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Analysis of 3D non-linear Stokes problem coupled to
transport-diffusion for shear-thinning heterogeneous
microscale flows, applications to digital rock physics

and mucociliary clearance

David Sanchez∗ Laurène Hume† Robin Chatelin‡ Philippe Poncet†§

February 27, 2018

Abstract
The present study provides the analysis of the generalized 3D Stokes problem in a time dependent domain.

The fluid viscosity is nonlinear and depends on a transported and diffused quantity. This is a natural model of
very low Reynolds number flow, typically at the microscale, involving a heterogeneous shear-thinning miscible
medium transported and diffusing in a solvent filling a deformable geometry. This one-way coupling is meaning-
ful when the action produced by the solid on the fluid is dominant or drives the flow. Several mathematical aspects
are developed. The penalized version of this problem is introduced, involving the penalization of the solid in a
deformable motion but defined in a simple geometry, which is of crucial interest for many numerical methods.
All the equations of this partial differential system are analyzed separately, and then the coupled model is shown
to be well-posed and to converge toward the solution of the initial problem. In order to illustrate the pertinence
of such models, two meaningful micrometer scale real-life problems are presented: the dynamics of a polymer
inside the pores of a real rock, in practice a Xanthan bio-degradable polymer percolating a Bentheimer sand-
stone and miscible in water, and the dynamics of the strongly heterogeneous mucus bio-film, covering the human
lungs surface, propelled by the vibrating ciliated cells. For these two examples, we show that the mathematical
hypothesis are satisfied.

1 Introduction
The dynamics of miscible visco-plastic heterogeneous fluids, at the microscale, are of interest in almost any mi-
crofluidic configuration where a miscible polymer is introduced and diluted in a fluid. This concerns life science
(at the scale of the cells), environment (at the scale of the pores in natural porous media), artificial micro-devices or
highly viscous flows (food industry). The complexity of the physics involved, especially in natural sciences such as
environment and life, leads to a very wide class of models with nonlinear coupling between meaningful quantities.
More precisely, we consider a smooth immersed deformable body B(t) moving in the three-dimensional domain
Ω ⊂ R3, and a highly viscous miscible shear-thinning fluid in a time-dependent fluid domain Ω \B(t).

Such a prescribed domain motion is especially suitable for phenomena driven by the solid, and whose fluid
feedback can be neglected. This avoids at the same time the parametrization of the fluid/solid interaction, that is
sometimes difficult to carry out or subject to large uncertainties (such as elasticity features). In order to set up
models around these geometries, the following set of R4 is introduced, for a final real time T > 0, defining the
fluid domain:

Ocp =
{

(t, x) ∈ [0, T ]× Ω, x ∈ Ω \B(t)
}

The shear-thinning feature induces a nonlinear Stokes equation, whose solution provides the fluid velocity u
and its pressure p. The heterogeneity means that the fluid parameters depend on a constituent concentration α and
the miscible aspects are modeled by the diffusion of this constituent α. These modeling assumptions lead to the
following system of partial differential equations:

−div(2µ(α, u)D(u)) = f −∇p in Ocp,
divu = 0 in Ocp,
∂tα+ u · ∇α− σ∆α = 0 in Ocp,
u(t, ·) = ū(t, ·) on ∂B(t) \ ∂Ω

(1)
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where D = (∇u + t∇u)/2 is the strain tensor and µ is a variable viscosity, with given initial conditions for α.
The diffusion coefficient σ is a strictly positive real number. The boundary conditions are defined in the sets of
conditions (7)-(8) and are quite usual: Dirichlet, Neumann, a combination of these two, or periodic conditions
on u, and typically no-flux (homogeneous Neumann) on α on the body inner boundary ∂B(t) \ ∂Ω and on the
domain boundary ∂Ω. To these conditions, we require the velocity to match a prescribed solid velocity ū almost
everywhere on the body: a one-way fluid structure interaction is assumed, which means that the counter force
exerted by the fluid on the solid is neglected, which is valid for the targeted applications.

The shear-thinning effect comes from the decreasing of µ with respect to the shear-rate γ̇ = (2D :D)1/2 def
=√

2|D|. The classical example is the Ostwald law µ = Kγ̇q−2/2 with the exponent q 6 2 and the consistency
K > 0 (this law is also called power-law). It leads to an operator −Kdiv(|D|q−2D) in equation (1), whose
analysis is very close to the q-Laplacian theory. Its bounded version, exhibiting two physical Newtonian bounds
and sometimes used as a regularization of the Ostwald law, is the following Carreau law:

µ (α, u) = µ∞ + (µ0(α)− µ∞)
(
1 + 2β(α)2|D(u)|2

) q(α)−2
2 (2)

where 0 < µ∞ 6 µ0(α) and q(α) ∈]1, 2] for all α, and where µ0, β and q are C∞ functions of α. With respect to
α, the viscosity at rest µ0 is assumed to be increasing, q is assumed to be decreasing (N = q+ 1 is called the fluid
index). and the material time β is assumed to be monotonic, for any γ̇. These conditions include constant values.
In practice α is chosen in [0, 1] but is free to be in any closed interval of R+.

In order to go forward to practical aspects of real-world applications, this system of partial differential equations
is approximated by means of the following penalization of B(t) aiming at matching the prescribed divergence-free
velocity u inside the body:

−div(2µ(αε, uε)D(uε)) +
1B(t)

ε
(uε − u) = f −∇pε in [0, T ]× Ω,

divuε = 0 in [0, T ]× Ω,
∂tα

ε + uε · ∇αε − div(σ∇αε) = 0 in Ocp

(3)

with ∂nαε(t, ·) = 0 set up on ∂B(t) \ ∂Ω for any time t, which ensures that there is no diffusion of fluid material
inside the body. The diffusion σ is allowed to be variable in space in order to be zero inside the body B(t).
Non zero values inside B(t) are also allowed, and provide a Brinkman term, which is a meaningful model for
porous bodies [14, 26]. The related boundary conditions are detailed in the sets of conditions (7)-(8), like the
non-penalized problem.

The penalized equations set (3) is definitely of interest in order to perform numerical simulations, as it makes
possible the use of numerical methods which avoid to mesh the body boundary ∂B(t) and its displacements.
This article is consequently structured in four main parts, describing mathematically and numerically this coupled
problem. The first part is a global overview that presents the model and the main mathematical results in section2.

The second part presents in section3 the analysis of each PDE involved in model (3), for time independent and
time dependent domains. This section introduces the transformation of the non-linear viscosity into a variable q-
Laplacian problem, in the spirit of the work from Diening et al. [16, 18, 17] for electro-rheological fluid, for which
they introduce the theory of variable exponent Lebesgue spaces. Still about this problem, sections 3.1 and 3.2
use p-Laplacian methods [28]) to prove solutions for the non-coupled Stokes problem. In section3.3 we study the
rather simple convection-diffusion equation written in the non simple case of a time-dependent domain Ω \ B̄(t).

The third part of this article focuses on the mathematical aspects of the coupling in section4, and shows the
proofs of Theorem 2.1 and Theorem 2.2. They provide the existence of the solution of the penalized coupled
problem (3), its convergence toward the solution of the initial problem (1) through the asymptotic analysis, and its
solution’s existence a the same time. Such a problem has been studied by Boyer and Fabrie in [4] for a coupling
between Navier-Stokes and transport equations, and also by the present authors in [12] for the Newtonian case.
The theoretical study of a fixed penalized domain was performed by Carbou and Fabrie [6] for the Navier-Stokes
equation.

The fourth part is dedicated to numerical simulation of such problems in real world configurations, showing that
all the hypothesis set up before are necessary and satisfied. The α-dependency of the parameters in (2) is subject
to the mixing model. Firstly, a geo-science example is provided in subsection 5.1, focusing on the heterogeneous
rheology in a non moving complex geometry. Secondly, a life science example related to the mucociliary clearance
of human lungs is performed in subsection 5.2, and involves both the shear-thinning mucus subject to mucin
heterogeneity around epithelial ciliated cells in motion.

2 Problem setup and main results

2.1 Domains, equations and boundary conditions
Let T > 0, B(t) a domain of R3 depending on time t ∈ [0, T ], and Ω a sufficiently smooth open set of R3. If one
considers a problem with one periodic boundary condition at least, let Q be an open set of R3 whose boundary is
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a) Acceptable set Ω b) Acceptable set Ω c) Not acceptable set Ω
2 periodic directions. 1 periodic direction, Γ is the Γ = tk=1..4Γk is not the

Γ = Γ1 ∪ Γ2 is smooth. boundary of a smooth Ω. boundary of a smooth domain Ω.

d) Acceptable set Ω e) Acceptable set Ω
Similar to case b. Cylindrical 5-periodic

tessellation of R2

Figure 1: Acceptable domains Ω whose boundaries have to be sufficiently smooth, and how to manage corners in
domain regularity. Pairs of symbols denote periodicity.

sufficiently smooth. We can also define an equivalence relationship ∼ (whose kernel is denoted G) such that the
quotient space Ω ≡ Q/G, with a topology induced from Q, is sufficiently smooth.

Consequently, thanks to the quotient topology, the domain is smooth even if the faces involving periodic bound-
ary conditions exhibit corners with the remaining part of the domain boundary. The Figure 2.1 illustrates the
different configurations of acceptable and non acceptable domains with adequate boundary conditions.

One typical example of interest for the present study is a cube ]0, L[3 on which two periodic boundary condi-
tions are set: in that case, Q = R2×]0, L[ and G = LZ2 × {0}, so that Ω ≡ Q/G is smooth.

Four sets of R4 are now introduced:

O = [0, T ]× Ω the whole domain in time and space coordinates,
Op = {(t, x) ∈ [0, T ]× Ω, x ∈ B(t)} the body, ie the penalized domain,

Ocp =
{

(t, x) ∈ [0, T ]× Ω, x ∈ Ω \B(t)
}

= O \Op the fluid domain,
Σ = {(t, x) ∈ [0, T ]× Ω, x ∈ ∂B(t) \ ∂Ω} the inner boundary of Op.

(4)

The problem (1) rewrites in these spaces:
u = ū in Op,
−div(2µ(α, u)D(u)) = f −∇p in Ocp,
divu = 0 in O,
∂tα+ u · ∇α− div(σ∇α) = 0 in Ocp.

(5)

On the boundaries of B(t) and Ω, where the external normal field ν is defined, we introduce u⊥ = (u · ν)ν
and u‖ = u − u⊥ = −(u ∧ ν) ∧ ν, respectively the normal and the tangential parts of u ∈ R3 (the hypothesis
H1 introduced after will forbid the fact that ν may be undefined at ∂B(t) and ∂Ω intersection). In order to easily
setup up the boundary conditions of problem (1), let denote Γ1, . . . ,ΓI the I connected components of ∂Ω and
their union

Γ =
⊔

i=1..I

Γi, (6)

on which a set of θi ∈ {0, 1}, constant on each connected component Γi, is introduced in order to naturally switch
between Neumann and Dirichlet boundary conditions. This leads to the following set of initial and boundary
conditions: 

u⊥ = 0 on [0, T ]× Γ,

θiu‖ + (1− θi)
∂u‖

∂ν
= 0 on [0, T ]× Γi, ∀i ∈ {1..I},

u is periodic otherwise.

(7)
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2.A) Acceptable 2.B) Acceptable 2.C) Acceptable 2.D) Acceptable
Case used in muco- Case usual in bluff Case usual in inner Bi-periodic case.
-ciliary clearance body wake flow simulations
simulations §5.2. simulations. (e.g. pipes).

2.E) Acceptable 2.F) Acceptable 2.G) Not acceptable 2.H) Not acceptable
Case considered in Case used in B is not regular. B is regular but Ω\B

DRP simulations §5.1. DRP simulations §5.1. isn’t and exhibits a
cusp at boundaries.

Figure 2: Acceptable cases of domains B for the Ck-bi-regularity property introduced in definition 2.2.

with u = ū on Σ, and 
∂α

∂ν
= 0 on Σ and on [0, T ]×Γ,

α is periodic otherwise,
α(0, ·) = α0 in Ω.

(8)

Although the periodicity is included in the definition of the set Ω it is reminded in all equations. The viscosity
µ and its regularity, with respect to α, are assumed to be as follows:

µ(α, u) = µ∞ + (µ0(α)− µ∞)
(
1 + 2β(α)2|D(u)|2

) q(α)−2
2

µ0 ∈ C1(R) ∩W1,∞(R) and ∀α ∈ R, µ0(α) > µ∞ > 0,
β ∈ C1(R) ∩W1,∞(R) and ∀α ∈ R, β(α) > 0,
q ∈ C1(R) ∩W1,∞(R) and ∀α ∈ R, q(α) ∈ [q−, 2] where q− > 1,

According to the modeling, we rewrite the penalized problem (3):
−div

(
2µ(αε, uε)D(uε)

)
+

1B(t)

ε
(uε − ū) = f −∇pε in O,

divuε = 0 in O,
∂tα

ε + uε · ∇αε − div (σ∇αε) = 0 in Ocp,
αε is extended by 0 in Op,

(9)

with its initial and boundary conditions following the equation set (7)-(8).
In the following the norm on the spaces Lp(Ω;Rn) will be simply denoted by ‖ · ‖Lp(Ω) to ease the notations.

Finally the following functional spaces are introduced:

Definition 2.1 We let F(Ω;X) the set of functions defined on Ω with values in X and

L2
0(Ω) =

{
w ∈ L2(Ω),

∫
Ω
w dx = 0

}
V (Ω) =

{
w ∈ H1(Ω;R3), divw=0 on Ω, w⊥ = 0 on Γ, θiw⊥ = 0 on Γi, i=1..I

}
with the usual H1-norm, the periodicity of function and normal field ν being implicitly taken into account by
definition of Ω. Thanks to the generalized Poincaré’s inequality (see [3] section III.6), there exists two constants
depending only on Ω such that

c1‖∇w‖L2(Ω) 6 ‖w‖H1(Ω) 6 c2‖∇w‖L2(Ω).
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2.2 Main results
The following existence and uniqueness results require some regularity assumptions on the obstacle’s time evolu-
tion (H1)-(H2) and on the velocity ū inside the obstacle (H3). We first introduce a new definition:

Definition 2.2 Let B be an open set in Ω. B has the Ck-bi-regularity property if and only if B has the uniform
Ck-regularity property (see [2] section 4 for the definition) up to the boundary of Ω and Ω \ B̄ is an open set in Ω
having the uniform Ck-regularity property.

Hypothesis 1 (H1) We assume that

• The domain B is an open set in Ω having the C2-bi-regularity property,

• Ω \ B̄ is an open connex set in Ω.

One can notice that if B̄ ∩ ∂Ω = ∅ and B has the uniform Ck-regularity property then B has the Ck-bi-
regularity property. Moreover, in the case of the lungs, there exists (l, l′) ∈ (R+)2 such that 0 < l < l′ < L and
Γ × [0, l] ⊂ B ⊂ Γ × [0, l′], i.e. we assume that the bronchial wall is the fixed domain Γ × [0, l] where cilia are
attached and that the cilia never reach the top of the domain Ω. There exists then domains B having the Ck-bi-
regularity property. Moreover the inner boundary Σ = ∂B \ ∂Ω of B is smooth and may be smoothly periodically
extended. It splits Ω in two regular open sets.

Furthermore, we need existence and regularity of solutions for the convection-diffusion equation in the de-
formable domain, obtained by rewriting the equations in a stationary domain thanks to a diffeomorphism Ψ. The
following assumptions on the regularity of Ψ are required for the continuity of field v and operator A in equa-
tions (16) and (17) :

Hypothesis 2 (H2) There exists a function Ψ ∈ C1([0, T ]; C2(Ω;R3)) such that for all t ∈ [0, T ]

• Ψ(t) is a C2-diffeomorphism on Ω.

