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DETERMINATION OF REACTION PARAMETERS FOR

CARDBOARD THERMAL DEGRADATION USING
EXPERIMENTAL DATA

T. LOULOU, S. SALVADOR and J. L. DIRION
Ecole des Mines d’Albi-Carmaux, Laboratoire de Gnie des Procds des solides diviss, UMR CNRS 2393 Albi, France

have been utilized in recovering the kinetic parameters of a given reacting model using

measurements collected from TGA devices. The goal of this research work is to
develop a useful and universal estimation procedure to determine simultaneously the kinetic
parameters involved in the chemical modelling under study such as combustion, pyrolysis,
waste stabilization, efc. The present parameter estimation problem is solved with the
Levenberg-Marquardt method of minimization of the least square norm representing the
square difference between the measured mass variations during cardboard pyrolysis and
the mass responses obtained with numerical solution of the model. An analysis of the linear
dependency of the pyrolysis parameters needed to design a robust estimation tool is presented.
In order to perform this analysis, the sensitivity coefficients and the sensitivity matrix
determinant were examined. Experimental data obtained with TGA during the pyrolysis
process of cardboard are analysed in this paper and the unknown parameters involved in the

T his work is part of an ongoing research effort in which parameter estimation techniques

kinetic modelling are estimated.
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INTRODUCTION

In building the reaction schemes for solids decomposition,
the estimation of kinetic parameters represents a crucial step
in chemical modelling (Font et al., 2001). Indeed, once a
kinetic scheme has been established, two main methods can
be used to estimate the corresponding Arrhenius parameters:
a graphical method and numerical fitting. The first method is
usually limited to a global (single) reaction. When the
reacting scheme involves more than one reaction, the
graphic method is not adequate and the numerical fitting
represents the only alternative. However, the second method
needs to be implemented with precautions and efficiency to
avoid the determination of physically unacceptable reaction
schemes.

In a recent paper (David et al, 2003), the authors
presented the determination of a reacting scheme of thermal
degradation of cardboard. As mentioned in many references,
they have underlined some difficulties in estimating the
kinetic parameters involved in the reaction schemes. In the
present study the authors present a numerical tool developed
to alleviate the estimation procedure in terms of the comput-
ing time and simplicity of use. Physical and chemical
considerations, such as positiveness of kinetic parameter,
continuity in reaction rate values, are also taken into
consideration.

The literature is rich in this field and one can find several
commercial and educational softwares such as Themoki-
netics (Opfermann, 2000), Imsl (IMSL, 1987), AKTS-TA

(Roduit & Baiker, 1996) which help in the solution of such
difficult parameter estimation problems. In this sense, the
presented algorithm does not present any originality with
respect to the existing software, except for the detailed
sensitivity analysis shown in the next section and the
incorporation of the constraints on the parameters to be
estimated. In fact the sensitivity analysis plays an important
part in understanding the effect of each parameter present in
the kinetic schemes developed here.

This work is part of an ongoing research effort to develop
a practical, universal and minimally time-consuming
computing tool that will be helpful in the determination of
kinetic parameters occurring in the modelling of any chemi-
cal and/or physical problem such as combustion, pyrolysis,
stabilization and other phenomena investigated in our
laboratory. The estimation of unknowns is formulated as
an inverse problem of simultaneously estimating the kinetic
parameters involved in the modelling of the physical
problem under investigation.

This paper presents an application of this estimation tool
with data obtained, during pyrolysis of cardboard, by a
thermal gravimetric analysis device (TGA). The minimiza-
tion of the least square norm is achieved using the Leven-
berg-Marquardt method (Levenberg, 1944; Marquardt,
1963; More, 1978; Bard, 1974). In order to investigate the
estimation feasibility, the sensitivity coefficients and the
sensitivity matrix determinant are examined. This analysis
helps in quantifying the correlation degree among the
parameters of interest.



DIRECT PROBLEM

In a previous paper (David et al., 2003), the authors
demonstrated that the pyrolysis of cardboard can be
described with a two steps reaction scheme, i.e.

