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In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally ex-
pected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike
optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in
temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The
observed meniscus position from far (10 K) to extremely close (1 mK) to the critical temperature is analyzed using
recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature
dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence
of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the
complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify
the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.

DOI: 10.1103/PhysRevE.97.020101

Phase transition is ubiquitous in nature. The most fecund
phase transition is presumably through the liquid-vapor critical
point accompanied by the spectacular critical opalescence,
as already observed nearly two centuries ago. The vicinity
of the critical points of many different systems is indeed
characterized by strong singularities in their thermodynamic
and transport properties. The current theoretical paradigm
on critical phenomena, based on the use of renormalization
group theory [1], has categorized all systems in well-defined
universality classes [2] and characterized the singularities in
terms of power laws of only two relevant scaling fields [3]
in a manner consistent with the scaling hypothesis [4]. Simple
fluids are then assumed similar to the so-called O(1) symmetric
(�2)2 field theory and (or) the N = 1-vector model of three-
dimensional (3D) Ising-like systems [2,5,6]. However, for the
case of the gas-liquid critical point of simple fluids, some
additional difficulties can occur because the order parameter—
the fluctuating local density—shows a noticeable asymmetry in
the nonhomogeneous region, as for instance through the well-
known rectilinear density diameter of the coexistence curve.
The latter obeys the law ρd = ρL+ρV

2 = ρc + Ad (Tc − T ) first
evidenced by Cailletet and Mathias for three fluids [7]. ρL and
ρV are the liquid and vapor densities of the coexisting phases
and ρc is the critical density. T and Tc are the temperature
and the critical temperature, respectively, and Ad is the exper-
imental slope of the density diameter. Subsequent literature
has largely confirmed this rectilinear diameter law for a broad
class of fluids (usually denoted normal fluids) with attempts to
correlate the change of Ad with the differences in the two-body
potential of molecular interaction [8,9]. Nevertheless, such an
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asymmetrical linear form of the density diameter cannot be
accounted for from the symmetrical uniaxial 3D Ising model
and its induced standard fluidlike version, i.e., the symmetrical
lattice-gas model.

An alternate theoretical way to introduce the fluid asymme-
try consists in mixing and extending the number of physical
fields contributing explicitly to the relevant scaling fields,
the so-called complete scaling phenomenological hypothesis
[10–14]. The predictions of complete scaling have been tested
against experiments with various fluid systems, especially
binary solutions [15], and simulations representing ionic and
polymer solutions with extraordinary asymmetry [12,16]. In
a recent work [17], Yang-Yang critical anomaly and singular
density diameter arise in exactly soluble compressible cell gas
models where complete scaling includes mixing with pressure
field. However, the additional pressure field increases the com-
plexity in the quest for a true asymptotic simple fluid behavior,
which still remains a conundrum to the experimentalists whose
objective is to check it experimentally closer and closer to the
critical point. De facto, the asymmetrical contributions, the
analytical backgrounds, and the classical-to-critical crossover
corrections due to the mean-field-like critical point, further
hindered the test of the asymptotic Ising-like fluid behavior.
Such difficulties are intrinsically ineludible, even along the
true critical paths where the crossover contribution due to one
additional nonrelevant field [18] can be accounted for correctly
in the field theory framework [19–21].

All attempted experiments can never be performed strictly
on these critical paths, adding paradoxically a new opportunity
to investigate the theoretical expectations related to the non-
symmetrical behaviors, as illustrated schematically in Fig. 1.
Indeed, even though the temperature can be controlled very
close to Tc in order to reach very small �τ ∗ = T

Tc
− 1 values

(lower than 10−5, typically), the mean density 〈ρ〉 of the fluid
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FIG. 1. Top: Schematic diagram of coexisting liquid (upper
branch) -gas (lower branch) density curve near the critical point (cp)
of a simple fluid with critical temperature Tc and critical density
ρc. Inside the two-phase domain, the dashed line and the full curve
(with a “viewed hook” close to cp) correspond to the expected
rectilinear and singular density diameters, respectively. The horizontal
line at ρcell evidences three characteristic points (a,b,c) along the
thermodynamic path followed by cooling a cylindrical sample cell
filled at a mean density 〈ρ〉 ≡ ρcell slightly above the critical density
(〈δρ̃〉 = 〈ρ〉

