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Abstract Perceptual decision-making is the subject of many experimental and theoretical studies. Most
modeling analyses are based on statistical processes of accumulation of evidence. In contrast, very few works
confront attractor network models’ predictions with empirical data from continuous sequences of trials. Re-
cently however, numerical simulations of a biophysical competitive attractor network model have shown that
such network can describe sequences of decision trials and reproduce repetition biases observed in perceptual
decision experiments. Here we get more insights into such effects by considering an extension of the reduced
attractor network model of Wong and Wang (2006), taking into account an inhibitory current delivered to the
network once a decision has been made. We make explicit the conditions on this inhibitory input for which the
network can perform a succession of trials, without being either trapped in the first reached attractor, or losing
all memory of the past dynamics. We study in details how, during a sequence of decision trials, reaction times
and performance depend on the nonlinear dynamics of the network, and we confront the model behavior with
empirical findings on sequential effects. Here we show that, quite remarkably, the network exhibits, qualita-
tively and with the correct orders of magnitude, post-error slowing and post-error improvement in accuracy, two
subtle effects reported in behavioral experiments in the absence of any feedback about the correctness of the
decision. Our work thus provides evidence that such effects result from intrinsic properties of the nonlinear
neural dynamics.

Significance statement
Much experimental and theoretical work is being devoted to the understanding of the neural correlates of per-
ceptual decision making. In a typical behavioral experiment, animals or humans perform a continuous series of
binary discrimination tasks. To model such experiments, we consider a biophysical decision-making attractor
neural network, taking into account an inhibitory current delivered to the network once a decision is made. Here
we provide evidence that the same intrinsic properties of the nonlinear network dynamics underpins various
sequential effects reported in experiments. Quite remarkably, in the absence of feedback on the correctness of
the decisions, the network exhibits post-error slowing (longer reaction times after error trials) and post-error
improvement in accuracy (smaller error rates after error trials).

Introduction
Typical experiments on perceptual decision-making consist of series of successive trials separated by a short
time interval, in which performance in identification and reaction times are measured. The most studied pro-
tocol is the one of Two-Alternative Forced-Choice (TAFC) Task – see e.g. Ratcliff (1978); Laming (1979b);
Vickers (1979); Townsend and Ashby (1983); Busemayer and Townsend (1993); Shadlen and Newsome (1996);
Usher and McClelland (2001); Ratcliff (2004). Several studies have demonstrated strong serial dependence
in perceptual decisions between temporally close stimuli (Fecteau and Munoz, 2003; Jentzsch and Dudschig,
2009; Danielmeier and Ullsperger, 2011). Such effects have been studied in the framework of statistical models
of accumulation of evidence (Dutilh et al., 2011), the most common theoretical approach to perceptual decision-
making, see e.g. Ratcliff (1978); Ashby (1983); Shadlen et al. (2006); Ratcliff and McKoon (2008); Bogacz et
al. (2006), or with a more complex attractor network with additional memory units specifically implementing a
biasing mechanism (Gao et al., 2009).



Wang (2002) proposed an alternative approach to the modeling of perceptual decision making based on a
biophysical cortical network model of leaky integrate-and-fire neurons. The model is shown to account for
random dot experiments results of Shadlen and Newsome (2001); Roitman and Shadlen (2002). This decision-
making attractor network has been first studied in the context of a task requiring to keep in memory the last
decision. This working memory effect is precisely achieved by having the network activity trapped into an
attractor state. However, in the context of consecutive trials, the neural activities have to be reset in a low activity
state before the onset of the next stimulus. Bonaiuto et al. (2016) have considered a parameter range of weaker
excitation where the working memory phase cannot be maintained. The main result is that the performance
of the network is biased towards the previous decision, an effect which decreases with the inter-trial time.
Due to the slow relaxation dynamics in the model, the authors only study inter-trial times longer than 1.5 s.
However, sequential effects have been reported for shorter inter-trial times, such as 500 ms in Laming (1979b);
Danielmeier and Ullsperger (2011). Instead of decreasing the recurrent excitation, an alternative is to introduce
an additional inhibitory input following a decision (Lo and Wang, 2006; Engel et al., 2015; Bliss and D’Esposito,
2017). Lo and Wang (2006) have proposed such a mechanism to account for the control of the decision threshold.

The purpose of the present paper is to revisit this issue of dealing with sequences of successive trials within
the framework of attractor networks with a focus on inter-trial times as short as 500 ms. We do so by taking
advantage of the reduced model of Wong and Wang (2006) which is amenable to mathematical analysis. This
model consists of a network of two units, representing the pool activities of two populations of cells, each
one being specific to one of the two stimulus categories. Wong and Wang (2006) derive the equations of the
reduced model and choose the parameters values in order to preserve as much as possible the dynamical and
behavioral properties of the original model. In line with Lo and Wang (2006), we take into account an inhibitory
current originating from the basal ganglia, occurring once a decision has been made. We explore how the
network nonlinear dynamics leads to serial dependence effects in TAFC tasks, and compare with empirical
findings such as sequential bias in decisions (Cho et al., 2002) or post-error adjustments (Danielmeier et al.,
2011; Danielmeier and Ullsperger, 2011). Our main finding is that the model reproduces two main post-error
adjustments observed in the absence of feedback on the correctness of the decision: post-error slowing (PES)
and post-error improvement in accuracy (PIA), with PES consisting of longer reaction times, and PIA of smaller
error rates, for trials following a trial with incorrect decision. We thus provide evidence that such effects result
from nonlinearities in the neural dynamics.

Materials and Methods
We are interested in modeling experiments where a subject has to decide whether a stimulus belongs to one
or the other of two categories, hereafter denoted L and R. A particular example is the one of random dot
experiments (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002), where a monkey performs a motion
discrimination task in which it has to decide whether a motion direction, embedded into a random dot motion,
is towards left (L) or right (R). The general case is the one of categorical perception experiments, in which one
can control the degree of ambiguity of the stimuli – e.g. psycholinguistics experiments with stimuli interpolating
between two phonemes (Liberman et al., 1957), visual categorization experiments with continuous morphs from
cats to dogs (Freedman et al., 2003), etc. We focus on Two Alternative Forced-Choice (TAFC) protocols in
which no feedback is given on the correctness of the decisions.

We consider a decision-making recurrent network of spiking neurons governed by local excitation and feed-
back inhibition, as introduced and studied in Compte et al. (2000) and Wang (2002). Since mathematical analy-
sis is harder to be performed for such complex networks, without a high level of abstraction (Miller and Katz,
2013), one must rely on simulations which, themselves, can be computationally heavy. For our analysis, we
make use of the reduced firing-rate model of Wong and Wang (2006) obtained by a systematic reduction of the
detailed biophysical attractor network model. The reduction aimed at faithfully reproducing not only the behav-
ioral behavior of the full model, but also neural firing rate dynamics and the output synaptic gating variables.
This is done within a mean-field approach, with calibrated simplified F-I curves for the neural units, and in the
limit of slow NMDA gating variables motivated by neurophysiological data. The full details can be found in
Wong and Wang (2006) (main text and Supplementary Information).

Since this model has been built to reproduce as faithfully as possible the neural activity of the full spiking
neural network, it can be used as a proxy for simulating the full spiking network (Engel and Wang, 2011;
Deco et al., 2013; Engel et al., 2015). Here, we mainly make use of this model to gain better insights into the
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understanding of the model behavior. In particular, one can conveniently represent the network dynamics in a
2-d phase plane and rigorously analyze the network dynamics (Wong and Wang, 2006).

A reduced recurrent network model for decision-making.
We first present the architecture without the corollary discharge (Wong and Wang (2006), Fig. 1 panel A), which
consists of two competing units, each one representing an excitatory neuronal pool, selective to one of the two
categories, L or R. The two units inhibit one another, while they are subject to self-excitation. The dynamics is
described by a set of coupled equations for the synaptic activities SL and SR of the two units L and R:

i ∈ {L,R}, dSi
dt = −Si

τS
+ (1− Si) γf (Ii,tot) (1)

The synaptic drive Si for pool i ∈ {L,R} corresponds to the fraction of activated NMDA conductance, and Ii,tot
is the total synaptic input current to unit i. The function f is the effective single-cell input-output relation (Abbott
and Chance, 2005), giving the firing rate as a function of the input current:

f (Ii,tot) = aIi,tot − b
1− exp [−d (aIi,tot − b)]

(2)

where a, b, d are parameters whose values are obtained through numerical fit.
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Figure 1: Two-variable model of Wong and Wang (2006). (A) Reduced two-variable model Wong and Wang
(2006) constituted of two neural units, endowed with self-excitation and effective mutual inhibition. (B) Time
course of the two neural activities during a decision-making task. At the beginning the two firing rates are
indistinguishable. The firing rate that ramps upward (blue) represents the winning population, the orange one
the losing population. A decision is made when one of the firing rate crosses the threshold of 20 Hz. The black
line represents the duration of the selective input corresponding to the duration of accumulation of evidence
until the decision threshold is reached. This model shows working memory through the persistent activity in the
network after the decision is made.

The total synaptic input currents, taking into account the inhibition between populations, the self-excitation,
the background current and the stimulus-selective current can be written as:

IL,tot = JL,LSL − JL,RSR + Istim,L + Inoise,L (3)
IR,tot = JR,RSR − JR,LSL + Istim,R + Inoise,R (4)

with Ji,j the synaptic couplings (i and j being L or R). The minus signs in the equations make explicit the
fact that the inter-units connections are inhibitory (the synaptic parameters Ji,j being thus positive or null). The
term Istim,i is the stimulus-selective external input. If µ0 denotes the strength of the signal, the form of this
stimulus-selective current is:

Istim,L = JA,extµ0 (1± c)
Istim,R = JA,extµ0 (1∓ c) (5)
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The sign, ±, is positive when the stimulus favors population L, negative in the other case. The quantity c,
between 0 and 1, gives the strength of the signal bias. It quantifies the coherence level of the stimulus. For
example, in the random dot motion framework, it corresponds to the fraction of dots contributing to the coherent
motion. In the following, we will give this coherence level in percent. Following Wang (2002), this input forms
the pooling of the activities of middle temporal neurons firing according to their preferred directions. This input
current is only present during the presentation of the stimulus and is shut down once the decision is made.

