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Argentina
2 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6, UMR
7598, 75005 Paris, France

Received 18 October 2016; Accepted (in revised version) 13 January 2017

Abstract. This paper deal with optimal control problems for a non-stationary Stokes
system. We study a simultaneous distributed-boundary optimal control problem with
distributed observation. We prove the existence and uniqueness of a simultaneous
optimal control and we give the first order optimality condition for this problem. We
also consider a distributed optimal control problem and a boundary optimal control
problem and we obtain estimations between the simultaneous optimal control and the
optimal controls of these last ones. Finally, some regularity results are presented.
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1 Introduction

Let Ω be a bounded domain (i.e., connected and open set) of R
3 with ∂Ω of class C2. We

consider the following unsteady Stokes system



















∂y

∂t
−divσ(y,p)=u in Ω×(0,T),

divy=0 in Ω×(0,T),
y= g on ∂Ω×(0,T),
y(0)=a in Ω.

(1.1)

In this paper, we will use the notation in bold for vector functions. Here, (y,p) =
(y1,y2,y3,p) are the velocity and the pressure of the fluid and σ(y,p) denotes the Cauchy
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stress tensor, which is defined by Stokes law σ(y,p)=−p Id+2νD(y), where Id is the
identity matrix of order 3, ν is the kinematic viscosity of the fluid and D(y) is the strain
tensor defined by

[D(y)]kl =
1

2

(

∂yk

∂xl
+

∂yl

∂xk

)

.

Since divy=0, we have −divσ(y,p)=−ν∆y+∇p in Ω. The System (1.1) admits a unique
(up to a constant for p) solution (y,p) with

(y,p)∈L2(0,T;H1(Ω))∩C0(0,T;L2(Ω))×L2(0,T;L2(Ω))/R (1.2)

(see below for the notation of these spaces), provided that u ∈ L2(0,T;L2(Ω)) and g ∈
L2(0,T;H1/2(∂Ω))∩C0(0,T;H−1/2(∂Ω)) satisfies the compatibility conditions

∫

∂Ω

g ·n dγ=0 and g(0)=a on ∂Ω

with a∈H(div;Ω), where

H(div;Ω)={a∈L2(Ω) such that diva=0},

properties of this space can be found in [7]. Moreover, there exists a constant K depending
of Ω and ν such that

‖y‖L2(H1(Ω))+‖p‖L2(L2(Ω))≤K
(

‖u‖L2(L2(Ω))+‖g‖L2(H1/2(∂Ω))+‖a‖L2(Ω)

)

(1.3)

for results on the existence, uniqueness and regularity of solutions for Stokes equations
with non homogeneous data, we refer to [4, 5, 8, 13, 15].

Let X be a Banach space, we will denote by Lp(0,T;X) the space of the all measurable
functions y such that y : [0,T]→X defined by y(t)(x)=y(t,x) satisfy

‖y‖Lp(0,T;X)=

(

∫ T

0
‖y(t)‖

p
X dt

)1/p

<+∞, if p∈ [1,+∞),

‖y‖L∞(0,T;X)= ess sup
0≤t≤T

‖y(t)‖X <+∞, if p=+∞.

For the sake of simplicity, we will often use Lp(X) instead of Lp(0,T,X). In what follows,
we will denote (·,·)Ω and (·,·)∂Ω the usual scalar products in L2(L2(Ω)) and L2(L2(∂Ω))
respectively; and we also write X∗ the dual vectorial space of X and 〈·,·〉 the duality
pairing.

In this work we will consider u and g as control variables and we fix the initial con-
dition a∈H(div;Ω).

Now, we formulate the optimal control problems with distributed observation that
we will study in this paper.
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1. Distributed optimal control problem (Pu): (unconstrained problem)

Find u∗∈L2(0,T;L2(Ω)) such that J1(u
∗)= min

u∈L2(L2(Ω))
J1(u), (Pu)

where J1 : L2(0,T;L2(Ω))→R≥0 is the cost functional given by

J1(u) :=
1

2

∫ T

0

∫

Ω

|yu−zd|
2dxdt+

α

2

∫ T

0

∫

Ω

|u|2dxdt.