ρc
− 1 > 0). Bottom: Expected meniscus positions of a

two-phase cell during cooling: a: above the volumetric median plane
(VMP) of the cell at the coexistence temperature (very close to Tc);
b: matching the VMP of the cell at the temperature Tcross crossing the
density diameter curve; c: below the VMP of the cell far from Tc.

cell can been hardly fixed at its exact critical value ρc [22]. The
error bar related to the off-critical parameter 〈δρ̃〉 = 〈ρ〉

ρc
− 1

never contributes to the discussion of the results in terms of true
experimental distance to the critical point. Nevertheless, from
the above experimental facts and the theoretical expectations,
it appears that the related nonsymmetrical effects can be
investigated even in a slightly off-critical (liquidlike) density
throughout the meniscus crossing the volumetric median plane
(VMP) of the cell at a single finite temperature distance from
Tc, i.e., Tcross < Tc, as shown in Fig. 1. From the symmetrical
lattice-gas model, the meniscus of this liquidlike filled cell is
expected to be visible always above this VMP in the two-phase
temperature range.

Here, we intend to probe that SF6, generally considered
[23–25] as a standard simple fluid to support the critical asym-
metry from the complete scaling hypothesis [12–14], cannot
exhibit the previously viewed critical hook (of 0.5% maximum
amplitude) in the rectilinear density diameter close to the
critical point, as schematically illustrated in Fig. 1. To support
this examination, the relative uncertainty in the SF6 filling
density value was controlled within better than +/− 0.04%
precision above 0.2% of the critical density, significantly lower
than the expected critical hook of 0.5% level.

The technical details of the test cell (called ALIR5
[26]) are given in the Supplemental Material [27] (see
also Ref. [28]). The viewed fluid volume consists in
a quasiperfect disk-shaped cylindrical fluid volume
[of thickness ef = (2.510 ± 0.002) mm and diameter
df = 2R = (10.606 ± 0.005) mm]. Its observation in light

FIG. 2. Top: Schematic cross-sectional orientations of the fluid
volume and horizontal lines corresponding to the meniscus position
close to its VMP. Bottom: Temperature dependence of both (i = 1 and
i = 2) symmetrical pixel shifts of the meniscus position (with respect
to each corresponding VMP), for the eight (i,X) configurations.
1 pixel = 12 μm.

transmission leads to a two-phase fluid imaging similar
to the schematic bottom views of Fig. 1. This viewed
cylindrical fluid volume [Vf v = πR2ef = (221.7+0.20

−0.70) mm3

[29]] is surrounded by two opposite, small, and strictly
similar dead volumes [ 1

2Vf b = (7.0 ± 0.2) mm3], which
correspond to the cell filling lines, positioned in the
thickness median plane. This cell, of total fluid volume
Vf = Vf v + Vf b = (235.70+0.5

−1.0) mm3, was filled with
99.995% pure SF6. The filling was made at a liquidlike
mean density, such as 〈δρ̃〉 = 〈ρ〉

ρc
− 1 = (0.20+0.04

−0.04)%, as
measured from our filling and weighing processes. As
schematically illustrated in the top part of Fig. 2, which
shows the colored fluid cross sections for different directions
of the VMP, eight different cell configurations are used for
the test. Each cell configuration is named (i,X), where the
digit i represents two opposite gravity orientations (g ↓ for
i = 1 and g ↑ for i = 2) and the letter X is associated with
directions of the meniscus position and/or the VMP (X = H

for θ = 0◦, X = V for θ = +90◦, X = T for θ = +22.9◦,
and X = Z for θ = −23.2◦). We note that the (i,T ) and (i,Z)
configurations are not equivalent with respect to the liquid (or
gas) positioning as, in the (i,T ) case, one (on the gas-phase
side) of the dead volumes can always act as a well for liquid
trapping.

A similar temperature timeline is used for each cell con-
figuration during the temperature cooling of the cell, where
temperature follows a logarithmic scale to cover the range
1 mK to 10 K from Tc (with T < Tc). As discussed in the
Supplemental Material [27], the exact value of Tc (highly
reproducible over a 2 mK range from 318.721 to 318.723 K for
the eight experimental runs) is not essential for the following
analysis. The liquid-vapor meniscus is observed from optical
transmission imaging through the cell, using LED illumination
and cell view observation with a CCD camera (1024 × 1024
pixels) [30]. A physical pixel size corresponds to 12 μm.
The image of each meniscus position data is recorded when
thermal equilibration and density relaxation are achieved at
each temperature distance Tc − T .

