N
N

N

HAL

open science

IMPLEMENTING A REAL-TIME AVIONIC
APPLICATION ON A MANY-CORE PROCESSOR

Moustapha Lo, Nicolas Valot, Florence Maraninchi, Pascal Raymond

» To cite this version:

Moustapha Lo, Nicolas Valot, Florence Maraninchi, Pascal Raymond. IMPLEMENTING A REAL-
TIME AVIONIC APPLICATION ON A MANY-CORE PROCESSOR. 42nd European Rotorcraft

Forum (ERF), Sep 2016, Lille, France. hal-01718139

HAL Id: hal-01718139
https://hal.science/hal-01718139
Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01718139
https://hal.archives-ouvertes.fr

IMPLEMENTING A REAL-TIME AVIONIC
APPLICATION ON A MANY-CORE
PROCESSOR

Moustapha Lo, Nicolas Valot
Airbus Helicopters
Florence Maraninchi, Pascal Raymond
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

A recent microprocessor architecture break-
through provides a many-core processor that offers
timing guarantees. It gives us an opportunity to
study its applicability to avionics systems. We select
an avionics function that requires both high pro-
cessing power and some response time guarantees.
The Helicopters Health Monitoring System (HMS)
performs signal processing on vibration data, to
raise some alerts for the operating crew. The compu-
tation requires a high processing bandwidth and the
alerting requires a bounded response time. These
characteristics makes the HMS a good candidate for
an experiment in implementing avionics functions
on a many-core processor.

I. INTRODUCTION

Many-core processors have emerged during the
last decade, as an evolution of multi-core proces-
sors. In multi-core processors, a relatively small
number of processors are connected on chip through
a bus, sharing the same memory. Many-core pro-
cessors are usually structured into two layers: pro-
cessors are grouped into clusters, in which they
may share a memory with a bus, like in multi-core
processors. Several clusters are connected through
a network-on-chip (NoC). In both multi-core and
many-core processors, the potential interferences
induced by the shared memory, the shared buses, the
NoC, etc., are bad for predictability and response-
time guarantees.

A recent development in the microprocessor in-
dustry addressed this problem. The MPPA-256 by
Kalray (MPPA stands for “Multi-Purpose Process-
ing Array”) has been designed taking into account

This publication and the related work was performed in
the scope of the CAPACITES research project, supported by
the French authorities through the “Investissements d’Avenir”
program

determinism and response-time requirements. Each
core is a simple processor, allowing for good
execution-time predictability. The overall architec-
ture provides separate memory banks, or reservation
mechanisms on the NoC, which also contribute to
predictability. According to [2], the benefits of the
MPPA family of processors for critical real-time
systems are: predictable computation and responses
times, low power, and high performance.

The outcome of this case study shall provide
some performance capability on the MPPA target
with the following variation points: the sampling
frequency is set by configuration to a value in the
range of 1..25 KHz. The number of sensors is in
the range of 1..256.

We first introduce the many-core architecture and
the HMS. We then explain the constraints and main
ideas for an implementation of the HMS on the
many-core architecture, exploiting its computing
power and offering good response time guarantees.

II. HEALTH MONITORING SYSTEM (HMS)

The HMS function monitors the vibration of
the helicopter system components like gear boxes,
transmission shafts, rotors, and bearings. Vibrations
are measured by sensors and the data are then
provided to a computation unit that performs signal
processing to compute health indicators. Some of
the HMS indicators are intended to detect mechan-
ical fatigue occurring during helicopter operation.

The algorithms needed to analyze the data pro-
vided by vibration sensors are: synchronous av-
erage, discrete Fourier transform, reverse discrete
Fourier transform, spectrum of welch, Hilbert filter,
moment of order x. These algorithms are time- and
resource-consuming, especially when they involve
the frequency domain.

The current implementation of the HMS is not
embedded in the helicopter, and does not need to
be computed in real time. An embedded acquisition
unit records the vibrations during the flight without
any loss (the recording frequency must be at least
equal to the sensors sampling frequency). Signal
processing computing the various health indicators
is performed off-line, and when the helicopter is on
ground. This architecture requires a huge storage
capacity, and a large network bandwidth for data
offloading.

