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Figure 1: Left: our staged per-tile optimized scrambling, applied to a Sobol sequence of sampling points, produces a power spectrum close
to Blue Noise. Right: Rendering of a challenging scene featuring depth of field and high specularity (jewels). The sampling was done with
the Sobol sequence (top) and our sampler (bottom); both use 256 samples per pixel and 3 light bounces. Note the improvement in aliasing
when using our method in comparison to the original Sobol sequence.

Abstract

Distributions of samples play a very important role in rendering, affecting variance, bias and aliasing in Monte-Carlo and
Quasi-Monte Carlo evaluation of the rendering equation. In this paper, we propose an original sampler which inherits many
important features of classical low-discrepancy sequences (LDS): a high degree of uniformity of the achieved distribution of
samples, computational efficiency and progressive sampling capability. At the same time, we purposely tailor our sampler
in order to improve its spectral characteristics, which in turn play a crucial role in variance reduction, anti-aliasing and
improving visual appearance of rendering. Our sampler can efficiently generate sequences of multidimensional points, whose
power spectra approach so-called Blue-Noise (BN) spectral property while preserving low discrepancy (LD) in certain 2-D
projections.
In our tile-based approach, we perform permutations on subsets of the original Sobol LDS. In a large space of all possible
permutations, we select those which better approach the target BN property, using pair-correlation statistics. We pre-calculate
such “good” permutations for each possible Sobol pattern, and store them in a lookup table efficiently accessible in runtime. We
provide a complete and rigorous proof that such permutations preserve dyadic partitioning and thus the LDS properties of the
point set in 2-D projections. Our construction is computationally efficient, has a relatively low memory footprint and supports
adaptive sampling. We validate our method by performing spectral/discrepancy/aliasing analysis of the achieved distributions,
and provide variance analysis for several target integrands of theoretical and practical interest.

CCS Concepts
•Computing methodologies → Rendering;

1. Motivation

Monte Carlo and Quasi-Monte-Carlo (MCQMC) integration are
widely used in various scientific fields to numerically approxi-
mate integrals of complex functions that cannot be expressed in
closed form. In computer graphics, MCQMC MCQMCthods are
fundamental for evaluation of the rendering equation [PJH16]. The

choice of the sampling pattern used in MCQMC integration may
affect the overall rendering quality in terms of noise and aliasing.

Among various MCQMC methods, low-discrepancy sequences
(LDS) play a crucial role [Nie92, Lem09], because of their inher-
ent virtues: guaranteed high degree of uniformity, computational
efficiency, easy and compact implementation. Thanks to the well-
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known Koksma-Hlawka inequality [Nie92], all LDS have guar-
anteed upper bound of the variance (and therefore, of the noise),
which is the consequence of their high uniformity. Several com-
puter graphics scientists advocated for their use [Shi91, Kel12,
PJH16, APC∗16]; nowadays LDS are effectively integrated in sev-
eral rendering engines [PJH16].

On the other hand, according to the spectral approach to evalu-
ate the rendering quality, noise and aliasing are tightly related to
the presence of spectral peaks in Fourier spectra of the sampling
patterns. This approach, pioneered by Dippé and Wold [DW85],
Cook [Coo86], Mitchell [Mit91], has been strengthened through
decades of intense research [MF92, ODJ04, KCODL06, DH06,
LD08, BSD09, CYC∗12, SGBW10, WW11, SHD11, Fat11, dG-
BOD12, ZHWW12, OG12, HSD13, EMP∗12, EAG∗14, WPC∗14,
ANHD17, QCHC17]. It is generally accepted that so-called blue-
noise (BN) sampling [Uli88] is a good approach for reducing
to reduce aliasing and noise. Researchers have recently devised
a closed-form formulation for the variance as a function of the
spectral content of the integrand and that of the sampling pat-
tern [Dur11, PSC∗15, Ö16].

The very first attempt to build a sampler with both low-
discrepancy and blue-noise properties have been recently presented
in [APC∗16], which shows that such a sampler effectively reduces
noise and aliasing in MCQMC integration, while preserving good
asymptotic behavior when the number of samples grows. However,
this method has several strong limitations. First, their construction
is applicable to 2-D point sets only, which limits its application in
rendering engines, where higher dimensional samples are required.
Second, by contrast with traditional low-discrepancy sequences,
the method of [APC∗16], generates finite point sets only; the im-
plementation of progressive sampling is therefore almost impossi-
ble. Finally, the method by Ahmed et al. [APC∗16] does not sup-
port adaptive sampling schemes.

In this paper, we propose a more advanced sampling system,
which addresses the limitations enumerated above. Our construc-
tion stems from the well-known Sobol sampler [Sob67], which
generates low-discrepancy sequences by construction and thus al-
low our sampler to support progressive sampling. As a derivative
of Sobol LDS, our construction naturally supports higher dimen-
sions, while preserving almost-BN spectral properties in some 2-D
projections, for which specially designed permutations have been
pre-computed and stored in lookup tables. At runtime, our hierar-
chical approach uses lookup tables to obtain a very efficient sam-
pling strategy with good spectral properties. While being a trade-
off between memory efficiency and BN quality, we show that with
lookup tables of 7kbytes, one can achieve good BN spectra for very
large point sets. This scheme of having a s-D sampler with almost-
BN 2-D projections is meaningful in rendering, where we need to
solve several nested integrals. Designing a consistent s-D sampler
with high quality 2-D projections (LD and BN) is a very challeng-
ing task. For example, the trivial approach that considers two 2-D
LD and BN point sets (e.g. from [APC∗16]) and a (stochastic) pair-
ing procedure to generate a 4-D point set leads to unsatisfactory
discrepancy measurements (see Section 8).

Contributions. In summary, this paper brings the following contri-
butions to the state-of-the art:

(i) our approach scrambles samples from the multidimensional
sequences;

(ii) it insures low-discrepancy (and therefore, highly uniform)
distributions of sampling in 2-D projections, for which our
local optimized scrambling has been applied;

(iii) it allows spectral properties close to that of blue noise in such
optimized 2-D projections;

(iv) it allows adaptive sampling;
(v) it is relatively fast and has a low memory footprint. Its time

complexity is O(N), where N is the number of samples.

2. Related Work

Our method is built upon several existing approaches, namely on
Sobol LDS construction, as well as Owen’s scrambling technique.
We also borrow some concepts from tile-based and optimization-
based approaches. In this section we shall enumerate the most rel-
evant prior work.

