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Abstract: * We review some recent results obtained in the framework of the 2-dimensional Interacting
Self-Avoiding Walk (ISAW). After a brief presentation of the rigorous results that have been obtained
so far for ISAW we focus on the Interacting Partially Directed Self-Avoiding Walk (IPDSAW), a model
introduced in Zwanzig and Lauritzen (1968) to decrease the mathematical complexity of ISAW.

In the first part of the paper, we discuss how a new probabilistic approach based on a random walk
representation (see Nguyen and Pétrélis (2013)) allowed for a sharp determination of the asymptotics
of the free energy close to criticality (see Carmona, Nguyen and Pétrélis (2016)). Some scaling limits of
IPDSAW were conjectured in the physics literature (see e.g. Brak et al. (1993)). We discuss here the fact
that all limits are now proven rigorously, i.e., for the extended regime in Carmona and Pétrélis (2016),
for the collapsed regime in Carmona, Nguyen and Pétrélis (2016) and at criticality in Carmona and
Pétrélis (2017a).

The second part of the paper starts with the description of four open questions related to physically
relevant extensions of IPDSAW. Among such extensions is the Interacting Prudent Self-Avoiding Walk
(IPSAW) whose configurations are those of the 2-dimensional prudent walk. We discuss the main results
obtained in Pétrélis and Torri (2016+) about IPSAW and in particular the fact that its collapse transition
is proven to exist rigorously.
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Keywords and phrases: Polymer collapse, phase transition, Wulff shape, local limit theorem, scaling
limit.
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1. Introduction

The collapse transition is a well known example of phase transition. It takes place for instance when an
homopolymer is dipped in a poor solvent. As the solvent temperature decreases, it reaches a threshold
(the 6-point) below which the geometry of a typical polymer configuration changes drastically so that
it looks pretty much like a compact ball.

A good mathematical model to investigate this phenomenon is the Interacting Self-Avoiding Walk
(see Orr (1947) or Saleur (1986)). In size L € N, the configurations of ISAW are given by the L-step
self-avoiding walk trajectories on Z<. A Gibbsian weight is assigned to each such configuration as § €
[0, 00) (the interaction intensity) times the number of self-touchings, i.e., pairs of sites of the walk
adjacent on the lattice though not consecutive along the walk. Among lattice polymer models, the ISAW
plays a central role because it fulfills the excluded volume effect, a feature that real world polymers
indeed satisfy. However, few mathematical results are available so far, mostly because the mathematical
understanding of self-avoiding walks remains fairly incomplete. At the moment, the existence of the free
energy is established for small interaction parameter 3 (first in Ueltschi (2002) for random walk with
infinite range step distribution and more recently in Hammond and Helmuth for a larger class of a priori
laws on the walk including the simple random walk) but remains open elsewhere. In dimension d > 5
and for small 3, the mean square displacement of ISAW is proven to be of order L (see Ueltschi (2002))
by using lace expansion techniques. There is so far, for d > 2, no rigorous proof of the existence of a
phase transition for ISAW.

The mathematical complexity of ISAW has motivated the introduction of alternative models for self-
interacting random walk. The challenge consists in designing models that, on one hand, are sophisticated
enough to capture the most important physical features of the collapse phenomenon and, on the other
hand, are tractable enough to allow for a deep mathematical investigation. In the physics literature, a lot
of attention has been dedicated to exactly solvable models. For instance in Duplantier and Saleur (1987)
a two-dimensional polymer model is investigated on the honeycomb lattice. A random environment is
introduced by deleting some faces of the lattice in a percolation-type fashion. The edges of the missing
faces are prohibited so that, by annealing on the environnement, the resulting model displays attractions
between edges. The collapse transition of the model occurs when the deleted faces start to percolate
and thanks to this analogy the critical exponents could be computed. Recent works support the idea
that such exactly solvable models share common features with ISAW itself at criticality. In this spirit,
numerical evidences are displayed in Gherardi (2013) to illustrate the correspondence between the
two-dimensional ISAW at criticality and SLE4 and both theoretical and numerical results are displayed
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Fig 1: Two exact simulations of IPDSAW at critical temperature 8 = 3, and with length L = 60000

in Vernier, Jacobsen and Saleur (2015) to try and determine the 8-point of ISAW (we actually refer to
the introduction in Vernier, Jacobsen and Saleur (2015) for a concise and very clear state of the art on
such exactly solvable models). Let us now focus on the mathematics literature where two other variants
of ISAW received most of the attention.