F1 Fl
Cardboard — Intermediate — Char

In a first reaction, the initial cardboard mass m(?), is
converted into an intermediate pseudo-species denoted
m,(¢) and gas. Then, the pseudo-species is converted into
char, denoted m5(), and gas through a second reaction. This
scheme was chosen from eight proposed kinetic schemes
(David et al., 2003). The best fitting of experimental data
recorded with three different heating rates was obtained with
this scheme. At a given time ¢, the total mass of the sample
is the sum of the masses of cardboard, intermediate pseudo-
species and char, i.e.

M (1) = my (1) + my(t) + my(1) M

The mathematical model, describing the time evolution of
the different mass fractions during the pyrolysis process, is
based on set of first-order differential equations. The weight
loss phenomenon of the cardboard pyrolysis is described by:

dm
d—tl = —k;m, )
dm,
T +alkym; — kym,] 3)
dm
d—; = +bk,ym, )
with the following initial boundary conditions
m;(0) = 1. m,(0) = 0. m3(0) =0 ®)

The decomposition rule gives:

dmi - dmi % dTr - dmlﬂ

dt  dT = dt dT
where f represents the heating rate, which is considered
constant in this study. The kinetic reaction rates depend on
the absolute temperature and are given by the two Arrhenius
functions:

i=1,2,3 6)

E,
k; :Aiexp[ﬁ] i=1,2 7
where A; is the Arrhenius factor, E; is the activation energy
for the pyrolysis, R is the ideal gas constant, and T is the
absolute temperature of the reaction. a and b represent the
mass stoichiometric coefficients.

In the direct problem associated with the kinetic reaction
described above, the kinetic parameters A, E|, A,, E,, as
well as the coefficients a, b, initial boundary conditions, are
known. The objective of the direct problem is then to
determine the time variation of mass fractions,
my(t), i =1, 2, 3, and the total mass M(f) during the pyro-
lysis process.

There exists no analytical solution for the direct problem
given in equations (2)—(5). As we are dealing with more than
one first-order differential equation, the possibility of stiff-
ness of the set of equations can arise. For these two reasons
the numerical solution of the direct problem is obtained with
the Kaps—Rentrop algorithm in terms of the subroutine
stiff developed in Press, et al. (1992).

INVERSE PROBLEM

Once the kinetic scheme has been established, two prin-
cipal methods are usually used to estimate the correspond-
ing Arrhenius parameters: the graphical method or
numerical fitting. The first method is limited only to single
reaction (global). The case of simultaneous reactions is
treated through a numerical procedure formulated as an
inverse problem.

For the inverse problem considered here, the parameters
A\, E|, Ay, E,, a, and b are regarded as six unknowns, while
the other quantities appearing in the formulation of the
direct problem described above are assumed to be known
precisely. Thus, the vector of the unknown parameters is

UT = [A]a E17A2’ EZ’ a, b] = [u15 u27 u37 M4, uS’ u6]

®)

The additional information needed in the simultaneously
estimation of the kinetic parameters is available from the
experimental data obtained with the TGA apparatus.

Generally, inverse problems are solved by minimizing a
residual functional J based on the ordinary least square
norm. The sum of the squared residuals between the
measured data and the responses of a model simulating
the physical problem under investigation defines the least
square norm. For discrete measured data, the residual
functional is written as follows:

N
JU) =) [¥(t) — M)l ©)

i=1

where M(t;) and Y(¢;) are, respectively, the computed and
measured total mass of chart at time #,. N is the total number
of measurements. In vectorial form, the above expression
can be written as

J(U) = [Y = MQU)I'TY — M(U)] (10)

Here, YT = [Y,,Y,, ..., Yy] is the vector of measured
mass, MT(U) = M, (U), My(U), ..., My(U)] is the vector
of estimated total mass at time ¢;, (i = 1, 2, ..., N) obtained
from the solution of the direct problem with an estimate of
vector U, UT = [u, uy, ..., up] is the vector of unknowns
parameters, N is the total number of measurements, and P is
the number of unknown parameters, which is equal to 6 in
this case.