Our purpose is to build an embedded real-time
implementation of the HMS. The health indicators
will be computed on board. Because of the comput-
ing requirements of the signal processing algorithms
involved, it is necessary to choose an embedded pro-
cessor that guarantees high performance. Because of
the avionics constraints, this processor should also
provide low power and predictable response times.
We study the implementation of the HMS on the
Kalray MPPA-256 processor.

Data HProcessing
Acquisition
HDisplay }

(Storage
(memory)

Figure 1: Functional Architecture of the HMS

The current functional architecture is described in
Figure 1. The Display will not be studied here. Data
acquired are stored in a non-volatile memory. The
“Processing” box represents the signal processing
algorithms involved in the computation of the health
indicators.

III. A REAL-TIME AVIONIC APPLICATION

Some unpredictable events might occur upon
undetected mechanical part failure. This case study
is intended to evaluate a computing platform and a
software architecture that provide real time detec-
tion indicators, which could be used by crew. Such
a system would require several enablers:

« real time computation

e specific indicators and sensors. Current on-

ground indicators compute trends across sev-
eral flight cycles. A real time indicator should
detect a rapid change in the dynamic envelope.

e accurate indicators (no false alarm)

The case study will focus on the real time compu-
tation capability. The other enablers are not in the
scope of the study.

The HMS system requirements for the MPPA
processor shall address a range of 1 to 256 ac-
celerometer sensors. To evaluate the platform per-
formance capabilities on the HMS system, we will
implement the most performance-demanding sen-
sor indicators. The main gear box bearing parts
correspond to the highest rotation frequency. Fa-
tigue occurring on the inner or outer race induces
some spike any time a ball crosses the race defect.
According to [1], this spike period is the bearing
period divided by the number of balls in the bearing.
Therefore, the bearing sensor indicator requires the
highest sampling frequency to extract spikes high-
frequency harmonics. Actually, the signal process-
ing channel for piezzo accelerometer sensors can
reach up to 20KHz. For this case study, we will
define a sampling frequency range of 1 to 25 KHz.
The bearing sensor workload requires to compute
an envelope FFT. The envelope itself is a Hilbert
transform composed of one FFT and a reverse FFT.
We can add a window to tune the spectrum leakage
effect. The window shall be carefully chosen to
detect transient spikes. To compute the spectrum,
there are mainly two strategies:

o Use a magnetic sensor to identify the number
of samples in a single bearing period (which
might vary over time)

e Perform a sliding analysis with a constant
number of samples

The first solution requires to compute twiddle fac-
tors before each FFT computation which is very
inefficient. It might be insteresting to evaluate har-
monics of the bearing period, but has no advantage
to track spikes occurred by balls rolling on a race.
The second solution enables efficient computation,
and provides a constant resolution by design.

In this study, we will compute 1024-plot FFTs,
which will provide around 25Hz resolution @
25KHz and 10 Hz resolution @ 10 KHz. The
resolution might be increased with a logarithmic
increase of CPU demand.

In the sequel, we will use "Log” to denote base-2
logarithm. A naive FFT complexity is N *x Log(N).
Therefore increasing by 4 the resolution leads to
a complexity increase of 4 x N x log(4 x N)/(N x
log(N)) = (4 (log(4)) + 4 * log(N))/log(N) =
8/log(N) + 4. When increasing resolution by a
factor of 4, we are also computing 4 times more
samples. Therefore, the complexity by sample is
(8/log(N)+4)/4 =2/log(N)+1. For N = 1024,
the complexity increase to raise resolution to 4096
would be 2/6 + 1 = 1,33. This factor does not

take into account the memory locality penality to
process 4 times more data.

IV. STATIC MAPPING ON THE MPPA-256

Sensor Q—»
Sensor ©—>

Analog Data

Digital Acquistion

Converter

COmpl_ltl_ng_ _ ooo| [o ol [o |[ooo
Cluster o ||.:. ||ﬂ ” | e
2°° [5e8] [5 o][°7]
Core ___1lgeaf|528] 55][5°
727l 5 o) 5o][B°7]
<y 10
Cluster

Figure 2: Mapping on the MPPA-256

Only the processing part of Figure 1 is mapped
on the MPPA-256. The resulting architecture is de-
scribed by Figure 2. The sensors and the associated
analog-digital converters are connected to a data
acquisition unit, which sends digital formatted data
to the MPPA-256, through a PCI bus. A similar
structure would be needed for the output of the
results to some embedded equipment.