In the present model, in line with a large literature modeling decision making, the input, Equation (5),
is thus reduced to a signal parametrized by a scalar quantifying the coherence or degree of ambiguity of the
stimulus. More global approaches consider the explicit coupling between the encoding and the decision neural
populations, with a population of stimulus-specific cells for the coding layer – see e.g. Beck et al. (2008);
Bonnasse-Gahot and Nadal (2012); Engel et al. (2015). We believe that the main results presented here would
not be affected by extending the model to take into account the coding stage, but we leave such study for further
work.

In addition to the stimulus-selective part, each unit receives individually an extra noisy input, fluctuating
around the mean effective external input I0:

τnoise
dInoise,i

dt = − (Inoise,i(t)− I0) + ηi(t)
√
τnoiseσnoise (6)

with τnoise a synaptic time constant which filter the (uncorrelated) white-noises, ηi(t), i = L,R. For the
simulations, unless otherwise stated parameters values will be those of Table 1.

Parameter Value Parameter Value

a 270 Hz/nA σnoise 0.02 nA

b 108 Hz τnoise 2 mS

d 0.154 s I0 0.3255 nA

γ 0.641 µ0 30 Hz

τS 100 ms JA,ext 5.2× 10−4 nA/Hz

JN,LL = JN,RR 0.2609 nA JN,LR = JN,RL 0.0497 nA

θ 20 Hz

ICD,max 0.035 nA τCD 200 ms

Table 1: Numerical values of the model parameters: above the dashed line, as taken from Wong and Wang
(2006); below the dashed line, values of the additional parameters specific to the present model (see text).

Initially the system is in a symmetric (or neutral) attractor state, with low firing rates and synaptic activities
(see Figure 1 panel B). On the presentation of the stimulus, the system evolves towards one of the two attractor
states, corresponding to the decision state. In these attractors, the ’winning’ unit fires at a higher rate than the
other. We are interested in reaction time experiments. In our simulations, we consider that the system has made
a decision when for the first time the firing rate of one of the two units crosses a threshold θ, fixed here at
20 Hz. We have chosen this parameter value, slightly different from the one in Wong and Wang (2006), from
the calibration of the extended model discussed below on sequential decision trials with short response-stimulus
intervals (RSI). We have checked that this does not affect the psychometric function of the network, the accuracy
is unchanged and the reaction time is shifted by a constant.

Extended reduced model: inhibitory corollary discharge
Studies (Roitman and Shadlen, 2002; Ganguli et al., 2008) show that, during decision tasks, neurons activity
experiences a rapid decay following the responses - see e.g. Figures 7 and 9 in Roitman and Shadlen (2002).
Simulations of the above model show that even when the stimulus is withdrawn at the time of decision, the
decrease in activity is not sufficiently strong to account for these empirical findings. Decreasing the recurrent
excitatory weights does allow for a stronger decrease in activity, as shown by Bonaiuto et al. (2016). However,
both the increase and the decay of activities are too slow, and the network cannot perform sequential decisions
with RSIs below 1sec. Hence the decrease in activity requires an inhibitory input at the time of the decision.
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Such inhibitory mechanism has been proposed to originate from the superior colliculus (SC), controlling
saccadic eye movements, and the basal ganglia-thalamic circuit (BG), which plays a fundamental role in many
cognitive functions including perceptual decision-making. Indeed, the burst neurons of the SC receive inputs
from the parietal cortex and project to midbrain neurons responsible for the generation of saccadic eye move-
ments (Hall and Moschovakis, 2003; Scudder et al., 2002). Thus the threshold crossing of the cortical neural
activity is believed to be detected by the SC (Saito and Isa, 2003). In turn, the SC projects feedback connec-
tions on cortical neurons (Crapse and Sommer, 2009). At the time of a saccade, SC neurons emit a corollary
discharge (CD) through these feedback connections (Sommer and Wurtz, 2008). The impact of this CD as an
inhibition has been discussed in various contexts (Crapse and Sommer, 2008; Sommer and Wurtz, 2008; Yang
et al., 2008). The generation of a corollary discharge resulting in an inhibitory input has been proposed and
discussed in several modelling works, in the case of the modulation of the decision threshold in reaction time
tasks (Lo and Wang, 2006), in the context of learning (Engel et al., 2015), and in a ring model of visual working
memory (Bliss and D’Esposito, 2017).

We note here that, for simplicity and in accordance with the existing literature (Lo and Wang, 2006; En-
gel et al., 2015; Bliss and D’Esposito, 2017), we will be referring to the inhibitory current resulting from the
corollary discharge as the corollary discharge.

In the context of attractor networks for decision tasks, Lo and Wang (2006) introduce an extension of the
biophysical model of Wang (2002) consisting in modeling the coupling between the network, the basal ganglia
and the superior colliculus. The net effect is an inhibition onto the populations in charge of making the decision.
While Lo and Wang (2006) address the issue of the control of the decision threshold, they do not discuss the
relaxation dynamics induced by the corollary discharge, nor the effects on sequential decision tasks outside a
learning context (Hsiao and Lo, 2013).

In order to analyze these effects with the reduced attractor network model, we assume that, after crossing the
threshold, the network receives an inhibitory current, mimicking the joint effect of basal-ganglia and superior
colliculus on the two neural populations (Figure 2.A).
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Figure 2: Extended version of the reduced model with the corollary discharge. (A) The extension consists in
adding the corollary discharge originating from the basal ganglia, an inhibitory input onto both units occurring
just after a decision is made. (B) Relaxation time constant of the system during the RSI (that is the relax-
ation dynamics towards the neutral attractor), with respect to the corollary discharge amplitude. The values
are obtained by computing the largest eigenvalue λ of the dynamical system, Equation (1–6), when presenting
a constant corollary discharge. The time constant is given by the inverse of the eigenvalue, τ = −1/λ. (C)
The time-sketch of the simulations can be decomposed into a succession of identical blocks. Each block, corre-
sponding to one trial, consists of: the presentation of a stimulus with a randomly chosen coherence (gray box), a
decision immediately followed by the removal of the stimulus, a waiting time of constant duration corresponding
to the response-stimulus interval (RSI).
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Figure 3: Time course of activities during two consecutive trials. Left panel, A: Without corollary discharge.
A, Top (green plot): Time course of the stimulations. The first stimulus belongs to category L, the second to
category R. A, Middle: firing rates of the L (blue) and R (red) neural pools. A, Bottom: corresponding synaptic
activities. The neural activity becomes stuck in the attractor corresponding to the first decision. Right panel, B:
With corollary discharge, with ICD,max = 0.035 nA. B, Top: Time course of the stimulations (green plot, same
protocol as for (A)), and time course of the inhibitory current (black curve, represented inverted for clarity of the
presentation). B, Middle and Bottom: neural and synaptic activities, respectively (L pool: Blue, R pool: Red).
In that case, one observes the decay of activity after a decision has been made, and the winning population is
different for the two trials.

In the case of Engel et al. (2015), the function of the corollary discharge is to reset the neural activity in order
to allow the network to learn during the next trial. For this, the form of the CD input is chosen as a constant
inhibitory current for a duration of 300ms. However, such strong input leads to an abrupt reset to the neural
state with no memory of the previous trial. We thus rather consider here a smooth version of this discharge,
considering that the resulting inhibitory input has a standard exponential form (Finkel and Redman, 1983). The
inhibitory input, ICD(t), is then given by:

ICD(t) =
{

0 during stimulus presentation
− ICD,max exp (−(t− tD)/τCD) after the decision time, tD

(7)

The relaxation time constant τCD is chosen in the biological range of synaptic relaxation times and in accordance
with the relaxation-times range of the network dynamics, τCD = 200 ms (see Figure 2.B, and discussion below).

Therefore the input currents are modified as follows:

IL,tot(t) = JLLSL(t)− JL,RSR(t) + Istim,L(t) + Inoise,L(t) + ICD(t) (8)
IR,tot(t) = JRRSR(t)− JR,LSL(t) + Istim,R(t) + Inoise,R(t) + ICD(t). (9)

We can now study the dynamics of this system in a sequence of decision trials (protocol illustrated in Figure
2.C). We address here two issues: first, is there a parameter regime for which the network can engage in a series
of trials - that is, for which the state of the dynamical system, at the end of the relaxation period (end of the RSI),
is close to the neutral state (instead of being trapped in the attractor reached at the first trial); second, is there a
domain within this parameter regime for which one expects to see sequential effects (instead of a complete loss
of the memory of the previous decision state).

In Figure 3 we illustrate the network dynamics between two consecutive stimuli during a sequence of trials,
comparing the cases with and without the corollary discharge. In the absence of the CD input, the network is
not able to make a new decision different from the previous one (Figure 3.A). Even when the opposite stimulus
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is presented, the system cannot leave the attractor previously reached, unless in the presence of an unrealistic
strong input bias. If however the strength ICD,max is strong enough, the corollary discharge makes the system
to escape from the previous attractor and to relax towards near the neutral resting state with low firing rates.
If too strong, or in case of a too long RSI, at the onset of the next stimulus the neutral state has been reached
and memory of past trials is lost. For an intermediate range of parameters, at the onset of the next stimulus the
system has escaped from the attractor but is still on a trajectory dependent on the previous trial (Figure 3.B).

We have computed the time constant τ of the network during relaxation (during the RSI), with respect to
the CD amplitude, ICD,max, see Figure 2.B. This computation is done for a corollary discharge with a constant
amplitude, ICD(t) = ICD,max. One sees that, for ICD,max of order 0.03 ∼ 0.04nA, the network time constant
τ is four to five times smaller than the duration of the RSI. We choose the relaxation constant τCD of the corollary
discharge of the same order of magnitude (as in the above simulation where τCD = 200ms). With such value,
at the onset of the next stimulus, the network state will still be far enough from the symmetric attractor, so that
we can expect to observe sequential effects, as confirmed by the analysis in the Results Section.

