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Résumé — Dans ce travail, nous proposons un schéma de codage basé sur les codes polaires pour la coordination empirique d’appareils
autonomes. Nous considérons un réseau simple composé de deux nceuds reliés par un lien bruité, et nous cherchons a coordonner les signaux
en entrée et en sortie du canal, avec la source et sa reconstruction. Lorsque 1’encodeur est strictement causal, nous montrons que les codes
polaires atteignent la région optimale de coordination empirique, a condition que les deux nceuds partagent une source aléatoire, dont le débit est

asymptotiquement négligeable.

Abstract — In this paper, we propose a coding scheme based on polar codes for empirical coordination of autonomous devices. We consider a
two-node network with a noisy link in which the input and output signals have to be coordinated with the source and the reconstruction. In the
case of strictly causal encoding, we show that polar codes achieve the empirical coordination region, provided that a vanishing rate of common

randomness is available.

1 Introduction

In decentralized networks of connected objects, such as
wireless sensors, medical and wearable devices, smart energy
meters, home appliances, and self-driving cars, devices sense
their environment and choose their actions in order to achieve
a general objective. It is essential that these devices, considered
as autonomous decision-makers, cooperate and coordinate
their actions to induce a global behavior, represented by a
utility function to be maximized.

Within the framework of information theory, two different
metrics have been proposed to measure the level of
coordination : empirical coordination requires the joint
histogram of the actions to approach a target distribution, while
strong coordination requires the joint distribution of actions to
converge in total variation to an i.i.d. target distribution [1].

We consider a two-node network with an information source
and a noisy channel in which the input and output signals
should be empirically coordinated with the source and the
reconstruction. In [2], the authors provide a characterization
of the coordination region when the encoder is strictly causal.
Inspired by the binning technique using polar codes in [3], we
propose an explicit coding scheme that achieves a subset of
the coordination region in [2] by turning the argument of [4]
into an explicit polar coding proof. The scenario in which both
the encoder and the decoder are non-causal has already been
considered for empirical coordination with polar codes [5].
Here, we focus on the setting in which the encoder is strictly
causal.

In this paper, we only achieve a subset of the coordination

region because of the use of binary polar codes, but the whole
region can be achieved using non-binary polar codes.

The remainder of the paper is organized as follows.
Section 2 introduces the notation, describes the model under
investigation and states the main achievability result. Section 3
details the proposed coordination scheme using polar codes.
Finally, Section 4 proves the main result.

2 Problem statement
2.1 Notation

We define [a,b] as the set of the integers between a and

1 0]®™
b. For n = 2™, m € N, we note G,, = 1 1}
the source polarization transform defined in [6]. Given
Xtn .= (X4 ..., X"™) a random vector, we note X'/ the

first j components of X1 and X[A], where A C [1,n], the
components X7 such that j € A. We note V(-,-) and D(-||)
the variational distance and the Kullback-Leibler divergence
between two distributions, respectively.

2.2 System model and main result
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FIGURE 1 — Coordination of signals and actions for a two-node
network with a noisy channel.



We consider two agents, Node 1 and Node 2, who have access
to a shared randomness source C' € C,, (Figure 1). Node 1
observes an i.i.d. sequence of actions S1:" € S™ with discrete
probability distribution Ps. Node 1 then selects a signal
X1 such that X* = f;(SY~1 C), where f* = {f;}",
fi + 87! x €, — X is the strictly causal encoder.
The signal X'" is transmitted over a discrete memoryless
channel with transition probability Py-x. Upon receiving
Yl e yn Node 2 selects an action Stin — gn (Yt o),
where g™ : Y xC,, — S™ is the non-causal decoder. For block
length n, the pair (f™, g™) constitutes a code. Node 1 and Node
2 wish to coordinate in order to obtain a joint distribution of
actions and signals that is close to a target distribution Pg 5.
We focus on the empirical coordination metric defined in [1].

Definition 1. A distribution P g is achievable if for all € >
0 there exists a sequence of codes {(f™, g") }nen such that

HILII;O P {V (Tslznxlmylm,gl:n » Psxyg) > 5} =0,
where  Tqi. vimy1mgin (5, 2,Y,8) is  the  empirical
distribution of the tuple (S*", Xtn Y1 SEn induced
by the code.