The highly symmetrical cell, the small off-critical average
density filling, and the cell imaging provide highly symmetrical
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behavior of the meniscus position as a function of temperature
for both (i = 1,2,X) configurations with respect to gravity (see
details in the Supplemental Material [27]). The exact position
of the fluid in the cell image and the cell VMP are measured at
subpixel level. The pixel coordinate of the meniscus, noted hiX ,
is measured as one-half part of the pixel difference between
the bare positions, i.e., by the distance from each VMP of
the fluid cell. The temperature behavior of hiX is reported in
Fig. 2 for the four (i,X) directions. Except for the (i,X = T )
case discussed below, the temperature crossing of the VMP
occurs in the range 317.823 � Tcross(K) � 318.123 (account-
ing for ±0.5-pixel uncertainty around hiX = 0). Consequently,
Tc − Tcross 	 (750 ± 150) mK. Making reference to Fig. 1
and anticipating the following modeling approaches using
nondimensional quantities, we note that the knowledge of the
corresponding reduced temperature distance �τ ∗

cross = Tcross
Tc

−
1 provides a single value of 〈δρ̃〉 = 〈ρ〉

ρc
− 1. 〈δρ̃〉 thus depends

only on the related density diameter excess �ρ̃d = ρ̃d − 1
(here ρ̃d = ρd

ρc
), without explicit knowledge of the absolute

value of ρc.
The first modeling is based on the critical parametric model

(CPM) [31] of equation-of-state to define the temperature
range where the gravity effects are significant. We use the
mass conservation to derive a relationship between the average
density and the local density profile of the compressible fluid.
Modeling considers an ideal, nondilatable cylindrical fluid
sample volume of radius R and depth ef , ignoring the role
of the two dead volumes and neglecting the capillary effects.
The CPM permits one to estimate the local chemical potential
(at position z) and the density profile ρ(z) along the vertical
axis of the cell. The density profile is a function of the tem-
perature T , position z, and the CPM nonuniversal parameters
ū, l0, m0, and b2. The latter one, b2, is often referred to as
the field mixing parameter [32,33], or asymmetry parameter
since a well-defined value of b2 appears characteristic of
the singular asymmetry in the two-phase domain. Once we
fix the constant average density of the cell, 〈ρ〉 = 1.002ρc

(i.e., 〈δρ̃〉 = 0.002; see below), the corresponding meniscus
position z0 can be found through numerical integrations and
root finding methods. Introducing a dimensionless variable
z∗ = z

R
, the better fitting adjustment of z∗ to hiX

R
can be obtained

for a particular set of the CPM parameters. Using our previous
results ū = 0.166, l0 = 38.303, and m0 = 0.4877 from fitting
the SF6 compressibility, heat capacity, and coexisting curves
(see Ref. [22]) and fixing b2 = 0 leads to the dotted curve in
Fig. 3. This curve shows that the meniscus position can never
be observed below the VMP of the cell. Such a behavior is also
expected from the symmetrical uniaxial 3D-Ising model and
the symmetrical lattice-gas model.

The modeling is thus performed by only using the parameter
b2 as a single adjustable quantity to explain the meniscus posi-
tion behavior hiX

R
(|�τ ∗|) around Tcross. The result is illustrated

by the dashed curve in Fig. 3, with b2 = −0.06 ± 0.01. Only
the (i,V ) configuration data are reported here to simplify the
comparison with the experiments, especially approaching Tc

where the contribution of the compressible effects does matter.
Additional analytic modeling results obtained by changing the
cell diameter from reference to df = 2R, have also confirmed
that the relative importance of the effective cell height in the

FIG. 3. Full circles: Ratio h

R
for the (i,V ) configuration, as a func-

tion of 1 − T

Tc
. Full curve: Eq. (1) with 〈δρ̃〉Tc

= 0.002, using a �ρ̃LV

theoretical estimation without adjustable parameters (see text and
Ref. [22] for details), ρ̃d = 1 + adΔτ ∗ with ad = 0.84, and capillary
correction as defined in the text and the Supplemental Material [27].
Dashed curve: Normalized meniscus position z

R
obtained from CPM

calculations for 〈δρ̃〉Tcoex
= 0.002, with compressible effects due to

gravity (see text). Dash-dotted curve: Eq. (1) for 〈δρ̃〉Tcoex
= 0.002

and �ρ̃d given by Eq. (3), using Kim and Fisher’s [12] parameters.

different configurations is significant only close to the critical
temperature (|�τ ∗| < 10−4).