Low-discrepancy sequences. LDS uniformly fill the sampling do-
main by calculating multidimensional coordinates of the sampling
point from its ordinal number. This number is interpreted as a se-
quence of digits. By performing manipulations on these digits (rad-
ical inversion followed by carefully chosen scrambling operator),
the coordinates of the point are calculated. A sampling point with
a given ordinal number is stationary, which means that its coordi-
nates remain the same, no matter how many other points fill the
sampling domain. This powerful and elegant concept is extremely
popular in the MCQMC community, where very high dimensional
functions need to be uniformly sampled. Among the most pop-
ular LDS are those of van der Corput, Halton, Sobol, Niederre-
iter, and their generalizations by permutations or digital scram-
bling [Sob67, Nie92, Lem09]).

Shirley was among the pioneers and the advocates for the use
of discrepancy as a quality measure of computer graphics sam-
plers [Shi91]. Keller and his collaborators further promote low-
discrepancy sequences in computer graphics [Kel12, GRK12b].
[GHSK08] investigate a LD construction, related to (t,k,s)-nets,
under the constraint of maximizing minimal distance between sam-
pling points. They therefore alleviate the problem of arbitrarily
close points, which may appear in classical Sobol LDS. Neverthe-
less, distributions of points as described in [GHSK08] suffer from
strong spectral peaks, due to repetitive nature of their construction,
which may lead to strong aliasing. Our construction is conceptu-
ally quite different; it explicitly addresses the problem of spectral
peaks, and therefore it is more appropriate for anti-aliasing.

More recently, Ahmed et al. [APC∗16] presented their origi-
nal construction of two-dimensional low-discrepancy point sets,
whose limitations have been enumerated in Section 1. It is impor-
tant to stress a few key differences between the approach presented
in [APC∗16] and ours. The former is an inherently 2-D construc-
tion with no possibility of multidimensional extension, whereas
our construction starts from multidimensional Sobol LDS and ap-
plies some local permutations on subsets; the resulting sequence
is inherently multidimensional. Second, the approach presented
in [APC∗16] generates point sets, not sequences, which prevents
progressive sampling, whereas our approach generates sequences
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and therefore supports progressive sampling by construction. Fi-
nally, the approach presented in [APC∗16] does not support adap-
tive sampling whereas our does support this important feature. In
summary, our paper presents a considerable advance with respect
to [APC∗16] in building multidimensional sequences of points
with controlled spectral and low-discrepancy properties in 2-D pro-
jections.

Scrambled Low-discrepancy sequences. All LDS present excel-
lent asymptotic uniformity; their uniformity at low sample counts
may suffer though, especially when the number of dimensions is
high. To overcome this limitation, several scrambling techniques
have been proposed [Owe95, Mat99, Lem09]. The most powerful
of them, Owen’s scrambling, consists of building pseudo-random
permutation trees, one per dimension, and performing correspond-
ing digit permutations on top of Sobol’s construction. Owen’s per-
mutation does not affect the low discrepancy of the sequence, while
it modifies the inter-sample pair-correlation distance function; the
resulting pair-correlation function is close to that of stratified jitter.
Note that as it is impossible to evaluate a permutation tree of infi-
nite depth, for practical purposes Owen’s scrambling cannot gen-
erate a number of samples higher than 2 to the power of the depth
of the tree. This breaks the sequentiality property of the input LDS,
generating a scrambled LD set instead. Efficient implementation
of Owen’s scrambling has been explored in [FK01]. In contrast
to Owen’s construction, which uses random permutations, we pre-
calculate a set of admissible permutations which do not affect the
discrepancy terms of the distribution. We select only those permu-
tations which improve spectral properties by targeting those of BN.

Tile-based methods. Several methods have been proposed to
map elementary samples on tiles of different shapes and thus en-
sure global uniformity of the achieved distributions. [CSHD03]
and [KCODL06] propose to use Wang tiles to break regularity
during texture synthesis and in distributions of sampling points.
[ODJ04], followed by [Ost07] explore Penrose and polyomino-
based tiling systems to build deterministic adaptive sampling sys-
tems with good spectral properties. Wachtel et al. [WPC∗14] pro-
pose a tile-based method that incorporates spectral control over
sample distributions. More recently, Ahmed et al. [ANHD17] pro-
posed a 2-D square tile-based sampling method with one sample
per tile and controllable Fourier spectra. Our approach is also a
tile-based relying on a subdivision system. By contrast with all
prior tile-based approaches, we provide LD and BN projections in
a high-dimensional setting.

Optimization-based approaches. Thanks to the pioneering work
by Dippé and Wold [DW85], Mitchell [Mit91], Cook [Coo86],
Shirley [Shi91], the computer graphics community became sensi-
tive to the fact that noise and aliasing are tightly coupled to sam-
pling. They were the first to propose stochastic sampling as an al-
ternative to regular grid-based sampling, arguing that unstructured
noise is better perceived than visually perturbing aliasing. Since
then, two optimization-based approaches have been developed and
presented in numerous papers: (1) on-line optimization [MF92,
DH06, LD08, BSD09, BWWM10, EMP∗12, CYC∗12, SGBW10,
SHD11, Fat11, dGBOD12, ZHWW12, OG12, HSD13, RRSG16],
and (2) off-line optimization [ODJ04,KCODL06,Ost07,WPC∗14,
APC∗16,ANHD17], where the near-optimal solution is prepared in

Figure 2: Illustration of dyadic partitioning, applied on first 16
points of Sobol LDS, dimensions 1 and 2 (all five sub-figures show
exactly the same point set). Each partition of size 1× 16, 2× 8,
4×4, 8×2 and 16×1 contain exactly 1 sample.

form of lookup tables, used in runtime. The present work uses the
off-line optimization approach.

Projective Blue-Noise Sampling The idea of having s-D sampling
with good blue-noise projections, has been presented in [RRSG16],
where the metric of distance between points used in any optimiza-
tion process has been modified in order to keep track of the projec-
tive distance. Although the goal of getting projective BN proper-
ties has been achieved that paper does not guarantee uniformity in
higher-dimensional space, which could be potentially harmful for
integration tasks, especially when the number of samples grows. In
the present paper, we achieve simultaneously the goals of getting
both projective BN and low-discrepancy (high uniformity in s-D).

3. Our method: Roadmap

Before digging into technical details of our method, let us first pro-
vide high-level, simplified and intuitive explanation; rigorous defi-
nitions and technical details are provided in Sections 4 and 5. Since
our sampler relies on independent scrambling of 2-D projections,
in this section we will focus on a single 2-D pair of dimensions. We
will detail our higher dimensional construction in Section 7. This
section is subdivided into three subsections. In subsection 3.1, we
enumerate some properties of Sobol’s construction, which are cru-
cial for preserving low-discrepancy property. In our construction,
we preserve these important properties, namely that of dyadic parti-
tioning, defined in Section 3.1. In subsection 3.2, we provide a sim-
ple description of Owen’s scrambling. Finally, in subsection 3.3, we
describe the kernel of our contribution: staged optimized permuta-
tions, hierarchically applied on subsets of 2-D projections of Sobol
point sets.