The empirical coordination region C is the set of achievable

distributions Ps Xy &

Theorem 2 (Strictly causal encoder [2]). Let Ps and Py|x be
the given source and channel parameters. When the encoder is
strictly causal, the coordination region C is given by

Pyyys:

PSXYEZPstPY\XP§\SXY

3 U taking values in U

C:= PSXYU§:PstPU\XspYIXP§|UY ey
I(X,U;8) < I(X,U;Y)

U] < [SIXIVIIS] + 1

Remark 3. By the chain rule, we have
o I(X,U;S)=1(U;S|X)+I1(X;S)=I(U; S|X) since
St and X" are independent ;
e I(X,U;Y) = IU;)YIX) + I(X;Y) =
because of the Markov chainU — X — Y.
Hence the condition I(X,U; S) < I(X,U;Y) in (1) becomes
I(U; S|X) < I(X;Y).

I(X;Y)

Theorem 4. For all Py 5 € C such that U = {0,1}, there
exists an explicit polar coding scheme that achieves empirical
coordination with vanishing rate of common randomness.

Remark 5. Since U is binary we only achieve a subset of C.
The proof can be generalized to the case where |U| is a prime
number using non-binary polar codes.

3 Polar coding scheme

Consider the random vectors St*, UL, X1 Yy1n and
Qlin .. . R .
S ' genera}ted 1.i.d. according .to PSXUYS that fa(?torl'ze
as in (1) with the same mutual information and cardinality
constraints.

Polarize X Let Z'" = X'"@, be the polarization of
X" where G, is the source polarization transform. For some

0<pB<1/2letd, = 2" and define the very high and high
entropy sets :

Vx:={jel,n]: HZ 2" ") >1-4,},
Hx:={jel,n]: HZ|Z"") > 6.}, )
Hxy :={j€e[lin]: HZI|Z"7'YY") > 6, .
Partition the set [1, n] into four disjoint sets :
Ay =Vx NHxy, Az:=VxN Hg(ly,
Az =V NHxy, As:=ViN Hg{IY'
Remark 6. We have :

e Vx C Hx and lim
n—oo

|IHX7> Vxl /6],

e AiUAy =Vx and lim %:H(X) [7],

n— o0
H
o Ay UAz =Hy)y and lim vl _ H(X|Y) [6].
n—oo n

|[Az| — | A3

Since lim =HX)-HX|Y)=I1I(X;Y)>0
n—oo

this implies directly that for n large enough |As| > | As].

Polarize U Let VI = U@, be the polarization of U Lin
and define :

Vuixs:={j€l,n: HVIVII-IXtmglny > 16,1,

Huixs:={j€l,n]: HVIVIITIXtnglny > 5,1,
Hux :={j€l,n]: HVI|VH X" > 6, }. 3)
Partition the set [1, n] into four disjoint sets :

By :=Vyixs NHuix = Vuixs, B2:=Vyxs NHix =0,

Bs =V xs N Huix,  Ba=Vjxs NH{ix = Hix-

Remark 7. We have :
[Huixs \ Vuxsl

° VU\XS CHU|XS and le =0/6],
)%
e By =Vy|xs and le % =H(U|XS) [7]
Vo x|

— C M
e B, = ’HU‘X and nh_)rgc -

Vo xs]
n

=1-HUIX) [7]

o B3UB;=Vj ysand lim —1-H(U|XS) [7].
n—oo

Note that HU|X) — HU|XS) = I(X,U;S) > 0 and

|Bs|/n tends to I1(X,U; S). Since I(X,U;Y) = I(X;Y), the

inequality I(X,U; S) < I(X,U;Y) implies directly that for n

large enough |Bs| < |As| — | As.

Encoding We use a chaining construction over multiple
blocks. The encoder observes (S3™, ST, ..., SE™), where
S§™ is a uniform random sequence and S} for i € [1,k]
are k blocks of the source. It then generates for each block
i € [1,k] random variables Z}™ and V" following the
procedure described in Algorithm 1. In particular, the chaining
construction proceeds as follows. The bits in A; C Vx and
By C Vyxs are chosen with uniform probability using



Algorithm 1: Encoding algorithm at Node 1

(Sg™, ..., SEm), local randomness (uniform

random bits) M and common randomness

C = (C1, K1, C5, K») shared with Node 2 :
e () of size |A1| and K of size | A3
o (5 of size | By| and K5 of size | Bs.