• B(t) = Ψ(t)(B).

• Ψ(t) preserves the C2-bi-regularity property.

• Ψ(t) preserves the Lebesgue measure of all sets, i.e. ∀ω ⊂ Ω |Ψ(t)(ω)| = |ω|.

Remarks:

• The domain B(t) has the C2-bi regularity property.

• In the following, Ψ(t)(ω) is also denoted Ψ(t, ω) or Ψt(ω).

• In the case of the lung simulations, if for all t ∈ [0, T ], one has
Ψ(t)|[0,l]×Γ = Id[0,l]×Γ, Ψ(t)([0, l′]× Γ) ⊂ [0, l′]× Γ, then

Ψ(t) preserves the C2-bi-regularity property.

• We also have Ω \ B̄(t) = Ψ(t,Ω \ B̄).

• The preservation of the measure also implies that
∀(t, x) ∈ [0, T ]× Ω, |det JΨ(t)(x)| = 1 and tr(J−1

Ψ(t)∂tΨ(t)) = 0.

Hypothesis 3 (H3) We assume that

• ū ∈ C0([0, T ]; H2(B(·);R3))

• ∀t ∈ [0, T ], div ū(t, ·) = 0 in B(t),

• ū fulfills the set of boundary conditions (7).

Hypothesis 4 (H4) We assume that

• (α,Z) 7→ (µ0(α) − µ∞)q′(α)
(
1 + 2β(α)2Z

) q(α)
2 −1

ln(1 + 2β2(α)Z) is bounded on K × R+ for all
compact set K ⊂ R,

• α 7→ (µ0(α)− µ∞)(q(α)− 2)β
′(α)
β(α) is bounded on K ∩ {α, β(α) 6= 0} for all compact set K in R.

Definition 2.3 (uε, pε, αε) is a weak solution to (7)-(8)-(9) if it fulfills

• uε ∈ Lq(0, T ;V (Ω)), pε ∈ Lq(0, T ; L2
0(Ω)) with 2 6 q 6 +∞,
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• αε ∈ L∞(0, T ; H2(Ω \ B̄(·))) ∩ L2(0, T ; H3(Ω \ B̄(·))) and αε ∈ H1(0, T ; H1(Ω \ B̄(·))),

• αε = 0 in Op,

• for all v ∈ Cc(0, T ;V (Ω)),∫∫
(0,T )×Ω

2µ(αε, uε)D(uε) : D(v) dx dt+
1

ε

∫∫
Op

(uε − ū) · v dx dt =

∫∫
(0,T )×Ω

f · v dx dt,

• αε is the solution to ∂tαε + uε · ∇αε − div (σ∇αε) = 0 in Ocp and satisfies the set of initial and boundary
conditions (8).

Theorem 2.1 Let α0 ∈ H2(Ω \ B̄(0)). We assume (H1), (H2), (H3), (H4) and that for all T > 0, f ∈
L∞(0, T ;L2(Ω;R3)). There exists then a unique weak solution (uε, pε, αε) to (8)-(9). Moreover there exists
some constants independent from ε such that uε fulfills

µ∞‖D(uε)‖2L∞([0,T ];L2(Ω)) +
1

ε
‖uε − ū‖2L∞([0,T ];L2(B(·)))

6 C‖f‖L∞([0,T ];L2(Ω))‖ū‖L∞([0,T ];H2(B(·))) + C ′‖f‖2L∞([0,T ];L2(Ω))

+C ′′max

(
‖ū‖2L∞(0,T ;H2(B(·))), ‖ū‖

3−q−
2

L∞(0,T ;H2(B(·)))

)
µ∞‖D(uε)‖2L2([0,T ];L2(Ω)) +

1

ε
‖uε − ū‖2L2([0,T ];L2(B(·)))

6 C‖f‖L2([0,T ];L2(Ω))‖ū‖L∞([0,T ];H2(B(·))) + C ′‖f‖2L2([0,T ];L2(Ω))

+C ′′max

(
‖ū‖2L2([0,T ];H2(B(·))), ‖ū‖

3−q−
2

L
3−q−

2 ([0,T ];H2(B(·)))

)
,

where q− = inf{q(α), α ∈ R} > 1.

Definition 2.4 (u, p, α) is solution to (5)-(7)-(8) if it fulfills

• u ∈ Lq(0, T ;V (Ω \ B̄(·))), p ∈ Lq(0, T ; L2
0(Ω \ B̄(·))) with 2 6 q 6 +∞,

• α ∈ L∞(0, T ; H2(Ω \ B̄(·))) ∩ L2(0, T ; H3(Ω \ B̄(·))) ∩ H1(0, T ; H1(Ω \ B̄(·))),

• u = ū in Op,

• (u, p) ∈ Lq(0, T ; H1(Ω \ B̄(·);R3))×Lq(0, T ; L2
0(Ω \ B̄(·))) with 2 6 q 6 +∞ is the solution to divu = 0

in Ocp and
−div(2µ(α, u)D(u)) = f −∇p ∈ L2(0, T ; H−1(Ω \ B̄(·))),

satisfying the set of boundary conditions (7) and u|Σ = ū|Σ a.e.

• α is the solution to ∂tα + u · ∇α − div(σ∇α) = 0 in Ocp and satisfies the set of initial and boundary
conditions (8).

Theorem 2.2 Under the assumptions of Theorem 2.1, there exists a unique solution (u, p, α) to (5)-(7)-(8). More-
over the weak solution (uε, pε, αε) of (7)-(8)-(9) strongly converges towards (u, p, α) as ε goes to zero.

Furthermore, many technical arguments are provided in Appendix A in order to build the proof of these two
theorems, detailed in section 4.

6



3 Mathematical aspects of the penalized equations

3.1 The generalized Stokes problem in a non moving domain
We are now interested in the following penalized Stokes problem

−div(2µ(x, u)D(u)) +
1B
ε

(u− ū) = f −∇p in Ω,

µ(x, u) = µ∞ + (µ0(x)− µ∞)(1 + 2β(x)2D(u) : D(u))
q(x)
2 −1 in Ω,

divu = 0 in Ω,

(10)

where u satisfies the boundary conditions (7) and ε > 0. In this problem, the given data are (µ0, β) ∈ (F(Ω;R+))2,
q ∈ P(Ω), B an open set in Ω, ū ∈ F(B;R3) fulfilling divū = 0, f ∈ F(Ω;R3), and the unknowns are
D(u) =

(
∇u+ t∇u

)
with u ∈ F(Ω;R3) and p ∈ F(Ω;R).

We first consider a time-independent problem. To obtain the following results we assume (H1) and we need an
additional assumption on ū (H5) which is a simpler time-independent version of (H3).

Hypothesis 5 (H5)

• ū ∈ H2(B;R3),

• divū = 0 in B,

• ū⊥ = 0 on Γ,

• ū follows the set of boundary conditions in (7).

3.1.1 Existence and uniqueness

Definition 3.1 We associate to the problem (10) the following variational formulation for all v ∈ V (Ω),∫
Ω

2µ(x, u)(D(u) : D(v)) dx+
1

ε

∫
B

(u− ū) · v dx =

∫
Ω

f · v dx. (11)

Theorem 3.1 Let

• ε > 0, µ∞ > 0,

• µ ∈ L∞(Ω) such that for all x ∈ Ω, µ0(x) > µ∞,

• β ∈ L∞(Ω) such that for all x ∈ Ω, β(x) > 0,

• q ∈ P(Ω) such that 1 < q− 6 q+ 6 2,

• ū fulfilling (H5),

• f ∈ L2(Ω;R3).

Then there exists a unique (u, p) ∈ V (Ω)× L2
0(Ω) solution of (10).

Proof. This proof is inspired from various results from [3] section II.3.2 and from [12] but is adapted to the
nonlinear case using Theorem A.12.
We let

a(u, v) =

∫
Ω

2µ(u)D(u) : D(v) dx+
1

ε

∫
B

uv dx

for all (u, v) ∈ V 2. Then

|a(u, v)| =∣∣∣∣∫
Ω

2
(
µ∞+(µ0−µ∞)(1+2β(x)2D(u) :D(u))

q(x)
2 −1

)
D(u) :D(v) dx+

1

ε

∫
B

uv dx

∣∣∣∣
6 2µ∞‖D(u)‖L2(Ω)‖D(v)‖L2(Ω) +

1

ε
‖u‖L2(B)‖v‖L2(B)

+

∫
Ω

2(µ0 − µ∞)2
q(x)
2 −2

(
1 + (

√
2β(x))q(x)−2|D(u)|q(x)−2

)
|D(u)||D(v)| dx

6 2µ∞‖D(u)‖L2(Ω)‖D(v)‖L2(Ω) +
1

ε
‖u‖L2(B)‖v‖L2(B)

+2‖(µ0 − µ∞)2
q(x)
2 −2‖∞‖D(u)‖L2(Ω)‖D(v)‖L2(Ω)

+2‖(µ0 − µ∞)2q(x)−3β(x)q(x)−2‖∞
×
((

1
q(x)

)+

+
(

1
q′(x)

)+
)
‖|D(u)|q(x)−1‖Lq′(·)(Ω)‖D(v)‖Lq(·)(Ω).
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It follows that

|a(u, v)| 6 C‖D(u)‖L2(Ω)‖D(v)‖L2(Ω) +
1

ε
‖u‖L2(B)‖v‖L2(B)

+C‖D(v)‖Lq(·)(Ω) max
(
‖D(u)‖q

−−1

Lq(·)(Ω)
, ‖D(u)‖q

+−1

Lp(·)(Ω)

)
6 C

(
‖D(u)‖L2(Ω) + max

(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖q
+−1

L2(Ω)

))
‖D(v)‖L2(Ω)

+ 1
ε‖u‖L2(B)‖v‖L2(B)

6 C max
(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖L2(Ω)

)
‖D(v)‖L2(Ω) +

1

ε
‖u‖L2(B)‖v‖L2(B)

6 Cε max
(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖L2(Ω)

)
‖D(v)‖L2(Ω).

The application v 7→ a(u, v) is well defined from V to R, linear and continuous if u ∈ V . Thanks to the Riesz
theorem, for all u ∈ V there exists an unique A(u) ∈ V ′ such that a(u, v) =< A(u), v >. The application
A : V → V ′ is well defined and bounded.
The application λ 7→ a(u + λu′, v) is continuous from R to R thanks to the dominated convergence theorem for
all (u, u′, v) ∈ V 3.
Thanks to Lemma A.10 we have

< A(u)−A(v), u− v >

=

∫
Ω

2µ∞|D(u)−D(v)|2 dx+
1

ε

∫
B

|u− v|2 dx

+

∫
Ω

2(µ0 − µ∞)
[
(1 + 2β2(x)|D(u)|2)q(x)/2−1D(u)

−(1 + 2β2(x)|D(v)|2)q(x)/2−1D(v)
]

: (D(u)−D(v)) dx

>
∫

Ω

2µ∞|D(u)−D(v)|2 dx > 0.

Since µ0 > µ∞, thanks to the Korn’s and Poincaré’s inequalities we have∫
Ω

2µ|D(u)|2 dx+
1

ε

∫
B

|u|2 dx

>
∫

Ω

2µ∞|D(u)|2 dx+

∫
Ω

2(µ0 − µ∞)(1 + 2β2(x)|D(u)|2)
q(x)
2 −1|D(u)|2 dx

> 2µ∞‖D(u)‖2L2(Ω) > C‖u‖2H1(Ω).

Consequently
|a(u, u)|
‖u‖H1(Ω)

→ +∞ as ‖u‖H1(Ω) → +∞. Moreover the application L : V → R defined by

L(v) =

∫
Ω

f · v dx+
1

ε

∫
B

ū · v dx

is well defined, linear and continuous since

|L(v)| 6 ‖f‖L2(Ω)‖v‖L2(Ω) +
1

ε
‖ū‖L2(B)‖v‖L2(B) 6 C‖v‖H1(Ω),

so the application L is in V ′. Thanks to the non-linear Lax-Milgram Theorem A.12 there exists a weak solution
u ∈ V such that A(u) = L.

Let (u, v) ∈ V 2 two weak solutions of (10). Then

< A(u)−A(v), u− v > = < 0, u− v >= 0

>
∫

Ω

2µ∞|D(u− v)|2 dx > C‖u− v‖2H1(Ω).

The solution is then unique and the end of the proof is classical: see Appendix B for details.

3.1.2 “Harmonic” prolongation of ū

To obtain precise estimates on (u, p) we need a prolongation ũ of ū in the whole domain Ω. We study the following
system: 

−div(2µ∞D(ũ)) = −∇p̃ in Ω \ B̄,
divũ = 0 in Ω \ B̄,
ũ = ū on ∂B \ ∂Ω,
ũ satistfies the boundary conditions in (7).

(12)
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Proposition 3.2 We assume (H1)-(H5). There exists a unique weak solution (ũ, p̃) of (12) with ũ ∈ H1(Ω\ B̄;R3)
and p̃ ∈ L2

0(Ω \ B̄). Moreover there exists a constant C depending on Ω \ B̄ such that

‖ũ‖H1(Ω\B̄) + ‖p̃‖L2
0(Ω\B̄) 6 C‖ū‖H2(B).

Proof. cf [12]

Proposition 3.3 Under the assumptions of Prop. 3.2, we let P (ū) = 1Bū+1Ω\B̄ũ. Then P (ū) ∈ V (Ω) and there
exists a constant C depending on B (and Ω) such that

‖P (ū)‖H1(Ω) 6 C‖ū‖H2(B).

3.1.3 Estimates on (u, p)

Under the assumptions of Theorem 3.1 and Proposition 3.2 we let (u, p) the unique weak solution to (10) given by
Theorem 3.1. Applying (11) with v = u− P (ū), we obtain∫

Ω

2µ(x, u)|D(u)|2 dx+
1

ε
‖u− ū‖2L2(B)

6 ‖f‖L2(Ω)

(
‖u‖L2(Ω) + ‖P (ū)‖L2(Ω)

)
+

∫
Ω

2µ(x, u)(D(u) : D(P (ū))) dx,

6 ‖f‖L2(Ω)

(
‖u‖L2(Ω) + ‖P (ū)‖L2(Ω)

)
+C max

(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖L2(Ω)

)
‖D(P (ū))‖L2(Ω)

6 C‖f‖L2(Ω)‖ū‖H2(B) + C‖f‖2L2(Ω)

+C max

(
‖D(P (ū)‖

3−q−
2

L2(Ω)
, ‖D(P (ū)‖2L2(Ω)

)
+ µ∞‖D(u)‖2L2(Ω)

hence
µ∞‖D(u)‖2L2(Ω) +

1

ε
‖u− ū‖2L2(B)

6 C‖f‖L2(Ω)‖ū‖H2(B) + C‖f‖2L2(Ω) + C max

(
‖ū‖

3−q−
2

H2(B)
, ‖ū‖2H2(B)

)
.

