
HAL Id: hal-01718015
https://hal.science/hal-01718015

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Variational Bayesian Motion Averaging
Guillaume Bourmaud

To cite this version:
Guillaume Bourmaud. Online Variational Bayesian Motion Averaging. ECCV, 2016, Amsterdam,
France. �hal-01718015�

https://hal.science/hal-01718015
https://hal.archives-ouvertes.fr


Online Variational Bayesian Motion Averaging

Guillaume Bourmaud

Toshiba Research Europe
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Abstract. In this paper, we propose a novel algorithm dedicated to on-
line motion averaging for large scale problems. To this end, we design
a filter that continuously approximates the posterior distribution of the
estimated transformations. In order to deal with large scale problems, we
associate a variational Bayesian approach with a relative parametrization
of the absolute transformations. Such an association allows our algorithm
to simultaneously possess two features that are essential for an algorithm
dedicated to large scale online motion averaging: 1) a low computational
time, 2) the ability to detect wrong loop closure measurements. We exten-
sively demonstrate on several applications (binocular SLAM, monocular
SLAM and video mosaicking) that our approach not only exhibits a low
computational time and detects wrong loop closures but also significantly
outperforms the state of the art algorithm in terms of RMSE.

Keywords: variational Bayes, motion averaging, pose-graph, Lie group,
filtering, relative parametrization, large scale, visual SLAM

1 Introduction

The motion averaging problem, also called “multiple rotation averaging” when
dealing with 3D rotations or “pose-graph inference” when applied to camera
poses, has been studied for more than fifteen years [16, 17, 14, 18, 6, 31, 19, 32, 24]
and is still a very active area of research [20, 4, 8, 29, 7, 12, 10, 5]. This generic
problem arises in a large number of applications, such as video mosaicking [6,
24], reconstruction of 3D scenes [27, 10] or visual SLAM [14, 13], where only the
considered group of transformations changes: SE(3) for 3D euclidean motions,
SL(3) for homographies, Sim(3) for 3D similarities. In fact, in all these ap-
plications, the task consists in estimating absolute transformations, between a
“world” coordinate system and local coordinate systems, given noisy measure-
ments corresponding to relative transformations between pairs of local coordi-
nate systems.

The noisy relative transformation measurements are usually obtained by pro-
cessing a video stream, coming from an RGB or RGB-D camera, with two dif-
ferent modules:
-a visual odometry module that continuously computes the transformation be-
tween the current and the previous local coordinate system of the camera;
-a loop closure module that detects when the camera comes back in a previously
visited area and computes a relative transformation.
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LOAM [33] (Lidar) Visual odometry COP-SLAM [12] This paper

Fig. 1. Results for monocular visual SLAM (Sim(3)) on sequence KITTI 13. The
ground truth is not available for that sequence. Thus, we reported the best result
obtained using a Lidar [33].

The odometry measurements and loop closure measurements are essentially
of the same nature, however, in practice the loop closure module might produce
erroneous measurements because of some perceptual aliasing (two different places
can be very similar), while the visual odometry module usually produces outlier
free measurements.

Since the input data is a video stream, most of the applications require an
online estimation of the absolute transformations. However, the majority of the
state of the art approaches do not take that constraint into account in their
initial specifications. They usually design a batch algorithm which is applied
each time a new measurement is received, using a generic optimization tool-
box such as GTSAM [11], g2o [21] or Google Ceres Solver [2]. These toolboxes
are highly optimized and able to provide an online estimation with a reason-
able computational time for small or medium sized problems, nevertheless, their
computational time becomes prohibitive for large scale problems (see [12]).

The purpose of this paper is to present a novel approach specifically designed
to operate online on large scale problems.

Requirements & Contributions Besides trying to be as accurate as possi-
ble, an algorithm dedicated to online motion averaging for large scale problems
should also satisfy the following specifications:
1) Computational efficiency: As it was recently pointed out in [12], minimizing
a criterion involving all the past measurements each time a new measurement
is received is not suitable for the problem we consider. In order to achieve a
low computational time, it is compulsory to perform filtering, i.e to process the
measurements one by one;
2) Memory efficiency: Nevertheless, to perform filtering is not sufficient to obtain
an efficient algorithm. For instance, applying a Kalman filter, as proposed in [5],
leads to maintaining a covariance matrix whose size grows quadratically with
the number of absolute transformations. Hence, such a filter becomes impracti-
cal for large scale problems. One way to get a filter able to deal with large scale
problems is to seek to continuously approximate the posterior distribution of the
estimated transformations, such that the number of parameters of that distri-
bution grows at most linearly with the number of estimated transformations;
3) Robustness: Finally, dealing with large scale problems increases the risk of
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perceptual aliasing and consequently the number of wrong loop closures. Hence,
our approach should also be able to detect and remove wrong loop closures.