Output: (Z}, ... Zk™), (V... Vim)

if i = 1 then

Zl [Al] — Cl

for j € As U Ay do

Successively draw the bits Zf according to

Py zii1 (ZJ | Z5 *1) @)

Input :

[l

Zl [AQ] «— M

‘71 [Bl] «— CQ

for j € BsU By do

Given S{", successively draw the bits V7
according to

Pyijytii-txtngin (f/ﬁ R ;11) )

fori=2,...,kdo
Zi|A)) «— C1 Zj[AY) «— M
Zi|BY] +— Vi1[Bs] @ Ko Z;|AY] «— Zi_1[As] @ K,
for j € As U Ay do

Successively draw the bits Zf according to (4)

‘Z[Bl] +— Oy

for ) € B3 U By do

L Successively draw the bits ‘717 according to (5).

uniform randomness sources (C1, Cy) shared with Node 2, and
their value is reused over all blocks. In the first block the bits in
Ay C Vx are chosen with uniform probability using a local
randomness source M. The bits in A3 U A4 and B3 U By
are generated according to the previous bits using successive
cancellation encoding [6]. Note that it is possible to sample
efficiently from Pz z1.5-1 and Pyjjy1i-1x1ngin (given Sglin
and X ") respectively [6].

From the second block, let A% and B}, be two disjoint subsets
of Ay such that |A}| = |As| and | B%| = | Bs|. The existence of
those disjoint subsets is guaranteed by Remark 6 and Remark 7.
The bits of A3 and Bs in block 7 are used as A5 and Bj in block
¢ + 1 using one time pads with keys K; and K3 respectively.
Thanks to the Crypto Lemma [8, Lemma 3.1], if we choose K7
of size |A3| and K> of size |Bs| to be uniform random keys,
the bits in A% and Bj in the block 7 4 1 are uniform. The bits
in A, := As \ (A5 U BY) are chosen with uniform probability
using the local randomness source M. B

The encoder then computes X} zZknG,, for
i = 1,...,k and sends it over the channel. We use an extra
(k + 1)-th block to send a version of Z;[A3] encoded with a
good channel code as in [5, Section III.B].

1in 71:n
Z; Zih

reuse reuse
s A G C1
Aj
Ay
one- y
time By
pad A
. i i
Ay K K
reuse reuse
) By | Cy Co
one-
time
pad
o . ¥ . ¥
K, K,
By
f/il:n ‘711+T

FIGURE 2 — Chaining construction for block Markov encoding

Algorithm 2: Decoding algorithm at Node 2

Input . (Yllm, ey Yk1+7ll), C= (Cl,Kl, Cz, KQ)
common rag\domnes/\s shared WAith Node 1
Output: (Z{™,...,Z™), (V.. Vi)

fori==F%,...,1do

Zi|A)] «— C1  Vi[Bi] «— G
if - = k then

| ZulAs] «— Vi3 Vi[As] «— Vi
else

Z,|As] < Z;a[As] & K,
| VilB3] <= Zi[B5] @ Ko
for j € A, U A, do
Successively draw the bits according to
= Jo AL, (Y Z ) > 1
E) 1 else

Zlij—1y,1:n
PzﬂZ.l:j_lY.l"" (O | Zz }/z )
i 1“4 i

Ln(Y;'l:n, Zil:jfl) _

7lij—1y,1:
Pzi|z1ij*1y.1:n (1 | Z; Y; n)
K 7 7

for j € B, do
Successively draw the bits according to
. : 1j—1
570 Ly (X V) = 1
‘ 1 else