(13)

From (10), we deduce

‖∇p‖H−1(Ω)

6 ‖f‖H−1(Ω) + ‖div(2µD(u))‖H−1(Ω) +
1

ε
‖1B(u− ū)‖H−1(Ω)

6 ‖f‖L2(Ω) + ‖µ(x, u)D(u))‖L2(Ω) +
1

ε
‖u− ū‖L2(B)

6 ‖f‖L2(Ω) +
1

ε
‖u− ū‖L2(B) + 2µ∞‖D(u)L2(Ω)

+‖2
q(x)
2 −1(µ0 − µ∞)‖∞‖D(u)‖L2(Ω)

+‖2
q(x)
2 −1(µ0 − µ∞)βq(x)−2‖∞‖|D(u)|q(x)−1‖L2(Ω)

6 ‖f‖L2(Ω) +
1

ε
‖u− ū‖L2(B) + 2µ∞‖D(u)‖L2(Ω)

+‖2
q(x)
2 −1(µ0 − µ∞)‖∞‖D(u)‖L2(Ω)

+C‖2
p(x)
2 −1(µ0 − µ∞)βq(x)−2‖∞

×
(

max
(
‖D(u)‖2q

−−2

L2q(·)−2(Ω)
, ‖D(u)‖2q

+−2

L2q(·)−2(Ω)

))1/2

6 ‖f‖L2(Ω) +
1

ε
‖u− ū‖L2(B) + 2µ∞‖D(u)‖L2(Ω)

+‖2
q(x)
2 −1(µ0 − µ∞)‖∞‖D(u)‖L2(Ω)

+C‖2
q(x)
2 −1(µ0 − µ∞)βq(x)−2‖∞max

(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖q
+−1

L2(Ω)

)
Since the mean of p is null, Poincaré’s lemma gives

‖p‖L2
0(Ω) 6 C

[
‖f‖L2(Ω) +

1

ε
‖u− ū‖L2(B)

+2µ∞‖D(u)‖L2(Ω) +
∥∥∥2

q(x)
2 −1(µ0 − µ∞)

∥∥∥
∞
‖D(u)‖L2(Ω)

+C ′
∥∥∥2

q(x)
2 −1(µ0 − µ∞)βq(x)−2

∥∥∥
∞

max
(
‖D(u)‖q

−−1
L2(Ω)

, ‖D(u)‖q
+−1

L2(Ω)

)]
.
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3.2 The generalized Stokes problem in a time-dependent domain
Let T > 0. In the following the domain B depends on the time t ∈ [0, T ] and we need to track the dependency
in time t of the constants (especially the ones in all Sobolev related theorems). Using classical trace and lifting
theorems (on the domain B(t) or Ω \ B̄(t)) there appear some constants depending on B(t) and Ω \ B̄(t). Thanks
to the Proposition A.6 we can estimate the time-behaviour of these constants.

Proposition 3.4 (Time dependent “harmonic” lifting) Assuming (H1)-(H2)-(H3) and µ∞ > 0, there exists a
unique weak solution (ũ, p̃) to 

−2div(µ∞D(ũ)) = −∇p̃ in Ocp,
divũ = 0 in Ocp,
ũ = ū a.e. on Σ,
ũ satisfies the boundary conditions (7),

(14)

where ũ ∈ L∞(0, T ; H1(Ω \ B̄(·);R3)) and p̃ ∈ L∞(0, T ; L2
0(Ω \ B̄(·))).

Moreover there exists a constant C depending on B and Ψ such that for all 1 6 q 6 +∞

‖ũ‖Lq(0,T ;H1(Ω\B̄(·))) + ‖p̃‖Lq(0,T ;L2
0(Ω\B̄(·))) 6 C‖ū‖H3(Op).

Proof. see [12].

Proposition 3.5 Under the assumptions of Proposition 3.4 we letP (ū) = 1Op ū+1Ocp ũ. ThenP (ū) ∈ L∞(0, T ;V (Ω))
and there exists a constant C depending on B and Ψ such that for all 1 6 q 6 +∞, ‖P (ū)‖Lq(0,T ;H1(Ω)) 6
C‖ū‖L∞([0,T ];H2(B(·))).

Following the scheme used in section 3.1 we obtain the following theorem.

Theorem 3.6 We assume (H1), (H2) and (H3). Let

• ε > 0, µ∞ > 0, T > 0,

• µ ∈ L∞([0, T ]× Ω) such that for all (t, x) ∈ [0, T ]× Ω, µ0(t, x) > µ∞,

• β ∈ L∞([0, T ]× Ω) such that for all (t, x) ∈ [0, T ]× Ω, β(t, x) > 0,

• q ∈ L∞([0, T ]× Ω) such that for all t ∈ [0, T ] q(t, ·) ∈ P(Ω) and
1 < q− 6 q+ 6 2,

• f ∈ L∞(0, T ; L2(Ω;R3)).

Then there exists a unique weak solution (u, p) to the problem
−div(2µ(x, u)D(u)) +

1B(t)

ε
(u− ū) = f −∇p in [0, T ]× Ω,

divu = 0 in [0, T ]× Ω,
u satisfies the set of boundary conditions (7),

(15)

which fulfills (u, p) ∈ Lr ([0, T ], V (Ω)) × Lr
(
[0, T ]; L2

0(Ω)
)

for all 2 6 r 6 +∞. We also have the following
inequalities:

µ∞‖D(u)‖2L∞([0,T ];L2(Ω)) +
1

ε
‖u− ū‖2L∞([0,T ];L2(B(·)))

6 C‖f‖L∞([0,T ];L2(Ω))‖ū‖L∞([0,T ];H2(B(·)))

+C ′‖f‖2L∞([0,T ];L2(Ω)) + C ′′max

(
‖ū‖2L∞(0,T ;H2(B(·))), ‖ū‖

3−q−
2

L∞(0,T ;H2(B(·)))

)
and

µ∞‖D(u)‖2L2([0,T ];L2(Ω)) +
1

ε
‖u− ū‖2L2([0,T ];L2(B(·)))

6 C‖f‖L2([0,T ];L2(Ω))‖ū‖L∞([0,T ];H2(B(·))) + C ′‖f‖2L2([0,T ];L2(Ω))

+C ′′max

(
‖ū‖2L2([0,T ];H2(B(·))),

∥∥ū∥∥ 3−q−
2

L
3−q−

2 ([0,T ];H2(B(·)))

)
.
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3.3 The convection-diffusion equation in a time-dependent domain
Theorem 3.7 We assume (H1) and (H2). Let σ > 0 and u ∈ L∞(0, T ;V (Ω)). Let α0 ∈ H1(Ω \ B̄(0)). There
exists a unique solution α ∈ L∞(0, T ;H1(Ω \ B̄(·))) ∩ L2(0, T ; H2(Ω \ B̄(·))) ∩ L2(0, T ; L2(Ω \ B̄(·))) to the
problem

∂tα+ u · ∇α− div (σ∇α) = 0 in Ocp,

where α follows the set of initial and boundary conditions (8). Moreover if α0 ∈ H2(Ω \ B̄(0)) then α ∈
L∞(0, T ; H2(Ω \ B̄(·)))∩ L2(0, T ; H3(Ω \ B̄(·)))∩H1(0, T ; H1(Ω \ B̄(·))) and there exist some constants C and
C ′ depending only on Ω and η such that for all t ∈ [0, T ]:

‖α(t, ·)‖H2(Ω\B̄(t))

6 C‖α0‖H2(Ω\B̄(0)) exp
(
C ′t

(
1 + ‖u‖2L∞(0,T ;H1(Ω)) + ‖u‖4L∞(0,T ;H1(Ω))

))
,

‖α‖L2(0,t;H3(Ω\B̄(·))) 6

C‖α0‖H2(Ω\B̄(0)) exp
(
C ′t

(
1 + ‖u‖2L∞(0,T ;H1(Ω)) + ‖u‖4L∞(0,T ;H1(Ω))

))
.

Proof. In order to deal with the variable domain we use the diffeomorphism Ψ defined in hypothesis (H2) to rewrite
the equation in a fixed domain but with time-dependent differential operators. We let β(t, y) = α(t,Ψ(t, y)) for
all t ∈ [0, T ] and y ∈ Ω \ B̄. In the following we note Ψt(y) instead of Ψ(t, y). β fulfills

∂tβ + v(t, y) · tJt(y)−1∇β − σA(t, y)β = 0 in Ω \ B̄,(
Jt(y)−1tJt(y)−1∇β

)
· ν = 0 on

(
∂(Ω \ B̄) ∩ Ω

)
∪ Γ,

β has periodic conditions otherwise,
β(0, ·) = α0 (Ψ0(·)) in Ω \ B̄,

(16)

where ν is the outward unitary normal to ∂(Ω \ B̄), Jt(y) is the Jacobian matrix of y 7→ Ψt(y), v(t, y) =
u(t,Ψt(y))− ∂tΨt(y) and

A(t, y)β = div
(
1Ω\B̄(y)(tJt(y)Jt(y))−1∇β

)
. (17)

Since we have assumed that Ψ preserves the measure we have |det Jt(y)| = 1 for all (t, y) ∈ [0, T ]×Ω hence
the expression of the operator A. This also allows us to work with the classical Lebesgue and Sobolev spaces
instead of weighted ones (with a dependence in time). This assumption also leads to divJ−1

t (y)∂tΨ(t, y) = 0 for
all (t, y) ∈ [0, T ]× Ω \ B̄ and implies that div(Jt(y)−1v(t, y)) = 0.

Instead of using a Galerkin’s method where the time-dependence of the eigenfunctions ofAwill be problematic

we discretize in time the equation to prove the existence of solutions. Let N ∈ N∗, h =
T

N
and tn = nh. We are

looking for βn(y) approximation of β(tn, y), which is the solution of the following implicit numerical scheme:
βn+1 − βn

h
+ vn+1 · tJtn+1(y)−1∇βn+1 − σA(tn+1, y)βn+1 = 0 in Ω \ B̄,(

J−1
tn+1

tJtn+1(y)−1∇βn+1
)
· ν = 0 on

(
∂(Ω \ B̄) ∩ Ω

)
∪ Γ =: γ,

βn+1 has periodic conditions otherwise,
β0 = β(0, ·) = α0 (Ψ0(·)) in Ω \ B̄,

(18)

where vn+1(y) =
1

h

∫ tn+1

tn
(u(t,Ψt(y))− (∂tΨt(y))) dt. By taking the scalar product of the equation with

β′ ∈ H2(Ω \ B̄) fulfilling the same boundary conditions and integrating by parts, we get

a(βn+1, β′)

:=

∫
Ω\B̄
βn+1β′+hσ

(
tJ−1
tn+1∇βn+1

)
·
(
tJ−1
tn+1∇β′

)
+hvn+1 ·

(
tJ−1
tn+1∇βn+1

)
β′ dx

= L(β′) :=

∫
Ω\B̄

βnβ′ dx.

(19)

This formulation is well-posed in H1(Ω\B̄). Thanks to the regularity of Ψ , the operator L is linear and continuous
on H1(Ω \ B̄) and a is bilinear and continuous on

(
H1(Ω \ B̄)

)2
. Moreover

a(β, β) > ‖β‖22 + hσ‖tJ−1
tn+1∇β‖22 − h‖vn+1‖6‖β‖3‖tJ−1

tn+1∇β‖2
> ‖β‖22 + hσ‖tJ−1

tn+1∇β‖22 − Ch‖vn+1‖6‖tJ−1
tn+1∇β‖2‖β‖

1/2
2 ‖β‖

1/2

H1

> ‖β‖22 + hσ‖tJ−1
tn+1∇β‖22 − Ch‖vn+1‖6‖tJ−1

tn+1∇β‖2‖β‖
1/2
2

×
(
‖β‖1/22 + C‖tJ−1

tn+1∇β‖
1/2
2

)
>
(
1− Ch

(
‖vn+1‖26 + ‖vn+1‖46

))
‖β‖22 +

h

2
σ‖tJ−1

tn+1∇β‖22.

(20)
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Thanks to the assumptions on u and Ψ, (vn)n∈{0,...,N} is bounded in `∞({0, . . . , N}; L6(Ω \ B̄)), then for h
independent of n and small enough, the form a is coercive. Thanks to Lax-Milgram theorem we then have the
existence and uniqueness of a solution βn ∈ H1(Ω \ B̄) for all n ∈ {0..N}.

We now let the function β̃N and β̄N defined piecewisely by β̃N = βn+1 and β̄N (t, y) = βn(y)+
t− tn

h
(βn+1−

βn) for all y ∈ Ω \ B̄ and t ∈]tn, tn+1]. These functions fulfill:

∂tβ̄
N + ṽN · tJ̃−1

t,N∇β̃
N − σÃN (t, y)β̃N = 0,

where ṽN , J̃t,N and ÃN are defined piecewisely by ṽN (t, y) = vn+1(y), J̃t,N (y) = Jtn+1(y) and ÃN (t, y) =
A(tn+1, y) for all t ∈]tn, tn+1] and y ∈ Ω \ B̄.

In order to prove the existence of solutions of (16) we now need an estimate on β̃N . We take β′ = βn+1 in
(19) and obtain thanks to (20):(

1− Ch
(
‖vn+1‖26 + ‖vn+1‖46

))
‖βn+1‖22 + σ h2 ‖

tJ−1
tn+1∇βn+1‖22

6
∫

Ω\B̄
βnβn+1 dx 6

1

2
‖βn‖22 +

1

2
‖βn+1‖2

and then (
1

2
− Ch

(
‖vn+1‖26 + ‖vn+1‖46

))
‖βn+1‖22 + σ

h

2
‖tJ−1

tn+1∇βn+1‖22 6
1

2
‖βn‖22.

We take h still independent from n so that Ch
(
‖vn+1‖26 + ‖vn+1‖46

)
6 C ′h 6

1

4
and we obtain that

‖βn‖22 +

n∑
k=1

σh‖tJ−1
tn+1∇βn+1‖22

6

(
1− 2C ′

T

N

)−n
‖β0‖22 6 exp

(
C ′T

n

N

)
‖β0‖22 6 exp (C ′T ) ‖β0‖22.

This implies that β̃N and β̄N ∈ L∞(0, T ; L2(Ω \ B̄))∩L2(0, T ; H1(Ω \ B̄)). We now take the gradient of the first
equation in (18)

∇βn+1 + h∇
(
vn+1 · tJ−1

tn+1∇βn+1 − σA(tn+1, y)βn+1
)

= ∇βn

and take its scalar product with J−1
tn+1

tJ−1
tn+1∇βn+1. Thanks to integration by parts we get:

‖tJ−1
tn+1∇βn+1‖22 + hσ‖A(tn+1, y)βn+1‖22
6
∫

Ω\B̄

(
tJ−1
tn+1(y)∇βn

)
·
(
tJ−1
tn+1(y)∇βn

)
dy

+h

∫
Ω\B̄

(
vn+1 · tJ−1

tn+1(y)∇βn+1
)
A(tn+1, y)βn+1 dy

6
1

2
‖tJ−1

tn+1∇βn‖22 +
1

2
‖tJ−1

tn+1∇βn+1‖22
+h‖vn+1‖6‖tJ−1

tn+1∇βn+1‖3‖A(tn+1, y)βn+1‖2
6

1

2
‖tJ−1

tn+1∇βn‖22 +
hσ

2
‖A(tn+1, y)βn+1‖22

+

(
1

2
− Ch

(
‖vn+1‖26 + ‖vn+1‖46

))
‖tJ−1

tn+1∇βn+1‖22.

Since J−1
tn+1(y) = J−1

tn (y) +
∫ tn+1

tn
(∂tJ

−1
t (y))(s) ds, we have

‖tJ−1
tn+1∇βn‖2 6 ‖tJ−1

tn+1
tJtn‖‖tJ−1

tn ∇βn‖2

6

∥∥∥∥∥I +

∫ tn+1

tn

t(∂tJ
−1
t (y))(s)tJtn(y) ds

∥∥∥∥∥ ‖tJ−1
tn ∇βn‖2

6
(
1 + h‖Jt(y)‖L∞((0,T )×Ω)‖∂tJ−1

t (y)‖L∞((0,T )×Ω)

)
‖tJ−1

tn ∇βn‖2.