With the inhibitory corollary discharge, after the threshold is crossed by one of the two neural populations,
there is a big drop in the neuronal activity (Figure 3.B), corresponding to the exit from the previous attractor
state. This type of time-course is in agreement with the experimental findings of Roitman and Shadlen (2002);
Ganguli et al. (2008), who measure the activity of LIP neurons during a decision task. They show that neurons
that accumulate evidence during decision tasks experience rapid decay, or inhibitory suppression, of activity
following responses, similar to Figure 3.B (but see Lo and Wang (2006) for a related modeling study with
spiking neurons, or Gao et al. (2009) for rapid decay of neural activity with an other type of attractor network).

We now derive the conditions on ICD under which the network is able to make a sequence of trials. To this
end, we analyze the dynamics after a decision has been made, during the RSI (hence during the period with no
external excitatory inputs). The results are illustrated in Figure 4 on which we represent a sketch of the phase
plane dynamics and a bifurcation diagram.

Consider first what would happen under a scenario of a constant, time independent, inhibitory input during
all the RSI (Figure 4.A-B-C-D) (formally, this correspond to setting τCD = +∞ in Equation 7). At small
values of the inhibitory current, the attractor landscape is qualitatively the same as in the absence of inhibitory
current: in the absence of noise there is three fixed points, one associated with each category and the neutral one
(Figure 3.B). At some critical value, of about 0.0215 nA, there is a bifurcation (Figure 4.D): for larger values of
the inhibitory current, only one fixed point remains, the neutral one (Figure 4.D). As a result, applying a constant
CD would either have no effect on the attractor landscape - current amplitude below the critical value - so that
the dynamics remains within the basin of attraction of the attractor reaches at the previous trial; or would reset
the activity at the neutral state (current amplitude above the critical value), loosing all memory of the previous
decision.

Now in the case of a CD with a value decreasing with time (Figure 4.E-F-G-H, scenario of an exponential
decay), the network behavior will depend on where the dynamics lies at the time of the onset of the next stimulus.
The dynamics, starting from a decision state (e.g. near the blue attractor in Figure 4.F-G), is more easily
understood by considering the limit of slow relaxation (large time constant τCD). Between times t and t+ ∆t,
with ∆t small compared to τ , the dynamics is similar to what it would be with a constant CD with amplitude
ICD(t). Hence if ICD(t) is larger than the critical value discussed above, the dynamics ’sees’ a unique attractor,
the neutral state, and is driven towards it. When ICD(t) becomes smaller than the critical value, the system ’sees’
again three attractors, and finds itself within the basin of attraction of either the initial fixed point (corresponding
to the previous decision, Figure 4.F), or of the neutral fixed point (Figure 4.G). In the latter case, the network is
able to engage in a new decision task.

To conclude, to have the network performing sequential decision tasks, one needs ICD,max to be larger than
the critical value (about ICD = 0.0215 nA, Figure 4.H), and, for a given value of ICD,max, to have a time
constant τCD large enough compared to the RSI for the system to relax close enough to the neutral attractor at
the onset of the next stimulus. However, sequential effects may exist only if the current decreases sufficiently
rapidly, so that the trajectory is still significantly dependent on the state at the previous decision. This justifies the
choice of exponential decrease of the inhibitory current, Equation 7, and the numerical value of τCD = 200ms.
We note that recording from relay neurons, Sommer and Wurtz (2002) show that the signal corresponding to the
corollary discharge last several hundred of milliseconds. This time scale falls precisely in the range of values of
the relaxation time constant of the model (see Figure 2.B), and corresponds to values for which, as we will see,
the model shows sequential effects.
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Figure 4: Bifurcation diagram of sequential decision making, for two scenario of ICD. (A) Scenario with
a constant value of the inhibitory current for the left part of the figure, panels B, C and D. (B) Phase plane
representation of the attractors at low ICD (below the critical value). (C) Phase plane representation of the
attractor landscape at high ICD (above the critical value). Only the neutral attractor exists, corresponding to
the right side of panel D. (D) Attractors state (as the difference in firing rates, RL − RR) with respect to ICD.
The gray line, at ICD = 0.0215 nA, represents the bifurcation point. On the left side three attractors exists, on
the right side only the neutral one exists. The case without inhibitory current corresponds to ICD = 0 nA. (E)
Scenario with an inhibitory current decreasing exponentially with time, for the right part of the figure, panels
F, G and H. The dashed line corresponds to ICD = 0.0215 nA, value at which the bifurcation at constant ICD
occurs (see panel D). The time at which the current amplitude crosses this value is denoted by the gray star in
panels E and F. (F) Schematic phase-plan dynamics corresponding to the left side of (H). The blue attractor
corresponds to the starting point and the black arrow represents the dynamics. At the time ICD becomes lower
than 0.0215 nA (gray star), the system is still within the basin of attraction of the initial attractor. Hence, it
goes back to the initial attractor. (G) Schematic phase-plan dynamics corresponding to the right side of panel
H. At the time ICD becomes lower than 0.0215 nA, the system lies within the basin of attraction of the neutral
attractor. Hence, the dynamics continues towards the neutral attractor. Those conditions are the ones needed
for sequential decision-making. (H) Attractors that can be reached when starting from a decision state, for the
relaxation dynamics under the scenario represented on panel E. On the left side of the dashed gray line, the
value of ICD,max is too weak and the network remains locked to the attractor corresponding to the previous
decision state. On the right side the network dynamics lies within the basin of attraction of the neutral attractor,
allowing the network to engage in a new decision task.
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Numerical simulations design and Statistical tests

Numerical simulations
The simulation of sequential decision-making is as follows: a stimulus with a randomly chosen coherence
is presented until the network reaches a decision (decision threshold crossed). The decision is immediately
followed by the removal of the stimulus, and a relaxation period during the response-stimulus interval (RSI).
Then a new stimulus is presented, initiating the next trial (Fig. 2.C). The set of dynamical equations (1,6) –
with the definitions (2,5,7,8,9) – is numerically integrated using Euler-Maruyama method with a time step of
0.5 ms. At the beginning of a simulation, the system is set in a symmetric state SL = SR = s0, with low firing
rates and synaptic activities, s0 = 0.1. We compute the instantaneous population firing rates, or the synaptic
dynamical variables SL and SR, by averaging on a time window of 2 ms, slided with a time step of 1 ms. The
accuracy of the network’s performance is defined as the percentage of trials for which the units crossing the
threshold corresponds to the stronger input. For data analysis we mainly work with the variables SL and SR,
which are analog to the firing rates RL and RR (since they are monotonic function of SL and SR, Wong and
Wang (2006)), but are less noisy (see Fig 3). We consider that the system has made a decision when for the
first time the firing rate of one unit crosses a threshold θ, fixed at 20 Hz. The reaction time during one trial
is defined as the time needed for the network to reach the threshold from the onset of the input stimulus. We
neglect the possible additional time due to motor reaction and signal transduction. In addition to the reaction
times, we compute the discrimination threshold, which is linked to the accuracy. The definition is based on the
use of a Weibull function commonly used to fit the psychometric curves (Quick, 1974). That is, one writes the
performance (mean success rate) as Perf(c) = 1 − 0.5 exp

(
− (c/α)β

)
, where α and β are parameters. Then,

for c = α, Perf(c) = 1− 0.5 exp (−1) ∼ 0.82. Hence one defines the discrimination threshold as the coherence
level at which the subject responds correctly 82% of the time.

We list in Table 1 the model parameters which correspond to the one of the simulations. For Figures 5 and
7 we have used continuous sequences of 1000 trials averaged over 24 independent simulations - allowing to
more specifically compare with experiments of Bonaiuto et al. (2016) done with 24 subjects. Figures 9 to 16
present results obtained for sequences of 1000 trials averaged over 50 independent simulations to allow for a
better statistical analysis. The number of sequences, 1000, is a typical order of magnitude in experiments (see
e.g. Bonaiuto et al. (2016) and Danielmeier and Ullsperger (2011)).

Statistical tests
Following Benjamin et al. (2018), we consider a p-value of 0.005 as a criterion for rejecting the null hypothesis
in a statistical test. To assess if the distributions of two continuous variables are different, we make use of the
Kolmogorov-Smirnov test (Hollander et al., 2014), and in the case of discrete variable distributions we use the
Anderson-Darling test (Shorack and Wellner, 2009). For very large samples, we use the energy distance (Rizzo
and Székely, 2016), which is a metric distance between the distributions of random vectors. We use the asso-
ciated E-statistic (Szekely and Rizzo, 2013) for testing the null hypothesis that two random variables X and Y
have the same cumulative distribution functions. For testing whether the means of two samples are different we
make use of the Unequal Variance test (Welch’s test) (Hollander et al., 2014).

Softwares and Code accessibility
For the simulations we made use of the Julia language (Bezanson et al., 2014). The code of the simulations
can be obtained from the corresponding author upon request. We made use of the XPP software (Ermentrout
and Mahajan, 2003) for the phase-space analysis and the computation of the relaxation time constant of the
dynamical system. Figures 9, 10, 11, 12 and 19 were realized using Python and the other are in the same language
as the simulations. The E-statistics tests were performed using the R-Package: energy package (Rizzo and
Székely, 2014).

Results

Sequential dynamics and choice repetition biases
The dynamical properties described above give that, for the appropriate parameter regime, the RSI relaxation
leads to a state which is between the previous decision state and the neutral attractor. If it is still within the
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Figure 5: Histogram of the reaction times. Simulations run at, (A): ICD,max = 0.035 nA, and (B): ICD,max =
0.08 nA, with a RSI of 1 second. The green histogram corresponds to the Alternated case, that is when the
decisions made at the nth and nth +1 trials are different. The orange histogram corresponds to the Repeated
case, that is when the decisions made at the nth and nth +1 trials are identical. (C) Energy distance between
the repeated and alternated histograms. The x-axis represents the strength of the corollary discharge, and the
color codes the duration of the RSI in seconds.

basin of attraction of the previous decision state at the onset of the next stimulus, one expects sequential biases.
This mechanism is similar to the one discussed by Bonaiuto et al. (2016). However, the relaxation mechanisms
are different, as discussed in the Introduction. This results in different quantitative properties, notably and quite
importantly in the time scale of the relaxation, which is here more in agreement with experimental findings (Cho
et al., 2002).