3.1. Sobol’s construction: main properties, useful for our
construction

Different properties of the point sets generated using Sobol’s con-
struction, have been extensively studied in the literature [Sob67,
Nie92, Lem09]. The main reason for large popularity of this con-
struction is based on one key particular property, guaranteed by this
construction. A simple and intuitive explanation is often presented
in terms of “dyadic partitioning” [Lem09], for dimensions 1 and 2.
The entire domain, which contains point sets of size of any inte-
ger power p of 2, can be subdivided into rectangular partitions of
size 1× 2p, 2× 2p−1, etc. in such a way that each partition con-
tains one sampling point exactly, as illustrated in Figure 2. As this
property holds for arbitrarily large point sets, it largely contributes
to the high spatial uniformity of Sobol LDS, expressed in terms of
discrepancy.

© 2018 The Author(s)
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In our construction, we guarantee the same property, even af-
ter local reorganization of the point sets, which improves Fourier
spectrum of the initial Sobol’s construction. Since we bootstrap
from the Sobol sequence, we generate samples from primitive
polynomials, using a different polynomial for each dimension
[Sob67,Nie92,Lem09]. For the first dimension, a pure van der Cor-
put construction is used, which can be considered as Sobol’s con-
struction with the trivial primitive polynomial x0. For other dimen-
sions, different primitive polynomials are used for different dimen-
sions (their enumeration is known as A058947 sequence in Sloan’s
On-Line Encyclopedia of Integer Sequences [Slo17]. In the follow-
ing, we refer to Sobol indices i to define the i-th primitive polyno-
mials.

Strictly speaking, dyadic partitioning holds only for dimensions
1 and 2, which use primitive polynomials x0 and x0 + x1. Later,
in Section 4 we shall extend the property of dyadic partitioning to
more general one of (t,k,s)-net [Nie92, Lem09]. This generaliza-
tion is applicable to rectangular partitions which contain exactly 2t

sampling points. The lower the “quality factor” t of a (t,k,s)-net,
the higher the uniformity of the sampling pattern is. In this gen-
eralization, dimensions 1 and 2 have t = 0, which corresponds to
dyadic partitioning (i.e., each partition contains exactly 20 = 1 sam-
ple). Our construction preserves the “quality factor” t of the initial
Sobol LDS in two-dimensional projections as demonstrated in the
Supplementary Material.

3.2. Owen’s Scrambling

Owen’s scrambling [Owe95, Mat99] is a key approach to trans-
form a pattern while preserving its low discrepancy properties. As
discussed in Section 2, such scrambling performs permutations of
point coordinates dimension by dimension using a random Boolean
tree.

In 1-D, let us consider a sample with coordinate x∈ [0,1) defined
in base 2 with digits xi (i.e. x := ∑i xi2−i). Owen’s scrambling
goes through all digits and considers digits position by position and
swaps the digit xi if its associated flag is set to 1 in the tree at depth i.
Geometrically, swapping a digit xi swaps all samples with the same
x0 . . .xi binary prefix, as illustrated in Figure 3. Owen’s scrambling
in 1-D therefore implies successive permutations between intervals
of points of size 2−i+1.

In arbitrary dimensions, such 1-D tree based scrambling is re-
peated for each dimension with different trees containing random
Boolean flags. Since this swapping of samples is done only when a
node’s flag is set to 1, it is possible to fix the position of some sam-
ples by setting some flags to 0. We will rely on this property to en-
sure the sequentiality of our sampler. Please note that Owen’s per-
mutation trees are global. Among all possible trees, some may lead
to point sets having interesting spectral properties but efficiently ex-
ploring the space of trees is an open problem. Indeed, for n samples
in s-D, s2n−1

different trees exist. Furthermore, blue-noise sampler
usually implies globally and locally correlated samples. A global
Owen’s tree in a higher dimension does not allow the needed local
control. For all these reasons, we find instead near-optimal local
permutation trees for the blocks of 16 or 64 samples, as we shall
explain in the next Section.

Initial van der Corput Sequence

Figure 3: Illustration of 1-D Owen’s scrambling, applied on first 8
members of van der Corput sequence. Blocks of points of initial se-
quences (top-left) are hierarchically swapped according to the flags
of the permutation tree (right), where 1 means that we swap blocks
of appropriate size, whereas 0 means that we do not swap blocks.

3.3. Our Basic Construction

Our basic construction of multidimensional sequences with low-
discrepancy projections and improved spectral properties is illus-
trated in Figure 4. In this illustration, blocks of 16 samples are used
and only one pair of dimensions is shown. Note that similar con-
structions with blocks of 64 and 256 samples, as well as other pairs
of dimensions can be equally used as will be discussed in Sections 4
and 5.

Our construction can be conceptually considered as a set of
staged local permutations of blocks of 16 samples of the initial
Sobol LDS (the leftmost column in Figure 4). For the first 16 points
of the initial set and for dimensions x and y (the top row in Fig-
ure 4), a good pair of Owen’s permutation trees according to a
given blue-noise criterion (see Section 5.2), can be found. Such
a pair is chosen to produce a more even distribution of sampling
points (the rightmost sub-image of the top row in Figure 4). Note
that this permutation preserves the t factor of the initial set of 16
samples [Owe95] (see supplementary material). We call this per-
mutation π

0 .

For the set of 162 samples (the middle row in Figure 4), we first
apply the same permutation π

0 on the entire point set, then find a set
of local permutations π

1
i , applied on 16 subsets of 16 samples each,

in order to get even distribution of all 256 samples, as shown in the
rightmost sub-images of the middle row in Figure 4. Note that the
second stage of permutations π

1
i does not move first 16 samples,

performed by the first stage π
0 – compare large colored dots which

mark the ‘pivots’ of each block of 16 samples (we call them pivots,
because they are immovable samples w.r.t. previous stage).

Similarly, the set of 163 samples (the lower row in Figure 4) un-
dergoes 3 stages of permutations, in order to keep first 16 and 256
well distributed, and achieve good distribution of all 163 samples.
This process can be continued to higher orders k of 16k samples. In
Sections 4 and 5 we provide all required technical details, including
pseudo-code of the algorithm. The formal proof for the preservation
of k of a (t,k,s)-net in two-dimensional projections is given in the
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supplementary material. There, we also discuss implementation is-
sues, such as complexity, computational efficiency and parallelism
(leading to a GPU implementation).