We focus on inputs here, and the constraint of
computing health-indicators sufficiently fast with
respect to the volume of data determined by the
input frequency and the number of sensors.

The MPPA is made of a first stage containing the
4 input/output (IO) cores, and a set of 16 clusters
of 16 cores each (called processing elements, or
PEs). Assume that the HMS function has s sensors
and each sensor delivers [NV samples. Since sensors
are functionally independent of each other, we can
decide that each of the 4 cores of the 10 Cluster
manages s/4 sensors. Figure 3 shows the distribu-
tion of sensors across 1O cores in this case.

However, the current MPPA implementation is
limited to only one IO core being used by the
SMP scheduler of the RTEMS operating system.
We could parallelize the work logically with threads
on this unique active core, but this would improve
timing. Figure 4 shows the limitation with the
current MPPA implementation.

In this static assignment, our code would decide
before execution which processors manage which
tasks, which is sometimes referred to as bounded
multi-processing (BMP). One objective of the map-
ping will be to minimize end-to-end application
execution time, i.e., the time it takes for one sample

Computing
10 Core Cluster
G
/4
b e][]
ML A - SEEEE
=
24 ool L I
©w |
s el]
v A
A .
! |
IOI Cluster 16 PE Clusters

Figure 3: Distributing Sensor Samples on the cores
of the IO Cluster

10 Core gﬁyslt%lrmng
| 4
=
4L | EEOC
T I I o [
1 o | LI
I 4

IoI Cluster 16 PE Clusters

Figure 4: Using only one core of the IO cluster for
the Sensor Samples

packet to travel from source to destination. In our
case, this duration shall be lower than the period of
sampling in order to compute the sensors samples
in real-time. The logical structure of the work to
be done is shown in Figure 5: there are three steps,
that have to be performed in sequence because each
part depends on data output from the previous part
(dispatching, processing, gathering). Dispatching is
required to transform an input sample vector (which
contains one sample of all sensors), into a set of
vectors for each sensor to be processed indepen-
dently. Then processing can be applied on each
sensor in parallel. Finally, all processing outputs are
gathered to be displayed and stored on a device. We
evaluated two choices:

o Allocating dispatching and gathering tasks to
the 1O cluster, and processing to the PEs of
one computing cluster.

o Allocating dispatching, processing and gather-
ing to the computing cluster. The 10 cluster
serves only for routing packets from/to the host

processor.

Process
Sensor 0

Process
Sensor s-1

Figure 5: Functional structure

A. Dispatching and Gathering in the 10 cluster

Figure 6 illustrates this choice. In this config-
uration, the IO cluster manages both Dispatching
and Gathering, implemented as two tasks running
on the same processor. Processing the data for each
sensor is allocated to one of the PEs of a computing
cluster.

The MPPA architecture is such that the 10 cluster
accesses only DDRAM, and the computing clusters
access only internal shared SRAM. The SRAM has
a lower latency than the DDR and is not shared with
other clusters and 10 devices. In each cluster, there
is a single DMA controller bound to the sending
thread. Obviously, the software overhead to call the
send or receive packet services and use the DMA re-
source, leads to a better performance when sending
all data in a single packet, than in multiple smaller
packets. Some of our experiments confirmed that
sending one sample packet by sensor is less efficient
than sending a single packet that contains all sensors
samples. Each 10 core is associated with one DMA
controller. It is useless to send packet sensor data
one by one because only one DMA is available.
Thus, it is more efficient in terms of cycle duration
using one Posix system-call to send all sensors
gathered in one stream rather than sending them
one by one.

B. Dispatching and Gathering in the computing
cluster

Figure 7 illustrates this choice. Each function
(Dispatching, Gathering and Processing sensor x)
runs on one PE of the computing cluster.