The first of these variants is the Interacting Weakly-Self-Avoiding Walk (IWSAW), introduced in
van der Hofstad and Klenke (2001). In size L € N, the set of allowed configurations for INSAW is much
larger than that of ISAW since it contains every L-step simple random walk trajectory on Z¢. However,
the Hamiltonian of an IWSAW trajectory contains an additional term that penalizes the auto-contact,
i.e., decreases the Gibbs weight by —y for every self-intersection of the trajectory. The phase diagram of
IWSAW is conjectured to be divided into three phases, i.e., localized, collapsed and extended. In van der
Hofstad and Klenke (2001), a critical curve 3 = 2dy is proven to separate the localized phase (8 > 2dy)
inside which a typical trajectory remains in a box of finite size from the rest of the quadrant. Another
critical curve y — fB.(y) is conjectured to exist inside {(y, ) € [0,00)?: B < 2dy} that separates a
collapsed phase where the end to end distance of a typical trajectory should be L'/ from an extended
phase where this distance should be of the same order as that of the self-avoiding walk. In the limit
y — 00, it is expected that .(y) converges to the 6-point of ISAW. Recently, a continuous time version
of IWSAW was investigated in Bauerschmidt, Slade and Wallace. In dimension 4, an area of the quadrant
is isolated (corresponding to small y and ) and proven to be part of the extended phase.

The second variant is the Interacting Partially-Directed Self-Avoiding walk (IPDSAW) and was first
introduced in Zwanzig and Lauritzen (1968). This is a 2-dimensional model where the set of allowed
configurations is narrowed (compared to that of ISAW) but the Hamiltonian remains unchanged. Until
recently (see Section 5) the IPDSAW was the only 2-dimensional polymer model for which the collapse
transition was rigorously established. It was first studied with transfer matrix methods (see Binder et al.
(1990)) and then with combinatorial tools in Brak, Guttman and Whittington (1992) to compute the
critical point f. that partitions the phase diagram into an extended phase & := [0, 3.) and a collapsed
phase € :=[f,, 00).

A new probabilistic approach of IPDSAW has been introduced in Nguyen and Pétrélis (2013) which
turned out to strongly simplify its investigation. In the present paper we review the results obtained
using this new framework concerning the analytic properties of free energy in Carmona, Nguyen and
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Pétrélis (2016) and Pétrélis and Torri (2016+) and also concerning the path properties of IPDSAW in
Carmona and Pétrélis (2016) and Carmona and Pétrélis (2017b). For every result that we state here, we
provide a sketch of its rigorous proof.

1.1. The model IPDSAW
Mathematical description of the model

The IPDSAW can be defined in two equivalent manners. In the original definition (see Zwanzig and
Lauritzen (1968)), the polymer configurations are modeled by the trajectories of a two dimensional self-
avoiding walk, taking unitary steps up, down and to the right, whereas in the alternative definition, the
configurations are modeled by families of vertical stretches. In Sections 2 and 3, we will use the second
definition since it fits with the probabilistic approach that we wish to display. However, in Section 5 we
will come back to the original definition to present the IPSAW, a non-directed extension of IPDSAW that
has been investigated in Pétrélis and Torri (2016+).

In size L, the allowed configurations of the polymer can be represented as families of oriented vertical
stretches, i.e, Q; := Usz=1 %Ly 1, with

Lyr={lez" : Y |l |+N=L}. (1.1)

With such configurations, the modulus of a given stretch corresponds to the number of monomers con-
stituting this stretch and two consecutive vertical stretches are separated by one horizontal monomer
(see Fig. 2). The repulsion exerted by the solvent on the monomers is taken into account by assigning
to every configuration | € £, an energetic reward f§ € [0, 00) every times it performs a self-touching
that is every time it places two non-consecutive monomers at distance 1 from each other. By summing
those microscopic interactions, we obtain for N € {1,...,L} the Hamiltonian of a given configuration
le %y, as

Hy(ly, . ) = 20 (L A L), (1.2)
where

- x| A if xy <0,
x/\y:{| | Alyl y (1.3)

0 otherwise.