As we will see, taking into account the constraints previously described will
lead us to considering mathematical tools, such as variational Bayesian approxi-
mations, that have not been applied to motion averaging yet. Using these tools,
we show that it is possible to obtain a highly efficient and robust online motion
averaging algorithm that significantly outperforms the state of the art algorithm
[12] (see Fig.1).

Outline of the paper: The rest of the paper is organized as follows: The
mathematical notations and models are presented in Sect. 2. In Sect. 3 we dis-
cuss work related to our novel approach. Section 4 deals with the specific case
of motion averaging from odometry measurements and a single loop closure.
Based on the analysis performed in Sect. 4, we derive a novel motion averag-
ing algorithm in Sect. 5 which is evaluated experimentally in Sect. 6. Finally, a
conclusion and future work directions are provided in Sect. 7.

2 Models and notations

Let us now introduce the notations and mathematical models that are used
throughout the paper.

2.1 Lie group notations

The theory we develop in the paper can be applied to any matrix Lie group
(typically SE(3), SL(3), Sim(3), etc.), which turns out to be very convenient
in practice since it allows to apply our algorithm to various applications (see
Sect. 6). For a detailed description of Lie groups the reader is referred to [9].
Throughout the paper, we will use the following notations: G ⊂ Rn×n is a
matrix Lie group of intrinsic dimension p (i.e p = 6 if G = SE(3) ⊂ R4×4, p = 8
if G = SL(3) ⊂ R3×3, etc.); exp∧G (·) : Rp → G and log∨G (·) : G→ Rp correspond
to the exponential and logarithm maps of G respectively; Tij ∈ G is a matrix
representing the transformation from the coordinate system j to the coordinate
system i, thus in our notations TijTjk = Tik and T−1ij = Tji.

Another important operator that we will employ is the adjoint representation
of G, AdG (·) : G→ Rp×p, which allows to transport an element δij ∈ Rp, acting
initially on Tij through left multiplication, onto the right side of Tij such that
exp∧G (δij)Tij = Tijexp∧G (AdG (Tji) δij) . Finally, we introduce the notation for
a Gaussian distribution on G:

NG
(
Tij ;T ij , Pij

)
∝ e
− 1

2

∥∥∥log∨G(
TijT

−1
ij

)∥∥∥2

Pij ⇐⇒ Tij = exp∧G (εij)T ij
where εij ∼ NRp (εij ;0, Pij)

(1)

where ‖·‖2· stands for the squared Mahalanobis distance while T ij and Pij are
the mean and the covariance of the random variable Tij respectively.
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Table 1. Odometry measurement model and loop closure measurement model using a
relative parametrization of the absolute transformations

Odometry likelihood Loop closure likelihood

p
(
Zn(n+1)|Tn(n+1)

)
=

NG

(
Zn(n+1);Tn(n+1), Σn(n+1)

) (2)
p
(
Zmn|

{
Ti(i+1)

}
i=m,...,n−1

)
=

NG

(
Zmn;

∏n−1
i=m Ti(i+1), Σmn

) (3)

2.2 Measurement models

In order to tackle the motion averaging problem, two different parametrizations
of the absolute transformations are commonly used: the relative parametrization
and the absolute parametrization. Of course, different parametrizations lead to
different measurement models and consequently to algorithms having different
computational complexities and posterior distributions having different shapes.
In this paper, we employ the relative parametrization. This choice is motivated
in Sect. 4. Here we simply introduce the notations and the measurement models
for this parametrization.

Let us first define our notations for the measurements. An odometry mea-
surement, which we denote Zn(n+1) ∈ G, is a noisy transformation between two
temporally consecutive local coordinate systems. A loop closure measurement,
which we denote Zmn ∈ G where n 6= m+ 1, is a noisy transformation between
two temporally nonconsecutive local coordinate systems. Moreover, in this work
we assume the noises on the measurements to be mutually independent.

The relative parametrization consists in estimating transformations of the
form T(k−1)k where k is the local coordinate system of the camera at time
instant k. Thus, at time instant k, the set of estimated transformations is{
Ti(i+1)

}
i=1,...,k−1. Let us note that the absolute transformation T1k can be

obtained simply by composing the estimated relative transformations i.e T1k =
T12T23 · · ·T(k−1)k =

∏k−1
i=1 Ti(i+1). The likelihood for an odometry measurement

and a loop closure are assumed to be Gaussian and are given in Table 1 eq.(2)
and eq.(3), respectively.