We intend to ensure load balancing through static
assignement i.e., to keep all processors busy as
much as possible and avoid overloading of any
single resource (NoC route, DMA, processor). We
need the next data to be processed to be available at
the moment when processors work on the current

I
I
I
I
I
I
Sensor s-1 :
I
I

Figure 6: Dispatching and Gathering mapped on 10
Cluster

' Computing cluster

Process
Sensor 0

L=

Process

|
I
|
I
| Sensor s-1

Figure 7: Dispatching and Gathering mapped on the
computing cluster

one. Assume we have s sensors, a algorithms to
compute (the details of “processing” sensor x) and
p processors. We have two choices to distribute cal-
culations over processors. We describe each choice
in details below.

1) Parallelizing the algorithms: It means dedi-
cating one processor among the p processors to each
particular algorithm among the a, to compute data
coming from all sensors. The algorithms involved in
the HMS function exchange data: outputs produced
by one of them are often re-used by another. If
algorithms are allocated to distinct processors, this
involves a synchronization overhead, which depends
on the number a of algorithms; the communication
overhead will also be significant.

2) Parallelizing the sensor data: It means allo-
cating one processor among the p processors to one
sensor among the s sensors, and to compute all a
algorithms for the same sensor on that processor.
Sensors are functionally independent, thus threads
can run without needing any data exchange. The
load balancing seems to be perfect, since each
processor computes several algorithms sequentially
on one sensor data. The processors do not need to

communicate. However, the processors must receive
data coming from the 1O cluster and transmit their
results to the IO cluster. If a thread, besides its work
to process algorithms, is in charge of reading or
writing data to the cluster 10, this creates a poor
load balancing, because the latter thread is always
busy while others are waiting.

To avoid this problem, we use two more proces-
sors. The first one is dedicated to the reading of
the data coming from the 1O cluster (Dispatching)
and the preparation of workers inputs. The other is
in charge of transmitting the result of the workers
to the IO cluster (Gathering) (see Figure 7). In one
computing cluster, the maximum number of pro-
cessors usable to compute algorithms is therefore
14, among the 16 processors that are physically
avalaible. We will call these processors workers in
the sequel.

V. EXPERIMENTS
A. Timestamping tools

For our experiments, we will need to gather some
timing data from the MPPA target. The MPPA
IO cluster, and its internal clusters, each have an
internal clock running at 400Mhz. These counters
are synchronous but their initialization is not. The
offset is around 100 cycles. This means that, when
taking a timestamp 7 in the IO cluster, and a
timestamp 77 in the internal cluster, the difference
Ty — Ty cannot be more accurate than 100 cycles
(250ns).

The Kalray software development kit (SDK) al-
lows time measurements on a simulator of the K1
architecture (the cores of the MPPA). But we need
to perform on-target measurements. Kalray also
provides a target trace capability, but the tracing
is intrusive and we want an agnostic platform trace
capability. We designed a tracing mechanism, by
adding timestamps to the data-flow before/after each
data transmission on to/from a processing element
(PE). For this we need to change the type of the data
transmitted. However, adding the timestamps does
not change our application functionally. Figure 8
gives an example of changing the data type coming
from the host processor.

// 32 bits timestamp
typedef unsigned long timestamp;

// input timestamps
typedef struct HDRin {
// HOST Writer TO

timestamp HOSTWRTO;

// 10 Writer TO
timestamp ioWRTO;

// 10 Writer TI
timestamp ioWRTI1;

// PE reader TO
timestamp peRDTO;
}HDRin;

typedef struct dataln{
HDRin hdrin;

// input samples vector
float InputSamples [VECTOR_LENGTH];
}dataln;

HDRin & Dataln
ostWRTO / peRDTO
[ioWRTO | [ioWRT1 | HDRin | [mput
Samples

Figure 8: HOST/IO senders data type

The number of timestamps that are necessary to
perform useful measurements has to be confronted
to the cost of transmitting data on the network
on chip. First, we choose the granularity, i.e., the
minimum packet size with which we associate time-
stamps to follow the route. The chosen granularity
is set to one input sample processed by each worker
PE. To measure the MPPA latency, the latency of
the entire system (MPPA + host), and the comput-
ing duration on each worker, we need around 20
timestamps. Each cluster has a Debug System Unit
(DSU) offering a 64-bit counter for time-stamping.
We assume that our measures do not exceed 10
seconds. For measuring up to 10s with the 2.5ns
MPPA clock period, we need a 32-bit counter. With
all these figures, the timestamp overhead in the data
transmitted is estimated at 1% for a 1024-plot FFT
sample.