4. Our Method: Technical Presentation

As sketched in the roadmap, our sampler relies on a hierarchical
construction using Sobol samples that are locally optimized using
specific Owen’s permutation trees We first define the regular sub-
division of a s-dimensional domain [0,1)s that carries our samples.
Such system is parametrized by a subdivision factor K := 2n for a
given n> 0 (e.g. K can be 16, 64 or 256 as discussed in Section 3.3).
At a level of subdivision λ, each dimension is subdivided Kλ times,
and thus the domain is partitioned into Ksλ squared tiles. This fac-
tor K have noticeable impact on the spectral quality, the discrep-
ancy, and the memory footprint of our scrambling, as we’ll show
below. The ith square tile at a level λ is denoted T λ

i (see Fig. 4).
We also denote Pλ our permuted set from a subdivision at a level
λ. Pλ contains Ks(λ+1) samples, distributed into Ksλ tiles, so that
we have Ks points in each tile T λ

i . The hierarchical construction
ensures that Pλ−1 ⊂ Pλ which implies a sequential definition of
the sampler, which implies that the samples in Pλ are indexedto be
a (t,λ+1,s)-net in base Ks for each level λ.

In Section 4.1, we first describe the local permutation steps in
the hierarchical construction (columns (b), (d) and ( f ), from Qλ

to Pλ, in Figure 4). In Section 4.2, we describe a technique to ef-
ficiently implement the hierarchical construction (finding Qλ) in a
way that Pλ will only depend on Pλ−1 and Sλ (the Sobol samples
at level λ).

4.1. Pattern local optimization

Let us first consider that we have a point setQλ with the following
property: each tile T λ

i contains Ks samples, with a single pivot
sample (see Fig.4). We further assume that Qλ is a (t,λ+1,s)-net
in base Ks, and that each pattern inside each tile T λ

i of Qλ is a
(t,ns,s)-net in base 2.

The point set Pλ is obtained from Qλ by locally permuting, for
each tile T λ

i , the pattern {q}λ
i :=Qλ ∩T λ

i using a permutation π
λ
r

with the following properties:

(i) π
λ
i does not move the pivot sample;

(ii) π
λ
i is (t,ns,s)-net preserving in base 2.

(iii) π
λ
i does not change the 1-D projections of the input pattern.

We say that Π := {πλ
i } is an admissible set of local permutations

if each π
λ
i fulfills the above mentioned constraints. For any given

admissible Π, we prove in the Supplementary material (Lemma 2)
that Π preserves the discrepancy properties of Qλ in 2-D . More
formally:

Proposition 1 For s = 2, given an admissible set of permutations
Π, ifQλ is a (t,λ+1,2)-net in base K2 then Pλ is a (t,λ+1,2)-net
in base K2.

Note that such permutations can lead to point set with various
spectral properties. We can control the spectral properties of Pλ

by choosing, among the set Π, an ad-hoc permutation π̃
λ
i for each

pattern {q}λ
i . In Section 5, we describe in details how such ad-hoc

permutation are computed. We create the point set Pλ from such
permutations and from a point set Qλ by independently permuting
the samples in each tile T λ

i .

4.2. From Pλ−1 to Pλ

In Figure 4, the third level of subdivision is obtained applying
successive permutations on samples at different subdivision lev-
els, starting from the first one. In this section, we present a more
compact construction allowing us to obtainQλ from the three sets:
Pλ−1, Sλ−1 and Sλ. We remind the reader that in each of those
sets, the samples are indexed and that Sλ and Sλ−1 are defined im-
plicitly and not stored in memory. We first define a set of vectors
Vλ−1 as

Vλ−1 := {so(i)⊕p(i)} , (1)

where so(i) is the ith sample of Sλ−1, p(i) is the ith sample ofPλ−1,
and⊕ the bit-wise xor operator on binary representations of point
coordinates (Figure 5). By definition, |Sλ−1|= |Vλ−1|, we extend
the xor operator to indexed point sets of same size as

Sλ−1⊕Vλ−1 := {so(i)⊕v(i) ,∀i with so(i) ∈ Sλ−1; v(i) ∈ Vλ−1} .

It is worth noting that

Sλ−1⊕Vλ−1 = {so(i)⊕ so(i)⊕p(i)}

= {p(i)}

= Pλ−1 . (2)

Therefore, the set Vλ−1 is another way to describe all the permuta-
tions that were applied on Sλ−1 to create Pλ−1.

Thanks to Sobol sequence properties, each tile T λ
i contains a

single sample from Sλ−1, denoted so(i)r , where i is the index
of this sample in the Sobol sequence. If we assign each vector
v := so(i)i ⊕p(i) to the tile T λ

i that contains so(i)i , we are guaranteed
to have a single v ∈ Vλ−1 in each tile, denoted vλ

r (see Figure 6).
We can now formally defineQλ as

Qλ :=
{

so(i)i ⊕vλ
i ,∀T λ

i

}
. (3)

We demonstrate in the Supplementary material (Lemma 3) that
this permutation preserves the discrepancy properties of Sλ. More
formally:

Proposition 2 For s = 2, if Sλ is a (t,2n(λ+ 1),2)-net in base 2,
Qλ is a (t,λ+1,2)-net in base K2, K := 2n.

Our whole permutation therefore consists in first building the
point set Qλ, and then in applying the local permutations onto Qλ

to create Pλ. The whole pipeline is illustrated in Figure 7.

We further demonstrate in the Supplementary material (Lemma
5) that Pλ−1 ⊂ Pλ. This property follows from the facts that
Sλ−1 ⊂Sλ, Sλ−1⊕Vλ−1 =Pλ−1 using (2), and from LDS prop-
erties of Sobol.

In conclusion, using the input Sobol sequence and an admissible
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Figure 4: Left column: original Sobol point sets (upper row: 161 points; middle row: 162 points; lower row: 163 points), generated using
Sobol indices 3 and 7 for dimensions x and y. Note that all square partitions delimited by thin blue lines contain exactly 16 points each; this
remains true for any power p of 16p sampling points. Upper row: the permutation π

0 makes first 16 points of the Sobol sequence more evenly
distributed over the domain [0,1)2. Middle row: the permutation π

0 applied to 162 points of the Sobol sequence keeps the first 16 points
well distributed (large colored dots in the middle sub-figure, middle row), whereas the remaining 240 points (smaller blue dots) are unevenly
distributed. Staged π

1
i permutations make all first 256 points of the sequence more evenly distributed (rightmost sub-image, middle row).