3 Related work

In this section, we describe the most recent state of the art approaches and how
they are related to the novel method we propose in this paper.

The current workhorse for motion averaging is the Gauss-Newton (GN) algo-
rithm. In fact, this algorithm has been employed for more than a decade to tackle
the motion averaging problem (the seminal work of [17] was already proposing
to use it). In this context, both relative and absolute parametrizations of the
absolute transformations have been employed.

The most widely used is the absolute parametrization [13]. The main reason
why people tend to use this parametrization is that it leads to solving, at each
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iteration of the GN, a sparse linear system. Even if the size of this linear system
is proportional to the number of absolute transformations, its sparsity is usu-
ally exploited in solvers such as g2o, resulting in an algorithm with a reasonable
computational time for a small or medium sized problem. Using this formal-
ism, several algorithms have been recently proposed to perform robust motion
averaging (i.e when loop closures contain erroneous measurements): [1] and [8]
proposed re-weighted schemes; [28] and [10] introduced auxiliary variables that
in fact correspond to using a robust kernel as it was recently shown in [30] in
the context of bundle adjustment; [22] proposed a consensus based algorithm
which optimizes clusters of loop closures with a GN and checks their consistency
with statistical tests. None of these approaches fulfill our first two requirements
(Computational efficiency and Memory efficiency). However, in order to demon-
strate the ability of our novel algorithm to detect wrong loop closures, we will
compare its results against the Dynamic Covariance Scaling (DCS) [1].

The relative parametrization was initially used in [14] for the specific case
of planar motions and was then extended to general matrix Lie groups in [25].
Each iteration of these algorithms corresponds to a GN step, even if it is not
presented as such. Employing the relative parametrization leads to solving, at
each iteration of the GN, a dense linear system whose size is proportional to the
number of loop closure measurements. Consequently, the approach proposed in
[25] is highly efficient when the number of loop closures is small but impractical
for large scale problems. At first sight, the relative parametrization does not
seem very attractive for our problem since we are mostly interested in large scale
problems. However, we will see that, using this parametrization, the posterior
distribution of the relative transformations has a specific shape that can be
approximated with few parameters.

To the best of our knowledge, the most closely related approaches to the
one we propose in this paper are the filters proposed in [5] and [12]. The algo-
rithm proposed in [5] uses a Kalman filter to estimate absolute transformations
using an absolute parametrization and validation gating to detect wrong loop
closures. However, their approximation of the posterior distribution is a multi-
variate Gaussian distribution whose covariance matrix grows quadratically with
the number of absolute transformations. Consequently, this filter is impracti-
cal for large scale problems. On the contrary, the authors of [12] use a relative
parametrization and propose a novel closed-form way to process each loop clo-
sure using the concept of trajectory bending. This leads to a highly efficient filter
which does not explicitly try to approximate the posterior distribution of the rel-
ative transformations but estimates the uncertainty of each transformation with
a single scalar. Consequently, this filter also fulfills our “memory efficiency” re-
quirement. However, this approach assumes that the loop closure measurements
do not contain outliers.

Contrary to these methods, in this paper, we propose a novel filter based on
a variational Bayesian approximation of the posterior distribution of the relative
transformations which allows to fulfill our three requirements (see Table 2) while
being almost as accurate as a batch approach.



6 Guillaume Bourmaud

Table 2. Comparison of state of the art approaches dedicated to motion averaging.

Ours [12] [5] [1]

Computational efficiency X X X ×
Memory efficiency X X × ×

Robustness X × X X

4 The case of a single loop

In this paper, we are interested in designing a Bayesian filter which, by defini-
tion, has to process the measurements sequentially in order to approximate the
posterior distribution of the estimated transformations. However, as we have al-
ready seen, two parametrizations of the absolute transformations are possible.
In this section, we motivate our choice of employing the relative parametrization
on the simpler problem of motion averaging from odometry measurements and
a single loop closure (see Fig.2a).

