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Résumé – Dans ce travail, nous proposons un schéma de codage basé sur les codes polaires pour la coordination empirique d’appareils
autonomes. Nous considérons un réseau simple composé de deux nœuds reliés par un lien bruité, et nous cherchons à coordonner les signaux
en entrée et en sortie du canal, avec la source et sa reconstruction. Lorsque l’encodeur est strictement causal, nous montrons que les codes
polaires atteignent la région optimale de coordination empirique, à condition que les deux nœuds partagent une source aléatoire, dont le débit est
asymptotiquement négligeable.

Abstract – In this paper, we propose a coding scheme based on polar codes for empirical coordination of autonomous devices. We consider a
two-node network with a noisy link in which the input and output signals have to be coordinated with the source and the reconstruction. In the
case of strictly causal encoding, we show that polar codes achieve the empirical coordination region, provided that a vanishing rate of common
randomness is available.

1 Introduction
In decentralized networks of connected objects, such as

wireless sensors, medical and wearable devices, smart energy
meters, home appliances, and self-driving cars, devices sense
their environment and choose their actions in order to achieve
a general objective. It is essential that these devices, considered
as autonomous decision-makers, cooperate and coordinate
their actions to induce a global behavior, represented by a
utility function to be maximized.

Within the framework of information theory, two different
metrics have been proposed to measure the level of
coordination : empirical coordination requires the joint
histogram of the actions to approach a target distribution, while
strong coordination requires the joint distribution of actions to
converge in total variation to an i.i.d. target distribution [1].

We consider a two-node network with an information source
and a noisy channel in which the input and output signals
should be empirically coordinated with the source and the
reconstruction. In [2], the authors provide a characterization
of the coordination region when the encoder is strictly causal.
Inspired by the binning technique using polar codes in [3], we
propose an explicit coding scheme that achieves a subset of
the coordination region in [2] by turning the argument of [4]
into an explicit polar coding proof. The scenario in which both
the encoder and the decoder are non-causal has already been
considered for empirical coordination with polar codes [5].
Here, we focus on the setting in which the encoder is strictly
causal.

In this paper, we only achieve a subset of the coordination

region because of the use of binary polar codes, but the whole
region can be achieved using non-binary polar codes.

The remainder of the paper is organized as follows.
Section 2 introduces the notation, describes the model under
investigation and states the main achievability result. Section 3
details the proposed coordination scheme using polar codes.
Finally, Section 4 proves the main result.

2 Problem statement
2.1 Notation

We define [a, b] as the set of the integers between a and

b. For n = 2m, m ∈ N, we note Gn :=
[
1 0
1 1

]⊗m
the source polarization transform defined in [6]. Given
X1:n := (X1, . . . , Xn) a random vector, we note X1:j the
first j components of X1:n and X[A], where A ⊂ [1, n], the
components Xj such that j ∈ A. We note V(·, ·) and D(·‖·)
the variational distance and the Kullback-Leibler divergence
between two distributions, respectively.

2.2 System model and main result

C
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FIGURE 1 – Coordination of signals and actions for a two-node
network with a noisy channel.



We consider two agents, Node 1 and Node 2, who have access
to a shared randomness source C ∈ Cn (Figure 1). Node 1
observes an i.i.d. sequence of actions S1:n ∈ Sn with discrete
probability distribution PS . Node 1 then selects a signal
X1:n such that Xi = fi(S

1:i−1, C), where fn = {fi}ni=1,
fi : Si−1 × Cn → X is the strictly causal encoder.
The signal X1:n is transmitted over a discrete memoryless
channel with transition probability PY |X . Upon receiving
Y 1:n ∈ Yn, Node 2 selects an action Ŝ1:n = gn(Y 1:n, C),
where gn : Yn×Cn → Ŝn is the non-causal decoder. For block
length n, the pair (fn, gn) constitutes a code. Node 1 and Node
2 wish to coordinate in order to obtain a joint distribution of
actions and signals that is close to a target distribution PSXY Ŝ .
We focus on the empirical coordination metric defined in [1].