Then we obtain(
1

2
− Ch

(
‖vn+1‖26 + ‖vn+1‖46

))
‖tJ−1

tn+1∇βn+1‖22 +
hσ

2
‖A(tn+1, y)βn+1‖22

6
(1 + Ch)2

2
‖tJ−1

tn ∇βn‖22

12



As we did for the L2 estimates we obtain that

‖tJ−1
tn ∇βn‖22 +

n∑
k=1

hσ‖A(tk, y)βk‖22

6

(
1− 2C ′

T

N

)−n(
1 + C

T

N

)2n

‖tJ−1
0 ∇β0‖22

6 exp
(

(C ′ + 2C)T
n

N

)
‖tJ−1

0 ∇β0‖22
6 exp ((C ′ + 2C)T ) ‖tJ−1

0 ∇β0‖22.

Then β̃N and β̄N belong in
L∞(0, T ; H1(Ω \ B̄)) ∩ L2(0, T ; H2(Ω \ B̄)) and ∂tβ̄N ∈ L2(0, T ; L2(Ω \ B̄)).

Thanks to these last bounds we get that

‖β̃N − β̄N‖L2((0,T )×Ω\B̄) 6
T

N
‖∂tβ̄N‖L2((0,T )×Ω\B̄) 6

C

N
→ 0 as N → +∞.

From these results we deduce by means of Theorem A.5 that there exists
β ∈ L∞(0, T ; H1(Ω \ B̄) ∩ L2(0, T ; H2(Ω \ B̄) ∩ H1(0, T ; L2(Ω \ B̄)

such that up to a subsequence

β̃N ⇀ β weak− ? in L∞(0, T ; H1(Ω \ B̄)),

β̃N ⇀ β weak in L2(0, T ; H2(Ω \ B̄)),
β̄N ⇀ β weak− ? in L∞(0, T ; H1(Ω \ B̄)),
β̄N ⇀ β weak in L2(0, T ; H2(Ω \ B̄)),
∂tβ̄

N ⇀ ∂tβ weak in L2(0, T ; L2(Ω \ B̄)),
β̄N → β strong in C0(0, T ; Hs(Ω \ B̄)) ∩ L2(0, T ; H1+s(Ω \ B̄)), 0 6 s < 1,

β̃N → β strong in L2(0, T ; L2(Ω \ B̄)).

Moreover we have that

ṽN ⇀ v weak− ? in L∞(0, T ; H1(Ω \ B̄)),

J̃t,N → Jt strong in C1((0, T )× Ω \ B̄),

ÃN (t, y)β → A(t, y)β strong in L2(0, T ; H2(Ω \ B̄))
for all β ∈ L2(0, T ; H2(Ω \ B̄)).

Thanks to all these convergences we deduce that β is solution to (16) with all the expected boundary and initial
conditions. Since we assume that β0 ∈ H2(Ω \ B̄) we have indeed more regularity on β. To prove this we write
all the energy estimates we have on β, available in Appendix C, which finishes the proof.
Remark : Since we use Lemma A.2 the first inequality in Theorem 3.7 is not sharp. The second one is a very
rough bound.

4 Asymptotic analysis and proofs of Theorem 2.1 and Theorem 2.2

4.1 Study of the coupled penalized problem
To prove the existence of a solution to this coupled nonlinear problem, we introduce the sequence (αn, un, pn)
defined by

1. α0 = α̃0 the extension by 0 of α0 outside Ω \ B̄(0),

2. (un, pn) is the solution to
−div

[
2
(
µ∞+(µ0(αn)−µ∞) (1+2β2(αn)|D(un)|2)q(αn)/2−1

)
D(un)

]
+

1B(t)

ε
(un − ū) = f −∇pn in [0, T ]× Ω,

un satisfies the set of boundary conditions (7).

3. αn+1 is the solution to
∂tα

n+1 + un · ∇αn+1 − divσ∇αn+1 = 0 in Ocp
where αn+1 satisfies the set of initial and boundary conditions (8).

4. We let un+1 = G(un).

In the following we prove that G is a contraction in a well-chosen space. One can notice that the extension of
αn by 0 means αn+1 = 0 in Op.
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4.1.1 Study ofG

Let E = L∞(0, T ;V (Ω)) and F = L2(0, T ;V (Ω)).
The operator G maps E ∩ F to E ∩ F thanks to theorems 3.6 and 3.7.

Let u and u′ two solutions to (15) with α and α′ respectively. We need the following proposition, whose proofs
are available in Appendix D.

Proposition 4.1 Under the assumption (H4), there exists a constant C depending only on T , Ω, f and ū such that
for a.e. t ∈ [0, T ]

‖(u− u′)(t, ·)‖H1(Ω) 6 C‖(α− α′)(t, ·)‖L∞(Ω).

Proof. See Appendix D.1.
Let α and α′ two solutions to (7)-(8)-(9) respectively with u and u′.

Proposition 4.2 There exists a constant C depending on Ω, ‖α0‖H2(Ω), f , ū, and on ‖µ‖L∞(Ω) such that for all
t ∈ [0, T ]

‖(α− α′)(t, ·)‖2H1(Ω\B̄(t)) 6 C‖u− u′‖2L2(0,t;H1(Ω\B̄(·)))

and
‖α− α′‖2L2(0,t;H2(Ω\B̄(·))) 6 C‖u− u′‖2L2(0,t;H1(Ω\B̄(·))).

Proof. See Appendix D.2.

Proposition 4.3 There exists a time T ∗ < T depending only on T , Ω, Op, ‖α0‖H2(Ω), f and ū such that

‖G(u)−G(u′)‖L2(0,T∗;H1(Ω)) 6
1

2
‖u− u′‖L2(0,T∗;H1(Ω)).

Proof. See Appendix D.3.

Proposition 4.4 There exists a constant C depending on T , Ω, Op, f and ū such that

‖ (µ(α, u)D(u)− µ(α′, u′)D(u′)) (t, ·)‖L2(Ω)

6 C
(
‖(D(u)−D(u′))(t, ·)‖L2(Ω) + ‖(α− α′)(t, ·)‖L∞(Ω)

)
.

Proof. See Appendix D.4.

4.1.2 Proof of Theorem 2.1

The sequence (αn)n∈N defined in section 4.1 is bounded in L∞(0, T ; H2(Ω \ B̄(·))) ∩ L2(0, T ; H3(Ω \ B̄(·))) ∩
H1(0, T ; H1(Ω \ B̄(·))), as well as (un)n∈N in L∞(0, T ;V (Ω)) and (pn)n∈N in L2(0, T ; L2

0(Ω)).
The application G is a contraction on L2(0, T ∗; H1(Ω)). This implies that the recurrent sequence (un)n∈N

defined in the section 4.1 converges strongly in L2(0, T ∗; H1(Ω)), and thanks to Prop. 4.2 the sequence (αn)n∈N
converges strongly in L∞(0, T ∗; H1(Ω \ B̄(·))) ∩ L2(0, T ∗; H2(Ω \ B̄(·))) and then in L2(0, T ∗; L∞(Ω \ B̄(·))).

Thanks to Prop. 4.4 we then have that (µ(αn, un)D(un))n∈N converges strongly to µ(α, u)D(u) in L2(0, T ∗; L2(Ω)).
Moreover, thanks to the boundedness of the sequences there exists subsequences of (αn)n∈N and (pn)n∈N still

denoted (αn)n∈N and (pn)n∈N that fulfill:

αn ⇀ α weak− ? in L∞(0, T ∗; H2(Ω \ B̄(·))),
αn ⇀ α weak in L2(0, T ∗; H3(Ω \ B̄(·))),
αn ⇀ α weak in H1(0, T ∗; H1(Ω \ B̄(·))),
pn ⇀ p weak in L2(0, T ∗; L2

0(Ω)).

We now take the limit as n goes to +∞ in the sequence defined in 4.1 and obtain that (u, p, α) is a weak
solution to (9) on (0, T ∗)× Ω.

Furthermore, the time T ∗ depends only on the data of the problem, particularly through the estimate on α ∈
L∞(0, T ; H2(Ω \ B̄(·))) obtained in Theorem 3.7. We then have

‖α‖L∞(0,T ;H2(Ω\B̄(·)))

6 C‖α0‖H2(Ω\B̄(0)) exp
(
C ′T

(
1 + ‖u‖2L∞(0,T ;H1(Ω)) + ‖u‖4L∞(0,T ;H1(Ω))

))
,

with estimates on u only depending on the data of the problem (Theorem 3.6). We now bound ‖α0‖H2(Ω\B̄(0))

with this estimate and take a smaller T ∗ to fulfill our previous constraints. Since α ∈ L2(0, T ;H3(Ω \ B̄(·))) and
∂α

∂t
∈ L2(0, T ; H1(Ω \ B̄(·))) we then have:

α ∈ C([0, T ∗]; H2(Ω \ B̄(·)))
from Theorem A.5 applied to β(t, y) = α(t,Ψt(y)).

This implies that α(0, ·) = α0 ∈ H2(Ω \ B̄(0)) and that α(T ∗, ·) ∈ H2(Ω \ B̄(T ∗)). ‖α(T ∗, ·)‖H2(Ω) also
fulfills the same bound as ‖α0‖H2(Ω\B̄(0)). We now apply the same estimates starting from T ∗ and obtain the
existence and the uniqueness of the solution on (T ∗, 2T ∗) and finally on (0, T ).
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4.2 Proof of Theorem 2.2
Lemma 4.5 Let u ∈ Lp(0, T ; H1(Ω \ B̄(·))), K ∈ R+∗ and (α, α′) ∈ Lq(0, T ; L∞(Ω \ B̄(·))) such that
‖α‖Lq(0,T ;L∞(Ω\B̄(·))) and ‖α′‖Lq(0,T ;L∞(Ω\B̄(·))) are bounded by K. Then there exists a constant CK > 0 such
that

‖ (2µ(α, u)− 2µ(α′, u))D(u)‖Lr(0,T ;L2(Ω\B̄(t)))

6 CK‖D(u)‖Lp(0,T ;L2(Ω\B̄(·)))‖α− α′‖Lq(0,T ;L∞(Ω\B̄(·))),

where
1

r
=

1

p
+

1

q
. The same result holds if we replace Ω \ B̄(t) by Ω.

Proof. The proof is similar to the proof of Proposition 4.4, detailed in section D.4.

According to Theorem 2.1 we have that

• αε is bounded independently from ε in the spaces
L∞(0, T ; H2(Ω \ B̄(·))), L2(0, T ; H3(Ω \ B̄(·))) and H1(0, T ; H1(Ω \ B̄(·))),

which also implies that αε and ∇αε are bounded in H1(Ocp),

• uε is bounded in Lq(0, T ;V (Ω)) for all 2 6 q 6 +∞,

• ε−1‖uε − ū‖2Lq(0,T ;B(·)) is bounded for all 2 6 q 6 +∞.

Then there exists a subsequence still denoted (uε, pε, αε) that fulfills

αε ⇀ α weak− ? in L∞(0, T ; H2(Ω \ B̄(·))),
αε ⇀ α weak in L2(0, T ; H3(Ω \ B̄(·))),
αε ⇀ α weak in H1(0, T ; H1(Ω \ B̄(·))),
αε → α strong in Lq(Ocp) for all 2 6 q 6 4,
∇αε → ∇α strong in Lq(Ocp) for all 2 6 q 6 4,
uε ⇀ u weak in Lq(0, T ;V (Ω)) for all 2 6 q < +∞,
uε ⇀ u weak− ? in L∞(0, T ;V (Ω)),
uε → ū strong in Lq(0, T ; L2(B(·))) for all 2 6 q 6 +∞,

Study of α: Thanks to the strong convergence of ∇αε in L4(Ocp) and the weak convergence of uε in L4(Ocp),
uε ·∇αε converges weakly toward u·∇α in L2(Ocp). This implies that we can take the limit in the weak formulation
of the convection-diffusion equation.

Since αε converges weakly towards α in H1(0, T ; H1(Ω \ B̄(·))), αε(0, ·) converges weakly towards α(0, ·) in
H1(Ω \ B̄(0)) which implies that α(0, ·) = α0 ∈ H2(Ω \ B̄(0)) in the trace sense.

Moreover, thanks to Theorem A.5 (Aubin-Simon applied to βε(t, y) = αε(t,Ψt(y))), αε converges strongly
up to a subsequence in L2(0, T ; H2(Ω \ B̄(·))) and consequently in L2(0, T ; L∞(Ω \ B̄(·))).
Study of (u, p): Thanks to the weak convergence of uε towards u inL2(0, T ;V (Ω)) and to the strong convergence
of uε towards ū in L2(Op), we have u = ū in Op.
Since 2µ(αε, uε)D(uε) is bounded in L2(Ocp) and in L2(O) it converges weakly in L2(Ocp) and in L2(O).

This implies that−div2µ(αε, uε)D(uε) converges weakly in L2(0, T ;H−1(Ω\B̄(·))) and in L2(0, T ;H−1(Ω)).
In Ocp, (uε, pε) is a weak solution to divuε = 0 in Ocp and

−div(2µ(αε, uε)D(uε)) = f −∇pε in Ocp,

where uε satisfies the boundary conditions (7).
This also implies that ∇pε converges weakly towards ∇p in L2(0, T ; H−1(Ω \ B̄(·))) and then pε converges

weakly towards p in L2(0, T ; L2
0(Ω \ B̄(·))).

Since u ∈ L2(0, T ;V (Ω)) ⊂ L2(0, T ; H1(Ω)) then u|∂B(·)∩Ω ∈ L2(0, T ; H1/2(∂B(·)∩Ω)). Moreover u = ū

in Op with ū ∈ H3(Op). Consequently, u|∂B(·)∩Ω = ū|∂B(·)∩Ω in L2(0, T ; H1/2(∂B(·) ∩ Ω).
LetU the weak limit of−div2µ(αε, uε)D(uε) in L2(0, T ;H−1(Ω). We now prove thatU = −div2µ(α, u)D(u).

Thanks to Lemma 4.5 and to the bounds on uε we have that ‖ (2µ(αε, uε)− 2µ(α, uε))D(uε)‖Lq(0,T ;L2(Ω\B̄(·)))
converges to zero as ε goes to zero for all 1 6 q 6 4.

We will now study more accurately the operator Aα(u) = −div(2µ(α, u)D(u)). We prove in Theorem 3.1
that the operator Aα : V (Ω)→ V ′(Ω) is bounded, hemi-continuous and strongly monotone. The operator is then
pseudo-monotone (Proposition A.11). Moreover we have

< Aαεu
ε, uε > +

1

ε
‖uε − ū‖2L2(B(t)) =

∫
Ω

f(uε − P (ū))+ < Aαεu
ε, P (ū) > .
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Then
lim
ε→0

< Aαu
ε, uε > = lim

ε→0
< Aαεu

ε, uε >

6 lim
ε→0

∫
Ω

(f · (uε − P (ū))+ < Aαεu
ε, P (ū) >)

6
∫

Ω

f · (u− P (ū)) dx+ < U,P (ū) >

6
∫

Ω\B̄(t)

f · (u− P (ū) dx+

∫
B(t)

f · (u− P (ū))︸ ︷︷ ︸
=0

dx+ < U,P (ū) > .

Since f = ∇p+ U in Ω \ B̄(t) we have∫
Ω\B̄(t)

f · (u− P (ū)) dx =

∫
Ω\B̄(t)

(∇p+ U) · (u− P (ū)) dx

=

∫
Ω\B̄(t)

∇p · (u− P (ū)) dx+

∫
Ω\B̄(t)

U · (u− P (ū)) dx

=

∫
∂B(t)∩Ω

p (u− P (ū))︸ ︷︷ ︸
=0

·ν dσ +

∫
ΓL

p (u− P (ū)) · ν︸ ︷︷ ︸
=0

dσ

−
∫

Ω\B̄(t)

p div(u− P (ū))︸ ︷︷ ︸
=0

dx+

∫
Ω

U · (u− P (ū)) dx

= < U, u− P (ū) > .