Pivot points (the first point of each group of 16 points, according to Sobol’s numbering) are shown as colored larger dots for first 162 points
and larger red dots for first 163 points of the sequence. Note that after application π

0 on 162 points, pivots of permuted blocks of 16 points are
identical to distribution of first 16 points after application of π

0. Lower row: similarly, 3 levels of permutations are needed in order to obtain
even distribution of first 163 points of the sequence. Note that after application π

0 on 163 points, first 16 points are evenly distributed, as in
upper row, whereas staged π

1
i applied on 163 points keep first 162 points evenly distributed, as in the middle row. Only three levels of staged

permutations are required to achieve even distribution of all 163 points (rightmost sub-image, lower row). Please zoom in the sub-figures of
the lower row to see fine details.

0
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2

3

0

1

2

3

Sλ−1 Pλ−1 Vλ−1

Figure 5: This figure illustrates the first step in computing Qλ di-
rectly from Sλ−1 and Pλ−1. This step consists in xoring the sam-
ples from Sλ−1 with the samples from Pλ−1. This gives us a set
of xoring vectors Vλ−1, that we will apply later on Pλ to create
the new set Qλ (see Figure 6). It is illustrated for s = 2,K = 2 and
λ = 2.

Sλ Vλ−1 Qλ

Figure 6: This figure illustrates the second step in computing Qλ

directly from Sλ−1 and Pλ−1. This second (and last) step consists
in xoring the samples from Sλ with the set of vectors Vλ−1 com-
puted earlier (see Figure 5). This scrambles the samples inside Sλ

to create a new set Qλ such that Pλ−1 ⊂ Qλ. It is illustrated for
s = 2,K = 2 and λ = 2.
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set of permutations Π, we finally get a point set Pλ that is incre-
mental, and has LD properties in dimension 2 (combining Propo-
sitions 1 and 2). Note that our scrambling has a good discrepancy
but is not LD in dimensions higher than 2. This is discussed in Sec-
tion 8. In the next section, we will describe how to construct an
admissible set Π and how to precompute from this set the admis-
sible permutations allowing us to control the spatial distribution of
points in Pλ.

5. Local permutations with spectral control

Our construction relies on admissible permutations {πλ
i }. Among

those permutations, we choose the ad-hoc ones for a given pattern,
meaning the permutations leading to a Fourier spectrum as close as
possible to a Blue Noise spectrum. In this section, we will define a
construction giving admissible permutations, and describe how we
identify the ad-hoc permutations for a pattern within this set.

5.1. A set of admissible permutations Π

If we consider any static Boolean tree of depth m per dimension s,
Owen’s scrambling is known to be (t,m,s)-net preserving in base
2 ( property (ii) ). However, it does not preserve the 1-D projec-
tions of samples ( property (iii) ) when coordinates are expressed
on more than m digits, or when there are fewer than 2m samples.
To alleviate this, we apply the scrambling on the first m bits and
exchange the trailing ones in order to preserve the 1-D projec-
tions (see Supplementary Section 2). As a consequence, for each
tile T λ

i , any such tree with m = log(K)s induces a permutation π
λ
r

satisfying (ii) and (iii). The number of flags in such trees is thus
2m−1 = Ks−1. To satisfy (i), (ii) and (iii), we thus have m flags
set to 0, while the remaining Ks−1−m flags are free.

5.2. Identifying ad-hoc permutations

Among all possible admissible permutations of the pattern Qλ to
obtain Pλ, we look for transformations that optimize the spectral
content of the point set, e.g. increasing the minimum distance be-
tween points or obtaining a pattern that is as close as possible to a
blue noise one. To characterize a pattern as a realization of a sta-
tionary and ergodic stochastic point process, we consider its pair
correlation functions (PCF) which can be related to the spectral
content of the point set [IPSS08]. To evaluate the quality of a pat-
tern with respect to a blue noise one, we compute the l2 norm of
the two PCFs as discussed in [OG12].

In dimension s for a given K, the point set {q}λ
i (defined as

Qλ ∩ T λ
i ) has Ks samples, we have Ksλ such tiles. For each tile,

the permutation is encoded with s Boolean trees of depth m with
(Ks− 1−m) free flags. As an example, for s = 2 and K = 4, we
have 20482 different admissible permutations to explore for a given
pattern in T λ

i . For each permutation, we evaluate its quality using
its PCF and store permutations leading to a good pattern in a lookup
table. Such a lookup table is indexed by the pattern {q}λ

i and stores
a set of good permutations with respect to a blue noise target. Note
that, when implemented on the GPU, the exhaustive search of an
optimized pattern for K=4 can be done in less than 1 second.

Pλ−1 Vλ−1 Qλ Pλ

Sλ−1 Sλ LUT

⊕ ⊕ Π

Figure 7: This figure is a simple illustration of the pipeline of our
scrambling system. We compute a set Vλ−1 of vectors, that we will
apply of Sλ to create a temporary set Qλ, such that Pλ−1 ⊂ Qλ.
Then, we scramble this set locally, reading precomputed permuta-
tions from a LUT, to create a set Pλ with the targeted Blue Noise
property and such that Pλ−1 ⊂ Pλ.

For K = 4, an exhaustive search is possible. For K > 4, we op-
timize exhaustively the first 16 bits of the permutation tree and fill
the underlying digits at random. As our GPU implementation per-
forms this search in 1s, we can brute force the last digits to ensure
that, even when randomly chosen, they do not harm the quality of
the pattern. This whole process takes up to 2s.

Once we have computed the set of ad-hoc permutations {π̃λ
i }

optimized regarding a specific pattern {q}λ
i , we store them in the

lookup table, indexed by the pattern {q}λ
i . Note that multiple ad-

hoc permutations can be stored for the pattern {q}λ
i . This allows

us to randomize the scrambler by randomly picking a good per-
mutation (see Algorithm 1). The number of entries in the LUT is
the number of distinct {q}λ

i patterns. Due to the regularity of the
Sobol sequence, this number is limited and depends on the value
K. Discussions on the LUT size as a function of K are included in
Appendix A.

6. Our 2-D Sampler Overview

Algorithm 1 sums up the whole pipeline of our permutation (illus-
trated in Figure 7). We create Pλ by first creating a point setQλ by
xoring the samples of Sλ−1 and the samples of Pλ−1, and reapply-
ing the obtained set of vectors to the samples of Sλ. Then, for each
tile T λ

i , we read from the LUT what is the ad-hoc permutation for
the pattern {q}λ

i and apply it.