A version of Levenberg—Marquardt method was applied
for the solution of the presented parameter estimation
problem. This method is quite stable, powerful and straight-
forward and has been applied to a variety of inverse
problems. This method belongs to a general class of
damped least square methods. The solution for vector U is
achieved using the following iterative procedure:

u%th — gp® [(X(k))Tx(k) + 'u(k)Q(k)]*l
x (XO)TY - M@W®)) (11



where the superscript (k) defines the iteration number and X
represents the sensitivity matrix evaluated at the iteration (k).
The sensitivity matrix is given by:

{ M, M, -‘
ou,  ou,
aMTU)T"
X = [#] - : : (12)
ou
M), M,
3u1 o Bum

The elements of the sensitivity matrix X, denoted X,»j are
known as the sensitivity coefficients. They can provide
considerable insight to the estimation problem and in the
design of the experiment for optimum accuracy in the
estimates.

An iterative procedure is required due to the non-linear
nature of the estimation problem because the coefficients of
the sensitivity matrix depend on the unknown thermophy-
sical properties to be recovered. Iteration continues until
convergence of the estimated parameter is reached, i.e. when
there is negligible change in any component of U. One
criterion to indicate this is defined as:

|U(k+1) _ U(k)|
U]

where ¢ is a small number to quantify convergence, such as

107>, Different versions of the Levenberg-Marquardt

method can be found in the literature, depending on the

choice of the diagonal of the damping matrix Q® and of the

form chosen for the variation of the damping parameter u®.
The most used forms of matrix Q% are:

Q¥ =1 and QY =diaglXM)TX®]  (14)

where I is the identity matrix.

<e (13)

RESULTS

In this section, we present the results obtained with the
developed algorithm as applied to the solution of our inverse
problem. In the first part of this section, we present a
detailed sensitivity analysis to show the feasibility of the
estimation. The second part will be dedicated to a numerical
test case with its statistical analysis. In the final part we
present the kinetic parameters issued from the use experi-
mental data obtained with the pyrolysis of char.

Sensitivity Analysis

There are several different approaches for the computa-
tion of the sensitivity coefficients (Beck and Arnold, 1977).
In the present inverse problem the central finite-difference
approximation is used to calculate the sensitivity coefficients
in the form:

M(tl', Ml,...,uj+8uj,...,ué)

—M(t, uy,. .., u; —EU;, ..., U
X, — i, 1y i 2 (15)

v 28[4]'

where ¢ = 107>, The sensitivity coefficient Xjj, as defined in
the previous equation, and in the sensitivity matrix defini-
tion given in equation (12), is the measure of the sensitivity
of the estimated M; with respect to changes in the parameter

u;. A small value of the magnitude of X;; indicates that large

changes in u; yield small changes in M;. The estimation of
the parameter u; is extremely difficult in such a case,
because basically the same value for total mass would be
obtained for a wide range of values of u;.

In fact when the sensitivity coefficients are small, we have
IXTX| ~ 0 and the inverse problem is ill-conditioned. It can
also be shown that |X"X| is null if any column of X can
expressed as a linear combination of the other columns
(Beck and Arnold, 1977). Therefore, it is desirable to have
linearly independent sensitivity coefficients X;; with large
magnitudes, so that the inverse problem is not very sensitive
to measurement errors and accurate estimates of the para-
meters can be obtained.

Since the unknown parameters can assume different
values, the analysis of the sensitivity coefficients is much
simplified by using their relative versions defined as:

oM
Xi=u— j=1,...,P 16
i =Y ou; J (16)

Figure 1 presents the transient behavior of the relative
sensitivity coefficients for the six components of U. The
exact values of the parameters, used in the sensitivity study,
are reported in Table 1. Except for the parameter E,, the
relative sensitivity coefficients of the remainder parameters
are approximately of the same order of magnitude. The
smallest relative sensitivity coefficient is observed with the
coefficient A,, which can have major difficulties in its
estimation and a relatively high estimation error. As
displayed in Figure 1, the sensitivity coefficients looks
slightly linearly dependent, but a careful examination of
the different ratios between all the relative coefficients
shows that they are not linearly dependent and therefore
their simultaneously estimation is feasible. Finally, the
analysis of the temperature variation of the determinant A
of the matrix X"X reveals that the simultaneous estimation
is feasible when the final temperature 7T,,x is equal or
greater than 850K. Indeed, the maximum value of A is
reached at 7= 850K.
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Figure 1. Evolution of relative sensitivity coefficients as temperature
function (T = f1).