In fact, we consider a loop of length NL, where we are given NL−1 odometry
measurements

{
Zi(i+1)

}
i=1,...,NL−1

and a single loop closure Z1NL
between the

local coordinate systems 1 and NL.
Using the likelihoods defined in eq.(2) and eq.(3), we wish to minimize the

following criterion w.r.t the relative transformations
{
Ti(i+1)

}
i=1,...,NL−1

:

− 2 ln
(
p
({
Ti(i+1)

}
i=1,...,NL−1

|Z1NL
,
{
Zi(i+1)

}
i=1,...,NL−1

))
=∥∥∥∥∥∥log∨G

Z1NL

(
NL−1∏
i=1

Ti(i+1)

)−1∥∥∥∥∥∥
2

Σ1NL

+

NL−1∑
i=1

∥∥∥log∨G

(
Ti(i+1)Z

−1
i(i+1)

)∥∥∥2
Σi(i+1)

+ cst (4)

One way to minimize this criterion is to apply a Gauss-Newton algorithm where
the relative transformations are jointly refined iteratively as follows (the super-
script stands for the iteration):

T
(l)
i(i+1) = exp∧G

(
δ
(l/l−1)
i(i+1)

)
T

(l−1)
i(i+1) for i = 1...NL − 1. (5)

The increments
{
δ
(l/l−1)
i(i+1)

}
i=1,...,NL−1

are obtained at each iteration by solving

the following (dense) linear system of size p×NL:
δ
(l/l−1)
12

...

δ
(l/l−1)
(NL−1)NL

 =

((
J
(l)
rel

)T
ΛJ

(l)
rel

)−1 (
J
(l)
rel

)T
Λ


r
(l−1)
12

...

r
(l−1)
(NL−1)NL

r
(l−1)
1NL

 (6)

where J
(l)
rel is the Jacobian matrix of the system (see Fig. 2b), Λ is a block diagonal

matrix concatenating the inverse of the covariance matrices of the measurements,

r
(l−1)
1NL

=log∨G

(
Z1NL

(∏NL−1
i=1 T

(l−1)
i(i+1)

)−1)
and r

(l−1)
i(i+1) =log∨G

(
T

(l−1)
i(i+1)Z

−1
i(i+1)

)
.
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(a) Illustration of a per-
fect loop of length 10,
where a cone represents a
camera pose (camera 1 is
black camera 10 is blue).
The (noiseless) odometry
measurements are plot-
ted as solid blue lines
while the (noiseless) loop
closure measurement is
shown as a dashed red
line.

Jabs

Jrel

JT
absΛJabs

JT
relΛJrel

(
JT
absΛJabs

)†

(
JT
relΛJrel

)−1

(b) Jacobian, pseudo-Hessian and inverse pseudo-Hessian
for absolute and relative parametrizations (only the mag-
nitude of the coefficients is shown).

Fig. 2. Illustration of the motion averaging problem on SE(3) for a single loop.
Using an absolute parametrization, the inverse pseudo-Hessian exhibits very strong
correlations between the absolute transformations. On the contrary, using a relative
parametrization, the inverse pseudo-Hessian has very small correlations (not null but
close to zero) between the relative transformations, motivating our variational Bayesian
approximation of the posterior distribution which assumes independent relative trans-
formations (see text for details).

At first sight, the relative parametrization does not seem very interesting
compared to the absolute parametrization since it requires to solve a dense linear
system (in Fig. 2b the pseudo-Hessian JTrelΛJrel is completely dense) instead
of a sparse one in the absolute parametrization case1 (in Fig. 2b the pseudo-
Hessian JTabsΛJabs is extremely sparse). However, as proven in the supplementary

material, by initializing T
(0)
i(i+1) = Zi(i+1) for i = 1...NL−1, using the Woodbury

formula and exploiting the structure of the problem, it is possible to show that
δ
(l/l−1)
12

...

δ
(l/l−1)
(NL−1)NL

'
Σ12 0

. . .

0 Σ(NL−1)NL

(J (l)
LC

)T(
Σ1NL

+

NL−1∑
i=1

J
(l)
1i Σi(i+1)

(
J
(l)
1i

)T)−1
·

·

r(l−1)1NL
+ J

(l)
LC

l−1∑
n=1


δ
(n/n−1)
12

...

δ
(n/n−1)
(NL−1)NL


− l−1∑

n=1


δ
(n/n−1)
12

...