Finally we have
lim
ε→0

< Aαu
ε, uε >6< U, u > .

Since uε ⇀ u in L2(0, T ;V (Ω)) and Aαuε ⇀ U in L2(0, T ;V ′(Ω)) and Aα is pseudo-monotone, we have
thanks to Proposition A.11 that Aαu = U .

Thanks to the weak convergence of vε = 2µ(αε, uε)D(uε)− pεI in L2(Ocp) and since divvε = f ∈ L2(Ocp),
we get vε converging weakly in Hdiv =

{
v ∈ L2(Ω), divv ∈ L2(Ω)

}
. Then 2µ(α, u)D(u) − pI ∈ Hdiv and

(2µ(α, u)D(u)− pI) · ν = 0 on [0, T ]× Γ, from which we deduce as in the proof of Theorem 3.1 the remaining
boundary conditions.

Uniqueness: Let (u, p, α) and (u′, p′, α′) two weak solutions to (5). Prop 4.2 gives that for all t ∈ [0, T ],

‖(α− α′)(t, ·)‖H1(Ω\B̄(·)) 6 C‖u− u′‖L2(0,t;H1(Ω)\B̄(·))
‖α− α′‖L2(0,t;H2(Ω\B̄(·))) 6 C‖u− u′‖L2(0,t;H1(Ω\B̄(·))).

Following the estimates in Proposition 4.1 we write for almost all t ∈ [0, T ],∫
Ω\B̄(t)

2µ|D(u− u′)|2(t, x) dx

6 K
(
‖D(u)‖2L∞(0,T ;L2(Ω\B̄(·)))+‖D(u′)‖2L∞(0,T ;L2(Ω\B̄(·)))

)
‖(α− α′)(t, ·)‖2L∞(Ω\B̄(t))

For a.e. t ∈ [0, T ] we have

‖D(u− u′)(t, ·)‖L2(Ω\B̄(·))
6 C

(
‖u‖L∞(0,T ;H1(Ω\B̄(·))) + ‖u′‖L∞(0,T ;H1(Ω\B̄(·)))

)
‖(α− α′)(t, ·)‖L∞(Ω\B̄(·)).

Thanks to the bounds on u, u′ and to lemma A.2 we obtain for a.e. t ∈ [0, T ],

‖D(u− u′)(t, ·)‖L2(Ω\B̄(·)) 6 C‖(α− α′)(t, ·)‖1/4H1(Ω\B̄(·))‖(α− α
′)(t, ·)‖3/4H2(Ω\B̄(·)).

Combining all these inequalities leads to

‖u− u′‖2L2(0,t;H1(Ω\B̄(·)))

6 C

∫ t

0

‖(α− α′)(s, ·)‖1/2H1(Ω\B̄(·))‖(α− α
′)(s, ·)‖3/2H2(Ω\B̄(·)) ds

6 C

(∫ t

0

‖(α− α′)(s, ·)‖2H1(Ω\B̄(·)) ds

)1/4

‖α− α′‖3/2L2(0,t;H2(Ω\B̄(·)))

6 C

(∫ t

0

‖(α− α′)(s, ·)‖2H1(Ω\B̄(·)) ds

)1/4

‖u− u′‖3/2L2(0,t;H1(Ω\B̄(·))).

Hence

‖u− u′‖2L2(0,t;H1(Ω\B̄(·))) 6 C

∫ t

0

‖(α− α′)(s, ·)‖2H1(Ω\B̄(·)) ds
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Figure 3: Xanthan concentration (linked to the flow viscosity) in a Bentheimer sandstone at its pore-scale, dis-
played at resolution 2573. Three isosurfaces of α/αmax are plotted in the porous rock geometry, excavated in
order to exhibit the flow inside the pores. The body is defined by its characteristic function 1B . The transparent
blue, transparent red and solid red surfaces are respectively isosurfaces of α/αmax of levels 0.2 (water), 0.5 (low
concentration Xanthan) and 1 (high concentration Xanthan). Two ways can be considered in order to satisfy the
bi-regularity property. In both cases the penalized domain is the union of the surrounding cell and the rock. Firstly,
displayed in left picture, the domain is cylindrical (infinitely smooth) and the top/bottom boundary conditions
are periodic. The penalized domain adherence includes the whole boundary, such as the case 2.E in Figure 2.
Secondly, displayed on the right picture, left/right/front/back boundary conditions are periodic, so the penalized
domain is allowed to be ”square-shaped”, and the top/bottom are Dirichlet and Neumann boundary conditions so
∂Ω ∩ B̄ = ∅ like the case 2.F in Figure 2.

and finally
‖(α− α′)(t, ·)‖2H1(Ω\B̄(·)) 6 C‖u− u′‖2

L2(0,t;H1(Ω\B̄(·)))

6 C

∫ t

0

‖(α− α′)(s, ·)‖2H1(Ω\B̄(·)) ds.

Thanks to Gronwall lemma we have for all t ∈ [0, T ]

‖(α− α′)(t, ·)‖H1(Ω\B̄(·)) = 0,

and then conclude that u = u′ and p = p′.

5 Applications to miscible shear-thinning heterogeneous micro-scale flows
Two microfluidic real-world problems satisfying the coupled problem (2,3) are addressed in this sections. Firstly,
in section 5.1, the transport and diffusion of Xanthan polymer in a porous rock is studied at the scale of the
pores. In this case the domain does not depend on time, but a strongly nonlinear miscible fluid is in motion in a
micro-channel exhibiting a complex geometry. Secondly, in section 5.2, a mixture of mucins, the proteins involved
in pulmonary mucus, are displaced by means of the vibratile motion of the ciliated epithelium cells covering the
lungs. In that last case, the domain is moving and is the dominant motion effect. The full Stokes-transport coupling
thus goes beyond the work done in [8] where only a prescribed α(x) was considered.

The numerical method used for these two simulations are close the one introduced in [9, 10], except that the
viscosity depends on shear-rate, and is detailed in the supplementary material, section E. The most crucial part is
to get the numerical solution of the non-linear Stokes equation on a grid, by means of the following fixed-point
method:

− µ∆u∗n+1 +
1B(t)

ε

(
u∗n+1 − u∗n + P(u∗n)

)
= f +

[
2D(un) + (divu∗n)Id

]
∇µ (21)

with µ = µ (α,P(u∗n)) satisfying the Carreau law (2).

5.1 Application to polymer dynamics in geoscience
We are interested in the transport of Xanthan (see Table 1) by a viscous flow in a porous rock at its pore scale.
This miscible polymer, used in Enhanced Oil Recovery (EOR) exhibits a visco-plastic behavior, and is not toxic
as its use is common as an emulsifier or thickener in human food industry, and very frequent in gluten-free food
production. A usual way to produce Xanthan is by fermentation of corn sugar, wheat or soy with the bacteria
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Figure 4: Xanthan shear-thinning feature: Viscosity with respect to the shear-rate. Two curves fit data from [42],
with inverse shear-rate cutoff β obtained by the regressions displayed on figure 8 and based on [25].

Xanthomonas campestris. Its rheological properties are quite stable to temperature and acidity variations. These
features are close to the Scleroglucan polymer, also used in EOR and reasonably clean since it is also consumed by
bacterial activity, but Xanthan exhibits no yield-stress and thus its micro-scale transport and diffusion is correctly
modeled by our coupled Stokes–Tranport/Diffusion system (1).

In this model, αC0 is the concentration of Xanthan, where C0 = 600mg/L or equivalently C0/ρ = 0.0713%,
where ρ = 0.842kg/L is its density. The quantity α is transported and diffused in the fluid domain with a velocity
u solution to the 3D generalized Stokes problem (1).

Moreover, the considered geometry is a Bentheimer sandstone defined by a set of 2573 voxels of 1 and 0,
here obtained by MicroCT X-Ray tomography with a SkyScan 1172 (Bruker). This provides a straightforward
characteristic function 1B of the solid penalized region and leading to model (3), the penalized version of (1).
Despite the fact the the domain here is not moving, this case provides a meaningful application case of (3) and
illustrates how the hypothesis (H1) to (H4) are satisfied and what they mean in practice (especially (H4)).

The Carreau law (2) satisfied by the miscible Xanthan reads

µ(α, u) = µ∞ + (µ0(α)− µ∞)
(
1 + β(α)2γ̇2

)N−1
2

where γ̇ =
√

2 |D(u)| and µ∞ = 10−3 is the solvent dynamic viscosity, here water. In this solvent, the polymer
diffusion coefficient is σ = 4 10−12m2/s (from [38]) and its exponent q = 1.386 can be considered constant due
to its very small variations [25], corresponding to a fluid index N − 1 = q − 2 = −0.614.

To our knowledge, for any miscible polymer, the index N and the viscosity at rest µ0 (zero shear-rate) are
slightly or moderately increasing , while the inverse cut-off shear-rate β can be constant, increasing [15] or de-
creasing [22] with respect to the concentration α. In our case, the Xanthan polymer exhibits an exponential growth
in β [25], an almost constant exponent chosen as N = 0.613, an exponential growth of η0 for large concentra-
tions (αC0/ρ > 0.01%) and an affine transition to µ∞ for small concentrations, modeled by a 1−e−x weighting,
dominant for α close to 0:

µ0(α) = µ∞ +Aµe
αC0/ρBµ(1− e−αC0/ρRµ) (22)

and β(α) = Aβe
αC0/ρBβ , with a nominal time Aβ = 2.4 s. These five coefficients for salt-free and neutral pH

solvent are displayed in the Table 1.
Considering these fluid features, on the one hand q is constant so q′(α) = 0 and hypothesis (H4.1) holds, and

on the other hand α remains in a compact interval I ⊂ R so µ0(α) is bounded, and one gets β′/β = C0/ρBβ
so hypothesis (H4.2) is also satisfied. Furthermore, one can notice that the hypothesis (H4.1) is robustly satisfied,
that is to say is still satisfied if q is only C1(I) and lightly deviating from its value such as m(α) = 1 − q(α)/2
remains positive. For any α ∈ I , let z = 2|D|2 and M > 0 bounding |µ0 − µ∞|. Indeed, this gives directly that
the expression of hypothesis (H4.1) is bounded by

M (max
I
|q′|) ln(1 + β2z)

(1 + β2z)m(α)
−−−−−→
z→+∞

0 (23)

and thus is bounded for any D and α ∈ I .
The initial condition is described in supplementary section F and is based on random field generated by the

FFTMA algorithm [35, 33].
Figure 5 displays the motion of the polymer (initial concentration α is displayed in transparency, and its value

after 24 iterations is displayed in solid). On this figure, coloring shows the shear rate on the one hand and the
velocity on the other hand. One can see that some regions are transport dominant, while others at small velocity
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Figure 5: Isosurfaces of Xanthan at level α/αmax = 30%, at initial value (transparency) and after 24 time steps
(solid), colored by the shear rate (top left picture) and by the velocity (top right picture).

are diffusion dominant, due both to the shear-thinning feature and the domain shape. Thanks to that computation,
we can conclude that the polymer is here 3 to 5 times slower than the water. Despite the fact the domain is not
time-dependent, our coupled model is crucial to capture these physical phenomena.

5.2 Application to the bio-mechanics of the human lung mucus
In the lung the tracheobronchial tree is protected from the outer world by the airway surface liquid (ASL). It forms
a thin film (∼ 10 − 20µm) on the bronchial walls and inhaled agents (dust, pathogens, pollution particles) are
trapped therein to prevent lung contaminations. On the bronchial wall micro-metric cilia are constantly beating
to propel this ASL film to the trachea, in order to evacuate inhaled agents. It is then swallowed in the stomach.
This carpet of cilia is called the lung epithelium (or ciliated epithelium) and this ASL renewal mechanism is called
the mucociliary clearance. When it fails the cough attempts to overcome the ASL accumulation to prevent the
pathogens proliferation.

Due to the complex structure of the tracheobronchial tree and the micro-metric scale of the flow, a non-invasive
experimental study of the mucociliary clearance is impossible. That is why it was intensively studied numerically in
the last decades [37] - see [8] for a detailed and more exhaustive bibliography on recent results. Using experimental
rheology, the shear-thinning behavior of the ASL was measured and identified, it allows real data inputs in the
computational models [27, 34, 8]. These studies conclude that the flow can be modeled by a generalized Stokes
problem with shear-thinning effects interacting with immersed obstacles: the beating cilia.

The ASL is a non-homogeneous fluid whose viscosity varies due to proteins: the mucins [5]. These proteins are
released on the bronchial wall. They maturate and hydrate while they are transported in the ASL film , increasing
the viscosity and changing the rheological properties. The viscosity of the ASL and the corresponding rheological
parameters are assumed to be depending on a mucins ratio α, quantifying the mucins maturation: when α = 0
mucins have just been released, the fluid is newtonian and its viscosity is equal to water; when α = 1 mucins are
fully polymerized and the fluid is non-Newtonian with shear-thinning effects. A continuous transition between
these regimes is modeled with the Carreau rheology involving α− dependant rheological parameters, similarly to
the previous digital rock physics application.

The parameter dependent Carreau law models the regions with a low density of mucins (the bottom part of
the ASL), a high density of mucins (the upper part of the ASL), and the transition between both layers. The
lower Newtonian part of the fluid baths the cilia environment and is called the periciliary fluid layer (denoted PCL
thereafter) and the upper non-Newtonian part the mucus layer (denoted ML).

The function α is assumed to be the solution to a convection–diffusion equation and the Cilia–ASL interaction
is handled using the penalization method, assuming a one-way fluid-structure interaction. This cilia motion can
be divided in two parts: the effective stroke (when cilia are polymerizing to beat forward) and the recovery stroke
(when cilia are moving backward). Finally a no slip boundary condition is imposed on the bronchial wall and a
free slip boundary conditions is imposed at the air mucus interface which is assumed to be flat [8]. This leads to
the exactly same problem (2,3) analyzed in the previous sections. The rheology is here defined by the following
Carreau law using the fluid index N(α) = q(α)− 1:

µ(α, u) = µ∞ + (µ0(α)− µ∞)
(
1 + 2β2|D(u)|2

)N(α)−1
2

where µ∞ = 10−3 is the PCL viscosity, equal to the water dynamics viscosity, and the material time β = 4× 103s
is constant and independent of the mucin dilution.

As established in [8], the fluid index is set to N(α) = αNML + (1 − α) and the viscosity is set to µ0(α) =
µ∞(K/µ∞)α, where the consistency K and the mucus layer fluid index NML are displayed on Table 2. Similarly
to the digital rock physics configuration, for any α > 0 (and α 6 1), one gets q − 2 < 0 and q′(α) = NML − 1
so hypothesis H4.1 is satisfied for α > 0 as the expression decreases with respect to |D|: the limit and bound
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Figure 6: Temporal evolution of the mean mucus velocity V (t) for the four different computations. The value in
the caption indicates the temporal average over the simulation.

from (23) still holds in the present case. If α = 0, µ0(0) = µ∞ so the expression is zero and consequently
hypothesis H4.1 holds. The second condition (H4.2) is trivially satisfied since β′ ≡ 0.