In this problem we consider u as the control variable; zd is a given function that we
assume in L2(L2(Ω)), α is a positive constant and yu is the unique solution of the
problem (1.1) with fixed and known g and a.

2. Boundary optimal control problem (Pg):

Find g∗∈Uad such that J2(g∗)= min
g∈Uad

J2(g), (Pg)

where

Uad =
{

g∈L2(H1/2(∂Ω))∩C0(H−1/2(∂Ω)) :
∫

∂Ω

g ·n=0, g(0)=a
}

and the cost functional J2 :Uad→R≥0 is given by

J2(g) :=
1

2

∫ T

0

∫

Ω

∣

∣

∣
yg−zd

∣

∣

∣

2
dxdt+

β

2

∫ T

0

∫

∂Ω

|g|2dγdt.

In this problem g is considered as the control variable; zd is a given function that
we assume in L2(L2(Ω)), β is a positive constant and yg is the unique solution of
the problem (1.1) with fixed and known u and a.

3. Simultaneous distributed-boundary optimal control problem (Pug):

Find (u∗,g∗)∈Aad such that J(u∗,g∗)= min
(u,g)∈Aad

J(u,g), (Pug)

where Aad= L2(0,T;L2(Ω))×Uad and the cost functional J :Aad →R≥0 is given by

J(u,g) :=
1

2

∫ T

0

∫

Ω

∣

∣

∣
yug−zd

∣

∣

∣

2
dxdt+

α

2

∫ T

0

∫

Ω

|u|2dxdt+
β

2

∫ T

0

∫

∂Ω

|g|2dγdt.

Here (u,g) is considered as the control variable; zd is a given function that we a-
gain assume in L2(L2(Ω)), α and β are the positive constants and yug is the unique
solution of the problem (1.1) with fixed and known a.
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In Aad we will consider the following norm

‖(u,g)‖2
Aad

=‖u‖2
L2(L2(Ω))+‖g‖2

L2(L2(∂Ω))

with this norm the space Aad is a Hilbert space.
In a general framework, several optimal control problems of type (Pu) and (Pg) have

been studied in [11]. The authors of [1–3] deal with optimal control problems for sta-
tionary Stokes and Navier–Stokes systems, in [1] the author studied a distributed control
problem from a point of view theoretical and numerical and in [3] a similar study is done
for a boundary control problem using another numerical method. In the case of non-
stationary Stokes and Navier–Stokes equations we can quote [9, 10].

The goal of this paper is to study a simultaneous optimal control problem for an un-
steady Stokes system. Similar optimal control problems that is tackled here are consid-
ered in [6] for steady-state mixed elliptic problems and for the parabolic problems in [16].
Exact controllability problems with simultaneous controls were introduced in [12], in
contrast to our work, it is considered two or more systems of equations (coupled or not)
with the controls imposed one on each system of equations and the aim is to control the
solutions at some time T>0; while our interest is to impose simultaneous controls on the
same system (1.1) and to control the solution in Ω×(0,T).

The paper is structured as follows. In Section 2 we prove the existence and unique-
ness of the solutions of the problem (Pug). We obtain that the cost functions J1, J2 and J
are Gâteaux differentiable and we give the first order optimality conditions in terms of
the adjoint states of the systems. In Section 3 we get estimations between the unique so-
lution of the problem (Pu) and the first component of the unique solution of the problem
(Pug). We also prove estimations between the unique solution of the problem (Pg) and
the second component of the unique solution of the problem (Pug). In Section 4 we give
regularity results of the simultaneous optimal control and the solutions of the state and
adjoint state systems. We end the paper with some comments.

2 Results of existence and uniqueness of optimal controls

2.1 Distributed optimal control and boundary optimal control

The existence and uniqueness of an optimal control u∗ for Problem (Pu) and an optimal
control g∗ for Problem (Pg) follows similarly to what was done for example in [11] or [14],
therefore we omit these proofs and we only recall the first order optimality conditions for
them.