Table 1. Exact, and estimated parameters and their respective estimation
error for two simulated test cases.

Initial

4 Parameter Unit Exact guess Estimated ¢; (%)

0 A, min~!  1.07x10® 1.7x10° 1.07x10® 0.0
E; Jmol™' 101,000 70,000 101,000 0.0
Ay min " 20,000 1 20,000 0.0
E> Jmol ™' 67,500 35,000 675,000 0.0
a 0.40 0.10 0.40 0.0
b 0.30 0.10 0.30 0.0

0.001 A, min~!  1.07x10® 1.7x10° 1.09%x10% 1.90
E, Jmol ™' 101,000 70,000 101,092  0.09
As min " 20,000 1 22,121  10.6
E> Jmol™' 67,500 35,000 68,101 0.89
a 0.40 0.10 0.399 0.01
b 0.30 0.10 0.299 0.02

Numerical Simulation

The simulated measurements of total mass M(f) are
obtained from the solution of the direct problem, by using
a priori prescribed values for the unknown parameters to be
recovered simultaneously. The exact values of the para-
meters are reported in Table 1. The other quantities are
taken as f=10Kmin~ %, T, =450K, Trro = 850 K.

The solution of the direct problem, obtained using known
parameters, provides the exact total mass measurements
M(t), i=1,...,N (errorless). Measurements containing
random errors are simulated by adding a white noise
(error term) to M.(¢;) in the form:

M) = M(t) + wo a7

where M(¢;) is the simulated measurements of total mass,
M (¢, is the exact total mass (errorless), ¢ is the standard
deviation of the measurement errors, and ® is a random
variable with normal distribution, zero mean and unitary
standard deviation. For the 99% confidence level we have
—2.576 <® < +2.576. This variable is generated with the
subroutine DRRNOR of the IMSL library (IMSL, 1987).
Figure 2 shows the solution of the direct problem using the
exact parameters given in Table 1.
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Figure 2. Solution of the direct problem with exact data (¢ =0) shown in
Table 1.

We now consider the inverse problem of estimating
simultaneously the components of the vector U by the
Levenberg—-Marquardt method. The initial guesses for the
unknown parameters are displayed in Table 1. The compu-
tations were performed using a Pentium computer, under
the Fortran PowerStation platform. The relative error of the
estimated parameters is defined as
. — '”i — Ui

u;

x 100%

i=1,...,P (18)

where the overbar designates the exact parameter under
hand.

Table 1 summarizes the results obtained for the simulta-
neously estimation of six parameters. It shows the initial
guess of the unknowns, their recovered and exact values,
and their estimation error, respectively. Two levels of
measurement errors are considered for numerical analysis
including 0 =0 (errorless) and ¢=0.001, which corre-
sponds approximately to 0.1% of the maximum of total
mass M(?) during the pyrolysis process.

By using the errorless measurements (¢ =0), the six
parameters are recovered exactly in 47s of CPU time and
the estimated loss weight matches precisely the measured
one. We should mention here that, beyond the displayed
initial guess, we cannot get convergence of the estimation
algorithm. We observe that, except for the parameter E, the
initial guess of the remain parameters is wide enough with
respect to their final values (exact values).

Also, Table 1 shows the estimated parameters when they
are obtained with measurements containing random errors
according to equation (17). Generally, the estimated para-
meters are in good agreement with their exact values. The
highest error is observed with parameter A, and this results
from its low sensitivity as underlined in the sensitivity
analysis section. The estimation error of parameter A; is
relatively high with respect to the noise level added to the
exact data in generating the simulated measurements. Also,
this can be explained by its low sensitivity, as shown in
Figure 1.

Real Test Case

Pyrolysis of cardboard

Experiments were performed using a SETERAM ATG-
DSC-111 apparatus. To generate dynamic data, different
cycles were realized for which the temperature increased
linearly with time and at different rates, f=d7/d¢
(Kmin~"). The upper temperature value was chosen to
ensure that pyrolysis process was complete, as mentioned
in the sensitivity analysis.