Four computations of the ASL propelled by beating cilia are presented in this section to investigate the influence
of both the transport and non-Newtonian effects. In order to compare these effects the following simulations are
computed (see Table 2 for parameters meanings and values):

• with both non-Newtonian and transport effects (analyzed in the previous sections),

• with non-Newtonian effects but no transport, meaning:
α(x, t) = α0(x) ∀t > 0,

• with transport but without non-Newtonian effects, meaning
µ(α, u) = µ(α) = µ∞(1 + κα(x, t)),

• without transport and without non-Newtonian effects, meaning
α(x, t) = α0(x) ∀t > 0 and µ(α, u) = µ(α) = µ∞(1 + κα(x, t)),

where the initial (or stationary, depending on the case considered) function α is defined by:

α(x, y, z) =
tan−1 (λ(z/Hz − δ))− tan−1(−λδ)

tan−1 (λ(1− δ))− tan−1(−λδ)
. (24)

In all these simulations the other parameters remain identical and are gathered in the Table 2. Each compu-
tation involves an array of 100 cilia beating asynchronously with a metachronal wave length of 100 µm. Several
snapshots of the simulation are presented on Figure 7.

The mucociliary clearance efficiency is quantified by the mean velocity of the mucus layer (the upper part of
the ASL). This mean velocity V (t) in the proximal direction (x) is computed at each time step, it is then averaged
over six beating cycles (U ):

V (t) =

∫ Hz

δHz

∫ Hy

0

∫ Hx

0

ux(x, y, z, t)

HxHyHz(1− δ)
dxdydz and U =

1

6T

∫ 6T

0

V (t)dt (25)

On figure 6 the evolution of the quantity V (t) is displayed with respect to t for each previous simulation. The
associated quantity U is displayed in the legend.

For both simulations with transport (respectively without transport), one can observe that the behavior of V (t)
is very similar since the curves are almost overlapping. Differences can be observed at the middle of the cilia
strokes (effective and recovery) when extreme values of V (t) are reached (see zoomed parts of the figure 6).
The highest velocities are reached simultaneously and advected simulations give higher values, whereas lowest
velocities are not reached at the same times: advected simulations are in advance with respect to non-advected.
For Newtonian computations lowest velocities are similar while the Newtonian-advected simulation reach a lower
one.

A consequence of these observations is that U is similar for both non-Newtonian computations, it is higher
than for Newtonian cases: a 11% reduction (respectively 32% reduction) is observed for simulations without ad-
vection (respectively with advection). The Newtonian simulation with advection presents the lowest U . Hence
one can conclude that the non-Newtonian behavior of the mucus significantly increases the mucociliary clear-
ance efficiency, so Newtonian computations underestimate the ASL transport. Moreover at Newtonian regimes
the advection has an important role to play: mucociliary clearance is reduced by 21% when mucins transport is
neglected.
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Figure 7: Snapshots of the simulation performed with the parameters of Table 2, with streamwise periodicity, at
resolution 512× 256× 128. Isosurfaces of levels 0.4 and 0.7 are displayed respectively in blue and red, after 200
and 415 time steps, displayed from top to bottom.

6 Conclusion, perspectives and future work
In this study we have presented the analysis of a system of nonlinear partial differential equation modeling the
microscale dynamics of a miscible shear-thinning in its solvent, in a moving domain in motion. Its analysis has
focused on its well-posedness and the convergence of its penalized version, penalizing the deformable solid, and
thus interesting in order to perform numerical simulation.

Two kinds of heterogeneous flows involving miscible polymers at the micrometer scale have been presented,
one in a non-moving domain relative to geoscience, and one in a moving domain relative to life science. The
present model is already valid for the heterogeneous mixing of two shear-thinning fluids moving and diffusing into
one another, but there is no standard real-world situation that can easily exhibit this.

An interesting perspective is to introduce a relaxation time with second order stress, as described by the
Giesekus model [40], that would describe a wide class of viscoelastic fluids by means of two parameters.

A Technical arguments
Lemma A.1 Let m ∈ N∗. There exists a constant C depending only on Ω and m such that for all v ∈ Hm(Ω;R3)
we have

‖v‖Hm(Ω) 6 C
(
‖v‖L2(Ω) + ‖divv‖Hm−1(Ω) + ‖curl v‖Hm−1(Ω) + ‖v · ν‖Hm−1/2(∂Ω)

)
where ν is the outward unitary normal on ∂Ω.
There exists a constant C depending only on Ω and m such that for all v ∈ Hm(Ω;R3) with periodic conditions,
we have

‖v‖Hm(Ω) 6 C
(
‖v‖L2(Ω) + ‖divv‖Hm−1(Ω) + ‖curl v‖Hm−1(Ω) + ‖v · ν‖Hm−1/2(∂Ω)

)
.

Proof. See [21] for the proof. The periodic version is easily deduced from [19] section VII.6.1, [21].

Lemma A.2 Let Ω and B fulfilling Hypothesis (H1).
Let A ∈ C0([0, T ]; C1(Ω \ B̄;S3(R))) (where S3(R) is the set of real symmetric matrix in M3(R)). Let λ indepen-
dent from t such that for all (t, x) ∈ [0, T ]× Ω \ B̄ and ξ ∈ R3 ξ ·A(t, x)ξ > λ|ξ|2.
Let v ∈ H2(Ω \ B̄) such that v has periodic conditions and (A(t, y)∇v) · ν = 0 on Γ. There exists then a constant
C independent from t such that,

‖v‖H2(Ω\B̄) 6 C
(
‖v‖L2(Ω\B̄) + ‖divA(t, ·)∇v‖L2(Ω\B̄)

)
.

Moreover, if v ∈ H3(Ω \ B̄), there exists a constant C independent from t such that we have

‖∇v‖H2(Ω\B̄) 6 C
(
‖∇v‖L2(Ω\B̄) + ‖divA(t, ·)∇v‖L2(Ω\B̄) + ‖∇divA(t, ·)∇v‖L2(Ω\B̄)

)
.
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Proof. These results are straight adaptations of classic ones:
The first result comes from the regularity of the operator At = I − divA(t, ·)∇ with the domain

D(At) =
{
u ∈ H2(Ω \ B̄), (A(t, ·)∇u) · ν = 0 on Γ ∪ σ, u has periodic conditions

}
.

Following the study performed in [23] for the Dirichlet problem, for all f ∈ L2(Ω\B̄) the solution v ofA(t)v = f
lies in H2(Ω \ B̄) and there exists a constant C depending only of λ, ‖ai,j‖W2,∞ for (i, j) ∈ {1, 2, 3}2 and Ω \ B̄
such that for all t ∈ [0, T ]

‖v‖H2(Ω\B̄) 6 C
(
‖v‖L2(Ω\B̄) + ‖f‖L2(Ω\B̄)

)
6 C ′

(
‖v‖L2(Ω\B̄) + ‖divA(t, ·)∇v‖L2(Ω\B̄)

)
.

The second estimate requires an adaptation of the proof of Lemma A.1 based on Hodge decomposition. We need

to work with the weighted scalar product defined on L2(Ω\ B̄;R3) by < u, v >=

∫
Ω\B̄

u · (A(t, ·)v) dx and adapt

the proof in [19] Chapter 7.6.

Proposition A.3 Let Ω be a regular open bounded set of R3. Let v ∈ H1(Ω). There exists then a constant C
depending only on Ω such that

‖v‖L3(Ω) 6 C‖v‖1/2L2(Ω)
‖v‖1/2H1(Ω)

.

Let v ∈ H2(Ω). Then there exists a constant C depending only on Ω such that

‖v‖L∞(Ω) 6 C‖v‖1/4H1(Ω)
‖v‖3/4H2(Ω)

.

Proof. These two inequalities are deduced from the Sobolev embeddings of H1/2(Ω) and H7/4(Ω) respectively
into L3(Ω) and L∞(Ω) (see [2] section 4) and from the estimates of the H1/2(Ω) and H7/4(Ω) norms thanks to the
interpolation space theory (see [30] section I).

Proposition A.4 Let Ψ ∈ C0(0, T ; C2(R3;R3)) such that for all t ∈ [0, T ] Ψ(t) is a C2-diffeomorphism of R3. Let
Ω be a regular open bounded set of R3 and Ωt = Ψ(t,Ω).
Let v ∈ H1(Ωt). Then there exists a constantC depending only on Ω, ‖Ψ(·)‖L∞(0,T ;W1,∞(Ω)) and ‖Ψ(·)−1‖L∞(0,T ;W1,∞(Ω))

such that for all t ∈ [0, T ]

‖v‖L3(Ωt) 6 C‖v‖1/2L2(Ωt)
‖v‖1/2H1(Ωt)

.

Let v ∈ H2(Ωt). Then there exists a constantC depending only on Ω, ‖Ψ(·)‖L∞(0,T ;W2,∞(Ω)) and ‖Ψ(·)−1‖L∞(0,T ;W2,∞(Ω))

such that for all t ∈ [0, T ]

‖v‖L∞(Ωt) 6 C‖v‖1/4H1(Ωt)
‖v‖3/4H2(Ωt)

.

Proof. We let u(t, x) = v(t,Ψ(t)(x) for all (t, x) ∈ [0, T ]× Ω and apply Prop. A.3 to get the result.

Theorem A.5 (Aubin-Lions-Simon) Let B0 ⊂ B1 ⊂ B2 three Banach spaces. We assume that the injection of
B1 into B2 is bounded and that the injection of B0 into B1 is compact. Let p, r such that 1 6 p, r 6 +∞. Let
T > 0. We note

Ep,r =

{
v ∈ Lp(]0, T [;B0),

dv

dt
∈ Lr(]0, T [;B2)

}
.

• If p < +∞, the injection of Ep,r into Lp(]0, T [, B1) is compact.

• If p = +∞ and r > 1, the injection of Ep,r into C0([0, T ];B1) is compact.

Proof. See [3] section II.5.5.

Proposition A.6 (Trace and lifting theorems in a time-dependent domain B(t) = Ψ(t, B)) Let B be an open
set in Ω having the uniform C2-regularity property and Ψ ∈ C0([0, T ]; C2(Ω;R3)) such that for all t ∈ [0, T ] Ψ(t)
is a C2-diffeomorphism on Ω. There exists a time-independent constant C > 0 such that for all t ∈ [0, T ] and for
all v ∈ H2(B(t))

‖v|∂B(t)‖H3/2(∂B(t)) 6 C‖v‖H2(B(t)).

Moreover, there exists a time-independent constant C ′ > 0 such that for all t ∈ [0, T ] and for all g ∈ H3/2(∂B(t))
there exists a lifting v of g in H2(B(t)) such that

‖v‖H2(B(t)) 6 C ′‖g‖H3/2(∂B(t)).
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Proof. Thanks to the function Ψ we transport the classical trace and lifting theorem in the time-dependent context.
Since Ψ ∈ C0([0, T ]; C2(Ω;R3)) and Ψ(t) is a C2-diffeomorphism for all t ∈ [0, T ] there exists some constants
(a, b) ∈ (R+∗)2 such that

∀(t, x) ∈ [0, T ]× Ω a 6 J(t, x) 6 b,

where J(t, x) = |det∇xΨ|(t, x). Moreover there exists some constants (c, c′) ∈ (R+∗)2 such that ∀(t, x) ∈
[0, T ]× Ω

‖Ψ(t, ·)‖W2,∞(Ω) 6 c and ‖Ψ−1(t, ·)‖W 2,∞(Ω) 6 c′.

Let v ∈ H2(B(t)) and for all x ∈ B let wt(x) = v(Ψ(t, x)). There exists some constant Ka,c > 0 depending only
on (a, c) such that

∀t ∈ [0, T ] wt ∈ H2(B) and ‖wt‖H2(B) 6 Ka,c‖v‖H2(B(t)).

In the same way, by writing v(y) = wt(Ψ
−1(t, y)) for all y ∈ Bt, there exists some constant K ′b,c′ > 0 such that

∀t ∈ [0, T ] ‖v‖H2(B(t)) 6 K ′b,c′‖wt‖H2(B).

Following [32] section 3.8, the space Hs(Ω), where Ω⊂Rn and s = k + θ with k ∈ N and 0 < θ < 1, is defined
by

Hs(Ω) =

{
v ∈ Hk(Ω),

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|2

|x− y|n+2θ
dx dy<+∞,∀α ∈ Nn with |α| = k

}
with the norm

‖v‖Hs(Ω) =

‖v‖2Hk(Ω) +
∑

α∈Nn, |α|=k

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|2

|x− y|n+2θ
dx dy

1/2

.

Using this definition for the space H3/2(∂Bt) we obtain in the same way the existence of two constants (C,C ′) ∈
(R+∗)2 such that

∀t ∈ [0, T ] C‖wt‖H3/2(∂B) 6 ‖v‖H3/2(∂B(t)) 6 C ′‖wt‖H3/2(∂B).

We now apply the classical trace and lifting theorem to the function wt and obtain the desired results thanks to the
previous inequalities.
Remark: The lifting theorem can also be generalized in Ω \ B̄(t) with time independent-constants to the case of

periodic boundary conditions,v⊥ = 0 and θiv‖ + (1− θi)
∂v‖

∂ν
= 0 on [0, T ]× Γi, i = 1..I and v|∂B(t) = g.

Variable exponent Lebesgue spaces
To deal with the variable q(x)-laplacian type problem we introduce the following spaces (See [17] section 3.1).

Definition A.1 Let Ω be an open subset in R3 equipped with B(Ω) and the Lebesgue measure. We let P(Ω)
the set of all measurable functions q : Ω → [1,+∞]. We call q ∈ P(Ω) a variable exponent on Ω. We let
q− = ess infx∈Ωq(x) and q+ = ess supx∈Ωq(x). If q+ < +∞, then we call q a bounded variable exponent.
If q ∈ P(Ω), we define q′ ∈ P(Ω) the dual variable exponent of q by

1

q(x)
+

1

q′(x)
= 1, ∀x ∈ Ω.

For all f measurable function on Ω we let

ρq(·)(f) =

∫
Ω

|f(x)|q(x) dx,

and we define the variable exponent Lebesgue space Lq(·)(Ω) as

Lq(·)(Ω) =
{
f ∈ L(Ω), ∃λ > 0 such that ρq(·)(λf) < +∞

}
and equip it with the norm

‖f‖Lq(·)(Ω) = ‖f‖q(·) = inf

{
λ > 0, ρq(·)

(
f

λ

)
6 1

}
.

Proposition A.7 Let q ∈ P(Ω) with q− < +∞. If ρq(·)(f) > 0 or q+ < +∞, then

min
{

(ρq(·)(f))1/q− , (ρq(·)(f))1/q+
}
6 ‖f‖q(·) 6 max

{
(ρq(·)(f))1/q− , (ρq(·)(f))1/q+

}
.
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Theorem A.8 If q ∈ P(Ω), then Lq(·)(Ω) is a Banach function space. Moreover if (fk)k∈N is a Cauchy sequence
in Lq(·)(Ω), there exists a subsequence of (fk)k∈N which converges almost everywhere to a measurable function.
If 1 < q− < q+ < +∞, the space Lq(·)(Ω) is reflexive, (Lq(·)(Ω))′ = Lq

′(·)(Ω) and for all g ∈ L(Ω)

1

2
‖g‖q′(·) 6 ‖g‖(Lq(·))′ 6 2‖g‖q′(·).

Lemma A.9 Let (q, r, s) ∈ P(Ω)3 be such that for almost all x ∈ Ω

1

s(x)
=

1

q(x)
+

1

r(x)
.

Then for all f ∈ Lq(·)(Ω) and g ∈ Lr(·)(Ω)

‖fg‖s(·) 6

((
s

q

)+

+
(s
r

)+
)
‖f‖q(·)‖g‖r(·).