δ
(n/n−1)
(NL−1)NL

 (7)

1 Inference in the case of a single loop using the absolute parametrization is detailed
in the supplementary material.
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where J
(l)
LC =

[
J
(l)
11 · · · J

(l)
1(NL−1)

]
is the Jacobian of the loop closure error and

J
(l)
1n ' AdG

(∏n−1
i=1 T

(l−1)
i(i+1)

)
. In this case, only a linear system of size p (i.e in-

dependent of the length of the loop) has to be solved, making the algorithm
highly efficient to close a single loop (in practice, p = 6 for G = SE(3), p = 8 for

G = SL(3), etc.). Moreover, the inverse of the pseudo-Hessian
(
JTrelΛJrel

)−1
(see

Fig. 2b), which represents (once the algorithm has reached convergence) the
covariance matrix of the posterior distribution under a linear approximation,
exhibits very small correlations between the transformations. Therefore, a block
diagonal approximation of that covariance matrix seems to be a reasonable
approximation that would allow us to derive a filter being able to deal with
large scale problems very efficiently. On the contrary, when using the absolute

parametrization, the (pseudo-)inverse of the pseudo-Hessian
(
JTabsΛJabs

)†
mani-

fests very strong correlations, making any approximation of that matrix difficult.
From this point of view, the relative parametrization seems to be much more

attractive than the absolute parametrization, at least for online inference.
Consequently, when designing our filter, we will employ a relative parametriza-

tion. Loop closure measurements will be processed sequentially using this highly
efficient GN which only requires to solve a linear system of size p at each itera-
tion. After having processed a loop closure, the covariance matrix of the posterior
distribution will be approximated with a block diagonal covariance matrix using
a variational Bayesian approximation. All these steps are detailed in Sect. 5.

Let us note that, since our approach employs a GN to process loop closures
sequentially, it is optimal for any problem (i.e any matrix Lie group G with
anisotropic noises on the measurements) containing loops that do not interact
with each other. On the contrary, for the same problems, COP-SLAM [12] is only
optimal when the noise is isotropic and the logarithm map of G is related to a
bi-invariant metric which in practice is usually not true, except for SO(3).

5 Online Variational Bayesian Motion Averaging

In the previous Section, we showed that the relative parametrization was ap-
pealing for the online motion averaging problem. We now derive our novel filter
using this parametrization.

5.1 Estimated state

At time instant k − 1 (where k > 2), the estimated state consists in all the
relative transformations Xk−1 =

{
Ti(i+1)

}
i=1,...,k−2. More specifically, at time

instant k − 1, the posterior distribution of the state is assumed to have the
following factorized form:

p (Xk−1|Dodo,k−1,DLC,k−1) =Qk−1(Xk−1) =

k−2∏
i=1

NG
(
Ti(i+1);T i(i+1), Pi(i+1)

)
(8)

where Dodo,k−1 =
{
Zi(i+1)

}
i=1,...,k−2 and DLC,k−1 = {Zij}1≤i<j−1<k−1.
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5.2 Processing of a new odometry measurement

At time instant k, when the new odometry measurement Z(k−1)k (with known
covariance Σ(k−1)k) is available, the estimated state simply augments, i.e Xk ={
Ti(i+1)

}
i=1,...,k−1. Consequently, the posterior distribution of the state remains

factorized and has the following form:

p (Xk|Dodo,k,DLC,k−1) = Qodok (Xk) =

k−1∏
i=1

NG
(
Ti(i+1);T i(i+1), Pi(i+1)

)
(9)

where Dodo,k =
{
Zi(i+1)

}
i=1,...,k−1, T (k−1)k = Z(k−1)k and P(k−1)k = Σ(k−1)k.

5.3 Processing of a new loop closure measurement

At time instant k, after having received the odometry measurement Z(k−1)k, a
new loop closure measurement Zlk (with known covariance Σlk) may be available
(where l < k). In fact, multiple loop closures may be available, however, in order
to keep the notations uncluttered, we only describe how to deal with one loop
closure. In practice, the processing is applied sequentially to each loop closure
as it is described in the pseudo-code presented in the supplementary material.

When a new loop closure measurement Zlk is available, we would like to
take into account the information coming from that observation in order to
refine our current estimate of the state. However, the observation model eq.(3)
creates dependencies between all the relative transformations involved in the
loop, and, therefore, the posterior distribution p (Xk|Dodo,k,DLC,k−1, Zlk) is not
factorized anymore. Thus, the number of parameters required to describe that
non-factorized posterior distribution becomes huge (typically in O

(
k2
)

using a
linear approximation, see [5]), especially for large scale problems.

In order for our filter to be able to operate online on large scale problems,
we propose to approximate that posterior distribution with a factorized distri-
bution, whose number of parameters will be in O (k). Such an approximation is
motivated by our analysis of the single loop case (see Fig.2). One way to find a
factorized distribution “similar” to the true posterior distribution is to minimize
the Kullback-Leibler divergence

DKL(QV B (Xk)||p (Xk|Dodo,k,DLC,k−1, Zlk)) with QV B (Xk)=

k−1∏
i=1

qV B
(
Ti(i+1)

)
.