B. Description of the Experiments

In all our experiments, we use only one process-
ing cluster among the 16 physically available. We
will first evaluate a synchronous dataflow architec-
ture, in order to observe end-to-end data latency.

Synchronous here means that, on the host processor,
we wait until a complete treatment of a set of
samples has been performed, before sending a new
set of samples.

Then, we will evaluate a pipelined architecture
to improve throughput. In this architecture, the host
processor send samples as fast as possible. At each
pipeline stage, we are waiting for the availability of
the previous stage output, and the availability of the
next stage input storage.

C. Synchronous dataflow architecture

The synchronous dataflow architecture consists
of: a HOST thread that sends samples to the IO
thread, which in turn forwards them to the internal
thread of the cluster. There is no algorithm imple-
mented in the internal cluster. Then the internal
cluster thread sends back data to the IO cluster,
which finally transfers it to the HOST. The host
thread must receive data before it sends another
sample set. We measure the MPPA latency: the time
it takes for one bit to make a complete round trip
through the 10 and the internal clusters.

Figure 9 shows the MPPA latency for various
data sizes. For a given packet of samples, the
latency is measured 100 times. It is less than 200
microseconds between 1 and 8192 bytes. It means
the latency is almost the same when sending a small
data packet, for instance 4 bytes or 8192 bytes. This
result permits us to choose 8192 bytes as the size
of the smallest packet sent by the HOST to the 10
cluster.

MPPA latency (us)

700 L T 1T 1T LI Y L
600 - * -

500 - =
400 - - =
300 - =
200 - *

-

100 \¥¥**¢$$+¥ﬁ* L Lol

1 10 100 1000 10000 100000 1e+06
Volume of Data (bytes)

Figure 9: MPPA Latency

This synchronous architecture has two main
drawbacks:

e The throughput depends on the IO latency
« It is impossible to pipeline the HOST, the IO,
and the Internal Cluster computations.

D. Pipelined architecture for maximal throughput

1) General Settings: The HOST process loads
a multi-binary executable on the MPPA external
DDR. Then the HOST process launches the 10O
executable and runs it on the 10 Cluster by doing
a spawn () operation. When executed in the 10
Cluster, the spawn () function runs the executable
code on the processing clusters. It is not possible to
spawn executable code between processing clusters.

The samples received by the HOST are not di-
rectly recorded in a file for post-processing, because
the latency of the file-sytem would impact the
throughput. Samples are written on the standard
output stdout. When running the code we redirect
the standard output so that another HOST process
reads the standard output buffer with a pipe and
writes data on a non-volatile mass memory.

2) Data Architecture: In order to avoid the
problems encountered with the abovementioned
synchronous dataflow architecture, we separate
sending and receiving, allocating them to different
threads. The PE reader thread (See Figure 10)
reads data of type vector [N][S] (recall the
HMS function has S sensors and each sensor
delivers N samples) coming from the IO
Writer; it produces sensorsBuffer[S] [N]
after the matrix samples transposition. All
worker PEs access the sensorsBuffer data
structure, using different indices. For instance,
we pre-assign sensorsBuffer[0] to PE
worker), sensorsBuffer[1] to PE workerl,
sensorsBuffer[2] to PE worker2 and so
on. A worker processes an FFT and computes
its Module using data from a single sensor. It
writes its results in a shared buffer Module (see
Figure 12).

read — Transpose

sensors
Buffer

[S]IN]

Figure 10: PE Reader Thread

Figure 11: PE Writer Thread

sensors
Buffer

[O][N]

Transform
into
Complex

Compute
FFT

Compute
Module

Figure 12: Worker() Dataflow

sensorsBuffer is an array containing sam-
ples of all sensors. sensorsBuffer is treated
as a one-dimensional array; it is arranged ac-
cording to the row order by the C com-
piler. In others words, all data of sensor(
(sensorsBuffer[0]) come first, then all
data of sensorl and so on. Worker() accesses
sensorsBuffer[0] and these data should
not be altered because sensorsBuffer[0],
sensorsBuffer[1], etc., are independent.