The preceding Hamiltonian is an exponential Gibbs weight that allows us to define the polymer measure
on 2, as
ePHL (D)
P g)= , Leqy, 1.4
ZL’I}

where Z, g is the partition function of the model. Finally, the free energy

1
f(ﬂ) = LlifgoZlOgZL’ﬁ (1.5)

provides us with the exponential growth rate of the partition function.

1.2. Challenges

We can distinguish between two main types of questions that one tries to address when investigating
IPDSAW:
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1. Determine the asymptotic development of the free energy close to criticality. We will see below that
the free energy of IPDSAW is trivial in its collapsed phase, i.e., f () =  when > f3,. Therefore,
one wants to exhibit y, a > 0 such that

f(/&c —g)=ae"(1+0(1)) as &— 0+, (1.6)

with f(ﬂ) := f(B)—P the excess free energy of the system. One also expects that a may be expressed
as the free energy of a counterpart model built with Brownian trajectories.

2. Display the scaling limit of IPDSAW in each regime. Compute the growth speed of the horizontal
and vertical extensions of a typical IPDSAW trajectory in the extended phase (8 < f3.), inside the
collapsed phase (8 > f8.) and at criticality (f = f.). With those typical growth speeds in hand,
determine the limiting shape of an appropriately rescaled typical trajectory of IPDSAW.

Section 2 below is dedicated to issues of type 1. With Section 3 we settle entirely the issues of type
2. In Section 4 we list some open problems related to ISAW and with Section 5 we give a first answer to
one of them.

Fig 2: Example of a trajectory | € %y with N = 6 vertical stretches, a total length L = 20 and an
Hamiltonian H; (1) = 6.

2. Asymptotics of the free energy close to criticality
2.1. A probabilistic representation of the partition function

In Nguyen and Pétrélis (2013), a Random Walk representation of IPDSAW has been introduced (see
Section 3 below for more details). With this new technique, a probabilistic expression of the partition
function has been derived, i.e.,
L c
Zipi=cy'Zyge Pl = TN P(#,_y) with Tj:= -5 2.1)
N=1

where Py is the law of a random walk V := (V;);° starting from the origin (V; = 0) and with Laplace
symmetric increments, i.e., (Vi4; — V;)i>o is an i.i.d. sequence of random variables satisfying

_B -
Pp(Vy=k)=" VkeZ with cpi= 22 2.2)

2
‘p
and where for every N € {1,..., L} the set ¥y ;_y gathers the N +1 step trajectories of the random walk
sweeping a geometric area L —N and finishing at 0, i.e.,

Yin ={VeZN*: Gy(V)=L—N,Vy,; =0} with Gy(V)= Zﬁio \AR (2.3)
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The excess free energy f(ﬁ) corresponds to the exponential growth rate of Z 1,p and therefore can be

deduced from the convergence radius of the grand canonical free energy. Using (2.1) we obtain

oo
Z ZL,/ieigL = Z (Fﬁ eia)NEﬁ(eié () 1{VN+1:0})- 2.4)
N=1

L>1

and since f3 — Tj is decreasing on [0, 00) and satisfies T, > 1 and limg_, , Ty = 0 we deduce from (2.4)
that the critical point . of IPDSAW is the unique solution of Ty = 1. With Theorem 2.1 below, we derive
from (2.4) a simple formulation for the free energy. To that aim we set

hg(8) = lim_ %ngﬁ(e—f’GN(V)), 5>0. (2.5)

Theorem 2.1 (Carmona, Nguyen and Pétrélis (2016), Theorem A). The excess free energy satisfies
. f([j) is the unique &-solution of log(Tg) — 6 +hg(6) =0 for B < fB.
o F(B)=0for p = .

Theorem 2.1 draws a tight link between the asymptotics of § — f([i) at B and the asymptotics
of y — hg(y) at 0. This is the key to prove Theorem 2.2 which gives a complete answer to the first
challenge raised in Section 1.2 (recall (1.6)).

Theorem 2.2 (Carmona, Nguyen and Pétrélis (2016), Theorem B). The collapse transition of IPDSAW
is second order with critical exponent 3/2. Moreover, the first order Taylor development of the excess free
energy at 3. is given by

. f(Bc—€) _cH3/2
tim = =(3) —
with afj =Eg(V)andc=1+ f:’z—c,/;, and with
.1 —o, [TIB(OId —-1/3 2/3
d =—T1Lrgo?logE(e g o 1B t)=2 / |a§|0'ﬁ6 ) 2.7)

with a the smallest zero (in absolute value) of the first derivative of Airy function.