(10)
This approach is usually called “variational Bayesian approximation” in the
literature [3] and sometimes “Structured Mean Field” since we do not assume a
fully factorized distribution but only the relative transformations to be mutually
independent.
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Variational Bayesian Approximation Minimizing the KL divergence in (10)
w.r.t Xk corresponds to maximizing the lower bound

L (QV B (Xk)) =

∫
QV B (Xk) ln

(
p (Xk,Dodo,k,DLC,k−1, Zlk)

QV B (Xk)

)
dXk. (11)

In our case the (log)-joint distribution of all the random variables has the form:

ln (p (Xk,Dodo,k,DLC,k−1, Zlk)) = ln
(
p
(
Zlk|

{
Ti(i+1)

}
i=l,...,k−1

)
Qodok (Xk)

)
=

− 1

2

∥∥∥∥∥∥log∨G

Zlk(k−1∏
i=l

Ti(i+1)

)−1∥∥∥∥∥∥
2

Σlk

− 1

2

k−1∑
i=1

∥∥∥log∨G

(
Ti(i+1)T

−1
i(i+1)

)∥∥∥2
Pi(i+1)

+ cst

(12)

However, because of the curvature of the Lie group, the terms inside the norms
in (12) are not linear in the transformations. One way to apply a variational
Bayesian approach in this case is to linearize the terms inside the norms.

At this point, we find it convenient to define the variables involved in the
linearization step:

Ti(i+1) = exp∧G
(
εi(i+1)

)
T̆i(i+1) for i = 1...k − 1 (13)

where T̆i(i+1) is the (fixed) linearization point for the relative transformation
Ti(i+1) and εi(i+1) is a random variable. This linearization point is quite impor-
tant and its value is discussed at the end of the section. After linearization, the
log-joint distribution becomes:

ln
(
p
({
εi(i+1)

}
i=1,...,k−1 ,Dodo,k,DLC,k−1, Zlk

))
=

− 1

2

∥∥∥∥∥rlk −
k−1∑
i=l

Jliεi(i+1)

∥∥∥∥∥
2

Σlk

− 1

2

k−1∑
i=1

∥∥ri(i+1) + εi(i+1)

∥∥2
Pi(i+1)

+ cst (14)

where we approximated the Jacobian of log∨G by the identity,

Jli ' AdG

(∏i−1
j=l T̆j(j+1)

)
for i > l, Jll ' Id, rlk = log∨G

(
Zlk

(∏k−1
i=l T̆i(i+1)

)−1)
and ri(i+1) = log∨G

(
T̆i(i+1)T

−1
i(i+1)

)
.

Given the log-joint distribution (14), the objective is now to maximize the
lower bound (11) where Xk is now replaced with

{
εi(i+1)

}
i=1,...,k−1 because of

the linearization step. Here:

QV B

({
εi(i+1)

}
i=1,...,k−1

)
=

k−1∏
i=1

qV B
(
εi(i+1)

)
. (15)
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In fact, it is possible to show that (see [3] pp. 446), for each variable εi(i+1), the
best approximated distribution is given by the following expression:

ln
(
q∗V B

(
εi(i+1)

))
=

EQV B\q∗V B(εi(i+1))

[
ln
(
p
({
εi(i+1)

}
i=1,...,k−1 ,Dodo,k,DLC,k−1, Zlk

))]
+cst (16)

where EQV B\q∗V B(εi(i+1)) stands for the conditional expectation w.r.t all the vari-

ables except εi(i+1). Thus, from (16) and (14), we obtain

ln
(
q∗V B

(
εi(i+1)

))
= −1

2

(
εi(i+1) − µi(i+1)

)T
Ξ−1i(i+1)

(
εi(i+1) − µi(i+1)

)
+cst (17)

where

Ξi(i+1) =
(
JTliΣ

−1
lk Jli + P−1i(i+1)

)−1
(18)

and

µi(i+1) = Ξ−1i(i+1)

(
JTliΣ

−1
lk elk,i − P

−1
i(i+1)ri(i+1)

)
(19)

with elk,i = rlk −
(∑k−1

j=l,j 6=i Jljµj(j+1)

)
. Therefore, for each random variable

εi(i+1) (i = 1, ..., k− 1), the best approximated distribution is a Gaussian of the
form:

q∗V B
(
εi(i+1)

)
= NRp

(
εi(i+1);µi(i+1), Ξi(i+1)

)
for i = 1, ..., k − 1 (20)

Let us note that if i < l, i.e if the relative transformation Ti(i+1) is not involved
in the loop closure Zlk, then

q∗V B
(
εi(i+1)

)
= NRp

(
εi(i+1);0, Ξi(i+1) = Pi(i+1)

)
for i < l (21)

making our algorithm very efficient since a loop closure will only modify the
relative transformations involved in that loop.

