
x∈Z∞(K(λ))

‖Kx‖
∞

,



Fig. 2. The set of state constraints X2 (grey), the quasi-sliding mode
bands (top left), the mRPI (top right) and the region of attraction (bottom)
for λ = 0.2 (red) λ = 0.4 (orange), and λ = 0.6 (yellow).
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Fig. 3. Relation between ‖h(Z∞(K(λ)))‖
∞

and λ for X1 (left) and
X2 (right). The red-line corresponds to h(Z∞(K(λ))) = g = g = 3.

the maximal control input in the set Z∞(K(λ)). Figure 4

illustrates the relation between the maximal control input

value in the mRPI set and λ for both state constraints sets X i.

It was expected to observe a decrease of ‖u(Z∞(K(λ)))‖
∞

with the decrease of λ, but the example shows that such

a property can not be generically obtained and should be

further investigated.

VI. CONCLUSION

This paper proposed the design of a state feedback gain

for a class of constrained linear systems subject to bounded

matched additive disturbance, based on set-theoretic and

DSMC frameworks. The proposed strategy was known to
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Fig. 4. Relation between ‖u(Z∞(K(λ)))‖ and λ for X1 (left) and X2
(right).

mitigate the impact of the disturbance on the violation of the

state constraints. A measure of the impact on the state con-

straints is proposed and an exact solution is presented where

the state constraints matrix belongs in the stabilizing set of

a particular pair of matrices in the system characterization.

In the general case an alternative optimization-based method

is proposed based on Schur matrices characterization. The

impact of the scalar design parameter on the minimal and

maximal robustly positively invariant sets and on the max-

imal control input is illustrated. The obtained invariant sets

will be used as part of a more complex control strategy,

for instance as terminal sets in robust MPC with the goal

to extend the region of attraction. Further research includes

taking into accounts input constraints.
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