1
Remark 2.3. The computation of E(e™ Jo IB:145) for s > 0 is due to Kac (1946) (see e.g. Janson (2007)).

Let us explain in few words how Theorem 2.2 can be deduced from Theorem 2.1. One easily under-
stand that the asymptotic development of f () at (f3,)” is strongly related to the fact that there exists a
constant ¢ > 0 such that

hg(8) =—c %% +0(5%°%), ass—0". (2.8)

These asymptotics are obtained by applying a coarse graining argument: we partition the V random walk
trajectory into independent blocks, of size T6%/® with T € N chosen arbitrarily and & small enough.
Thus, a N-step V trajectory is decomposed into N /(T §~2/%) blocks that are subsequently used to prove
that as 6 \, 0, we have

o1 —5Gy 8% —8G 52/
WD, 108 Ea (e ~ g, = logBp(e7 e, 29

Donsker’s invariance principle ensures (assuming for simplicity Eﬁ(Vlz) =1) (cf (Durrett, 2010, p. 405))

that
T

Tk
K323 V=S | IB(olde as k — o, (2.10)
i=1 0
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where B is a standard Brownian motion. Thus, we choose k = §%/% in (2.10) and since e %%rs-22| < 1,
we conclude that .,
Ep(e 02 ) — E(e 0 Jo BOW) a5 5 0, .11

This last convergence combined with (2.9) implies that h(5) ~ —c 52/3 where ¢ can be expressed using
the Laplace transform of the Brownian area, i.e.,

. 1 - r d
c= —Tll)ngo ?logE(e e Jo 1B t) > 0. (2.12)

3. Geometric characterization of IPDSAW
3.1. Random walk representation

As mentioned above, the probabilistic expression of the partition function displayed in (2.1) is obtained
after mapping appropriately the trajectories of IPDSAW onto random walk trajectories. Let us be more
specific by recalling (1.1) and (2.3) and, for every N € {1,...,L}, by settling a one-to-one correspon-
dance Ty that maps ¥y ;_y onto Ly, i.e.,

Ty(V); =(=1)"'V. forall ie{1,...N}. 3.1

We note that Vx,y € Z one can write x A y = %(|x| +|y|—|x+ y|) and therefore the partition
function defined initially in (1.4) becomes

L N N
Zig=> > exp(BYILI=E >+ 1)
N=1 1|

= (S n=1 n=0
lo=Iy+1=0

]

xp (=510, + L)

L N
= (2 ST - : (3.2)
N=1 le%y, n=0 B
ZOZZN+lJ:O

At this stage, we note that for | € £y ; the increments of (Vi)?];{,l = (Ty) M (D) in (3.1) satisfy V.—V._, :=
(—=1)7Y(l,_; +1,). Therefore,

L
Zig= TN > Pp(v=(T,)()
N=1 le%y,
lo=ly+1=0
which implies (2.1).

Another useful consequence of formula (2.1) is that it gives a method to sample IPDSAW trajectories
with the help of random walk paths. To be more specific, let us denote by N; the horizontal extension
ofagivenl €, ie., [ € %)y ;. Since in (2.1), the term indexed by N in the summation corresponds to
the contribution of %), ; to the partition function we can state that

TiPp (V)

Py (N, =k)= , ke{l,...,L}, (3.3)
B,LUN]
St TP (Fhes)
and that for every N € {1,...,L},
P g(le-|N=N)=Pys(Ty(V) € |V € ¥y 1_n)- 3.4

As a consequence, one can first sample an extension N under Prg with (3.3) and then sample a V
trajectory under Py conditioned on ¥} ;_y and finally apply Ty to V to obtain an IPDSAW trajectory.
This method can be implemented to simulate long critical IPDSAW trajectory (see Fig. 1).
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3.2. Scaling limit of IPDSAW in each regime

To describe geometrically an IPDSAW configuration [ € %y ; C Q; , one may consider its upper envelope
é"fr (respectively lower envelope &), namely the random process that links consecutively the top (resp.

the bottom) of every vertical stretch constituting [, i.e., glfo =6,=0 and é”lJ’rN m=CNn= L+ 41y
and
&h=max{ly +---+l_p, L +---+1}, i€{l,...,N}, (3.5)

glji:min{ll+"‘+ll‘_1,ll+"'+li}> ie{l,...,N}.