The results given in Fig. 3 support the following remarks:
(i) The compressibility effects become noticeable only within
the reduced temperature range |�τ ∗| < 10−4, i.e., Tc − T �
30 mK. We note that these effects can be observed in our
experiment only in the temperature range Tc − T � 15 mK,
using a grid shadow diagnosis [30] and/or local turbidity
measurements on both sides of the gas-liquid meniscus;
(ii) the CPM results (with b2 = −0.06 ± 0.01) shown as
a dashed curve are consistent with the measured meniscus
position around the crossing temperature of the VMP. Although
the CPM calculation remarkably matches the current SF6 data
[6], we note that the value b2 = −0.06 differs significantly
from the value b2 = 0.035 obtained using the direct description
of Weiner’s density diameter data in Ref. [24], even in its
sign. Such results point out the practical difficulties to separate
system-dependent parameters (e.g., free amplitudes of the
|�τ ∗|1−α , |�τ ∗|, and correction to scaling terms) unambigu-
ously from the CPM modeling.

To shed light on this singular asymmetry problem, we
used an additional modeling of the data, without reference to
CPM, to analyze the meniscus behavior using a simple law of
rectilinear diameter and compare it directly with the singular
diameter case.

This second modeling can be performed in the temperature
rangeTc − T > 30 mK where the gravity effects are neglected.
A simple geometrical consideration (see Ref. [34]) based on the
mass conservation inside the total volume, Vf = Vf v + Vf b =
πR2ef (1 + x) (with x = Vf b

Vf v
	 0.060), leads to the following

analytical form of h
R

:

h

R
= π

4

〈δρ̃〉T − �ρ̃d

�ρ̃LV

(1 + x) − 〈δh〉ca

R
. (1)
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The difference �ρ̃d = ρL+ρV

2ρc
− 1 is the excess quantity from

ρ̃d , and �ρ̃LV = ρL−ρV

2ρc
is the symmetrical density coexistence

curve. As detailed in the Supplemental Material [27], two
disturbing effects of the meniscus position are incorporated in
Eq. (1) through the quantities 〈δρ̃〉T and 〈δh〉ca, respectively.
〈δρ̃〉T accounts for the cell thermal expansion through a
linear approximation of the temperature change of the reduced
average density change 〈δρ̃〉Tc

defined at Tc. The equivalent
height 〈δh〉ca, assumed proportional to the squared capillary
length, accounts for a practical approximation of the liquid
volume involved in the capillary rise along the windows and
the cell body. It is important to note that the capillary rise
effect can be neglected when Tc − T � 3 K. In the latter
temperature range, the cell thermal expansion effect remains
easy to estimate, 2% at Tc − Tcross 	 750 mK and lower than
8% when Tc − T < 3 K. Only the first term in Eq. (1) is thus
important and, for 〈δρ̃〉Tc

> 0, the meniscus crosses the median
plane at Tcross, where 〈δρ̃〉Tcross

= �ρ̃d .
We first consider the rectilinear behavior of the reduced

density diameter
ρ̃d = 1 + ad

∣
∣�τ ∗∣∣ (2)

where the excess quantity �ρ̃d is proportional to |�τ ∗|. The
value ad = AdTc

ρc
= 0.84 ± 0.025 is obtained analyzing the

coexisting density data of Refs. [35,36] on the two-phase tem-
perature range 288 K � T � 316 K. The measured value of
Tcross corresponds to 〈δρ̃〉Tcross