We will specifically show that nonlinear dynamical effects are at the core of post-error adjustments. As
a preliminary step, it is necessary to investigate the occurrence of sequential effects in our model. We do so
by describing more precisely the inter-trial dynamics: we need to specify where the network state lies at the
onset of a new stimulus, with respect to the boundaries between the basins of attraction. We take advantage of
this analysis to explore response repetition bias as studied in Bonaiuto et al. (2016), and to confront the model
behavior with other empirical findings (Laming, 1979b; Cho et al., 2002). In all the following, we study the
model properties in function of the two parameters, the amplitude of the corollary discharge, ICD,max, and the
duration of the RSI.

Network behavior: Reaction times biases

After running simulations of the network dynamics with the protocol of Figure 2.C, we analyze the effects of
response repetition by separating the trials into two groups, the Repeated and Alternated cases. The repeated
(respectively alternated) trials are those for which the decision is identical to (resp. different from) the decision
at the previous trial. Note that we do not consider whether the stimulus category is repeated or alternated: the
analysis is based on whether the decision is identical or different between two consecutive trials (Fleming, 2010;
Padoa-Schioppa, 2013). Such analysis is appropriate, since the effects under consideration depend on the levels
of activity specific to the previous decision. We run a simulation of 1000 consecutive trials, each of them with a
coherence value randomly chosen between 20 values in the range [−0.512, 0.512]. We do so for two values of
the corollary discharge amplitude, ICD,max = 0.035 nA and ICD,max = 0.08 nA, with a RSI of 1 s, the other
parameters being given on Table 1.

We find that the distribution of coherence values are identical for the two groups, for both values of ICD,max
(Anderson-Darling test, p = 0.75 and p = 0.84 respectively). We study the reaction times separately for the two
groups, and present the results in Figure 5. In Figure 5.C we represent the so called energy distance (Szekely and
Rizzo, 2013; Rizzo and Székely, 2016) between the repeated and alternated reaction times distribution. As we
can observe, the distance decreases, hence the sequential effect diminishes, as the corollary discharge amplitude
ICD,max increases. For the specific case of Figures 5.A and B, the corresponding E-statistic for testing equal
distributions leads to the conclusion that in the case ICD,max = 0.035 nA, the two reaction-time distributions
are different (p = 0.0019). This implies that the behavior of the network is influenced by the previous trial. We
observe a faster mean reaction time (around 55 ms) when the choice is repeated (Figure 5A), with identical shape
of the reaction times distributions. The difference in means is of the same order as found by Cho et al. (2002) in
experiments on 2AFC tasks. On the contrary, for ICD,max = 0.08 nA (Figure 5.B), the two histograms cannot
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Figure 6: Network activity during two consecutive trials. Panels (A) and (B) represent the alternated case
where the decision made is R then L, and panels (C) and (D) represent the case where decision L is made and
repeated. Panels (A) and (C) plot the time course activities of the network. The light blue zone is zoomed in
order to better see the dynamics just before the onset of the second stimulus. The red and blue curves correspond
to the activities of, respectively, the R and L network units. Panels (B) and (D) represent, respectively, the (A)
and (C) dynamics in the phase-plane coordinates. On panel (B) the dynamics evolves from dark red (first trial)
to light blue (2nd trial), and on panel (D) from dark blue (first trial) toward light blue (2nd trial). The gray –
respectively black – circles identify the same specific point during the dynamics in panels (A) and (B) – resp.
(C) and (D). The circles are not at the exact same value because the decision threshold is on the firing rates and
not for the synaptic activities. In order to compare the alternated and repeated cases, (A,B) and (C, D), the dark
red curve of panel (B), is reproduced on panel (D) as light orange curve.

be distinguished (E-statistic test, p = 0.25).
We have checked that increasing the RSI has a similar effect to increasing the corollary discharge amplitude.

We observe sequential effects for RSI values in the range 0.5 to 5 seconds, in accordance with two-choices
decision-making experiments, where such effects are observed for RSI less than 5 seconds (Rabbitt and Rodgers,
1977; Laming, 1979b; Soetens et al., 1985).

Neural correlates: Dynamics analysis

With the relaxation of the activities induced by the corollary discharge, the state of the network at the onset
of the next stimulus lies in-between the attractor state corresponding to the previous decision, and the neutral
attractor state. When averaging separately over repeated and alternated trials, we find, as detailed below, that
this relaxation dynamics has different behaviors depending on whether the next decision is identical or different
from the previous one. Note that this is a statistical effect which can only be seen by averaging over a very large
number of trials.

In Figure 6 we compare two examples of network activity, one with an alternated choice, and one with a
repeated choice, by plotting the dynamics during two consecutive trials. We observe in Figure 6.A, the alternated
case, that previous to the onset of the second stimulus (light blue rectangle) the activities of the two populations
are at very similar levels. In contrast, for the case of a repeated choice, Figure 6.C, the activities are well
separated, with higher firing rates.

In Figure 6.B we give a classical phase-plane representation of the network dynamics during two consecutive
trials, with the axes as the synaptic activities of the wining versus loosing neuronal populations in the first trial.
One sees a trajectory starting from the neutral state, going to the vicinity of the attractor corresponding to the first
decision, and then relaxing to the vicinity of the neutral state (as illustrated in Figure 4.G). Then the trajectory
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Figure 7: Phase plane dynamics. Dynamics of the decaying activity between two successive trials, (A)
for ICD,max = 0.035 nA, and (B) for ICD,max = 0.08 nA. The synaptic activity is averaged over all trials
separately for each one of the two groups: alternated (green) and repeated (orange). The axis are Swinning
and Slosing (not SR and SL) corresponding to the mean synaptic activity of, respectively, the winning and the
losing populations for this trial. Note the difference in scale of the two axes. The time evolution along each
curve follows the black arrow. The dashed black line denotes the symmetric states (SL = SR) of the network,
and the gray circle the neutral attractor. The shadow areas represent the basins of attraction (at low coherence
levels) for the repeated and alternated trials, respectively pink and green.

goes towards the attractor corresponding to the next decision, different from the first one. This aspect of the
dynamics is similar to what is obtained in Gao et al. (2009) with another type of attractor network. We show in
Figure 6.D the phase-plane dynamics in the case of a repeated choice (trajectory in blue). On this same panel, for
comparison we reproduce in light red the dynamics, shown in Figure 6.B, during the first trial in the alternated
case. As can be seen in Figure 6.D, the network states at the time of decision are different depending on whether
the network makes a decision identical to, or different from, the one made at the previous trial.

In order to check the statistical significance of these observations, we represent in Figure 7 the mean activities
during the RSI, obtained by averaging the dynamics over all trials, separately for the alternated and repeated
groups. As expected, for small values of ICD,max (0.035 nA), the two dynamics are clearly different. This
difference diminishes during relaxation. However at the onset of the next stimulus we can still observe some
residues, statistically significant according to an Anderson-Darling test done on the 500 ms prior to the next
stimulus (between winning population, p = 0.0034, between losing population p = 3.2× 10−8).

Looking at Figure 7.A, we observe that the ending points of the alternated and repeated relaxations are biased
with respect to the symmetric state. At the beginning of the next stimulus the network is already in the basin
of attraction of the repeated case. Hence, it will be harder to reach the alternated attractor stated (in the green
region). When increasing ICD,max (Figure 7.B), we observe that the ending state of the relaxation is closer to
the attractor state. Hence, the biases in sequential effects disappear because at the beginning of the next stimuli
the network starts from the symmetric (neutral) state. The same analysis holds for longer RSI, the dynamics
are almost identical (Anderson-Darling test: between winning population, p = 0.25, between losing population
p = 0.4), and both relaxation end near the neutral attractor state. The bias depending on the next stimulus is not
observed anymore, and the sequential effect on reaction time hence disappears.

Note that the sequential effects only depend on whether or not the states at the end of the relaxation lie
on the basin boundary. However, we have just seen that the effects can also be observed at the level of the
relaxation dynamics, since the trajectories for alternated and repeated cases are identical when there is no effect,
and different in the case of sequential effects.

The analysis of the dynamics also leads to expectations for what concerns the bias in accuracy towards
the previous decision. Indeed, this can be deduced from Figure 7. If the choice at the previous trial was R
(respectively L), then, at the end of the relaxation, the network lies closer to the basin of attraction of attractor R
(respectively L). Thus when presenting the next stimulus, the decision will be biased towards the previous state,
so that the probability of making the same choice will be greater than the one of making the opposite choice.
Otherwise stated, given the stimulus presented at the current trial, the probability to make the choice R will be
greater when the previous choice was also R, than when the previous choice was L. Numerical simulations
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confirm this analysis, as illustrated on Figure 8. The RSI dependency is statistically significant (Generalized
Linear Model: r = −3.9, p < 0.0001). For small RSI (500 ms), the decision is biased towards the previous
one, and for RSI of several seconds this effect disappears. These results are in agreement with experimental
findings of Bonaiuto et al. (2016). The authors studied response repetition biases in human with RSIs of at least
1.5 seconds. In these experiments, they measure the Left-Right indecision point, that is the level of coherence
resulting in chance selection. Compared to the repeated case, they find that the indecision point for the alternated
case is at a higher coherence level, and this shift decreases as the RSI increases.
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Figure 8: Repetition biases for several RSI values. Upper panel: percentage of Right choices, with respect to
coherence level, depending on the previous choice (Left or Right). The blue points represents the mean accuracy
(on 24 simulations) and the confidence interval at 95% (bootstrap method). The blue lines denote the fit (of
all simulations) by a logistic regression of all (plain: previous choice was Right, dashed: previous choice was
Left). Bottom panel: histogram of the Left-Right indecision point (on 24 simulations to stay in the experimental
range). It characterizes the fact that the positive shift in the indecision point is increased for small RSI. The
mean of the indecision point shift decreases with longer response-stimulus intervals.