In theory, in order to obtain the values of
{
µi(i+1)

}
i=l,...,k−1 we should cycle

through (19) for each relative transformation involved in the loop until conver-
gence. However, if the linearization step (see eq.(13)) is performed around the
maximizer of (12), then µi(i+1) = 0 for i = l, ..., k− 1. Thus in practice, for each
new loop closure measurement, we first apply, the Gauss-Newton algorithm de-
scribed in Sect. 42 in order to find the maximizer of (12) very efficiently. Then
we only have to compute the covariances Ξi(i+1) (see eq.(18)) for i = l, ..., k− 1.

Finally, for each relative transformation, q∗V B
(
εi(i+1)

)
is a Gaussian with zero

mean. Therefore, from eq.(13), one can see that (up to a linear approximation)
q∗V B

(
Ti(i+1)

)
is a Gaussian distribution on Lie group (see eq.(1)) of the form

2 Eq.(12) has the same form (up to a sign) as the cost function (4). Consequently, the
highly efficient GN described in Sect. 4 can be applied to maximize (12).
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NG
(
Ti(i+1); T̆i(i+1), Ξi(i+1)

)
. Consequently, after having processed a new loop

closure, our factorized approximation of the posterior has the following form:

p (Xk|Dodo,k,DLC,k−1, Zlk) ≈ QV B (Xk)=

k−1∏
i=1

NG
(
Ti(i+1); T̆i(i+1), Ξi(i+1)

)
(22)

Detection of outlier loop closure through validation gating So far, we
have proposed an efficient way to process a new loop closure measurement assum-
ing it was following the generative model (3). However, in practice, two places
being perceived as the same usually produce a wrong loop closure. Consequently,
detecting and removing these wrong loop closure measurements is crucial in or-
der to perform motion averaging, especially for large scale problems where wrong
loop closures are very likely to occur.

Since we continuously maintain an approximation of the posterior distribu-
tion, it is possible to detect wrong loop closure measurements through validation
gating [26]. This approach consists in first computing the mean Zlk and covari-
ance Σlk parameters of the following distribution:

p (Zlk|Dodo,k,DLC,k−1)≈NG

(
Zlk;Zlk=

k−1∏
i=l

T i(i+1), Σlk=Σlk+

k−1∑
i=l

JliPi(i+1)J
T
li

)
(23)

and then testing w.r.t a threshold t whether or not the received measurement is
likely to be an inlier: ∥∥∥log∨G

(
ZlkZ

−1
lk

)∥∥∥2
Σlk

< t (24)

In theory, t should be based on the p-value of the Chi-squared distribution.
However, as we will see in the experiments, such a theoretical value is sometimes
too restrictive, especially when processing real data where the covariance of
the odometry and loop closure measurements are not very accurate and the
assumption of mutually independent noises might be violated.

6 Experiments

We now evaluate experimentally, both on synthetic and real datasets, our novel
online variational Bayesian motion averaging algorithm (a pseudo-code is pro-
posed in supplementary material) against the state of the art algorithms LG-
IEKF [5], COP-SLAM [12] and DCS [1] (which uses g2o). To do so, we first
compare both the accuracy and the computational time of these approaches on
datasets which do not contain wrong loop closures, since COP-SLAM is not able
to detect and remove wrong loop closures. The robustness of the different ap-
proaches is evaluated separately on datasets specifically dedicated to this task
(see [23]). We finally present qualitative results on monocular visual SLAM and
video mosaicking applications. In all these experiments, when dealing with syn-
thetic datasets, the threshold t of the validation gating stage of our algorithm
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Table 3. Results for binocular 6D SLAM (SE(3)): In terms of RMSE (for the position),
our approach is much closer to the solutions of both g2o and LG-IEKF [5], compared to
COP-SLAM [12]. In terms of computational time, our approach is orders of magnitude
faster than both g2o and LG-IEKF, while being only slightly slower than COP-SLAM.
Remark: for these experiments, wrong loop closures have been removed since COP-
SLAM cannot cope with them. The robustness of our method w.r.t wrong loop closures
is evaluated against LG-IEKF [5] and DCS [1] (which uses g2o) in Sect. 6.2.