Definition 1. A distribution PSXY Ŝ is achievable if for all ε >
0 there exists a sequence of codes {(fn, gn)}n∈N such that

lim
n→∞

P
{
V
(
TS1:nX1:nY 1:nŜ1:n , PSXY Ŝ

)
> ε
}
= 0,

where TS1:nX1:nY 1:nŜ1:n(s, x, y, ŝ) is the empirical
distribution of the tuple (S1:n, X1:n, Y 1:n, Ŝ1:n) induced
by the code.

The empirical coordination region C is the set of achievable
distributions PSXY Ŝ .

Theorem 2 (Strictly causal encoder [2]). Let PS and PY |X be
the given source and channel parameters. When the encoder is
strictly causal, the coordination region C is given by

C :=


PSXY Ŝ : PSXY Ŝ = PSPXPY |XPŜ|SXY

∃ U taking values in U
PSXY UŜ = PSPXPU |XSPY |XPŜ|UY

I(X,U ;S) ≤ I(X,U ;Y )

|U| ≤ |S||X ||Y||Ŝ|+ 1

 (1)

Remark 3. By the chain rule, we have
• I(X,U ;S) = I(U ;S|X)+I(X;S) = I(U ;S|X) since
S1:n and X1:n are independent ;

• I(X,U ;Y ) = I(U ;Y |X) + I(X;Y ) = I(X;Y )
because of the Markov chain U −X − Y .

Hence the condition I(X,U ;S) ≤ I(X,U ;Y ) in (1) becomes
I(U ;S|X) ≤ I(X;Y ).

Theorem 4. For all PSXY Ŝ ∈ C such that U = {0, 1}, there
exists an explicit polar coding scheme that achieves empirical
coordination with vanishing rate of common randomness.

Remark 5. Since U is binary we only achieve a subset of C.
The proof can be generalized to the case where |U| is a prime
number using non-binary polar codes.

3 Polar coding scheme
Consider the random vectors S1:n, U1:n, X1:n, Y 1:n and

Ŝ1:n generated i.i.d. according to PSXUY Ŝ that factorize
as in (1) with the same mutual information and cardinality
constraints.

Polarize X Let Z1:n = X1:nGn be the polarization of
X1:n, where Gn is the source polarization transform. For some
0 < β < 1/2, let δn := 2−n

β

and define the very high and high
entropy sets :

VX : =
{
j ∈ [1, n] : H(Zj |Z1:j−1) > 1− δn

}
,

HX : =
{
j ∈ [1, n] : H(Zj |Z1:j−1) > δn

}
, (2)

HX|Y : =
{
j ∈ [1, n] : H(Zj |Z1:j−1Y 1:n) > δn

}
.

Partition the set [1, n] into four disjoint sets :

A1 := VX ∩HX|Y , A2 := VX ∩Hc
X|Y ,

A3 := Vc
X ∩HX|Y , A4 := Vc

X ∩Hc
X|Y .

Remark 6. We have :

• VX ⊂ HX and lim
n→∞

|HX \ VX |
n

= 0 [6],

• A1 ∪A2 = VX and lim
n→∞

|VX |
n

= H(X) [7],

• A1 ∪A3 = HX|Y and lim
n→∞

|HX|Y |
n

= H(X|Y ) [6].

Since lim
n→∞

|A2| − |A3|
n

= H(X)−H(X|Y ) = I(X;Y ) ≥ 0

this implies directly that for n large enough |A2| ≥ |A3|.

Polarize U Let V 1:n = U1:nGn be the polarization of U1:n

and define :

VU |XS : =
{
j ∈ [1, n] : H(V j |V 1:j−1X1:nS1:n) > 1− δn

}
,

HU |XS : =
{
j ∈ [1, n] : H(V j |V 1:j−1X1:nS1:n) > δn

}
,

HU |X : =
{
j ∈ [1, n] : H(V j |V 1:j−1X1:n) > δn

}
. (3)

Partition the set [1, n] into four disjoint sets :
B1 := VU |XS ∩HU |X = VU |XS , B2 := VU |XS ∩Hc

U |X = ∅,
B3 := Vc

U |XS ∩HU |X , B4 := Vc
U |XS ∩H

c
U |X = Hc

U |X .