Figure 3 shows the experimental and model predicted
mass evolutions versus temperature obtained with the devel-
oped algorithm. Small differences can be observed around
the curvature of the measured total loss weight and the
fitting can be considered as acceptable and efficient. Also,
Figure 3 displays the residual of the weight loss, i.e.
M(t) — Y (). The biggest difference is observed over the
temperature domain [600, 700] and the loss mass residual is
still less than 2%. The residual is scattered around zero line
during the whole experimental temperature change. If the
fitting was perfect, i.e. the fitting matches precisely the mean
measured profile, we would get the measurement errors



0.025

1 | |
) i
: |
1 t
: * 0.015
08 f--------- i taiaintn ity Sl titeieg o Residual} bt
@ ! 0.005
(=] | =3
: 1 :g
S 06 f~-------- i @
) | o
= ! -0.005
|
L i R T I s
' ' -0.015
Computed total mass
o- — o Measured total mass | .
0.2 . L -0.025
450 550 650 750 850

Temperature - K

Figure 3. Comparison between the experimental and the computed loss

mass evolution. Weight loss residual evolution as temperature function. The
heating rate was taken as =10 Kmin™".

(noise) instead of the model fluctuations. Figure 4 displays
the computed total mass vs the total measured mass loss. As
mentioned in the residual analysis, the estimation is accep-
table since this figure shows approximately a straight line
representing the bisection of the principal axis of Figure 4.

By using the experimental data of cardboard pyrolysis,
the values of estimated parameters are: A;=1.07 X
108min~', E;=101,107Jmol™!, A>=19,824min"/,
E,=67,648Tmol !, a=0.41 and b = 0.32.

These parameters are obtained in less than 50s CPU time
and with the same initial guesses as displayed in Table 1. In
comparison with the estimation procedure developed in our
previous paper (David et al., 2003) around the function
fmins of Matlab software (MATLAB, 1999), where the
estimation time takes over 2h of computing time, the
presented method is more than 100 times faster. This tool
will be used in the future to facilitate model building.
Finally, the results shown were obtained with a personal
computer powered by an Intel® Pentium 4 processor of
2GHz, and using 256 MB of RAM, under the Fortran
Powerstation platform.
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Figure 4. Computed total mass loss versus measured total mass loss.

CONCLUDING REMARKS

A numerical procedure is presented for the simultaneous
estimation of kinetic parameters characterizing the pyrolysis
process of cardboard. The minimization procedure is
conducted by minimizing the square difference between
experimental measured total mass and the corresponding
calculated values from a mathematical model.

A comparison between recovered and exact data showed
good agreement. The obtained results underline the robust-
ness of the algorithm and its capabilities to recover simulta-
neously the kinetic parameters using less a priori
information and wide deviation in the initial guess of
parameters. This tool is developed by taking into considera-
tion some physical constraints such as positiveness of
kinetic parameters, and continuity of reaction schemes.

Despite a relatively wide deviation in the initial guess of
parameters to be recovered, the presented tool is still
sensitive to the initial values. This deficiency is due to the
strong non-linearity of the kinetic reacting schemes. Efforts
are currently underway to address this problem by consider-
ing the genetic algorithms in obtaining the best initial guess.
Also, the direct estimation of the Arrhenius functions
instead of Arrhenius parameters will be analysed by
means of function estimation tools.

NOMENCLATURE
Ay, As Arrhenius factor, min~!
b constant
c constant
E\, E, activation energy, J mol™!
ky, ko kinetic reaction rate, min~
M vector of computed mass
M(t) computed total mass at time #;
my, Mo, M3 mass fraction
N number of measurements
P number of parameters
R universal gas constant, kJ kmol™'K™!
T temperature, K
t time, min
U vector of unknown parameters
U; unknown parameter i
X sensitivity matrix
X sensitivity coefficient
X,-j+ relative sensitivity coefficient
Y vector of measured mass
Y() measured mass at time #;

Greek symbols
p heating rate

€ small number
u damping parameter
Q damping matrix
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