RMSE position (m) Time (ms): C++ (left) & Matlab (right)

Sphere KITTI 00 KITTI 02 Sphere KITTI 00 KITTI 02

Ours 2.1 2.7 13.6 971 136 000 65 8 000 29 4 000

[12] 6.0 3.8 19.7 350 n/a 7 n/a 2 n/a

[5] 0.8 2.0 13.6 n/a 3 340 000 n/a 80 000 n/a 52 000

g2o 0.2 2.4 13.8 40 000 n/a 1336 n/a 693 n/a

has been set to the X 2 value with p degrees of freedom given by a p-value of
0.001. Otherwise, when dealing with real data, we empirically defined t = 900,
which is much higher that the theoretical X 2 value since the covariance of the
odometry and loop closure measurements are usually not very accurate in this
case and the assumption of mutually independent noises might be violated.

6.1 Evaluation of the accuracy and the computational time

In this experiment, we consider a binocular 6D SLAM application (Lie group
SE(3)) and use one synthetic sequence (Sphere) and two real sequences (origi-
nally from the KITTI dataset [15]) provided by the authors of [12]. The results
for this experiment are given in Table 3 where we reported both the Root Mean
Squared Error (RMSE) for the absolute positions as well as the computational
time for our approach, COP-SLAM, LG-IEKF and g2o. We provide the compu-
tational time both in C++ and Matlab because only a Matlab implementation
of LG-IEKF is available.

Let us first note that we should not expect the RMSE of COP-SLAM and
our approach to be as low as the RMSE of LG-IEKF and g2o because these
approaches do not try to summarize the past information with a small number
of parameters at each time instant but keep all the past information (g2o keeps
all the past measurements while LG-IEKF maintains a full covariance matrix).
However, one can see that our approach remains very accurate. Indeed, on the
KITTI 02 sequence, our approach even obtains the same RMSE as LG-IEKF.
On the contrary, COP-SLAM obtains much higher RMSE than our approach on
every sequence. From the computational time point of view, as expected, both
our approach and COP-SLAM are orders of magnitude faster than LG-IEKF
and g2o. Moreover, our approach is only slightly slower than COP-SLAM which
is largely compensated by the fact that our approach has a much lower RMSE.
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6.2 Evaluation of the robustness

In this experiment, we employ the dataset provided by the authors of [23] which
allows to evaluate the robustness of an approach to wrong loop closures on a pla-
nar visual SLAM application (Lie group SE(2)). The results and details regard-
ing this experiment are provided in the supplementary material. Our approach
surprisingly achieved exactly the same precision and recall as both LG-IEKF and
DCS. This is a remarkable result since these two algorithms are not designed
to perform online large scale estimation and are consequently much slower than
our approach (see Table 3).

6.3 Additional experiments

In Fig. 1, we present results for monocular visual SLAM (Lie group Sim(3))
on sequence 13 of the KITTI dataset. The details regarding this experiment are
provided in the supplementary material. However, one can see that the trajectory
estimated with our approach is visually much closer to the result of [33] (which
employs a Lidar) than the trajectory estimated with COP-SLAM. Results on
sequence 15 of the KITTI dataset as well as results for video mosaicking (Lie
group Sim(3)) are also provided as supplementary material.

7 Conclusion and future work

In this paper, we proposed a novel filter dedicated to online motion averaging
for large scale problems. We have shown that using a relative parametrization
of the absolute transformations produces a posterior distribution that can be
efficiently approximated assuming independent relative transformations. Based
on this representation, we demonstrated that it is possible to obtain an accurate,
efficient and robust filter by employing a variational Bayesian approach.

The performances of our novel algorithm were extensively evaluated against
the state of the art algorithm COP-SLAM [12]. Actually, our approach achieved
a significantly lower RMSE than COP-SLAM while being only slightly slower.

Since COP-SLAM cannot detect wrong loop closures, we also compared the
robustness of our filter against LG-IEKF [5] and DCS [1]. In this context, our
approach surprisingly achieved the same robustness as these algorithms. This is
a remarkable result since our approach is designed to perform online large scale
estimation and, consequently, is orders of magnitude faster than both LG-IEKF
and DCS.

As future work, we plan to exploit the high efficiency of our filter to build a
multi-hypothesis filter. This would prevent failures, such as those described in the
supplementary material, to which LG-IEKF, DCS and the approach presented in
this paper are prone due to the fact that they are forced to take a decision when
a loop closure measurement is available and cannot wait until new evidence is
received.
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