Remark 7. We have :

• VU |XS ⊂ HU |XS and lim
n→∞

|HU |XS \ VU |XS |
n

= 0 [6],

• B1 = VU |XS and lim
n→∞

|VU |XS |
n

= H(U |XS) [7],

• B4 = Hc
U |X and lim

n→∞

|Vc
U |X |
n

= 1−H(U |X) [7],

• B3∪B4=Vc
U |XS and lim

n→∞

|Vc
U |XS |
n

=1−H(U |XS) [7].

Note that H(U |X) − H(U |XS) = I(X,U ;S) ≥ 0 and
|B3|/n tends to I(X,U ;S). Since I(X,U ;Y ) = I(X;Y ), the
inequality I(X,U ;S) ≤ I(X,U ;Y ) implies directly that for n
large enough |B3| ≤ |A2| − |A3|.

Encoding We use a chaining construction over multiple
blocks. The encoder observes (S1:n

0 , S1:n
1 , . . . , S1:n

k ), where
S1:n
0 is a uniform random sequence and S1:n

i for i ∈ [1, k]
are k blocks of the source. It then generates for each block
i ∈ [1, k] random variables Z̃1:n

i and Ṽ 1:n
i following the

procedure described in Algorithm 1. In particular, the chaining
construction proceeds as follows. The bits in A1 ⊂ VX and
B1 ⊂ VU |XS are chosen with uniform probability using



Algorithm 1: Encoding algorithm at Node 1

Input : (S1:n
0 , . . . , S1:n

k ), local randomness (uniform
random bits) M and common randomness
C = (C1,K1, C2,K2) shared with Node 2 :

• C1 of size |A1| and K1 of size |A3| ;
• C2 of size |B1| and K2 of size |B3|.

Output: (Z̃1:n
1 , . . . , Z̃1:n

k ), (Ṽ 1:n
1 , . . . , Ṽ 1:n

k )
if i = 1 then

Z̃1[A1]←− C1 Z̃1[A2]←−M
for j ∈ A3 ∪A4 do

Successively draw the bits Z̃j
i according to

PZj |Zi:j−1

(
Z̃j

i | Z̃i:j−1
i

)
(4)

Ṽ1[B1]←− C2

for j ∈ B3 ∪B4 do
Given S1:n

1 , successively draw the bits Ṽ j
1

according to

PV j |V 1:j−1X1:nS1:n

(
Ṽ j
i | Ṽ 1:j−1

i X̃n
i S

n
i−1

)
(5)

for i = 2, . . . , k do
Z̃i[A1]←− C1 Z̃i[A

′
2]←−M

Z̃i[B
′
3]←− Ṽi−1[B3]⊕K2 Z̃i[A

′
3]←− Z̃i−1[A3]⊕K1

for j ∈ A3 ∪A4 do
Successively draw the bits Z̃j

i according to (4)
Ṽi[B1]←− C2

for j ∈ B3 ∪B4 do
Successively draw the bits Ṽ j

i according to (5).

uniform randomness sources (C1, C2) shared with Node 2, and
their value is reused over all blocks. In the first block the bits in
A2 ⊂ VX are chosen with uniform probability using a local
randomness source M . The bits in A3 ∪ A4 and B3 ∪ B4

are generated according to the previous bits using successive
cancellation encoding [6]. Note that it is possible to sample
efficiently from PZj |Z1:j−1 and PV j |V 1:j−1X1:nS1:n (given S1:n

and X1:n) respectively [6].
From the second block, letA′3 andB′3 be two disjoint subsets

of A2 such that |A′3| = |A3| and |B′3| = |B3|. The existence of
those disjoint subsets is guaranteed by Remark 6 and Remark 7.
The bits ofA3 andB3 in block i are used asA′3 andB′3 in block
i + 1 using one time pads with keys K1 and K2 respectively.
Thanks to the Crypto Lemma [8, Lemma 3.1], if we chooseK1

of size |A3| and K2 of size |B3| to be uniform random keys,
the bits in A′3 and B′3 in the block i + 1 are uniform. The bits
in A′2 := A2 \ (A′3 ∪ B′3) are chosen with uniform probability
using the local randomness source M .