However the workers may share cache
lines. This is called the false cache sharing
phenomenom. Since the MPPA requires to
manage cache coherency manually, we ensure
by alignment directives that the various
sensorsBuffer[x] will not share cache
lines, in order to avoid the need for this manual
cache management. This operation is performed by
using attribute (aligned(0x20)); 0x20
(32 bytes) represents the data cache line size.
Consider the Figure 12: all workers access the
data using different indices in sensorsBuffer,
inputFFT, outputFFT and Module. Like
sensorsBuffer all these data should be
cache-line aligned.

The PE writer, the PE reader and the workers
exchange data through the 2MB shared SRAM.
Workers are both consumers and producers of data
because they consume sensorsBuffer produced
by the PE reader after transposition, and then pro-
duce Module as a result of processing (Transform
into Complex, Compute FFT, Compute Module).
We must implement mechanisms to ensure the
coherency of exchanged data in sensorsBuffer
(between PE reader and workers) and Module
(between workers and PE writer). We use Cl11
atomic built-ins that bypass the cache on the MPPA
K1 architecture.

3) Control Architecture: The structure is the fol-
lowing. We use two threads on the host: hostwriter

and hostreader. We also use 2 threads on the 10
cluster core: iowriter and ioreader. Finally there
are 10 threads in the internal cluster: 8 worker
threads (each one on a PE) to compute the algo-
rithms, one PE reader and an one PE writer. Each
thread of the internal cluster takes 2 timestamps:
one at the beginning and one at the end of its
computation. Each worker computes one or several
FFTs on 1024 samples and 1 Module.

The thread hostwriter sends packets of 8192
samples grouped in the DataIn structure to thread
iowriter with the hostWRTO timestamp (see Fig-
ure 8). This timestamp indicates the beginning
of data transmission. This data exchange is done
through a Pcie buffer. Reading and writing are
performed by Posix functions. These functions are
blocking, so no synchronization is needed between
the host processor and the 10 cluster.

The thread hostreader receives samples from
ioreader. They represent the computation results
of all workers, associated with all timestamps taken
along the route. Then it set its timestamp hostRDTO
after reading. hostRDTO-hostWRTO represents the
overall latency of the system (MPPA + HOST). This
measurement is only relevant for a real-time HOST.

The thread iowriter reads the DataIn structure
and positions its i0OWRTO timestamp. Then it trans-
mits it to the thread PE reader before positioning
its second timestamp ioWRT1. The thread ioreader
reads the data structure coming from the PE Writer
thread and sets its 2 timestamps.

Worker execution duration (us)

256
254 -
252 -
250
248 -
246 -
244 -
242

o

o —
o —

us

00000000
00000000
dobodobod &

FOOOO00000 O
FOOOO00000
FOOOO0000000
FOOO0O00000000 —
FOOOO0000000

!
wkO wkl wk2 wk3 wk4 wk5 wk6 wk7
Workers

Figure 13: Worker Execution Duration after com-
puting 1 FFT and 1 module in 100 host loops; Host
configured in best effort

4) Results: We will verify whether the behaviors
of the PE reader, the PE writer and the 8 workers
are well pipelined. Then we will study the ratio
Data Transfert Duration/Processing Duration.

a) Computing IFFT and 1 Module: First we
measure the processing time of each worker (see

Figure 13). This duration is between 242 and 256
microseconds. This means a jitter of 5.4%. We have
the same results from 100 to 1000 loops.

On Figure 14, the x-axis is the timestamp value
in microseconds, relative to a major cycle start
timestamp. A major cycle is defined by 2 worker
loops for convenient periodic display. The first
two columns relate to the first worker loop: the
beginning and the end of computation respectively.
Similarly columns 3 and 4 relate to the second
worker loop. The loop in best-effort is around
600us with 15% jitter, mainly due to a non real-
time HOST.