Theorem 2.1. There exists a unique solution u∗∈L2(0,T;L2(Ω)) of the distributed optimal
control problem (Pu). Furthermore, the first order optimality condition that satisfies u∗

can be expressed in terms of the Gâteaux derivative of its cost functional J1 as

〈J′1(u
∗),w〉=(yu∗−zd,yw−y0)Ω+α(u∗,w)Ω =0, ∀w∈L2(L2(Ω)), (2.1)
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where yw−y0 satisfies (1.1) with u=w, g = 0 and a= 0. Moreover, if we introduce the
adjoint state (φu∗ ,qu∗) as the unique solution of the following system:























−
∂φu∗

∂t
−divσ(φu∗ ,qu∗)=yu∗−zd in Ω×(0,T),

divφu∗ =0 in Ω×(0,T),
φu∗ =0 on ∂Ω×(0,T),
φu∗(T)=0 in Ω,

then the optimality condition given by (2.1) can be written as

〈J′1(u
∗),w〉=(φu∗ ,w)Ω+α(u∗,w)Ω =0, ∀w∈L2(L2(Ω)). (2.2)

Theorem 2.2. There exists a unique solution g∗ ∈Uad of the boundary optimal control
problem (Pg). Furthermore, the first order optimality condition that satisfies g∗ can be
expressed in terms of the Gâteaux derivative of its cost functional J2 as

〈J′2(g∗), f 〉=(yg∗−zd,y f −y0)Ω+β(g∗, f )∂Ω=0, ∀ f ∈Uad, (2.3)

where y f −y0 satisfies (1.1) with u= 0, g = f and a = 0. Moreover, if we introduce the

adjoint state (φg∗ ,qg∗) as the unique solution of























−
∂φg∗

∂t
−divσ(φg∗ ,qg∗)=yg∗−zd in Ω×(0,T),

divφg∗ =0 in Ω×(0,T),

φg∗ =0 on ∂Ω×(0,T),

φg∗(T)=0 in Ω,

then the optimality condition given by (2.3) can be written as

〈J′2(u
∗), f 〉=(σ(φg∗ ,qg∗)n, f )∂Ω+β(g∗, f )∂Ω=0, ∀ f ∈Uad. (2.4)

2.2 Simultaneous distributed-boundary optimal control

We define the map

C :Aad→ L2(0,T;H1
0(Ω))

(u,g) 7→yug−y00,

where y00 is the unique solution of (1.1) with u= g=0 and fixed a.
We also define the maps Π :Aad×Aad→R and Υ :Aad →R as

Π((u,g),(v,h))=(C(u,g),C(v,h))
Ω
+α(u,v)

Ω
+β(g,h)∂Ω

, ∀(u,g),(v,h)∈Aad,

Υ(u,g)=(C(u,g),zd)Ω
, ∀(u,g)∈Aad.

The following properties hold for the previous maps.
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Proposition 2.1. i) C is a linear and continuous map.

ii) Π is a bilinear, continuous, symmetric and coercive map.

iii) Υ is a linear and continuous map.

Proof. i) The linearity follows immediately from the definition of C. Taking into account
(1.2)-(1.3) we deduce that, in particular, (yug−y00,pug−p00)∈L2(H1(Ω))×L2(L2(Ω))/R

and it satisfies

‖C(u,g)‖L2(H1(Ω))=‖yug−y00‖L2(H1(Ω))≤K1‖(u,g)‖Aad
,

where K1 is a constant depending on the viscosity ν and the domain Ω, thus the continu-
ity of C is proved.

ii) The bilinearity of Π follows from the linearity of C. From Cauchy-Schwartz in-
equality and the continuity of C we obtain the continuity of Π, indeed ∀(u,g),(v,h)∈Aad

|Π((u,g),(v,h))|≤K2‖(u,g)‖Aad
‖(v,h)‖Aad

,

where K2 is a constant depending on K1,α and β. Moreover, Π is coercive, in effect

|Π((u,g),(u,g))|≥α‖u‖L2(L2(Ω))+β‖g‖L2(L2(∂Ω))≥K3‖(u,g)‖2
Aad

,

where K3 depends on α and β.
iii) It follows from the linearity and continuity of C.