Sequential decision effects have also been analyzed within the DDM framework (Farrell and Ludwig, 2008;
Goldfarb et al., 2012). Behavioral data can be fitted by different choices of starting points, and possibly of
thresholds (Goldfarb et al., 2012). The modification of the starting point in a DDM framework is analog to
the effect of the relaxation in our model. However, most works based on DDM make a post-hoc analysis of
empirical data, with separate fits for alternated and repeated cases.

To conclude this section, at the time of decision, the winning population has a firing rate higher than the
losing population. After relaxation, at the onset of the next stimulus, the two neural pools have more similar
activities, but are still sufficiently different, that is the dynamics is still significantly away from the neutral
attractor. At the onset of the next stimulus, the systems finds itself in the basin of attraction of the attractor
associated to the same decision as the previous one. This results in a dynamical bias in favor of the previous
decision. The probability to make the same choice as the previous one is then larger than the one of the other
choice, and the reaction time, for making the same choice (repeated case), is shorter than for making the opposite
choice (alternated case). In accordance with these results, studies on the LIP, superior colliculus and basal
ganglia have found that the baseline activities before the onset of the stimuli can reflect the probabilities of
making the saccade, under specific conditions (Lauwereyns et al., 2002; Ding and Hikosaka, 2006; Rao et al.,
2012). Our model shows that these modulations of the baseline activities can be understood as resulting from
the across-trial dynamics of the decision process.

Post-error effects
Post-error adjustments on reaction times

The most interesting and well established effect is the one of Post-Error Slowing (PES) (Laming, 1979b), and
see Danielmeier and Ullsperger (2011) for a review. It consists of prolonged reaction times in trials following
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Figure 9: Post-error slowing in the simulated network at a RSI of 500 ms. (A) Phase diagram of the PES
effect at RSI of 500 ms. The bottom white zone corresponds to parameters where sequential decision-making
is impossible as the network is unable to leave the attractor state during the RSI. The red square corresponds
to regions where PES is observed, and the blue ones where PEQ is observed (the darker the color, the stronger
the effect). The black dashed squares correspond to specific regions where Panels B and C zoom. (B) PES
effect (ms) with respect to the coherence level at ICD,max = 0.047 nA. The light blue zone corresponds to
the bootstrapped (Efron and Tibshirani, 1994) confidence interval at 95%. (C) PES effect (ms) with respect to
the coherence level at ICD,max = 0.035 nA. The light blue zone corresponds to the bootstrapped confidence
interval at 95%.

an error, compared to reaction times following a correct trial. This effect has been observed in a variety of
tasks: categorization (Jentzsch and Dudschig, 2009), flanker (Debener, 2005), Stroop (Gehring and Fencsik,
2001) tasks. Jentzsch and Dudschig (2009) and Danielmeier and Ullsperger (2011) found that the PES effect
depends on the response-stimulus interval. The amplitude of this effect, defined as the difference between
the mean reaction times of post-error and post-correct trials, decreases as one increases the RSI, with values
going from several dozens of milliseconds to zero. For RSI longer than 750 − 1500 ms, PES is not observed
anymore. Remarkably, the PES effect is reported in cases where the subject does not receive information on the
correctness of the decision (Jentzsch and Dudschig, 2009; Danielmeier et al., 2011; Danielmeier and Ullsperger,
2011). Moreover, this effect is automatic and involuntary (Rabbitt, 2002), and is independent of error detection
and correction process which involve other cortical areas (Rodriguez-Fornells et al., 2002). This suggests a
rather low level processing origin in line with the present model.

In this section we investigate the occurrence of post-error adjustments in our model. We confront the results
to empirical findings from various behavioral experiments with Two Alternative Forced Choice (and marginally
also 4-AFC) protocols in which, as it is also the case in our model, there is no feedback on the correctness of the
decision. We will notably discuss the model predictions comparing the results with those of Danielmeier and
Ullsperger (2011) who studied the dependence of PES with respect to the RSI, as well as the relation between
PES and PIA.

We studied the occurrence of the PES effect in the model with respect to the coherence level and ICD,max,
at an intermediate RSI value of 500 ms, leading to the phase diagram in Figure 9.A. We find a large domain in
parameter space showing PES effect (in red in the figure). Figure 9.B zooms on a value of ICD,max for which
PES occurs (ICD,max = 0.035 nA). We observe that the magnitude of the PES effect goes from zero to ten
milliseconds at c = 10%, hence remaining within the range of behavioral data (Jentzsch and Dudschig, 2009;
Danielmeier and Ullsperger, 2011) (10 − 15 ms for a RSI of 0.5 − 1 second). In these experiments (a flanker
task with stimuli belonging to one of two opposite categories, Left or Right directions), the ambiguity level is
not quantified. However, the observed error rates are found around 10% which, within our model, corresponds
to a coherence level of about c = 10%. On the phase diagram, one can observe the variation of the PES effect
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with respect to the coherence level. In the region where we observe a PES effect, we find that it is enhanced
under conditions when errors are infrequent. However, for large values of the coherence level, this effect cannot
be observed anymore due to the absence of any error in the successive trials (almost 100% of correct trials).
This occurrence of PES, principally at low error rates, has been found in experiments of Notebaert et al. (2009);
Núñez Castellar et al. (2010), for which the authors observe PES when errors are infrequent, but not when errors
are frequent. Note that these experiments are with 4-AFC tasks, but we expect the same type of properties as for
TAFC tasks – and the model could easily be adapted to such cases with a neural pool specific to each one of the
four categories.

The phase diagram, Figure 9.A, also shows parameter values with no effect at all (in gray), and a domain with
the opposite effect, that is with reaction times faster after an error than after a correct trial (in blue). We propose
to call this effect post-error quickening (PEQ), as opposed to post-error slowing. As shown in Figure 9.C, we
find that, for a given value of ICD,max, one can have PES at low coherence level, and PEQ at high coherence
level.

This PEQ effect, although much less studied, has been observed in various AFC experiments, either without
feedback (Rabbitt and Rodgers, 1977; Notebaert et al., 2009; King et al., 2010) or with feedback (Purcell and
Kiani, 2016), notably for fast-response regimes (Notebaert et al., 2009; King et al., 2010). The conditions
for observing PEQ remain however not well established, with some contradictory results. We note that with
Go/no-go protocols (which are similar to AFC protocols in many respects), Hester et al. (2005) report post-error
decrease in reaction times for aware errors, but not for unaware errors, whereas Cohen (2009) on the contrary
reports no PEQ effect, but a larger PES effect for aware errors than for unaware errors. The fact that the model
predicts PEQ in TAFC tasks at high coherence levels is more in line with the results of the fMRI experiments of
Hester et al. (2005). Indeed, at high coherence levels, responses are fast and most often correct. In the rare case
of an error, the subject is likely to become aware that an error has been made (Yeung and Summerfield, 2012).
This thus may lead to a correlation (without causal links) between aware errors and PEQ.

We also studied the RSI dependency of the PES effects by plotting the phase diagram at ICD,max =
0.045 nA with respect to the RSI (Figure 10). In behavioral experiments the PES effect depends strongly on the
RSI. For RSI longer than 1000 − 1500 ms the observation or not of PES depends specifically on the decision
task (Jentzsch and Dudschig, 2009; King et al., 2010). However, a common observation is that, whenever PES
is observed, if one keeps increasing the RSI, the PES effect eventually disappears. In Figure 10, we observe
that, for parameters where PES is observed at a RSI of 500 ms, increasing the RSI leads to the weakening of the
post-error slowing effect until its disappearance. At a RSI of 1000− 1500 ms this effect is not present anymore,
in agreement with experimental results (Jentzsch and Dudschig, 2009).

The variation of PEQ with respect to RSI has not been experimentally studied, as this effect is more contro-
versial. However, our model shows that the dependence on RSI is similar to the one of PES, and predicts that
when both effects exists at a same RSI value (for different coherence levels), increasing the RSI leads to the
disappearance of both of them.

We note here that the set of phase diagrams that we present in this work on the various effects, Figures 9
to 12, provide testable behavioral predictions. As just discussed in the particular case of PES and PEQ , they
predict how the effects on reaction times are or are not correlated, and in particular how they qualitatively depend
on, and co-vary with, the coherence level or the duration of the RSI.

Post-error improvement in accuracy

Post-error improvement in accuracy (PIA) is another sequential effect reported in experiments (Laming, 1979b;
Marco-Pallarés et al., 2008; Danielmeier and Ullsperger, 2011). PIA has been observed on different time-
scales: long-term learning effects following error (Hester et al., 2005) and trial-to-trial adjustments directly after
commission of error responses. We only consider this latter type of PIA. The specific conditions under which
PIA can be observed in behavioral experiments have not been totally understood. We investigate this effect in
the specific context of our model, considering that the strength of the effect is linked to the difference in error
rates between post-error and post-correct trials.

In Figure 11 we represent the phase diagram of the PIA effect with respect to coherence levels (x-axis) and
corollary discharge amplitude (y-axis). We denote a large region of parameters for which PIA is present. We find
a magnitude of the PIA effect of about 2 − 4%, which is of the same order of magnitude as in the experiments
where, for RSIs in the range 500− 1000 ms, it is found that post-error accuracy is improved by approximatively
3% (Jentzsch and Dudschig, 2009).
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Figure 11: Post-error improvement in accuracy at a RSI of 500 ms. (A) Phase diagram of the PIA ef-
fect at RSI of 500 ms. The bottom white zone corresponds to parameters where sequential decision-making
is impossible. The red square corresponds to regions where PIA is observed. The black dashed squares cor-
respond to specific regions where panels B and C zoom. (B) PIA effect with respect to the coherence level at
ICD,max = 0.047 nA. The light blue zone corresponds to the bootstrapped confidence interval at 95%. (C)
PIA effect with respect to the coherence level at ICD,max = 0.035 nA. The light blue zone corresponds to the
bootstrapped confidence interval at 95%.
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Figure 12: Post-error improvement in accuracy depending on RSI. (A) Phase diagram of the PIA effect at
ICD,max = 0.045 nA. The red square corresponds to regions where PIA is observed. (B)-(C)-(D) Distribution
of the discrimination threshold for three values of RSI (500, 1000, 1500 ms respectively). In yellow we represent
the histogram of the post-correct trials, and in blue the post-error ones. The dashed curves of the corresponding
color corresponds to the cumulative functions of these distributions. The corollary discharge is ICD,max =
0.035 nA.