Decoding The decoder observes (Y'*,...,V,!l"") and the
(k + 1)-th block allows it to decode in reverse order. In block
i € [1, k], the decoder has access to Z;[A; U As] = Z; [(Hx)v]
and XA/i[Bl UBs] = ‘A/i[HU|X] : the bits in A; and Bj correspond
to shared randomness (C4, C3), in block i € [1, k — 1] the bits
in Az and Bj are obtained by successfully recovering A2 in
block i + 1 and in block & they are recovered from Y} w1 as
in [5, Section III.C]. For each block i = k, ..., 1 the decoder
recovers the estimates Z}" and V;!*" using Algorithm 2. From
Y™ and Z;[A; U Aj] the successive cancellation decoder can
retrieve Z; [A2 U A4] and therefore V;[By). Note that, as shown
in [6, Theorem 3], V1" _is equal to Vm with high probability.
The decoder computes U}" = V"G, It then generates Shin

symbol by symbol using : SJIU‘,YJ( slu,y) = S‘UY |u,y .

Remark 8. The rate of common randomness is negligible,

since :
|Ax| + [As[ +[Bi] + [Bs| _ lim Vxv|+ [Hu x|
s kn it nk
H(X|Y HU|X
o HEWM+HOUX)
k—o0 k

4 Proof of Theorem 4

Given € > 0, we want to prove that :

nlL)r{.lO]P) {V ( Si ITCL+1 1: kL+1 1: k+lsi k+1 PSXY§) > 6} - 0.
This requires a few steps :

1.V 6[1, k]’nlggop{v(TS}’”)?}:"ﬁ}:"’ PSXU) > 6} = 0;

2. Vi 6[17 k]»nILH;OP{V(TS}:n)?}:nﬁ/;:n,y_l;n 5 PSXUY) > 6} = 0;
3.V 6[17 k]’nll_{r;OP{V(Tsln)}lnﬁlnylné’ln ) PSXUYS’)>E}: 07
4. Convergence in each block implies overall convergence ;

5. The theorem follows from the fact that

\Y (T P A) <

Si 7?+1X11 k41 Yy k+1311 i+1 SXYS ) =
VTgim z1m fFim , P )
( Si k1K1 k+1U11{k+1 1: k+1311 k1 SXUYS)

Note that since the steps 2 to 5 have already been proved in
[5, Section IV], we only need to prove the first step. For all
o > 0, we define

7;() (PSXU) = {(S7X7u)|v (PSXUuT(s,x,u)) < €O}

Observe that for the i.i.d. distribution,
limn_mCIP’{(s,x, u) c 7-50 (PSXU)} =1.
Let i € [1, k], we have :

P {V (Tséltnxil:nUil:n R PSXU) > Eo}
= 3" Poungimgun (5%, 0 1{(s,x,1) ¢ T2, (Psxv)}

s,X,u

= Z (PS}:’!L}’Z’}:?L[};:TL (S7 X, u) -

s,X,u

+ Pginxtngin (s,x,u))1{(s,x,u) ¢ Tz, (Psxv)}

we have

PSI:?LXI:nUl:n (S7 X, 11)

SV(Pgringimgim s Pstnx g ) +P{(s,x,0) ¢ T2, (Psxv )}

which tends to O thanks to a typicality argument and the
following result.

Lemma9. Fori € [1,k], let 5, = 27" where 0 < B < 1/2,
V (Pyyon gimgims Psvnxiinion ) < 2¢/1082y/ndy.
Proof. By the chain rule, we have
D (PSI;HXMUM

-D (PXM,‘SM

Pg}:n)}il;n[j}m) (6)

PSM)

P gin
Xpmisy

P

+ID) (PUI:anl:nSl:n [7.1:”‘2.1:"5.1:”

PXl:n Sl:n)
We call D and D the first and the second term. Then :

D,“D (PXM Pgim) (7)

b
P;(im) Op (PZM
© ZD (PZJ.'|Z,1=J'*1
=~ 1z
D S (P

JEAIUAS

>

JEAIUAS

Psjiz1-1| P 1:;1)
ZIVARl z}d

Pgi\grit sz‘fl)
K k3 7

~H(21277)) nivs| < na,

where (a) comes from the fact that X is independent of S,
(b) from the invertibility of G,,, (¢) from the chain rule, (d)
from (4), (e) from the fact that the conditional distribution
Z,‘le 1 is uniform for j in A; and Ay and (f) from
Definition (2).
Similarly, Dy < nd,. Then Dy + D5 < 2nd,, and the proof
is completed using Pinsker’s inequality.
O
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