After some calculations, it is possible to rewrite the cost functional J as

J(u,g)=
1

2
Π((u,g),(u,g))−Υ(u,g)+

1

2
‖zd‖

2
L2(L2(Ω)) . (2.5)

Theorem 2.3 (Existence and uniqueness). There exists a unique solution (u∗,g∗)∈Aad of
the simultaneous distributed-boundary optimal control problem (Pug).

Proof. Taking into account (2.5) and Proposition 2.1 we can deduce that J is a strictly
convex function. Thus, by the classical theory of optimal control [11, Chapter 3], we have
that there exists a unique solution (u∗,g∗)∈Aad of the problem (Pug).

Now, we compute the derivative of the cost functional J.

Proposition 2.2. The function J is Gâteaux differentiable and its derivate J′ :Aad→ [Aad]
∗

at (u,g) is given by

〈J′(u,g),(v,h)〉=(yug−zd,yvh−y00)Ω+α(u,v)Ω+β(g,h)∂Ω, ∀ (v,h)∈Aad. (2.6)

We note that yvh−y00 satisfies (1.1) with u=v, g=h and a=0.
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Proof. For all (v,h)∈Aad and t>0 we have

1

t
[J(u+tv,g+th)− J(u,g)]=(yug−zd,yvh−y00)Ω+

t

2
(yvh−y00,yvh−y00)Ω

+α(u,v)Ω+
t

2
α(v,v)Ω+β(g,h)∂Ω+

t

2
β(h,h)∂Ω

and passing to the limit t→0+, we obtain (2.6).

Thanks to Proposition 2.2 we can give the first order optimality condition for (u∗,g∗).
Namely, the unique solution (u∗,g∗) of (Pug) can be characterized as the unique pair of
functions in Aad that satisfies

〈J′(u∗,g∗),(v,h)〉=(yu∗g∗−zd,yvh−y00)Ω+α(u∗,v)Ω+β(g∗,h)∂Ω =0 (2.7)

for all (v,h)∈Aad.
Since Eq. (2.7) does not permit to express the first order optimality condition easily,

we introduce the adjoint state to rewrite this derivative into a more workable expression.
For this, let us consider the following system























−
∂

∂t
φu∗g∗−divσ(φu∗g∗ ,qu∗g∗)=yu∗g∗−zd in Ω×(0,T),

divφu∗g∗ =0 in Ω×(0,T),

φu∗g∗ =0 on ∂Ω×(0,T),

φu∗g∗(T)=0 in Ω.

(2.8)

After the change of variable (t,x) 7→ (T−t,x), from the regularity yu∗g∗−zd ∈

L2(0,T;L2(Ω)), the above system has a unique solution (φu∗g∗ ,qu∗g∗) such that

(φu∗g∗ ,qu∗g∗)∈L2(0,T;H2(Ω))∩C0(0,T;H1(Ω))×L2(0,T;H1(Ω))/R. (2.9)

Moreover, there exists a constant K depends only of Ω and ν such that

‖φu∗g∗‖L2(H2(Ω))+‖qu∗g∗‖L2(H1(Ω))≤K‖yu∗g∗−zd‖L2(L2(Ω)). (2.10)

Now, we are in position to establish the following result

Proposition 2.3. The first order optimality condition (2.7) can be written in terms of the
adjoint state as

〈J′(u∗,g∗),(v,h)〉

=(φu∗g∗+αu∗,v)Ω+(βg∗−σ(φu∗g∗ ,qu∗g∗)n,h)∂Ω=0, ∀(v,h)∈Aad, (2.11)

and the simultaneous optimal control (u∗,g∗) is given by

u∗=
−1

α
φu∗g∗ in Ω×(0,T) and g∗=

1

β
σ(φu∗g∗ ,qu∗g∗)n on ∂Ω×(0,T). (2.12)
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Proof. By using (2.8), (2.7) and integrating by parts, we have

(yu∗g∗−zd,yvh−y00)Ω=(φu∗g∗ ,v)Ω−(σ(φu∗g∗ ,qu∗g∗)n,h)∂Ω, ∀(v,h)∈Aad,

therefore we obtain (2.11). The equalities (2.12) follows by decoupling (2.11).