Looking at Figure 11, one sees that the PIA and PES effects append in the same region of parameters.
However, if we zoom in on specific regions (Figure 11.B and C), we can notice some differences in the variation
of these effects. The black dashed rectangular regions correspond to the same parameters as in Figure 9. We
first note that PIA is also observed in these regions. However, we observe a decrease of PES at very large
coherence (Figure 9.B), but not of PIA (Figure 11.B). Moreover the decrease of the PIA effect in Figure 9.C
does not occur at the same values of parameters as for the PES one. It would be tempting to interpret PIA as a
better accuracy resulting from taking more time for making the decision. This is not the case, since PIA does
not appear uniquely in the PES region, but in the PEQ one too. In agreement with these model predictions,
Danielmeier et al. (2011), in a TAFC task with color-based categories, observe that PIA can occur in the absence
of PES, but that the occurrence of PES is always associated with PIA (except for one subject among 20, results
reported in Figure 1 in Danielmeier and Ullsperger (2011)).

In EEG experiments, Marco-Pallarés et al. (2008) find that time courses of PES and PIA seem to be dis-
sociable as they observe post-error improvements in accuracy with longer inter-trial intervals (up to 2250 ms)
than post-error slowing. We note that these authors consider protocols with and without stop-signals, and here
we are only concerned by those without. We investigate the variation with respect to the RSI of PIA in our
model (Figure 12). We note that, for long RSIs, the PIA effect is not observed anymore. However as observed
in Marco-Pallarés et al. (2008), the PIA effect occurs for longer RSIs than the PES effect (Figure 11.A). In the
same way, PIA is more robust with respect to the intensity of the corollary discharge. This is corroborated by
Figure 13-A-B, which represents PES and PIA effect for a larger relaxation time, τCD = 500 ms, hence with a
stronger corollary discharge. We note that all the regimes previously observed are present, for slightly different
parameter ranges. This shows that the global picture illustrated by the phase diagrams, Figures 9, 11, is not
specific to a narrow range of ICD,max and τCD values.

Verguts et al. (2011) find that PIA and PES seem to happen independently, suggesting that at least two post-
error processes takes place in parallel. An important outcome of our analysis is to show that PIA and PES effects
can both result from the same underlying dynamics. In addition, in the parameters domain where they both occur,
we find that the variations of these effects with respect to the coherence levels are indeed uncorrelated (Pearson
correlation test: RSI of 500 ms and ICD = 0.035 nA, p = 0.58, ICD = 0.05, p = 0.79 and ICD = 0.1 nA,
p = 0.25; RSI of 2000 ms and ICD = 0.035 nA, p = 0.37). This non-correlation highlights the complexity of
such post-error adjustments, as explored in Verguts et al. (2011).

In order to gain more insights into the PIA effect, we study the discrimination threshold following an error
or a success, with respect to the RSI (Figure 12.B-D). In Figure 12.B we represent the distribution of the dis-
crimination threshold for ICD,max = 0.035 nA and a RSI of 500 ms. For these parameters, the distributions
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Figure 13: Post-error adjustments at τCD = 500 ms (panels A and B), and second order post-error
adjustments (panels C and D). (A) Phase diagram of the PES effect. We used a bootstrapped confidence
interval in order to decide whether or not PES (or PEQ) is observed. (B) Phase diagram of the PIA effect. The
observation of post-error adjustments is highly impacted with the value of τCD, as we do not observe PES for
the same range of parameters. (C) Phase diagram of the PES effect at the n+ 2 trial. (D) Phase diagram of the
PIA effect at the n+ 2 trial. One sees rare isolated red squares, indicating the absence of any systematic effect.
For all panels: Simulations with a RSI of 500 ms, other parameters as in Table 1. Color code as in Figure 9.

for the post-error and post-success cases are highly different (Smirnov-Kolmogorov test: p < 10−20). If one
increases the RSI (1000 ms for Figure 12.C and 1500 ms for Figure 12.D), this difference disappears (Smirnov-
Kolmogorov test: p = 0.038 and p = 0.4 respectively). However, we note that the model predicts a wider
distribution of the discrimination threshold after an error than after a correct trial, independently of the presence
of the PIA effect. This might result from the wider distribution in the neural (or synaptic) activities after an error
that we discuss n the next section. To our knowledge, this effect has not been studied in behavioral experiments.

Dynamical analysis

In this section we analyze the PES and PEQ effects in terms of neural dynamics. First of all, we represent
and discuss the dynamics on individual trials for the three regions of parameters: with neither PES nor PEQ
effects, with PES effect, and with PEQ effect (Figure 14). We observe the dynamics for post-error and post-
correct trials during the relaxation period following a decision and during the presentation of the next stimulus.
Already on individual trials we notice differences between the regions. Figure 14.A represents a trial in the
region without PES or PEQ. The post-error/correct dynamics are indistinguishable. Hence we do not observe
any differences in the reaction times. Looking at a trial in the PEQ region (Figure 14.B), we notice that the
population L (the winning one for the second stimulus) for the post-error case seems a bit higher in activity than
for the post-correct case. This leads to the post-error quickening effect, as the post-error (orange) curve will
reach the threshold sooner than the post-correct (blue) one. Finally, Figure 14.C represents individual trials for
parameters in the PES region. In the phase diagram (Figure 9) the effect was more pronounced than PEQ, thus
it is more pronounced on the dynamics too. During the relaxation, and the presentation of the next stimulus, the
post-correct dynamics (blue curve) for population L (the winning one for the second stimulus) is higher than
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Figure 14: Neural activities of individual trials. (A) Dynamics for individual trials for the winning populations
of the next trial: in blue the post-correct case and in red the post-error one. The dashed lines represent the
coherence of the stimuli with respect to time. In blue we represent the post-correct case, and in red the post-
error one. The parameters are set to a region without PES or PEQ effects (ICD = 0.047 nA and c = ±10%).
(B) This panel represents the dynamics in the region of PEQ (ICD = 0.047 nA and c = ±20%). On this trial
we can notice that the post-error dynamics is faster than the post-correct one. (C) The parameters are set to
the PES region (ICD = 0.035 nA and c = ±10%). The post-correct dynamics (in blue) reaches the threshold
sooner than the post-error one (in red).

the post-error one. As we can observe this leads to a faster decision time for the post-correct trial than for the
post-error one.

We show now that the dynamics explains the three effects PES, PEQ and PIA. We provide in Figures 16, 17
and 18 a semi qualitative and semi quantitative analysis of the dynamics of the synaptic activities in the phase
plane of the system, for several parameters regimes. Here again, the analysis is easier working on the synaptic
activities. This can be seen by considering Figure 15 on which we represent the mean firing rate and synaptic
activity of the winning population in the PES case. Due to the range of variation of the firing rates, and the
intrinsic noise of the system, it is hard to observe a difference between the neural activities. However, if we
compute this difference (sub-panel of Figure 15) we note the following. At the beginning of the next trial, the
difference between the post-error and post-correct firing rates is significantly below zero, hence the reaction
time will be shorter for post-correct than for post-error trials. We find the same behavior for the synaptic
activities (Figure 15.B), but much less noisy, as expected from the discussion in the Material and Methods
section.

PES effect. We now detail the analysis of the PES effect (and of the concomitant PIA effect) based on Fig-
ure 16. Let us first explain how each panel is done. Without loss of generality, we assume that the last decision
made is R. Repeated and Alternated cases thus correspond to next trial decisions R and L, respectively. The x
and y axis are the synaptic activities SL and SR, respectively – hence, the losing and wining populations for the
first trial.

On the left panels, we represent with dashed lines the average dynamics during the relaxation period, that
is from the decision time for the previous stimulus to the onset of the next stimulus. This allows to identify
clearly the typical neural states at the end of the relaxation period. The average is done over post-error (resp.
post-correct) trajectories sharing a same state at the time of the last decision. The choice of these two initial
states is based on the following remark. A typical trial with a correct decision will lead, at the time of decision,
to losing and wining populations with highly different activity rates, hence a neural activity, and thus a synaptic
activity SL, far from the threshold value. On the contrary, a typical error trial will show a losing activity not far
from the threshold – this can also be observed in Figure 4B in Wong et al. (2007). We can thus represent post-
correct trials, respectively post-error trials, by dynamics with initial states having a rather small, respectively
large, value of SL (and in both cases the first trial winning population SR at threshold value).
We then represent with a continuous line the average trajectory following the onset of the next stimulus. We
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Figure 15: Mean firing rates of the winning population. (A) Mean firing rates for the winning populations
of the next trial: in blue the post-correct case and in orange the post-error one. The ribbons represent the
95% confidence interval on 25 simulations(bootstrap method). The left-axis represents the relaxation of the
dynamics. The right-axis is for the beginning of the next stimulus. The parameters are set to a region with PES
effects (ICD = 0.035 nA and c = ±10). The sub-panel with the light blue curve is the difference between
the post-error firing rates and the post-correct with respect to time (in percent). The ribbon stands for the
95% confidence interval. As expected, this difference is negative. Hence the post-correct dynamics is faster
and crosses sooner the threshold. This leads to the PES effect. (B) Mean synaptic activities for the winning
populations of the next trial: in blue the post-correct case and in orange the post-error one. The sub-panel with
the light blue curve is the difference between the post-error synaptic activities and the post-correct with respect
to time (in percent).

observe this dynamics during the same time for post-error and post-correct cases, as if there were no decision
threshold, in order to compare the dynamics of post-error and post-correct cases for the same duration of time.
Decision actually occurs when the trajectory crosses the decision line (dashed gray line) – this is approximate:
because of the noise, there is no one to one correspondence between a neural activity reaching the decision
threshold and a particular value of the associated synaptic activity. Having all the trajectories plotted for the
same duration (and not only until the decision time) allows to visually compare the associated reaction times.