Lemma A.10 If 1 6 q 6 2 and (a, b) ∈ Rn then

< (1 + β2|b|2)q/2−1b− (1 + β2|a|2)q/2−1a, b− a > > (q − 1)|b− a|2(1 + β2|a|2 + β2|b|2)
q−2
2

Proof. The proof is inspired from [28]. We have

(1 + β2|b|2)q/2−1b− (1 + β2|a|2)q/2−1a

=

∫ 1

0

d

dt

(
(1 + β2|a+ t(b− a)|2)q/2−1(a+ t(b− a))

)
dt

=

∫ 1

0

(1 + β2|a+ t(b− a)|2)q/2−1(b− a) dt

+(q − 2)

∫ 1

0

(1 + β2|a+ t(b− a)|2)q/2−2
〈
a+ t(b− a), b− a

〉
(a+ t(b− a)) dt.

Then
< (1 + β2|b|2)q/2−1b− (1 + β2|a|2)q/2−1a, b− a >

= |b− a|2
∫ 1

0

(1 + β2|a+ t(b− a)|2)q/2−1 dt

+(q − 2)

∫ 1

0

(1 + β2|a+ t(b− a)|2)q/2−2(< a+ t(b− a), b− a >)2 dt

> (q − 1)|b− a|2
∫ 1

0

(1 + β2|a+ t(b− a)|2)q/2−1 dt

Since q 6 2 and |a+ t(b− a)|2 6 |a|2 + |b|2 for all t ∈ [0, 1] we have

< (1 + β2|b|2)q/2−1b− (1 + β2|a|2)q/2−1a, b− a >> (q − 1)|b− a|2(1 + β2|a|2 + β2|b|2)q/2−1.

Nonlinear analysis
We remind some definitions and results (See [41] Section 25.3, 26.1, 27.1 and 27.2)

Definition A.2 Let V a real reflexive Banach space. An operator A : V → V ′ is called

• bounded on V if and only if for all Ω bounded subset of V , A(Ω) is bounded in V ′,

• monotone if and only if ∀(u, v) ∈ V 2, < A(u)−A(v), u− v >> 0,

• strongly monotone if and only if there exists c > 0 such that ∀(u, v) ∈ V 2,
< A(u)−A(v), u− v >> c‖u− v‖2,

• coercive if and only if
< A(v), v >

‖v‖
→ +∞ as ‖v‖ → +∞,

• pseudo-monotone if and only if un ⇀ u as n→ +∞ and

lim
n→+∞

< Aun, un − u >6 0

implies that
< Au, u− w >6 lim

n→+∞
< Aun, un − w > for all w ∈ V ,
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• hemi-continuous on V if and only if for all (u, v, w) ∈ V 3, the application
λ 7→< A(u+ λv), w > is continuous from R to R.

Proposition A.11 Let V be a real reflexive Banach space and A : V → V ′ an operator.

• If A is monotone and hemi-continuous then A is pseudo-monotone.

• If A is pseudo-monotone then A fulfills the properties (P) and (M)

(P) if un ⇀ u as n→ +∞ then
lim

n→+∞
< Aun, un − u >> 0.

(M) if un ⇀ u, Aun ⇀ b as n→ +∞ and limn→+∞ < Aun, un >6< b, u >, then Au = b.

The following nonlinear version of Lax-Milgram theorem is taken from [29] Section 2.2.

Theorem A.12 (Nonlinear Lax-Milgram) Let V a reflexive separable Banach space. Let A : V → V ′ such
that A is bounded and hemi-continuous on V , monotone and coercive, then A is a map from V onto V ′, i.e.
∀f ∈ V ′ ∃u ∈ V, A(u) = f .

B Proof of Theorem 3.1

The first part of the proof implies that g = −div(2µD(u)) +
1B
ε

(u − ū) − f belongs to H−1(Ω) . Testing this

function against a function φ ∈ H1
0(Ω) such that divφ = 0 we obtain:

< g, φ >H−1(Ω),H1
0(Ω)=

∫
Ω

2µ(x, u)D(u) : D(φ) dx+
1

ε

∫
B

(u− ū)φdx−
∫

Ω

fφ dx = 0.

De Rham’s theorem induces the existence of a function p ∈ L2
0(Ω) such that g = −∇p. We now verify that the

last boundary conditions are fulfilled. The function g +∇p rewrites

g +∇p = −div(2µ(x, u)D(u)− pI) +
1B
ε

(u− ū)− f = 0.

From this expression we deduce that 2µ(x, u)D(u)− pI lies in

Hdiv = {v ∈ L2(Ω), divv ∈ L2(Ω)}

and admits a normal trace in H−1/2(∂Ω). For all φ ∈ V (Ω),

< g +∇p, φ >H−1(Ω),H1
0(Ω)= 0

=

∫
Ω

(2µ(x, u)D(u) : D(φ)− pdivφ) dx

−
∫
∂Ω

(2µ(x, u)D(u).νφ− pν · φ) dσ +
1

ε

∫
B

(u− ū)φdx−
∫

Ω

fφ dx.

Since divφ = 0 and thanks to (11) expressed with v = φ and to the boundary conditions already fulfilled by u and
φ we obtain ∑

i∈{1..I}

∫
Γi

(2µD(u)− pI)ν · φdσ

=
∑

i∈{1..I}

< (2µD(u)− pI)ν, φ >H−1/2(Γi),H1/2(Γi)

=
∑

i∈{1..I}

< (1− θi)(2µD(u)ν), φ >H−1/2(Γi),H1/2(Γi)

= 0

for all φ ∈ V (Ω).

For all i ∈ {1..I}, let ψi ∈ H1/2(Γi). There exists a lifting φ ∈ V (Ω) such that φ · ν = 0, θiφ‖ = 0 and
(1− θi)φ‖ = ψi on Γi (see [3] section III.4 for example). Then for all ψ ∈ (H1/2(Γi)) with i ∈ {1..I}, we obtain
thanks to its lifting in V (Ω) that∑

i∈{1..I}

< 2µD(u)ν, φ >H−1/2(Γi),H1/2(Γi)

=
∑

i∈{1..I}

< (1− θi)(2µD(u)ν), ψi >H−1/2(Γi)),(H1/2(Γi)
= 0,
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and then that for all i ∈ {1..I}
(1− θi)(2µD(u)ν) = 0 in H−1/2(Γi).

Since Γi is assumed to be flat (no curvature), so ν is constant and can be extended to a tubular neighborhood of Γi,
this writes:

(1− θi)
(

2µ
∂u

∂ν
+ 2µ∇(u · ν)Γi

)
= 0 in H−1/2(Γi), i = 1..I.

Since µ > µ0 > 0, u · ν ∈ H1/2(Γi) and u · ν = 0 on Γi we have ∇‖(u · ν) = 0, thus

∇(u · ν) = ν · ∇(u · ν) +∇‖(u · ν) =
∂u · ν
∂ν

and we finally get by means of tangential projection:

(1− θi)
∂u‖

∂ν
= 0 on Γi, i = 1..I.

Hence (u, p) ∈ V (Ω)× L2
0(Ω) is the solution to the Stokes problem (10).

C Regularity and L2 estimates in the proof of Theorem 3.7
We take the scalar product of (16) with β and obtain

1

2

d

dt
‖β‖22 + σ‖tJ−1

t ∇β‖22 = −
∫

Ω\B̄

(
v · tJ−1

t ∇β
)
β dy

6 C‖v‖H1‖β‖3‖tJ−1
t ∇β‖2

6 C‖v‖H1

(
‖β‖2‖tJ−1

t ∇β‖2 + ‖β‖1/22 ‖tJ
−1
t ∇β‖

3/2
2

)
6 C

(
‖v‖2H1 + ‖v‖4H1

)
‖β‖2 + σ 1

2‖
tJ−1
t ∇β‖22.

We differentiate (16) with respect to y and take the scalar product with J−1
t

tJ−1
t ∇β. Thanks to some integrations

by parts, we get

1

2

d

dt
‖tJ−1

t ∇β‖22 + σ‖A(t, ·)β‖22

=

∫
Ω\B̄

(
v · tJ−1

t ∇β
)
A(t, y)β dy +

∫
Ω\B̄

(
∂t
tJ−1
t (y)

)
∇β · tJ−1

t (y)∇β dy

6 C‖v‖H1‖tJ−1
t ‖3‖A(t, ·)β‖2 + C‖tJ−1

t ∇β‖22
6 C‖v‖H1

(
‖tJ−1

t ‖2‖A(t, ·)β‖2 + ‖tJ−1
t ‖

1/2
2 ‖A(t, ·)β‖3/22

)
+ C‖tJ−1

t ∇β‖22
6 C

(
1 + ‖v‖2H1 + ‖v‖4H1

)
‖tJ−1

t ∇β‖22 +
σ

2
‖A(t, ·)β‖22.

We apply the operator A(t, ·) to (16) and take the scalar product with A(t, y)β. We get

1

2

d

dt
‖A(t, ·)β‖22 +∫

Ω\B̄

(
−(∂tA(t, y))β − σA(t, y)2β +A(t, y)

(
v · tJ−1

t (y)∇β
))
A(t, y)β dy = 0

(26)

Since on γ, J−1
t

tJ−1
t ∇β · ν = 0, we have on γ((Γ ?))

0 = ∂t
(
ν · J−1

t
tJ−1
t ∇β

)
= ν · ∂t

(
J−1
t

tJ−1
t

)
∇β + ν · J−1

t
tJ−1
t ∇∂tβ

= ν · ∂t
(
J−1
t

tJ−1
t

)
∇β + ν · J−1

t
tJ−1
t ∇ [−v(t, y) · ∇β + σA(t, y)β] .

Then by performing an integration by parts of (26) we get

1

2

d

dt
‖A(t, ·)β‖22

+

∫
γ

ν ·
[
−∂t(J−1

t
tJ−1
t )∇β + J−1

t
tJ−1
t ∇

(
−σA(t, ·)β +

(
v · tJ−1

t ∇β
))]

A(t, ·)β dσ

+σ‖tJ−1
t ∇A(t, ·)β‖22 +

∫
Ω\B̄

Jt∂t(J
−1
t

tJ−1
t )∇β · tJ−1

t ∇A(t, ·)β dy

+

∫
Ω\B̄

tJ−1
t ∇

(
v · tJ−1

t ∇β
)
· tJ−1

t ∇A(t, ·)β dy = 0.
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Thanks to the boundary condition we have

1

2

d

dt
‖A(t, ·)β‖22 + σ‖tJ−1

t ∇A(t, ·)β‖22
6 C‖tJ−1

t ∇β‖2‖tJ−1
t ∇A(t, ·)β‖2 + C‖∇v‖2‖tJ−1

t ∇β‖∞‖tJ−1
t ∇A(t, ·)β‖2

+C‖v‖6‖tJ−1
t ∇β‖3‖tJ−1

t ∇A(t, ·)β‖2
6 C‖tJ−1

t ∇β‖2‖tJ−1
t ∇A(t, ·)β‖2 + C‖v‖H1‖tJ−1

t β‖H3/2‖tJ−1
t ∇A(t, ·)β‖2

+C‖v‖H1‖∇tJ−1
t ∇β‖H1/2‖tJ−1

t ∇A(t, ·)β‖2
6 C‖tJ−1

t ∇β‖2‖tJ−1
t ∇A(t, ·)β‖2

+C‖v‖H1

(
‖tJ−1

t β‖H1‖tJ−1
t ∇A(t, ·)β‖2+‖tJ−1

t β‖1/2H1 ‖tJ−1
t ∇A(t, ·)β‖3/22

)
+C‖v‖H1

(
‖∇tJ−1

t ∇β‖2‖tJ−1
t ∇A(t, ·)β‖2

+‖∇tJ−1
t ∇β‖

1/2
2 ‖tJ

−1
t ∇A(t, ·)β‖3/22

)
6 C

(
1 + ‖v‖2H1 + ‖v‖4H1

)
‖β‖H2 +

σ

2
‖tJ−1

t ∇A(t, ·)β‖22.

We then have

y′ + σ
(
‖tJ−1

t ∇β‖22 + ‖A(t, ·)β‖22 + ‖tJ−1
t ∇A(t, ·)β‖22

)
6 C

(
1 + ‖v‖2H1 + ‖v‖4H1

)
y

where y = ‖β‖22 + ‖tJ−1
t ∇β‖22 + ‖A(t, ·)β‖22. Since v ∈ L∞(0, T ; H1(Ω \ B̄)) we deduce thanks to Gronwall

lemma that there exists C > 0 such that for all t ∈ [0, T ]

y 6 y(0) exp
(
CT (1 + ‖v‖2L∞(0,T ;H1(Ω\B̄)) + ‖v‖4L∞(0,T ;H1(Ω\B̄)))

)
.

Back to the original equation on α we obtain the announced result.
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D Analysis tools for penalized problem

D.1 Proof of Proposition 4.1
We take the difference between the two nonlinear equations (15) and we get

−div
(

2
(
µ∞ + (µ0(α)− µ∞)(1 + 2β2(α)|D(u)|2)q(α)/2−1

)
D(u)

)
+div

(
2
(
µ∞ + (µ0(α′)− µ∞)(1 + 2β2(α)|D(u′)|2)q(α

′)/2−1
)
D(u′)

)
+
1B(t)

ε
(u− u′) = −∇(p− p′) in [0, T ]× Ω,

div(u− u′) = 0 in [0, T ]× Ω,
(u− u′)⊥ = 0 on [0, T ]× Γ,

θi(u‖ − u′‖) + (1− θi)

(
∂u‖

∂ν
−
∂u′‖

∂ν

)
= 0 on [0, T ]× Γi, i = 1..I,

(u− u′) has periodic conditions otherwise.

This equation rewrites as

−div (2µ∞D(u− u′)))− div (h(α,D(u))− h(α′, D(u′))) +
1B(t)

ε
(u− u′) = −∇(p− p′)

with h(α,D) = (µ0(α)− µ∞)
(
1 + 2β2(α)|D|2

)q(α)/2−1
D.

Taking the scalar product in L2(Ω) by (u− u′) for a.e. t ∈ [0, T ] we get

2

∫
Ω

µ∞|D(u− u′)|2 dx+

∫
Ω

(φ(1)− φ(0)) dx+
1

ε
‖u− u′‖2L2(B(t)) = 0 (27)

where we let φ : [0, 1]→ R the application defined for all s ∈ [0, 1] by

φ(s) = h (α′ + s(α− α′), D(u′ + s(u− u′))) : D(u− u′)
= 2(µ0(αs)− µ∞)(1 + 2β2(αs)|Ds|2)

q(αs)
2 −1(Ds : D(u− u′)),

where Ds = D(u′ + s(u− u′)) and αs = α′ + s(α− α′).