The duration of workers is given by column2-
columnl or column4-column3. Let us take the ex-
ample of worker(0. Its computation starts at the
earliest at 600us and finishes at 842 ps. This gives
a duration of treatment of 242 ps. This value is
consistent with Figure 13. Between the end of the
first packet computation (800 us) and the beginning
of the second one (1200 us), workers do not make
any processing and are waiting, hence no pipelin-
ing occurs. The ratio Data Transfert Duration/Pro-
cessing Duration is equal to 600/250 = 2.4. To
benefit from the computation capabilities offered
by the MPPA, the processors should compute more
algorithms. That is the purpose of the following
experiment in which each worker computes 2 FFTs
and 1 Module (see Figure 15).

Worker execution duration (us)

us 450

FT T T T T TTT
FOOO00O00CO000000 —
OO0000O00O000000 —
00000000000 O O
0000000000000 O —

O 00000000000 O ©f
0000000000000
= 0000000000000 O—

Lo do b g g |

P | P P
wkO wkl wk2 wk3 wk4 wk5 wk6 wk7

‘Workers

Figure 15: worker Execution Duration after comput-
ing 2 FFTs and 1 module in 100 host loops; Host
configured in best effort

b) Computing 2 FFTs and I Module: We
repeat 100 times this same experiment. Each of the
8 workers takes between 440 and 460 ps to compute
2 FFTs and 1 Module. This makes a jitter of 4.3%.
The HOST sends its samples every 600 us with
a jitter of 15%. The end of treatment of the first
packet that was at 842 us is now at 1040 ps. The
workers wait only 200 ps (between 1000 et 1200

us) instead of 400 (see Figure 16). The ratio Data
Transfert Duration/Processing Duration was equal
to 2.4 and now becomes 1.3.

MPPA latency jitter

\ \ \ \ ++\

+

[N 1\

(@] S ¥ Ne) o elan] S ¥ Ne) o claw)]

N i \ T \ \
0 200 400 600 800 1000 1200 1400 1600

sensors sampling frequency(kHz)

T+

Figure 17: MPPA latency jitter measured with var-
ious sensor frequencies

c) MPPA latency jitter: The sensors sampling
frequency is in the range 1..25 Khz. The period
Teig24 of sending 1024 samples by the HOST is
600 us; that corresponds to a frequency Fejgay =
Tlfii = 1.7 Mhz. With this period a worker
is able to compute 600/250 = 2.4 FFTs. Then
we measure the jitter of the MPPA latency using

various sensor frenquencies. This jitter is defined
b (latenceM axz—latence Min)+100
y latenceMax :

We notice that it is around 2% at the beginning,
before having a peak at 1200Khz. Indeed at low fre-
quency (a long period between two data emissions),
the HOST receives the sent data before being able to
emit another one. This peak may come from several
sources:

o The scheduling of the 2 IO threads made by the
operating system, and resulting in a sequential
execution of emissions and receptions.

o The internal cluster Resource Manager (RM).
The RM also perfoms emissions and receptions
in sequence.

Feigoa = 1.7Mhz is out of the sensor sampling
frequency range. This leads us to configure the
HOST with the real sensor sampling frequency.

d) Pipelined architecture, driven by the bear-
ing frequency: In this last experiment, we choose
a particular sensor frequency: 15kHz (the bearing
sampling frequency). It corresponds to Tejgos =
1%22}}12 = 68.26ms. Each of the 8 workers computes
3 FFTs and 1 Module. The HOST will send to the
IO cluster a packet of 8192 samples each T'ejgo4.
Then we represent the pipeline of treatments of each
worker on Figure 18. It shows that between 2 HOST
emissions, each worker can compute for one sensor