On the right panels, we represent typical trajectories during the presentation of the next stimulus. The black
dot on every panel gives the location of the neutral attractor that exists during the relaxation dynamics. The
basins of attractions that are represented are the one associated with the attractors L, R, of the dynamics induced
by the onset of the next stimulus. Remind that these attractors are different from the ones associated to the
dynamics during the relaxation period.

We can now analyze the dynamics. In the repeated case (Figure 16.A and B), at the end of the relaxation
(that is at the onset of the next stimulus), both post-correct and post-error trials lie into the correct basin of
attraction. Hence, the error rates for these trials are similar. However, the neural states reached at the end of the
relaxations are different. Compared to the post-error trial, the post-correct state is closer to the boundary of the
new attractor associated to decision R, and the corresponding decision will thus be faster. In the alternated case
(Figure 16.C and D), the states reached at the end of the relaxation period do not lie within the correct basin of
attraction. During the decision-making dynamics, the trajectory needs to cross the boundary between the two
basins of attraction. The post-correct trials leading to an alternate decision have a rather straight dynamics across
the boundary, leading to relatively fast decision times. In contrast, the states at the onset of the stimulus of the
post-error trials are closer to the boundary so that the corresponding trajectories crosses with a smaller angle with
respect to the basin boundary. This leads to longer reaction times, hence the PES effect. It would be interesting
to have electro-physiological data with which the model predictions could be directly compared. However,
in a typical experiment on monkeys, a feedback on the correctness of the decision is given, since the animal
learns the task thanks to a reward-based protocol. Nevertheless, we note that, in the random dot experiments
on monkeys of Purcell and Kiani (2016), the authors find a higher buildup rate of the neural activity for post-
correct trials than for post-error trials (see Figure 6 in Purcell and Kiani (2016)). Within our framework, this can
be understood as trajectories that cross the basin boundary more quickly for post-correct trials, in accordance
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Figure 16: Analysis of the post-error trajectories for the PES regime. Phase-plane trajectories (in log-log
plot, for ease of viewing) of the post-correct and post-error trials. We consider that the previous decision was
decision R. The black filled circle shows the neutral attractor state (during the relaxation period). During the
presentation of the next stimulus, the attractors and basins of attraction change (represented by the gray area
and the green dashed lines). Panels (A) and (B): PES and PIA regime (c = 10% and ICD,max = 0.035 nA)
in the repeated case. The blue color codes for post-correct trials, and the red one for post-error. Panel (A):
average dynamics; Panel (B): single trajectories during the next trial. Panels (C) and (D): regime with PES and
PIA in the alternated case (c = −10% and ICD,max = 0.035 nA). The dynamics after the relaxation is followed
during 400ms for repeated and 800 ms for alternated case, as if there were no decision threshold. The actual
decision occurs at the crossing of the dashed gray line, indicating the threshold.
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with our model’s predictions. This suggests that the observed difference in buildup rates may not result from
some mechanism making use of the information on the correctness of the decision, but rather from the nonlinear
dynamics discussed here.

The PIA is understood from the same analysis as for the PES effect. For specific realizations of the noise that
lead to error trials, the post-error trials dynamics is closer to the boundary. Thus it has a higher probability to fall
on the other side of the basin of attraction. Hence, the error rates are lower for post-error trials than post-correct
trials.

PEQ effect. The PEQ effect can be understood from the same kind of analysis, based here on Figure 17
(analogous for the PEQ effect to Figure 16 for the PES effect). As seen previously, the PEQ effect occurs mostly
at high level of coherence. We consider first the repeated case (Figure 17.A and B). Since the coherence level
is high, at the end of the relaxation period, both post-correct and post-error trials lie within the correct basin of
attraction, far from the basin boundary. The reaction times and error rates of post-correct and post-error trials
for repeated decisions are thus similar.

In contrast, the alternated case (Figure 17.C and D) exhibits both the PIA and the PEQ effects. The post-
error’s end of relaxation now is inside the basin of attraction of the alternated choice. Hence, the error rate will
be lower than when the ending point is outside this region (post-correct trials begin at the boundary of the basin
of attraction). Moreover, the post-correct trials dynamics have to cross the boundary. Hence they are closer
to the manifold, which lead to slower dynamics, whereas the post-error dynamics can directly reach the new
attractor state. This analysis explains why the decreasing of PES and PIA do not occur at the same coherence
level too. Indeed the decreasing of PIA occurs when the ending point of the post-error relaxation crosses the
boundary, whereas the post-correct ending point remains into the same basin of attraction. For the PES effect to
decrease, the dynamics for both cases just need to be closer to the boundary and not necessarily on the opposite
side. Hence the decrease of the PES effect occurs at lower coherence than the PIA one.
Here we have seen that the occurrence of the PEQ effect depends on some very specific and fragile feature,
the crossing or not of a basin boundary. The conditions for observing the effect are thus likely to vary from
individual to individual, and from experiment to experiment. This may explain why the experimental results
about the PEQ effect remain controversial.

In Figure 18 A and B we investigate the parameter regime, at low coherence level, for which there is no effect
– neither PES, nor PEQ or PIA. The post-error and post-correct dynamics are very similar and lead to the same
relaxation ending point, far from the basin boundary. Finally, in Figure 18 C and D we consider the parameter
regime, at high coherence level, with only the PIA effect. Here the relaxations of post-error and post-correct
trials are different. However, as for the PEQ effect, at high coherence level both dynamics will be fast. For
alternated trials, none of the two ending points are in the correct basin of attraction.

As discussed for the PES effect, electro-physiological data only exist for experiments with feedback on the
correctness of the decision. In experiments on monkeys, Purcell and Kiani (2016) obtain puzzling results for
what concern the PEQ effect. They observe an important difference in baseline activities for post-correct and
post-error trials, which is not well accounted for either by their DDM analysis or by our model. However, in
terms of neural dynamics, this observed difference in the level of neural activities obviously implies that the
dynamical states are different at the time of the onset of the stimulus, a fact in agreement with our model’s
predictions. One may wonder if the separation in baseline activities, and not just in starting points, could be a
consequence of the feedback.

Correlating post-error effects with the activity distributions at the previous decision. To go beyond the
above analysis on the post-error adjustments (PES, PEQ and PIA effects), we analyze the respective influence
of the winning and losing population levels of activity at the time of the previous decision, onto the decision at
the next trial. This will first confirm the previous analysis, but also provide more insights on the the specificity
of the two opposite effects, PES and PEQ.

The mean activity, at the time of the decision, of the winning population is indistinguishable between post-
correct and post-error trials (Unequal Variance (Welch) test: Fail to reject, p = 0.16 at RSI of 500ms and Fail to
reject, p = 0.87 at RSI of 2000ms). However, for short RSIs (corresponding to PES regime) the mean synaptic
activities, at the time of the decision, of the losing population are different for post-correct and post-error trials
are different for post-correct and post-error trials (Unequal Variance (Welch) test: Reject, p = 2.7 × 10−20 at
RSI of 500ms and Fail to reject, p = 0.57 at RSI of 2000ms).
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Figure 17: Analysis of the post-error trajectories in the PEQ regime. Phase-plane trajectories (in log-log
plot, for ease of viewing) of the post-correct and post-error trials (same as Figure 16 in the PEQ case). We
consider that the previous decision was R. The black filled circle shows the neutral attractor state (during the
relaxation period). During the presentation of the next stimulus, the attractors and basins of attraction change
(represented by the gray area and the green dashed line). Panels (A) and (B): PEQ and PIA regime (c = 20%
and ICD,max = 0.047 nA). The blue color codes for post-correct trials, and the red one for post-error. The plain
lines represent mean dynamics for (A) or single dynamics (B). Panels (C) and (D): regime with PEQ and PIA
in the alternated case (c = −20% and ICD,max = 0.047 nA).The post-error relaxation already lies within the
alternated basin of attraction. For alternated trials, the dynamics needs to cross the invariant manifold (green
dashed line), which denotes the boundary between the basins of attraction. The dynamics is followed during
400ms for repeated and 800 ms for alternated case, as if there were no decision threshold. The actual decision
occurs at the crossing of the dashed gray line, indicating the threshold.
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Figure 18: Analysis of the post-error trajectories in the regime with neither PES nor PEQ effect Phase-
plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error trials. We consider
that the previous decision was decision R. The black filled circle shows the neutral attractor state (during the
relaxation period). During the presentation of the next stimulus, the attractors and basins of attraction change
(represented by the gray area and the green dashed lines). Panels (A) (mean dynamics) and (B) (single dynam-
ics): regime without PES or PIA (c = ±2% and ICD,max = 0.035 nA). We show both the alternated and the
repeated case, with the corresponding basins of attraction. The blue color codes for post-correct trials, and the
red one for post-error. For alternated trials, the dynamics needs to cross the invariant manifold (green dashed
line), which denotes the boundary between the basins of attraction. Panels (C) (mean dynamics) and (D) (single
dynamics): regime with PIA but without PES (c = ±20% and ICD,max = 0.035 nA). The dynamics is followed
during 400ms for repeated and 800 ms for alternated case, as if there were no decision threshold. The actual
decision occurs at the crossing of the dashed gray line, indicating the threshold.

To get more insights, we plot in Figure 19 the amplitude of the PES effect with respect to the inter-percentile
range of the distribution of the synaptic activities of the winning and losing populations at the time of the pre-
vious decision. We note that when PES occurs, the higher the activity of the losing population at the time of
decision, the stronger this effect will be. The influence of the winning population is observed, although in an
opposite way. When PES occurs these effects are correlated (Dark Blue: Pearson correlation: r = −0.98 and
p = 2.6× 10−7, Medium Blue: r = −0.98 and p = 9.5× 10−7), in the sense that the variations with respect to
the inter-percentile of the winning and losing population are correlated. These observations are consistent with
the analysis of the PES phase-plane trajectories. Indeed, the higher the losing population activity is, the closer
to the invariant manifold the state at the end of the relaxation period will be. Hence, the effect will be stronger
as it becomes easier (more likely) to cross the boundary.