We have φ(1)− φ(0) =

∫ 1

0

φ′(s) ds where

φ′(s) = A1 +A2 +A3 +A4 +A5,

A1 = 2 (µ0(αs)− µ∞)
(
1 + 2β2(αs)|Ds|2

) q(αs)
2 −1 |D(u− u′)|2

A2 = 2β2(αs) (µ0(αs)− µ∞) (q(αs)− 2)
(
1 + 2β2|Ds|2

) q(αs)
2 −2

(Ds : D(u− u′))2

A3 = 2µ′0(αs)(α− α′)
(
1 + 2β2(αs)|Ds|2

) q(αs)
2 −1

(Ds : D(u− u′))
A4 = (µ0(αs)− µ∞) q′(αs)(α− α′)(Ds : D(u− u′))

×
(
1 + 2β2(αs)|Ds|2

) q(αs)
2 −1

ln
(
1 + 2β2|Ds|2

)
A5 = 4(µ0(αs)− µ∞)(q(αs)− 2)

(
1 + 2β(αs)

2|Ds|2
) q(αs)

2 −2

×β(αs)β
′(αs)(α− α′)|Ds|2(Ds : D(u− u′))

Consequently, one gets

A1 +A2 = 2 (µ0(αs)− µ∞)
(
1 + 2β2(αs)|Ds|2

) q(αs)
2 −1

×
(
|D(u− u′)|2 + (q(αs)− 2)

2β2(αs)(Ds : D(u− u′))2

1 + 2β2(αs)|Ds|2

)
> 2 (µ0(αs)− µ∞)

(
1 + 2β2(αs)|Ds|2

) q(αs)
2 −1

(q(αs)− 1)|D(u− u′)|2

thus A1 +A2 > 0. Moreover

|A3| 6 2

∥∥∥∥∂µ0

∂α

∥∥∥∥
∞
|α− α′||Ds||D(u− u′)|

|A4| 6 sup
α,|D|

∣∣∣∣(µ0(α)− µ∞)q′(α)
(
1 + 2β2(α)|D|2

) q(α)
2 −1

ln(1 + 2β2(α)|D|2)

∣∣∣∣
×|α− α′||Ds||D(u− u′)|

|A5| 6
∥∥∥∥(µ0 − µ∞)(q − 2)

β′

β

∥∥∥∥
∞
|α− α′||Ds||D(u− u′)|.
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Back to equation (27) we get

2µ∞

∫
Ω

|D(u− u′)|2 dx+

∫
Ω

∫ 1

0

(A1 +A2︸ ︷︷ ︸
>0

+A3 +A4 +A5) ds dx+
1

ε
‖u− u′‖2L2(B(t)) = 0

so
2µ∞

∫
Ω

|D(u− u′)|2 dx+
1

ε
‖u− u′‖2L2(B(t))

6 C‖α− α′‖∞
(
‖D(u)‖L2(Ω) + ‖D(u′)‖L2(Ω)

)
‖D(u− u′)‖L2(Ω).

Then
µ∞‖D(u− u′)‖2L2(Ω) +

1

ε
‖u− u′‖2L2(B(t))

6 K
(
‖D(u)‖2L2(Ω) + ‖D(u′)‖2L2(Ω)

)
‖α− α′‖2L∞(Ω),

and for all t ∈ [0, T ],

µ∞‖D(u− u′)(t, ·)‖2L2(Ω) +
1

ε
‖u− u′‖2L2(B(t))

6 K
(
‖D(u)‖2L∞(0,T ;L2(Ω)) + ‖D(u′)‖2L∞(0,T ;L2(Ω))

)
‖(α− α′)(t, ·)‖2L∞(Ω).

which concludes the proof.

D.2 Proof of Proposition 4.2
To perform some estimates we use the diffeomorphism Ψ as in Th.3.7. We let β(t, y) = (α− α′)(t,Ψt(y)) which
fulfills : 

∂tβ + v · tJ−1
t ∇β − σA(t, y)β = −(v − v′) · tJ−1

t ∇β2 in Ω \ B̄
J−1
t

tJ−1
t ∇β · ν = 0 on ([0, T ]× Γ) ∪ Σ,

β has periodic conditions otherwise,
β(0, ·) = 0 in Ω \ B̄(0),

(28)

where β2(t, y) = α′(t,Ψt(y)), v(t, y) = u(t,Ψt(y))− ∂tΨt(y) and v′(t, y) = u′(t,Ψt(y))− ∂tΨt(y).
L2 estimate: we take the scalar product of (28) with β in L2(O \ B̄) and get

1

2

d

dt
‖β‖22 + σ‖tJ−1

t ∇β‖22

= −
∫

Ω\B̄
(v − v′) · tJ−1

t ∇β2 β dy −
∫

Ω\B̄
v · tJ−1

t ∇β β dx

6 ‖tJ−1
t ∇β2‖2‖v − v′‖6‖β‖3 + ‖v‖6‖β‖3‖tJ−1

t ∇β‖2
6 C‖β2‖H1‖v − v′‖H1‖β‖H1 + C‖v‖H1‖tJ−1

t ∇β‖2
(
‖β‖2 + ‖β‖1/22 ‖tJ

−1
t ∇β‖

1/2
2

)
6 C‖β2‖2H1‖v − v′‖2H1 + C

(
1 + ‖v‖2H1 + ‖v‖4H1

)
‖β‖22 +

σ

2
‖tJ−1

t ∇β‖2L2(Ω\B̄).

H1 estimate: we take the scalar product of (28) with −A(t, y)β in L2(Ω \ B̄) and get

1

2

d

dt
‖tJ−1

t ∇β‖22 + σ‖A(t, ·)β‖22

=

∫
Ω\B̄

(
v · tJ−1

t ∇β
)
A(t, y)β dy +

∫
Ω\B̄

(v − v′) · tJ−1
t ∇β2A(t, y)β dy

6 ‖v‖6‖tJ−1
t ∇β‖3‖A(t, ·)β‖2 + ‖v − v′‖6‖tJ−1

t ∇β2‖3‖A(t, ·)β‖2
6 C(‖v‖2H1 + ‖v‖4H1)‖β‖2H1 + C‖β2‖2H2‖v − v′‖2H1(Ω) +

σ

2
‖A(t, ·)β‖22.

This implies that
d

dt
‖β‖2H1 + σ

(
‖tJ−1

t ∇β‖22 + ‖A(t, ·)β‖22
)

6 C(1 + ‖v‖2H1 + ‖v‖4H1)‖β‖2H1 + C‖β2‖2H2‖v − v′‖2H1

We let y = ‖β‖2H1 and y1 = ‖tJ−1
t ∇β‖22 + ‖A(t, ·)β‖22. Thanks to the regularity results on v, there exist

k ∈ L1(0, T ) and a constant C depending only on Ω, ‖α0‖H2(Ω), f , ū such that for all 0 6 t 6 T ,

y′ + σy1 6 k(t)y + C‖v − v′‖2H1 .

Since y(0) = 0, we obtain thanks to Gronwall’s lemma that for all t ∈ [0, T ],

y(t) + σ

∫ t

0

y1(s) ds 6
∫ t

0

C‖(v − v′)(s, ·)‖2H1(Ω) exp

(∫ t

s

k(s′) ds′
)
ds

6 C exp(‖k‖L1(0,T ))‖v − v′‖2L2(0,t;H1(Ω))

6 C ′‖v − v′‖2L2(0,t;H1(Ω)).

Back to the original coordinates we get the announced results.
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D.3 Proof of Proposition 4.3
This result is the consequence of propositions 4.1 and 4.2: for all t ∈ [0, T ] we have

‖G(u)−G(u′)‖2L2(0,t;H1(Ω))

6 C

∫ t

0

‖(α− α′)(s, ·)‖2L∞(Ω) ds

6 C

∫ t

0

‖(α− α′)(s, ·)‖2L∞(Ω\B̄(·)) ds

6 C

∫ t

0

‖(α− α′)(s, ·)‖2H7/4(Ω\B̄(·)) ds

6 C

∫ t

0

‖(α− α′)(s, ·)‖1/2H1(Ω\B̄(·))‖(α− α
′)(s, ·)‖3/2H2(Ω\B̄(·)) ds

6 C

(∫ t

0

‖(α− α′)(s, ·)‖2H1(Ω\B̄(·)) ds

)1/4(∫ t

0

‖(α− α′)(s, ·)‖2H2(Ω\B̄(·)) ds

)3/4

6 C

(∫ t

0

‖(u− u′)‖2L2(0,s;H1(Ω\B̄(·))) ds

)1/4

‖u− u′‖3/4L2(0,t;H1(Ω\B̄(·)))

6 Ct1/4‖u− u′‖L2(0,t;H1(Ω\B̄(·))).

Then there exists a time 0 < T ∗ < T such that for all 0 6 t 6 T ∗,

‖G(u)−G(u′)‖L2(0,T∗;H1(Ω)) 6
1

2
‖u− u′‖L2(0,T∗;H1(Ω)).

Moreover T ∗ depends on T , Ω, Op, f , ū and α0.

D.4 Proof of Proposition 4.4
We have

µ(α, u)D(u)− µ(α′, u′)D(u′) = Φ(1)− Φ(0) =

∫ 1

0

Φ′(s) ds,

where Φ(s) = µ(αs, us)Ds with αs = α′ + s(α− α′), us = u′ + s(u− u′), Ds = D(u′ + s(u− u′)) and

Φ′(s) =

µ∞D(u− u′) + (µ0(αs)− µ∞)(1 + 2β2(αs)|Ds|2)
q(αs)

2 −1D(u− u′)
+µ′0(αs)(1 + 2β2(αs)|Ds|2)

q(αs)
2 −1(α− α′)Ds

+2(µ0(α)− µ∞)(1 + 2β2(α)|Ds|2)
q(αs)

2 −2(q(αs)− 2)β2(αs)(Ds : D(u− u′))Ds

+(µ0(α)− µ∞)(1 + 2β2(αs)|Ds|2)
q(αs)

2 −1 q
′(αs)

2
ln(1 + 2β2(α)|Ds|2)(α− α′)Ds

+2(µ0(α)− µ∞)(1 + 2β2(αs)|Ds|2)
q(αs)

2 −2(q(αs)− 2)β(αs)β
′(αs)|Ds|2(α− α′)Ds

Following the proof of Prop. 4.1, we obtain

|Φ′(s)| 6 µ∞|D(u− u′)|+ (µ0(αs)− µ∞)|D(u− u′)|+ |µ′0(αs)||α− α′||Ds|

+(µ0(αs)− µ∞)(2− q(αs))
(

1 +

∣∣∣∣β′(αs)β(αs)

∣∣∣∣) |D(u− u′)|

+ sup
α,D

∣∣∣∣(µ0(α)− µ∞)(1 + 2β2(α)|D|2)
q(α)

2 −1 q
′(α)

2
ln(1 + 2β2(α)|D|2)

∣∣∣∣ |α− α′||Ds|

6 C|D(u− u′)|+ C ′|α− α′||Ds|.

Then
‖(µ(α, u)D(u)− µ(α′, u′)D(u′))(t, ·)‖L2(Ω)

6 C‖D(u− u′)(t, ·)‖L2(Ω)

+C ′
(
‖D(u)(t, ·)‖L2(Ω) + ‖D(u′)(t, ·)‖L2(Ω)

)
‖(α− α′)(t, ·)‖L∞(Ω).

Estimations in Theorem 3.6 conclude the proof.

E Numerical method
Dedicated computational algorithms have been developed to compute the studied coupled Newtonian problem
[9, 10, 8], and for the uncoupled non-linear problem [7]. These algorithms are computed using a hybrid grid–
particles framework in order to use a suitable discretization of each phenomenon: Cartesian grids for the Stokes
problem and diffusion, Lagrangian method for the transport.
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The resolution of the Stokes problem is based on an iterative projection method. This ensures accurate compu-
tations of both the inviscid velocity and the nonlinear effects as well as the penalized domain velocity and boundary
conditions (an inherent problem of projection methods [24]). It has been shown in [9], and improved numerically
in [10], that for a given function α the solution to the generalized Stokes problem is the limit of:

u = P
(

lim
n→∞

u∗n

)
where P is the projector on divergence-free fields (P(v) = v−∇ζ with ζ the solution to −∆ζ = −divv satisfying
homogeneous Neumann or periodic boundary conditions) and where u∗n is the sequence of functions defined as
follows:

− µ∆u∗n+1 +
1B(t)

ε

(
u∗n+1 − u∗n + P(u∗n)

)
= f +

[
2D(un) + (divu∗n)Id

]
∇µ (21)

with µ = µ (α,P(u∗n)) satisfying the Carreau law (2).
Adequate boundary conditions are setup for the limit function to satisfy the correct boundary conditions of the

Stokes problem. Indeed, the non homogeneous Dirichlet condition based on the Richardson extrapolation

u∗n+1 = g + (1− θ)
(
P(u∗n)− u∗n

)
+ θ

(
P(u∗n−1)− u∗n−1

)
leads to the boundary condition u = g. θ ∈ [0, 1] leads to the usual relaxation scheme, while θ = −1 gives the
Richardson extrapolation, used in the present simulations.

The sequence defined by equation (21) reads, once divided by µ > µ∞ > 0:

−∆u∗n+1 + 1B(t)(µε)
−1u∗n+1 = RHS. (29)

This numerical strategy reduces the grid computations to a sequence of Poisson problems resolution computed
with a FFT-based solver FishPack [39] for the numerical evaluation of the projector P, and an algebraic multigrid
solver MudPack [1] for the non-separable Helmholtz equation (29). This ensures a quasi–linear computational cost
with respect to the number of discretization points.

The idea of hybrid Particle-Grid methods is to use particles for the diffusion-transport and a grid-based method
for the penalized Stokes problem. A particle is a set (αj , xj , vj) with a position xj , a volume vj and a weight αj ,
all of them depending only on time. Particles are a mean to approximate a function in the following sense:

αh(·, t) =
∑
j

αj(t)δxj(t)vj such that α∗ρ (x, t) =
∑
j

αj(t)ρ
(
x− xj(t)

)
vj(t) (30)

for any regularizing kernel ρ. The transport equation can then be replaced by a set of differential equations for the
particle weights and locations which, for an incompressible flow, reads:

α′j(t) = [σ∆α] (xj(t), t)
x′j(t) = u(xj(t), t)
v′j(t) ≡ 0 since divu ≡ 0

(31)

where the velocity field u is computed through the resolution of the penalized Stokes problem.
This method in particular exhibits nice stability properties, in the sense that, unlike for traditional grid-based

methods, the time-step is not constrained by the grid size (that is to say there is no transport CFL condition). For
the high resolution simulations that we will consider, this significantly reduces the computational time. In order
to transfer data from grid to particles and the way back, high order convolution with strongly compact supported
kernels are used. For instance, we use the M3, M5 and M ′4 kernels (depending on whether the positivity is crucial
or not) introduced in [31] and developed further in the context of particle methods in [13].

Since the convergence and consistency of this numerical method have been already investigated in [9, 10], no
further description is provided in the present article. The following section addresses the use of this method for
two real-world problems treated for the first time, that is to say solving the full coupled PDEs (2,3).

F Numerical parameters used in simulations
All the parameters used for the digital rock physics and lung simulations are displayed on Table 1, Table 8 and
Table 2, respectively.

Furthermore, the initial condition field α of digital rock physics simulations is based on a random field gener-
ated by FFTMA algorithm [35, 33]. This method allows to build 3D periodic random scalar fields by the use of
fast Fourier transform. A covariance field C is first computed on the domain Ω according to a Gaussian model.
The associated random field of arithmetic average M , geometric average G and variance τ2 is given by

α̃ = Geτω with ω = F−1
[√
F(C)F

{
M + F−1

(√
F(C)F(Z)

)}]
(32)

where F (respectively F−1) denotes the Fourier transform in R3 (respectively the inverse Fourier transform in R3)
and Z is a gaussian white noise. This random α̃ is finally cut smoothly on a few voxels from the domain boundary
by means of a sigmoid function K so that the support of α = α̃K1Ω\B does not intersect ∂Ω or B.
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Parameter Value
Diffusion σ 4 10−12 m2/s

Solvent viscosity µ∞ 10−3 Pa · s
Carreau index N − 1 −0.614

Aµ 0.26 Pa · s
Bµ 6.06 10−4

Rµ 6.5 10−4

Aβ 2.4 s
Bβ 6.17 10−4

Table 1: Xanthan molecular structure and its rheological parameters.

Figure 8: Xanthan viscosity at rest η0 (zero shear-rate) and inverse shear-rate cut-off β with respect to xanthan
concentration (g/L) : experimental data (from [25]) and best exponential fits, with sigmoid transition from linear
to exponential for the µ0.
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Départemental Pyrénées-Atlantiques (CD64) is greatly acknowledged.

References
[1] J. C. ADAMS, mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial

differential equations, Applied Mathematics and Computation, 34 (1989), pp. 113–146.

[2] R. A. ADAMS AND J. J. F. FOURNIER, Sobolev Spaces, Academic Press, June 2003.
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