The encoder then computes X̃1:n
i = Z̃1:n

i Gn for
i = 1, . . . , k and sends it over the channel. We use an extra
(k + 1)-th block to send a version of Z̃k[A3] encoded with a
good channel code as in [5, Section III.B].

FIGURE 2 – Chaining construction for block Markov encoding

Algorithm 2: Decoding algorithm at Node 2

Input : (Y 1:n
1 , . . . , Y 1:n

k+1), C = (C1,K1, C2,K2)
common randomness shared with Node 1

Output: (Ẑ1:n
1 , . . . , Ẑ1:n

k ), (V̂ 1:n
1 , . . . , V̂ 1:n

k )
for i = k, . . . , 1 do

Ẑi[A1]←− C1 V̂i[B1]←− C2

if i = k then
Ẑk[A3]←− Y 1:n

k+1 V̂k[A3]←− Y 1:n
k+1

else
Ẑi[A3]← Ẑi+1[A

′
3]⊕K1

V̂i[B3]← Ẑi+1[B
′
3]⊕K2

for j ∈ A2 ∪A4 do
Successively draw the bits according to

Ẑj
i =

{
0 if Ln(Y

1:n
i , Z1:j−1

i ) ≥ 1

1 else

Ln(Y
1:n
i , Z1:j−1

i ) =
P
Z
j
i |Z

1:j−1
i Y 1:n

i

(
0 | Ẑ1:j−1

i Y 1:n
i

)
P
Z
j
i |Z

1:j−1
i Y 1:n

i

(
1 | Ẑ1:j−1

i Y 1:n
i

)
for j ∈ B4 do

Successively draw the bits according to

V̂ j
i =

{
0 if Ln(X

1:n
i+1, V

1:j−1
i ) ≥ 1

1 else



Decoding The decoder observes (Y 1:n
1 , . . . , Y 1:n

k+1) and the
(k + 1)-th block allows it to decode in reverse order. In block
i ∈ [1, k], the decoder has access to Ẑi[A1 ∪ A3] = Ẑi[HX|Y ]

and V̂i[B1∪B3] = V̂i[HU |X ] : the bits inA1 andB1 correspond
to shared randomness (C1, C2), in block i ∈ [1, k − 1] the bits
in A3 and B3 are obtained by successfully recovering A2 in
block i + 1 and in block k they are recovered from Y 1:n

k+1 as
in [5, Section III.C]. For each block i = k, . . . , 1 the decoder
recovers the estimates Ẑ1:n

i and V̂ 1:n
i using Algorithm 2. From

Yi
1:n and Ẑi[A1 ∪A3] the successive cancellation decoder can

retrieve Ẑi[A2 ∪A4] and therefore V̂i[B4]. Note that, as shown
in [6, Theorem 3], Ṽ 1:n is equal to V̂ 1:n with high probability.
The decoder computes Û1:n

i = V̂ 1:n
i Gn. It then generates Ŝ1:n

i

symbol by symbol using : PŜji |Û
j
i Y

j
i
(s|u, y) = PŜ|UY (s|u, y).

Remark 8. The rate of common randomness is negligible,
since :

lim
n→∞
k→∞

|A1|+ |A3|+ |B1|+ |B3|
kn

= lim
n→∞
k→∞

|VX|Y |+ |HU |X |
nk

= lim
k→∞

H(X|Y ) +H(U |X)

k
= 0.

4 Proof of Theorem 4
Given ε > 0, we want to prove that :

lim
n→∞

P
{
V
(
TS1:n

1:k+1X
1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

, PSXY Ŝ

)
> ε
}
= 0.