7. Using Our Sampler in Higher Dimensions

In many rendering applications, higher dimensional samples may
be required. The permutation described above is only defined in
2-D . However, even though it only performs operations that are
perfectly defined in s-D, our construction cannot be straightfor-
wardly extended to s-D. We instead extend this approach to s-
dimensions by relying on 2-D projections (see Figure 8). In short,
we can use a s-D Sobol sequence, optimize some 2-D projections
with respect to pre-computed lookup tables and perform an on-the-
fly random permutation of the remaining dimensions. In Supple-
mentary material (Section 3), we detail our adaptation of Owen’s
original method to scramble higher dimensional sequential point
sets whose selected set of projections have been optimized by our
sampler.
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Algorithm 1: Refining Pλ−1 to Pλ

input : Point Set Pλ−1 at level λ−1 and the lookup table
LUT (·).

output: Point Set Pλ.

// Construct Qλ from Sλ−1, Sλ, and Pλ−1

1 forall tiles T λ
i do

2 so(i)←Sλ−1∩T λ
i ;

3 p(i)←Pλ−1∩T λ
i ;

4 vλ
r ← so(i)⊕p(i);

5 forall points so ∈ Sλ∩T λ
i do

6 Qλ←Qλ∪ (so⊕vλ
i );

// Apply local permutations

7 forall tiles T λ
i do

8 {q}λ
i ←Qλ∩T λ

i ;
9 π̃

λ
i is randomly selected from LUT({q}λ

i );
10 {p}λ

i ← π
λ
i (Qλ);

11 Pλ←Pλ∪{p}λ
i ;

12 return Pλ

4-D points 2-D projections

dims

(x, y)

dims

(u, v)

Figure 8: 4-D point set generated with our system, together with
two 2-D projections and their Fourier power spectra. Note that sub-
sets of 16 points that occupy the same strata in one projection (red
subsets in {(x,y)} projections and green subsets in {(u,v)} projec-
tions), occupy different strata in the other projection.

8. Results

In this section, we perform a series of experiments to demonstrate
the discrepancy and spectral properties of our scrambling. Both
those properties are known to lead to good results in Monte-Carlo
integration thanks to the Koksma-Hlawka’s [Hla61] theorem or the
variance analysis for stochastic samplers as in [SK13, PSC∗15].
In Section 8.1, we first present how we improve the 2-D spectral
properties. Then, in Section 8.2, the discrepancy of our 2-D per-
mutation, along with the discrepancy of the final 4-D set we obtain
from independently scrambling the 2-D projections of a 4-D Sobol
sequence. In Section 8.3, we present integration results, along with
renderings in Section 8.4 , and finally demonstrate in Section 8.5
the adaptivity of our scrambling.

In dimension 2, we compare to Blue Noise samplers BNOT
[dGBOD12] and LDBN [APC∗16]. The later is the only sam-
pler known to us that combines both a high spectral quality and a
low discrepancy property (but limited to 2-D and not progressive).
We also compare to classical stochastic samplers such as jittered
and white noise. We also consider Sobol sequences [Sob67] and
Owen’s scrambling of such point sets as a baseline for the discrep-
ancy evaluation. In higher dimensions (dimension 4 for numeri-
cal comparisons) the Sobol sequence and its scrambling are also
considered. For anti-aliasing evaluation, we have compared to Pro-
jective Blue Noise (PBN) [RRSG16] that also aims to control pro-
jections. Reinert et al. have defined two variants of PBN; the first
one relies on a Dart Throwing (DT) strategy and the second one on
a Lloyd’s relaxation approach. Because Lloyd’s approach is very
algorithmically challenging in higher dimensions, our experiments
only consider the DT variant. In 4-D, we have also considered a
naive 2-D +2-D variant of LDBN with two 2-D LDBN samples
paired using a random permutation to construct a 4-D point set.
This variant highlights that beside very good projections with some
LD properties, the strength of our sampler relies on its natural ex-
tension to higher dimensions.

The properties of all those samplers are summed up in Table 1.

8.1. Spectral properties

In this section, we highlight the 2-D spatial and spectral properties
of the various samplers. To do so, we rely on Fourier spectra, as
well and their equivalent radial average power spectra. It has been
shown by Pilleboue [PSC∗15] that for a sampling pattern to be op-
timal in terms of variance, it should have as little energy in low
frequencies as possible. Also, a radial spectrum presenting peaks
leads to aliasing in renderings. To illustrate this, we also show
results from a zone plate test. This test reconstructs the function
sin(x2+y2) that present a wide range of frequencies. Zone plate re-
constructed images are thus very prone to aliasing and noise which
makes them useful tools to detect it. To present the performances
of our exhaustive and genetic optimizers, we present the spectra we
obtain with a subdivision factor K = 4 and K = 8.

The results of all those tests for our sampler and various oth-
ers are presented in Figure 9. It can be seen that Sobol’s spectrum
presents many peaks, that translates into aliasing in the zone plate.
Note that those peaks are efficiently removed by our scrambling,
and that our spectrum also presents fewer low frequencies than
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Sampler Discrepancy Sequence Rendering
(Aliasing+Noise)

#Dimensions Adaptivity
Speed (secs)
106 samples

BNOT [dGBOD12] ????? n/a ????? ????? ????? > 1000 (n/a)
Sobol [Sob67] ????? ????? ????? ????? ????? 2.3
Halton [Hal60] ????? ????? ????? ????? ????? 0.66

Jittered ????? n/a ????? ????? ????? 0.02
White noise ????? n/a ????? ????? ????? 0.02

Sobol + Owen’s scrambling [Owe95] ????? ????? ????? ????? n/a 4.8
LDBN [APC∗16] ????? n/a ????? ????? n/a 0.09
PBN [RRSG16] ????? n/a ????? ????? ????? > 1000 (n/a)

Ours ????? ????? ????? ????? ????? 7.5
Adaptive Sobol and Halton are described in [GRK12a]

Jittered is subject of curse of dimensionality for dimensions > 4
The speed was measured on a CPU Intel Core i5-4440 @ 3.10 GHz

Table 1: Summary of properties of various samplers we compare ourselves to. This table is not exhaustive and focuses only on the properties
we are looking for in our scrambling. The “Discrepancy” column refers to how close the sampler is to be a low discrepancy sampler. The
“Sequence” column refers to whether a point set of size N can be enriched into a point set of size N′ with N′ > N. The “Rendering” evaluates
the performances of a sampler in terms of the visual quality of a rendered image using this sampler (taking into account the presence of
aliasing and of noise). “#Dimensions” reflects algorithm’s capacity to handle dimensions greater than 2. “Adaptivity” refers to algorithm’s
capacity to add/remove samples locally.