Since a given configuration [ sampled from P, g fills entirely the subset of N x Z trapped in-between
those two envelopes, the scaling limit of IPDSAW (as its length L diverges) is obtained by determining
the limiting law of (&, &") rescaled in time and space appropriately.

Another geometric description of [ € 2; can be made by considering two auxiliary processes, i.e., the

profile |1 := ()Y} (with [, = Iy;; = 0 by convention) and the center-of mass walk M, := (M ;)]
that links the middle of each stretch consecutively, i.e., M; o =0 and M, y,; =1, +---+ 1y and
L
Ml,i:ll+"'+li—l+5’ lE{l,...,N}. (36)

Working with (&, é’f ) or with (|I|, M;) turns out to be equivalent since é”{ =M+ Ié_l and & =M, — Ié_l

For simplicity, our results will be displayed with (]I|, M;) because asymptotically the profile and the
center-of-mass always decorrelate.

We define a scaling operator T, g which rescales simultaneously the profile and the center-of-mass
walk by L% in time and by L? in space, i.e.,

1
Top(l) = L_ﬂ(Ml,[tL“J/\N,: Il[tLaJ/\N,l) (3.7)

te[O,oo]'
Before stating Theorem 3.1 below, we recall that 0/23 =Ep (V12) (see 2.2). Let us also say that in Theorem
3.1 the convergences occur in distribution for cadlag functions on [0, o) endowed with the distance of
uniform convergence on every compact subset of [0, c0). For simplicity, all processes in the statement of
Theorem 3.1 have a finite time horizon but we implicitly consider that they remain constant afterwards
and therefore are defined on [0, o0). Theorem 3.1 gathers results from (Carmona, Nguyen and Pétrélis,
2016, Theorem D) and (Carmona and Pétrélis, 2016, Theorem 2.8) and (Carmona and Pétrélis, 2017a,
Theorem C).

Theorem 3.1. For L € N, we consider an IPDSAW trajectory | sampled from Py g. Then,

D Fp <P
Jim Ty 5 (1) = o (B;, 0) g, (3.8)

with eg € (0,1) and ag > 0 two explicit constants.

@ i B =po
Jim, T 1 (0 = (D 1B.l) g, (3.9

with B and D two independent linear Brownian motions of variance %afj and afj respectively, with a,

the time at which the geometric area swept by B reaches 1, i.e., f ; '|B,| du =1 and with B conditioned
on the event B, = 0.

3 B> P
Jim Ty 2 (1) = (0,75(5)) (0,0, (3.10)
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with ag an explicit constant and yp a deterministic Wulff shape given by

yﬂ(s)zaﬂf L’[(%—%)R{%,Oﬂdx, s€[0,a5] (3.11)
0

with
ag = argmax{alogl"(ﬂ)— 5%0(0%,0) + aLA(}NI(a%,O)), a € (0, oo)}, (3.12)

where

1
LA(H) :=f logEg[eMMotMMildx, He9
0

with L(h) := logEﬁ[ehvl]for he (—g, g) and 9 = {H = (hg,h;): {hg,hg +hy} C (—E ﬁ)} and

222
with H = (hy, hy) the inverse function of VL,(H) that is a 6 diffeomorphism from 9 to R?.

With Theorem 3.1 we observe that the critical regime is characterized by the fact that the profile and
center-of mass walk of a typical IPDDSAW configuration display fluctuations of the same order (i.e., L'/3).
This is indeed not the case in the extended regime (8 < f8.) and inside the collapsed regime (8 > f3.)
for different reasons.

When f < 8, the self-interaction intensity is weak and therefore the qualitative behavior of a typical
IPDSAW trajectory is not different from that of the random walk under its uniform measure (i.e., f =
0). To be more specific, the horizontal extension of a typical trajectory is of order L and the vertical
stretches are typically of finite size. We will even see in the proof below that the vertical stretches have
an exponential tail. As a consequence the profile vanishes when rescaling it in space by any function
growing say faster than log L whereas the center-of-mass walk asymptotically decorrelates from the
profile and displays Brownian fluctuations.