The following theorem summarizes the optimality system for Problem (Pug).

Theorem 2.4. Let (u∗,g∗) be the unique optimal solution to Problem (Pug). Then,

• the state equation (1.1) is satisfied,

• the adjoint equation (2.8) is satisfied,

• equality (2.11) holds.

3 Estimations

In this section, we obtain estimations between the simultaneous optimal control and the
distributed optimal control and boundary optimal control respectively.

Proposition 3.1. Let (u∗,g∗) be the unique solution of the optimal control problem (Pug)
with fixed given initial condition a.

i) If u∗ is the unique solution of the optimal control problem (Pu) for a function fixed
g∈Uad, then

‖u∗−u∗‖L2(L2(Ω))≤
1

α

∥

∥

∥
φu∗g∗−φu∗

∥

∥

∥

L2(L2(Ω))
≤

K

α

∥

∥

∥
yu∗g∗−yu∗

∥

∥

∥

L2(L2(Ω))
.

ii) If g∗ is the unique solution of the optimal control problem (Pg) for a function fixed
u∈L2(L2(Ω)), then

‖g∗−g∗‖L2(L2(∂Ω))≤
1

β

∥

∥

∥
φu∗g∗−φg∗

∥

∥

∥

L2(L2(Ω))
≤

K

β

∥

∥

∥
yu∗g∗−yg∗

∥

∥

∥

L2(L2(Ω))
.

Here K denote a positive constant depending on Ω and ν.

Proof. i) Taking (v,h)=(u∗−u∗,0) in (2.11) and w=u∗−u∗ in (2.2) we have

(φu∗g∗+αu∗,u∗−u∗)Ω−(φu∗+αu∗,u∗−u∗)Ω=0.

Using Cauchy-Schwartz inequality, we obtain

‖u∗−u∗‖L2(L2(Ω))≤
1

α

∥

∥

∥
φu∗g∗−φu∗

∥

∥

∥

L2(L2(Ω))
.
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Now, (φu∗g∗−φu∗ ,qu∗g∗−qu∗) satisfies (2.8) with second membre yu∗g∗−yu∗ , thus the sec-

ond inequality of i) follows from (2.10).
ii) Similarly, taking (v,h)=(0,g∗−g∗) in (2.11) and f = g∗−g∗ in (2.4) we have

(φu∗g∗+βg∗,g∗−g∗)∂Ω−(φu∗+βg∗,g∗−g∗)∂Ω=0.

Using Cauchy-Schwartz inequality, we obtain

‖g∗−g∗‖L2(L2(∂Ω))≤
1

β

∥

∥

∥
φu∗g∗−φu∗

∥

∥

∥

L2(L2(Ω))
.

The second inequality of ii) follows also from (2.10).

Corollary 3.1. Let (u∗,g∗) be the unique solution of Problem (Pug). We consider u∗ the
unique solution of Problem (Pu) with fixed boundary data g = g∗ and g∗ the unique
solution of Problem (Pg) with fixed data u=u∗. Then, u∗=u∗ and g∗= g∗.

Proof. If we take w=u∗−u∗∈ L2(L2(Ω)) in (2.2) for g∗= g∗ and (v,h)=(u∗−u∗,0)∈Aad

in (2.11), we obtain

(φu∗g∗−φu∗g∗ ,u∗−u∗)Ω−α(u∗−u∗,u∗−u∗)Ω=0,

taking into account that

(φu∗g∗−φu∗g∗ ,u∗−u∗)Ω=−(yu∗g∗−yg∗g∗ ,yu∗g∗−yg∗g∗)Ω,

we obtain that u∗=u∗.
By a similar argument we can prove that g∗= g∗.