Owen. Theoretically, the higher the K factor for our sampler, the
better the spectrum should be. However, as it is impossible to opti-
mize permutations for K = 8 as efficiently as for K = 4, the spectra
are in fact similar.

8.2. Discrepancy

We now evaluate the discrepancy quality of the samplers. A sam-
pler is said to be low discrepancy if its discrepancy decreases as the

number N of samples increases at a rate of O
(

log(N)s−1

N

)
[Lem09]

For sake of consistency through dimensions, we evaluate the gen-
eralized l2 discrepancy of samplers in Figures 10 and 11 [Hic98].

As expected, in Figure 10, our scrambling has discrepancy val-
ues similar to Sobol sequences [Sob67], Halton sequences [Hal60]
or Owen’s scrambling [Owe95]. We can note however that our
sampler guarantees a low discrepancy for sets in base Ks, when
Sobol and Owen guarantee the low discrepancy for sets in base 2.
In Figure 11, as we are in 4-D, we no longer guarantee the low dis-
crepancy property. Contrary to Owen, we have performed two 2-D
scramblings instead of one 4-D scrambling which partly breaks the
discrepancy. Thus, our discrepancy increases slightly. Note that ap-
plying two 2-D scrambling over a 4-D Sobol sequence is different
than a naive shuffling of low discrepancy 2-D projections. For com-
parison, we naively recombined point sets from LDBN [APC∗16]
(LDBN 2-D +2-D ) and we can see that this recombination has high
discrepancy values. On the other hand, regarding our sampler, even
though its discrepancy is increased compared to Sobol, we can note
that it still performs better than most s-D samplers.

8.3. Integration

We present the resulting variance in integration of various sam-
plers. In each test, we computed this variance by integrating a given
2-D or 4-D function with several realizations of the point sets, us-
ing Cranley-Patterson random shifting to randomize deterministic

samplers [CP76]. Our first function is a 2-D disk of radius 0.25
(Figure 12), a test known to be a difficult integration set [PSC∗15].
We also integrated a 2-D gray scale HDR Image of size 1600x1600,
from the sIBL archive (Figure 13), and a 4-D ball of radius 0.25
(Figure 14).

On each graph, we can see that our sampler has a variance sim-
ilar to that of low-discrepancy samplers such as Sobol, Halton or
Owen’s scrambling (but which present less noise or aliasing in ren-
dering). Also, since it’s very efficient, we can use it to generate up
to 106 samples, which is not the case for samplers such as BNOT.
In 2-D , we perform similarly to LDBN, but in 4-D, the naive re-
combination of LDBN has a variance similar to white noise, which
stresses that independently scrambling each 2-D projection is not
similar to naively combining 2-D projections.

8.4. Renderings

We have implemented our sampler for integration into PBRT
[PJH16]. Our PBRT sampler uses our scrambling technique in 4-D
or 6-D, complemented with our Owen’s scrambling for higher di-
mensions (Sect. 7). Figures 15, 16, and 17 illustrate rendering com-
parisons between our sampling technique versus standard Sobol
[Sob67], Halton [Hal60] and stratified sampling. Mean square er-
rors (MSE) are computed compared to ground truth renders.

In Figure 15, we start by using our sampler solely for 4 di-
mensions. This scene uses 8 dimensional samples: 2 for the image
plane, 2 for the point on the light, 2 for the light scattering, and 2
for the object’s material. We rendered it using various samplers to
sample the image plane and the light source, with all other dimen-
sions sampled using the Sobol sequence. Since the Sobol sequence
is deterministic, differences between the images are only due to the
difference in sampling for the image and light. It can be seen that
our sampler has a MSE similar to Sobol, but no longer presents
aliasing in the shadow.

In Figure 16, we render a complex scene with various samplers.
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Figure 9: Fourier spectra of a single realization of 4096 points. The zone plate aliasing test uses a single sample per pixel. Please zoom in the
Fourier spectra to see narrow peaks.
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Figure 10: 2-D l2 discrepancy of our permutation, compared to
several other samplers. Note that our sampler generates sets that
have a discrepancy similar to Sobol or Owen’s scrambling.

Figure 11: 4-D discrepancy of our permutation, compared to
several other samplers. In 4-D, our sampler has a discrepancy
worse than Sobol or Owen’s scrambling. However, it can be
noted that this discrepancy is better than the discrepancy of a
stratified set. It is also better than the discrepancy of a naive as-
sociation of two 2-D sampling patterns (LDBN 2D+2D). This
is because scrambling 2-D projections of a Sobol sequence pre-
serves some of the discrepancy of the original 4-D Sobol set,
which can’t be achieved by a naive recombination of 2D sam-
plers.

Figure 12: Variance in integration of an analytical disk. Re-
sults are given for our permutation and are compared to several
other samplers. Note that contrary to other BN samplers such
as BNOT, we were able to measure it up to 106 samples.

Figure 13: Variance in integration over a 1600x1600 HDR im-
age from the sIBL archive. Results are given for our permu-
tation and are compared to several other samplers. Note that,
contrary to other BN samplers such as BNOT, we were able to
measure our variance up to 106 samples.

Figure 14: Variance in integration of a 4-D ball. Results are
given for our permutation and are compared to several other
samplers. Note that, apart for our sampler, for no other 4-D Blue
Noise were we able to measure the variance up to 106 samples.
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In the case of our sampler, we used K=8 to generate 6-D optimized
samples, used for the image plane, the light and the lens. We used
our hierarchical Owen’s scrambling for the remaining dimensions.
Similarly to Figure 15, we note that our approach’s MSE is better
than most methods as is is similar to Sobol’s. However, we present
much less aliasing. A similar setup was used in Figure 1 (right).
There, we used our scrambling technique to sample the image lane,
the lens for the depth of field effect, and the light plane of a scene
that requires 20-dimensional samples. Compared to the Sobol se-
quence, we can clearly see that the aliasing has been removed.

Figure 17 presents the difference in renderings when using K = 4
or K = 8.

8.5. Adaptivity

Since our method relies on a hierarchical grid structure with the
Pλ−1 ⊂ Pλ property, we can perform adaptive refinement on a
function using Ostromoukhov’s algorithm [Ost07] and using the
index of each sample as its ranking (note that this is vary naive way
to rank samples). Adaptive sampling obtained with this method is
shown in Figure 18. Further experiments are given in supplemen-
tary material (Section 4). We stress that this section is to be per-
ceived as a proof of concept, and we do not pretend to outperform
true stippling oriented systems.

Using the same scheme as for adaptive sampling, we point out
that we can generate the ith sample directly with an O(logKs(i)Ks)
algorithm. This is detailed in the supplementary material, Section
3.