When 8 > ., in turn, a typical IPDSAW trajectory performs L(1 + o(1)) self-touchings (saturation)
and therefore must be made of few large vertical stretches with alternating signs. As a consequence
the horizontal extension and the vertical stretches of a typical configuration are both of order +/L. This
strong geometric constraint forces the profile rescaled in time and space by +/L to converge towards a
deterministic Wulff shape (a sketch of the proof is displayed below). The rescaled center-of mass walk
vanishes in the limit (3.10). The reason is that, the center-of-mass walk asymptotically decorrelates
from the profile and therefore follows the law of a symmetric random walk of length +/I with vertical
fluctuation of order L'/4.

Remark 3.2. Appart from the extended case, the proof of Theorem 3.1 heavily relies on formulas (3.3-
3.4) which allows us to work with random walk trajectories under a particular conditioning and subse-
quently to re-express the results in terms of IPDSAW via the applications Ty with N < L (recall 3.1).

Let us now give the main steps of the proof of Theorem 3.1 in each regime, starting with the collapsed
phase.

Collapsed regime f3 > f3..

Rewrite (2.1) as

L
ZL’ﬂ = Zexp (N[logf‘ﬁ + IlvlogPﬂ(“VN’L_N)]). (3.13)

N=1

There are two growth rates of N (as a function of L) for which P4 (¥} ;_y) has a non trivial exponential
decay rate (as a function of N), namely, N ~ L and N ~ L. Therefore, and since Iy <1, the sum in
(2.1) is dominated by those terms indexed by a+/L with a € (0, 00). Consequently, we set

gp(u) := Nlim Ps(Gy(V) = uN? Vy =0), ue/(0,00), (3.149)
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and Z 1p is well approximated by

Z exp(«/f[alogr‘ﬂ +ag,5(ai2):|)

N
aeﬁ

so that ag indeed equals argmax{alog Iy + agﬂ(%), ae (0, oo)}.

At this stage, proving (3.12) simply requires to provide an analytic expression of gg. To that aim,
for u > 0 we observe that {Gy(V) = uN?2,Vy = 0} is a large deviation event. Its decay rate can indeed
be expressed with J the rate function of Mogulskii Theorem applied to the rescaled process Vy :=
(Il\]VLSN J)s €[0.1] viewed as a random element in B[ ;; the set of cadlag real functions on [0, 1], endowed

with the L® norm. Thus J : B ;7 — [0, 0] is defined as

1
() = LL(y(t))dt if yed%e, (3.15)

+00 otherwise,

where .o/ ¢ is the set of absolutely continuous functions and where L* is the Legendre transform of L.
Rewritting {Gy (V) = uN?,Vy = 0} as {G(Vy) = u, Vy(1) = 0} (with G(y) = |, 01 ly(s)|ds) and applying
Mogulskii Theorem in (3.14) we obtain

gp(W) =inf {J(y), v € Byo 13, G(y) =u,y(1) =0} (3.16)

from which we derive the closed formula gp (u) = —uﬁo(u, 0) + LA(ﬁ(u, 0)) The proof of (3.12) is
therefore complete and it remains to prove (3.17) by observing that the infimum in (3.16) foru =1/ aé
is attained for —y}; and y;; defined as

}f;g(s):f L’[(%—x)ﬁo(é,O)]dx, s€[0,1], (3.17)
0

so that v simply satisfies y4(s) = aﬁy;‘j (s/ag) fors €[0,az].

Critical regime 5 = f3,

The critical regime is the most delicate since the fluctuations of || and M; are of the same magnitudes
and must therefore be analyzed simultaneously.