4 Regularity of solutions of the optimality system

In this section we discuss about the regularity of the simultaneous optimal control and
the regularity of the solutions of the state and adjoint equations.

Proposition 4.1 (Higher regularity of the optimal control). Let (u∗,g∗)∈Aad the simul-
taneous optimal control given by Theorem 2.3, then actually (u∗,g∗)∈ L2(0,T;H2(Ω))∩
C0(0,T;H1(Ω))×Uad. Furthermore, if ∂Ω∈C3 and zd∈L2(0,T;H1(Ω)) we have

(u∗,g∗)∈L2(0,T;H3(Ω))∩C0(0,T;H2(Ω))×L2(0,T;H3/2(Ω))∩C0(0,T;H1/2(Ω)). (4.1)

Proof. Since (u∗,g∗)∈Aad, from the regularity of the solution (φu∗g∗ ,qu∗g∗) given by (2.9)
and from (2.12) we deduce

(u∗,g∗)∈L2(H2(Ω))∩C0(H1(Ω))×Uad.
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We recall that the search for u∗ was originally in L2(L2(Ω)). However we can not improve
the regularity of g∗, this drawback is due to the characterization ”type Newmann” we get
for g∗ (see (2.12)). We need to assume that the boundary ∂Ω∈C3 and the known wanted
solution zd∈L2(H1(Ω)) to obtain a higher regularity result for g∗, under these hypothesis
we have

(φu∗g∗ ,qu∗g∗)∈L2(0,T;H3(Ω))∩C0(0,T;H2(Ω))×L2(0,T;H2(Ω))/R, (4.2)

hence, from (2.12) we deduce (4.1).

The regularity result obtained for the simultaneous optimal control, in the last propo-
sition, improves the regularity of the solution (yu∗g∗ ,pu∗g∗) of state equation.

Proposition 4.2 (Higher regularity of the solutions of the state equations). Let (u∗,g∗)∈
Aad the simultaneous optimal control given by Theorem 2.3, we assume that ∂Ω ∈ C3,
zd ∈L2(0,T;H1(Ω)) and a∈H(div;Ω)∩H1(Ω). Then

(yu∗g∗ ,pu∗g∗)∈L2(0,T;H2(Ω))∩C0(0,T;H1(Ω))×L2(0,T;H1(Ω))/R. (4.3)

Proof. Under these assumptions we can apply Proposition 4.1 to obtain (4.1). From the
regularity results for the solutions of non-stationary Stokes systems with non homoge-
neous data (see [4, 5, 8, 13, 15]), we deduce (4.3).

Remark 4.1. We note that under assumptions of Proposition 4.2 and (4.3), the regular-
ity of (φu∗g∗ ,qu∗g∗) in not better than (4.2), since the right side of (2.8) belongs still to

L2(0,T;H1(Ω)) because the hypothesis on zd. To improve (4.2) we need to assume ∂Ω∈C4

and zd∈L2(0,T;H2(Ω)).

5 Comments

We want to remark that the results of Sections 1-3 could be obtained if we make the
assumption that the control u only acts on a non empty open subset O⊂Ω and g only
acts on a non empty open subset Γ⊂∂Ω, that is if we consider the system



























∂y

∂t
−divσ(y,p)=F+1Ou in Ω×(0,T),

divy=0 in Ω×(0,T),

y=H+1Γg on ∂Ω×(0,T),

y(0)=a in Ω,

where F ∈ L2(0,T;L2(Ω)), H ∈Uad, 1O and 1Γ denote the characteristic functions of the
subsets O and Γ respectively and a, u and g as before.

The results of Section 4 also remains true but under higher regularity assumptions on
F and H .
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[16] F. Tröltzsch, Optimal Control of Partial Differential Equations, Graduate Studies in Mathe-
matics, American Mathematical Society, Providence, RI, 2010.