9. Conclusions and Discussion

In this paper, we have demonstrated a compact and efficient con-
struction which, by applying a set of optimized tile-based permuta-
tions on a s-D Sobol LDS, achieves almost BN spectral properties
in 2-D projections. In supplementary material, we provide a com-
plete proof that our scrambling preserves LD properties of the ini-
tial sequence. As all sampling points after permutations are associ-
ated with ordinal numbers, our construction generates a sequence
of samples. At the same time, thanks to our tile-based approach,
our construction naturally supports adaptive sampling.

As a proof of concept, we demonstrated construction of several
pairs of optimized dimensions. For other dimensions, any other
LDS compatible with the optimized sub-spaces can be used. For
example, it could be standard Sobol LDS with appropriate primitive
polynomials, or our hierarchical Owen’s scrambling, as described
in Section 7 and in Section 3 of the supplemental material. In both
cases—Sobol or our hierarchical Owen’s scrambling—the coordi-
nates of all points of the sequence are uniquely determined by their
ordinal numbers and parameters (primitive polynomial’s index and
the permutation tree of depth d, associated with each dimension).

As a validation of our approach, we have performed a set of stan-
dard tests to compare our technique with the state-of-the-art ones
in terms of discrepancy, spectral content, and variance in different
integration schemes, as well as aliasing tests. Table 1 compares the
main features of our construction with the state-of-the-art competi-
tors.

Several improvements may further improve the results shown in
this paper. First, the spectral content of our sampler clearly outper-
forms classical LDS spectral content while being only an approx-
imation of high quality BN samplers such as [dGBOD12]. The
lower BN quality results from the sequentiality and LD properties
which constrain the samples positions, preventing further spectral
optimization. If one discards the sequentiality constraint, global
Owen’s scrambling could have been considered but it is unclear
if there exist permutation trees leading to high quality spectra in
higher dimensions.

The number of optimized pairs of dimensions should be in-
creased to address more complex rendering applications. It would
be interesting to see whether BN properties in 3-D projections
rather than actual 2-D projections would be beneficial in certain
integration tasks, where some triplets of dimensions are tightly cou-
pled. We leave these challenging tasks for future work.

Source code and pre-computed LUTs are available in supple-
mentary materials.
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Appendix A: Size of the Lookup Tables

As discussed in Section 5, the LUT stores ad-hoc permutations for
each pattern {q}λ

i in order to generate the set Pλ. Since the set
Qλ is defined from Pλ−1 (Fig. 7), our offline optimization process
follows the hierarchical construction: starting from λ = 1, we gen-
erate successive Pλ andQλ sets. Each time we have a pattern {q}λ

i
which is not in the LUT, we explore admissible permutations and
use our PCF test to select best permutations and add them to the
LUT (see Section 5.2). All patterns {q}λ

i having the same number
of points Ks, the number of distinct patterns, and thus the upper
bound on the LUT size is difficult to bound (e.g. O((Ks!)2) if we
enumerate the set of Latin hypercube configurations from which we
must remove non-dyadic sets). However, starting from the Sobol
sequence, the number of distinct {q}λ

i sets is limited and as λ in-
creases, the number of entries of the lookup table saturates quickly.
As shown in Figure 19, for K = 2 only 12 configurations exist up
to 107 samples (λ = 10). For K = 4, only 512 configurations ex-
ist up to 106 samples (λ = 6). For K = 8, we found up to 1899
configurations for about 2.105 samples (λ = 3).

In our experiments, most graphs consider a scrambling with K =
4 and thus a very compact LUT with 512 entries. For K = 8, the
graphs show that further configurations may exist for larger point
sets. In practice, Figure 9, we have used the LUT with 1899 entries
which are fine up to 2×105 samples. For larger point sets or if the
user wants to reduce the size of the LUT, one can simply return
a random permutation when accessing to a non-existing pattern in
the LUT. The LD property of the sampler will still be preserved and
only the spectral quality will be affected.
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Stratified
(MSE: 0.00224369)

Halton
(MSE: 0.00240355)

Sobol
(MSE: 0.00180466)

Owen
(MSE: 0.00178673)

Ours K=8
(MSE: 0.00181866)

Figure 15: Direct lighting (single light bounce) with 16spp. The deterministic Sobol sampler is used on every dimension apart from the light
plane. This dimension was sampled using various samplers, allowing to compare the impact of each of them and compare it with our sampler.

Stratified
(MSE: 0.0017922)

Halton
(MSE: 0.00140106)

Sobol
(MSE: 0.00158493)

Owen
(MSE: 0.00167052)

Ours K=8
(MSE: 0.00131348)

Figure 16: s-D Renderings with 16 spp and various samplers. The scene rendered presents depth of field effect, and uses a single light bounce.
When using our sampler, the three optimized projections affect the sampling of the image plane, the sampling of the lens for the Depth of
Field effect, and the light plane.

K
=

4

4spp
(MSE: 0.00586404)

16spp
(MSE: 0.00131348)

64spp
(MSE: 0.000256539)

256spp
(MSE: 0.0000806202)

K
=

8

4spp
(MSE: 0.00571273)

16spp
(MSE: 0.00145167)

64spp
(MSE: 0.000286448)

256spp
(MSE: 0.0000722957)

Figure 17: Renderings with our sampler when K = 4 and K = 8 with a various number of samples per pixel. The scene rendered presents
depth of field effect, and uses a single light bounce. The optimized projections affect the sampling of the image plane and the sampling of
the lens for the Depth of Field effect.
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Ramp function x2 with 2200 samples

Subdivided function

e(−20x2−20y2)+0.2sin2(πx)sin2(πy) with 2222
samples [BSD09]

Figure 18: Thanks to our local refinement property and the sequen-
tiality of our sampler, we can use the indices of the samples as
ranking and perform adaptive sampling.

As discussed in Section 5, in 2-D , a permutation is defined by
2 Boolean trees with K2− 1 nodes for K := 2n. Hence, for K =
4 (resp. K = 8), a straightforward encoding of a permutation π

λ
r

requires 30 bits (resp. 126 bits). Each entry in the lookup table is
indexed by a pattern containing K2 samples, each sample being
encoded onto 2 ·2 ·n bits. If we allow the LUT to contain m ad-hoc
permutations for each pattern, we need

K2 ·4 ·n+m ·2(K2−1)

bits.

Following the settings of Section 8, for K = 4 and m = 1, the
LUT size is 512 · (86+ 30) = 59392 bits which is about 7 kbytes
(about 485 kbytes for K = 8).
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