= (0.20 ± 0.04)%. Accordingly,
fixing 〈δρ̃〉Tc

= 0.002 to calculate 〈δρ̃〉T , the full curve of
Fig. 3 represents h

R
of Eq. (1), using �ρ̃d = ρ̃d − 1 estimations

from Eq. (2) and introducing the capillary rise correction
as given in the Supplemental Material [27]. As shown in
xenon [6] and similarly in Ref. [22] for SF6, the singular
top shape of the reduced coexistence curve �ρ̃LV (|�τ ∗|)
for |�τ ∗| � 10−2 was predicted without an adjustable pa-
rameter, using the theoretical master crossover functions
[21] estimated from the massive renormalization scheme
[19,20]. Nevertheless, any other effective power laws to de-
scribe �ρ̃LV of SF6 (such as �ρ̃LV = 1.7147|�τ ∗|0.3271 +
0.8203|�τ ∗|0.8215 − 1.4396|�τ ∗|1.2989 from Ref. [25]) do not
modify the current analysis, especially considering the two
temperature decades 30 mK � Tc − T � 3 K, where com-
pressibility and capillary rise effects are negligible. We note
that the good matching between the experimental data and
the full curve of combined Eqs. (1) and (2), shows that the
resolution in the image processing at the subpixel level is a
key to the accurate determination of the filling density when
the reduced slope of the linear density diameter is the only
unknown (but essential) physical parameter in the temperature
range around Tcross.

We secondly consider the expected singular shape of the
density diameter as predicted from the various complete field
mixing approaches [10–14,17]. The corresponding singular
excess quantity presumably satisfies the following form:

�ρ̃d = Aβ |�τ ∗|2β + Aα|�τ ∗|1−α + A1�τ ∗ + A�|�τ ∗|x�

1 + a�|�τ ∗|�
(3)

with α = 0.109, β = 0.326, � = 0.52, and x� = 1 − α + �.
Since 1974, several amplitude sets obtained from Weiner’s

data fitting were published in literature [12,14]. For clar-
ity, only Kim and Fisher’s [12] parameters Aβ = 1.0864,
Aα = −7.990, A1 = 9.770, A� = 0, and a� = 3.318 are used
here in Eq. (3), noting no significant difference using any
other literature parameter sets despite the large differences
in the values of each amplitude term. By fixing 〈δρ̃〉Tc

=
0.002, the corresponding estimation of h

R
is illustrated by

the dashed-dotted curve in Fig. 3. Clearly, the h
R

calcula-
tions for the singular density diameter case are not com-
patible with our current experimental data, especially in the
two decades 10−4 < |�τ ∗| < 10−2, i.e., 32 mK � Tc − T �
3.2 K, where compressibility and capillary rising effects are
negligible.

The noticeable inconsistency between the current data and
any theoretical singular modeling based on Eq. (3) could be
attributed to the fitting process of the ρ̃d experimental values
using this nonanalytic theoretical functional form. The main
reason is presumably due to the large number of adjustable
parameters in Eq. (3) and the effective relative contributions
of each power-law term at least one decade larger than the
maximum amplitude (0.5%) of the global excess deviation,
especially close to the critical temperature. In addition, a sys-
tematic larger error bar in these fitting results can be implicitly
due to Weiner’s values of the critical parameters ρc, εc, and then
CMc = 1

ρc

εc−1
εc+2 , which are significantly different (−1.35%,

−10.9%, and −3.3%, respectively) from the literature values
[37].

In conclusion, we remark that the predictive modeling
of h

R
from Eq. (1) and the rectilinear density diameter of

Eq. (2) compare well (in amplitude and uncertainty) with
the measurements. Along the off-critical thermodynamic path
of (0.20 ± 0.04)% in the mean density, the high-resolution
imaging analysis of the SF6 in the two-phase domain shows
no evidence of any singular hook-shaped deviation in the
rectilinear density diameter near the critical point. The main
part of the uncertainty in the rectilinear density diameter
remains due to the accuracy (0.21%) for the SF6 critical density
value. In this experiment, the cell thermal expansion, the
fluid compressibility, and the liquid wetting effects are well
controlled, thanks to the highly symmetrical sample geometry,
while the density diameter is understood without any additional
adjustable parameters, except for the slope of the linear density
diameter. Our accurate experimental data show that SF6 is
consistent with other normal fluids showing no detectable
deviations from the rectilinear diameter. Although the validity
of the complete scaling theoretical framework has been well
demonstrated for many fluid systems including the binary
solutions with extraordinary asymmetry, its experimental vali-
dation remains extremely challenging in one-component fluid
systems.
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