This requires a few steps :
1. ∀i∈[1, k], lim

n→∞
P{V(TS1:n

i X̃1:n
i Ũ1:n

i
, PSXU )>ε}= 0;

2. ∀i∈[1, k], lim
n→∞

P{V(TS1:n
i X̃1:n

i Ũ1:n
i Y 1:n

i
, PSXUY )>ε}= 0;

3. ∀i∈[1, k], lim
n→∞

P{V(TS1:n
i X̃1:n

i Ũ1:n
i Y 1:n

i Ŝ1:n
i
, PSXUY Ŝ)>ε}=0;

4. Convergence in each block implies overall convergence ;
5. The theorem follows from the fact that

V
(
TS1:n

1:k+1X̃
1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

, PSXY Ŝ

)
≤

V(TS1:n
1:k+1X̃

1:n
1:k+1Ũ

1:n
1:k+1Y

1:n
1:k+1Ŝ

1:n
1:k+1

, PSXUY Ŝ).

Note that since the steps 2 to 5 have already been proved in
[5, Section IV], we only need to prove the first step. For all
ε0 > 0, we define

Tε0 (PSXU ) :=
{
(s,x,u)

∣∣V (PSXU , T(s,x,u)
)
≤ ε0

}
Observe that for the i.i.d. distribution, we have

limn→∞ P {(s,x,u) ∈ Tε0 (PSXU )} = 1.
Let i ∈ [1, k], we have :

P
{
V
(
TS1:n

i X1:n
i U1:n

i
, PSXU

)
> ε0

}
=
∑
s,x,u

PS1:n
i X̃1:n

i Ũ1:n
i

(s,x,u)1 {(s,x,u) /∈ Tε0 (PSXU )}

=
∑
s,x,u

(PS1:n
i X̃1:n

i Ũ1:n
i

(s,x,u)− PS1:nX1:nU1:n (s,x,u)

+ PS1:nX1:nU1:n (s,x,u))1{(s,x,u) /∈ Tε0 (PSXU )}

≤V(PS1:nX̃1:nŨ1:n , PS1:nX1:nU1:n)+P{(s,x,u) /∈ Tε0(PSXU )}

which tends to 0 thanks to a typicality argument and the
following result.

Lemma 9. For i ∈ [1, k], let δn = 2−n
β

where 0 < β < 1/2,

V
(
PS1:n

i X̃1:n
i Ũ1:n

i
, PS1:nX1:nU1:n

)
≤ 2
√

log 2
√
nδn.

Proof. By the chain rule, we have

D
(
PS1:nX1:nU1:n

wwwPS1:n
i X̃1:n

i Ũ1:n
i

)
(6)

= D
(
PX1:n|S1:n

wwwPX̃1:n
i |S1:n

i

∣∣∣PS1:n

)
+ D

(
PU1:n|X1:nS1:n

wwwPŨ1:n
i |X̃1:n

i S1:n
i

∣∣∣PX1:nS1:n

)
We call D1 and D2 the first and the second term. Then :

D1
(a)
=D

(
PX1:n

wwwPX̃1:n
i

)
(b)
=D

(
PZ1:n

wwwPZ̃1:n
i

)
(7)

(c)
=

n∑
j=1

D
(
PZji |Z

1:j−1
i

wwwPZ̃ji |Z̃
1:j−1
i

∣∣∣PZ1:j−1
i

)
(d)
=

∑
j∈A1∪A2

D
(
PZji |Z

1:j−1
i

wwwPZ̃ji |Z̃
1:j−1
i

∣∣∣PZ1:j−1
i

)
(e)
=

∑
j∈A1∪A2

(
1−H

(
Zj
i |Z

1:j−1
i

)) (f)
<n|VX | ≤ nδn

where (a) comes from the fact that X is independent of S,
(b) from the invertibility of Gn, (c) from the chain rule, (d)
from (4), (e) from the fact that the conditional distribution
PZ̃ji |Z̃

1:j−1
i

is uniform for j in A1 and A2 and (f) from
Definition (2).

Similarly, D2 < nδn. Then D1 +D2 < 2nδn and the proof
is completed using Pinsker’s inequality.
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