Pipeline Threads

I T T R0
PE WRT1 [elNe) [C 1) o 6] o]
PE WRTO [ee] @ERDEDCDD O o]
wk7T1 e O O CEOmOmo O o -
wk7TO0 @mmo O O ‘ o |
wk6T1 e O O GEETOmO O o -
wko6TO @amx» O O @EBODADO O o —|
wk5T1 - @ O O @ERTOmO O I |
wk5TO @y O O OO O o —|
wk4T1 amw O O o o]
wk4TO @D O O MO O o -]
wk3T1 amw O O o o _
wk3TO @mDo O O OO O o]
wk2T1 amw O O @mTomo O o]
wk2TO [e}Ne} IO O o —|
wkl1T1 @ O O @ECemo O o]
wk1TO |
wkOT1 @mD® O O EEIIDRED O o -
wkOTO amm O O @EUOmo O o -
PERDTI -— L ‘ PR R ‘ w
400 600 800 1000 1200 1400 1600 1800
MicroSeconds

Figure 14: 8 Pipelined workers compute 1FFT and 1Module in 100 host loops; Host configured in best

effort

Pipeline Threads

T R
PE WRT1 ! O@IOUDTEIIND ‘ ‘ o O (:)- 1000 (D) —
PE WRTO OGIBOIOMRBCD o o G —
wk7T1 + O CBICKRENETO O O I UENTERERIID —
wk7TO0 o o —
wk6T1 O O CUCERMERKEIID —
wk6TO O MUCIGTNEDD o o —
wk5T1 O O CECUMIMMKENITD —
wk5TO O (DOONHEEED o o —
wk4T1 —
wk4TO - oo —
wk3T1 - —
wk3TO - oo —
wk2T1 + O EBICORIEEEO —
wk2TO - oo —
wkl1T1 + O GBICCECEREDO —
wkITO —
wkOT1 0 0 COCEXERDEIND —
wkOTO O EROCTRINNSNO —
PERDTI > ‘ ‘ ‘ ‘
400 600 800 1000 1200 1400 1600 1800 2000 2200
MicroSeconds

Figure 16: 8 Pipelined workers compute 2FFT and 1Module in 100 host loops; Host configured in best

effort

the equivalent of T'e1g24/250 = 273 FFTs or 1 FFT
for 273 sensors.

VI. CONCLUSION

With our choice of mapping, one MPPA cluster of
the MPPA processor owns up to 14 workers. Taking
into account the parameter ranges mentioned in the
introduction (Fe < 25 KHz and number of sensors
< 256), one MPPA cluster is able to compute a
workload of (((1024samples/25K Hz)/250us) *
l4workers)/256sensors = 8,96 1024-plot FFTs,
providing the ability to compute several indicators

and a comfortable margin for new ones. The MPPA-
256 is therefore suitable to perform legacy HMS
indicator computation in real time, and provide
extended capability to compute high frequency in-
dicators (MHz sensors), and possibly other avion-
ics functions as soon as other studies demonstrate
time and space partitioning capabilities. With its
deterministic and predictable (controlled commu-
nication and computation jitter) behavior at low
operating frequency, this device would tackle the
avionics constrained requirements integration/per-
formance/low power/determinism.

Pipeline Threads

PE WRTI1 o | | | 0

PE WRTO o o
wk7T1 o o —
wk7TO - o o
wk6T1 o o —
wk6TO - o L
wk5T1 o o —
wk5TO - o o
wk4T1 o o —
wk4TO o 0
wk3T1 o o —
wk3TO - o L
wk2T1 o o —
wk2TO o
wkIT1 o o —
wkI1TO
wkOT1 o L=
wkOTO - o (]

PERDT1 c\ | | | | | | o

60000 70000 80000 90000 100000 110000 120000 130000 140000

MicroSeconds

Figure 18: Workers pipelined - 3FFT and 1Module - Periodic Host - 100 host loops

Future work will concentrate on legacy indica-
tor implementation, and new indicator specification
(threshold learning, alarm detection logic). It will
also measure the execution time impact of several
cluster traffic on the NoC.

REFERENCES

[1] P. Arques. Diagnostic predictif et defaillances des
machines, Theorie-Traitement-Analyse-Reconnaissance-
Prediction. Editions TECHNIP, 2009.

[2] B. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert,
B. Ganne, P. de Massas, F. Jacquet, S. Jones, N. Chaise-
martin, F. Riss, and T. Strudel. A clustered manycore
processor architecture for embedded and accelerated ap-
plications. In High Performance Extreme Computing
Conference (HPEC), 2013 IEEE, pages 1-6, Sept 2013.