However, we observe in Figure19, panels A and C, a different behavior for the PEQ effect: there is an almost
constant value of the PEQ effect with respect to the inter-percentiles of the distributions of the winning and losing
populations activities. This is explained by the fact that, at the end of the relaxation, if the category of the next
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Figure 19: Influence of the losing and winning population on the post-error adjustments. Panels (A) and (B)
represents respectively the reaction time (PES effect) and accuracy (PIA effect) with respect to inter-percentiles
range of the losing population synaptic activity distribution, at a RSI of 500 ms. The red curve corresponds to
c = 18 and ICD,max = 0.047, where we observe PEQ. Dark blue corresponds to strong PES effect (c = 10,
ICD,max = 0.035), medium blue to medium PES effect (c = 5, ICD,max = 0.05). Light blue corresponds to
no effect at all (c = 10, ICD,max = 0.035), for a RSI of 2 seconds. Panels (C) and (D) represent the same
curves for the winning population, with the same color code. The shadow area represents the 95% bootstrapped
confidence intervals of the corresponding effect.
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Figure 20: Schematic diagram of the post-error adjustments observations. The x-axis represents the
distance between the ending state of the relaxations and the boundary of the following basins of attraction. It
goes from "the ending states are far away from the boundary" to "both ending states are in correct basin of
attraction". The y-axis corresponds to the distance between the post-error and post-correct relaxations. The
crosses denote regions which are not relevant, or inside which the network do not commit errors.

stimulus is the opposite of the previous decision, the network state finds itself within the (correct) associated
basin of attraction, but very close to the boundary. This is true whatever the correctness of the previous decision.
However, the post-correct case will lead to an even closer location from the basin boundary. The nonlinearity
of the dynamics near the basin boundary will strongly amplify the small difference between post-correct and
post-error ending point. The PEQ effect will thus not be correlated with the size of this difference.

For what concerns the PIA effect, we observe in Figure 19.C-D a similar dependency in the synaptic activities
as for the PES effect, with a stronger effect for high activities of the losing population. This corroborates the
above phase plane analysis of the trajectories (Figure 13). Indeed, the PES and PIA effects both depend on the
position of the relaxation in the phase plane. Being closer to the boundary (high activity of the losing population)
leads to a smaller error rate in the next trial.

From the above analysis, a prediction of the model is that, whenever there are PES or PIA effects, the mean
activity of the losing population is different for correct and error decisions. Moreover, this level of activity is
correlated with the amplitude of the post-error adjustment effect. This can be seen in Figure 19, panels A, B. In
this figure we present the quantiles of the synaptic activities. The results would be similar, but much more noisy,
for the firing rates. We expect that this prediction can be tested in experiments by measuring the correlation
between the amplitude of the PES (or PIA) effect, and the difference in mean activities of the losing neural
population (difference between post-error and post-correct trials).

Discussion
We have shown that, without fine tuning of parameters, an attractor neural network accounts, qualitatively
and with the correct orders of magnitude, for sequential effects and post-error adjustments reported in TAFC
experiments in the absence of feedback about the correctness of the decision.

We provide evidence that these effects all result from the same intrinsic properties of the nonlinear neural
dynamics. We present in Figure 20 a schematic diagram of the occurrence of the effects depending on the
parameters, even though this does not exhaust the richness of the system’s behavior as discussed in this paper.
Our results suggest to test experimentally this general picture, and more precisely what is predicted by the phase
diagrams, Figures 9- 12. In particular it would be interesting to test the occurrence of post-error quickening at
large coherence level or the variations of post-error adjustments with respect to coherence levels.
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Explanations for post-error slowing
Several cognitive explanations of PES effects have been proposed (Rabbitt and Rodgers, 1977; Laming, 1979a;
Notebaert et al., 2009).

In particular, these effects have been discussed in the framework of drift diffusion models (Dutilh et al.,
2011; Goldfarb et al., 2012; Purcell and Kiani, 2016). Dutilh et al. (2011), in experiments without feedback
about the correctness of the decision, and Purcell and Kiani (2016), but in experiments with feedback, show that
post-error and post-correct trials can be fitted by DDMs with different sets of parameters values for post-error
and post-correct trials. In addition, Dutilh et al. (2011) argue that the modification of the decision threshold
within the DDM framework, would correspond to the hypothesis of increased response caution, the decision
becoming more cautious after an error. Yet, the neural correlates, which would determine the threshold or the
starting point remain obscure, especially in the absence of feedback on the correctness of the trial.

Within the attractor network framework considered here, the PES and PEQ effects are explained thanks to
an in-depth analysis of the neural dynamics. We have shown that the location of the dynamical state at the end
of the relaxation period (end of the RSI), with respect to the basins of attraction of the attractors induced by the
next stimulus, depends on what occurred at the previous trial. The fact that we have different properties, e.g.
for post-correct and post-error trials, for a same set of parameters values, is a result of the nonlinear dynamics
which amplifies the difference in ending points of the relaxation. This cannot be obtained within the DDM
framework (without the addition of other mechanisms) since, in a DDM, the state reached at the time of a
decision is identical for an error and a correct trial. An additional outcome of the analysis is that, for a given set
of parameters values, different regimes (PES, PEQ or no effect) may be observed depending on the coherence
level of the stimulus: due to the non linearities, the dynamical state at the end of the RSI also depends on the
coherence level.

Typical experiment on monkeys make use of reward-based protocols, hence with feedback. This makes
difficult to have electro-physiological data in the absence of feedback. Yet, as discussed in this paper, the faster
buildup of neural activity in post-correct trials than in post-error trials, as observed by Purcell and Kiani (2016)
on monkeys in random dot experiments, can be understood within our framework as a faster dynamics near the
boundary between attraction basins in the post-correct case.

As discussed above, another prediction of the model is that, in the case of PES or PIA, the mean activity of
the losing neural population is different for correct and error decisions, a difference which should correlate with
the amplitude of the effect.

First and higher order sequential effects
Sequential effects can be categorized as first order (if caused by the immediately previous trial), or higher order
(if caused by earlier trials in the sequence) (Laming, 1979b; Soetens et al., 1984, 1985; Cho et al., 2002).
Post-error adjustments have also been experimentally observed at higher order (see Laming (1979b)).

Within the framework of attractor networks, the sequential effects in choice repetitions are explained by
a starting bias, as discussed in Gao et al. (2009); Bonaiuto et al. (2016) and in the present paper. As stated
by Gao et al. (2009), without any additional memory module, an attractor network cannot reproduce the tran-
sition between automatic facilitation and strategic expectancy (Laming, 1968). In our network, for too short
RSIs (a few dozens of milliseconds) the sequential effects are too strong to be plausible. Decision conflict
mechanisms (Jones et al., 2002) could be implemented to correct this effect and to investigate other effects of
repetitions and alternations (Gao et al., 2009).

To account for higher order effects, Gao et al. (2009) considered a dynamical network making use of ad-
ditional memory modules. This network is explicitly set up in order to reproduce automatic facilitation and
strategic expectancy effects. In this model, even the first order effects result from a coupling between a short-
term memory module and the decision network. In contrast, we have shown here that a single attractor network,
without memory units, presents first order effects as an intrinsic property of the dynamics.

However, due to the nature of the dynamics in our model, we do not expect to reproduce higher-order effects.
Indeed, for parameters for which the model exhibits first order sequential effects ( ICD,max = 0.035 nA), we
find neither second order sequential effects, nor post-error adjustments, as illustrated in Figure 13-C-D.

One may ask whether a more complex architecture, taking into account other brain areas, could account for
higher order repetition biases and post-error adjustments effects as resulting from some intrinsic properties of
the dynamics, in the absence of specific memory units.
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Working memory and Decision-Making
In this work we have considered free response time task (Roitman and Shadlen, 2002) in which the subject
must make a decision as soon as possible. In the different protocol delayed visual motion discrimination exper-
iment (Shadlen and Newsome, 2001), the subject must make the decision at a prescribed time after the onset of
the stimulus. In such task, the decision choice must be stored in order to be retrieved at the prescribed instant of
time. In the original attractor neural network model (Wang (2002)), the decision is stored as in a working mem-
ory. As discussed at the beginning of this paper, within the framework of a single module of attractor decision
network, the corollary discharge considered in the present paper allows the system to make successive decisions,
at the price of removing the working memory behavior. An important issue is to understand how the decision
making system can adapt itself to these opposite contexts (see Niyogi and Wong-Lin (2013) for a model with
gain modulation). It is not unrealistic to expect a control mechanism onto the inhibitory current. Depending on
the task, the inhibitory current could be sent either just after the decision has been made, or later after the end of
the delay period. In the latter case, a prediction is that, compared to cases without delay, there should be weaker
post-error effects, but stronger repeated/alternated effects.

An alternative is to have a more complex architecture.However, the memory units in Gao et al. (2009) are
not appropriate for dealing with delayed discrimination experiments. For experiments with delays, Murray et al.
(2017) consider two interacting modules, one implementing the posterior parietal cortex and an other one the
posterior frontal cortex. It will be interesting to extend the present work by adding a working memory module
in line with Murray et al. (2017), in order to obtain a network performing sequential decision-making while
keeping the working memory behavior.

Finally we note that various brain areas have been shown to be involved in sequential decision tasks in which
the memory of the last decision has to be maintained (Middlebrooks and Sommer, 2012; Donahue et al., 2013;
Abzug and Sommer, 2018). This suggests more generally that a broader network is necessary for decision tasks
requiring memory.

Future Prospects
During behavioral tasks, subjects are not always aware of their mistakes (Yeung and Summerfield, 2012), but
do show post-error slowing. One may thus ask why one does not generally become aware that an error has
been made, since the neural dynamics is different following an error or a success. As discussed in the present
work, these differences in the dynamics are very subtle. The post-error and post-correct firing rates have broad
distributions, with some common properties (the same mean for example). The strong overlapping of these
distributions makes it difficult to infer the correctness of the decision on a single trial basis. Yet, the tails of
the post-error synaptic distribution should allow in some cases to infer that an error has been made. It would
be interesting to see in behavioral experiments whether the post-error effects can be related to the confidence in
one’s decision (Wei et al., 2015; Insabato et al., 2017).
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