A few more notations are required here. With V a random walk trajectory and with j,k € N we
associate K; = j + G;(V) (recall 2.3) and &, :=inf{j > 1: K; > k}. We also associate with V an auxiliary
process M := (M;);ey build with the increments of V as follows: My =0 and for j € N

. Ve ] .
M;:=» (D)W + (1Y 1L =2 E 1)LV, = V). 3.18
A ( ) i ( ) 2 2 i:1( ) ( i i 1) ( )
Since Iy =1 the key tool here is the random walk representation (3.3-3.4) which guarantees that

P s (l€)=Py(Ts, (V)|Ks, =L, Vs, 43 =0). (3.19)

A consequence of (3.19) is that T; 1(1) with [ sampled from P, g has the same law as (VI,M) :=

(l‘ZI)Ms)se[O’oo) deﬁned as

11
252

~ o~ 1
(Vi, M) = m(V[SLZ/SJAgL,M[SLZ/SJ/\gL) (3.20)
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where V is sampled from Pg and conditioned on {KEL =L, Ve q = 0}. Thus, Theorem 3.1 (b) can be
proven by considering (|V|, M).

Outline of the proof. The strategy used in Carmona and Pétrélis (2017a) consists in decomposing ev-
ery V trajectory into excursions (€, )<y away from the origin. The fact that the increments of V follow a
symmetric discrete Laplace distribution yields that those excursions (in modulus) (|€|,),cy are indepen-
dent and have the same distribution (except for the very first one). The conditioning {KEL =L, Ve 1= O}
under which V is considered gives a particular importance to the geometric areas (X, ),y swept by the
excursions. These areas are i.i.d. and heavy tailed random variables so that it suffices to consider finitely
many excursions (those sweeping the largest area) to recover a fraction of the path arbitrary close to
1. For this reason, for k € N, we will truncate (|V|, M) outside the excursions sweeping an area larger
than L/k. Since finitely many excursions of V (the largest ones) are required to reconstruct the trun-
cated process (IVL’,{I,I\NJ 1) it should be sufficient to prove a convergence in distribution "excursion by
excursion” to recover the convergence of the whole truncated process. Then, it remains to control the
fluctuations of V and M on the small excursions of V in order to check that their contributions to the
limiting process vanish as k — 00.

Let us be more specific and define the stopping times (7,),<y by the prescription 7, =0 and
T,y =inf{i >7,:V_; #0and V,_;V; <0}. (3.21)
For every r € N we denote by | €|, the r-th excursion of V in modulus, i.e.,

|€|r = (l: |Vi|)i€{’rr,1,...,‘rr—1}’ (322)

and it turns out (see (Carmona and Pétrélis, 2017a, Proposition 3.1)) that provided we transform slightly
the law of V|, the sequence (|€|,),>; is i.i.d. We introduce for every r € N the sum X, of the length and
of the geometric area swept by |€&|,, i.e.,

X, = TF_TF*1+|Vfr—1|+”'+|v’fr*1|' (3.23)

With a slight abuse of notation, we will call X, the geometric area swept by the r-th excursion and we
define X a random set of points on Nj as

X={0}u{X;+ - +X,,neNy}. (3.24)

For simplicity, we transform the conditioning under which ([V|, M) is considered into {L € X}. This does
not change the scaling limit of (|V|, M) and lightens the presentation of the proof. Under the conditioning
{L € X} we denote by v, the number of excursions completed by V when its geometric area reaches L.

Remark 3.3. A crucial result at this stage is that X; is heavy tailed. Deriving a local limit theorem
for the geometric area swept by a random walk excursion (say with centered increments that have
finite second moments) was an open issue until recently. The reason is that computing the characteristic
function of such geometric area is difficult and therefore Gnedenko’s type arguments can not be applied
straightforwardly. In (Denisov, Kolb and Wachtel, 2015, Theorem 1.1), such a local limit theorem has
been derived giving us lim,_,o, n*/°Py (X, = n) = ¢; and lim; oo L°Py (L € X) = ¢, with ¢;,¢, > 0.
Thus, by recalling 2.1, we obtain sharp asymptotics for the critical partition function, i.e.,

c . ..
Zyp = elel L;}3 (1+0(1)), withcs> 0 explicit.
Truncation of the profile and center-of-mass walk. As mentioned in the outline, since the variables (X,),>,
are heavy tailed, we truncate (|V|, M) outside the excursions sweeping an area larger than L/k. We
recall (3.18) and (3.21) and for every r € N, we let M**¢(r) be the contribution of the r-th excursion to

the center-of-mass walk, i.e.,
T,—1

Me<(r) = Z -1V, (3.25)

=T,
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For x € N, we truncate V outside the excursions of geometric area larger than x to obtain (V. (1));enuqo}-
Similarly, with the help of (3.25) we define the discrete process 