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Wasserstein Distance Measure Machines

Alain Rakotomamonjy 1 Abraham Traoré 1 Maxime Bérar 1 Rémi Flamary 2 Nicolas Courty 3

Abstract

This paper presents a distance-based discrimi-
native framework for learning with probability
distributions. Instead of using kernel mean em-
beddings or generalized radial basis kernels, we
introduce embeddings based on dissimilarity of
distributions to some reference distributions de-
noted as templates. Our framework extends the
theory of similarity of Balcan et al. (2008) to the
population distribution case and we prove that,
for some learning problems, Wasserstein distance
achieves low-error linear decision functions with
high probability. Our key result is to prove that the
theory also holds for empirical distributions. Al-
gorithmically, the proposed approach is very sim-
ple as it consists in computing a mapping based
on pairwise Wasserstein distances and then learn-
ing a linear decision function. Our experimental
results show that this Wasserstein distance em-
bedding performs better than kernel mean embed-
dings and computing Wasserstein distance is far
more tractable than estimating pairwise Kullback-
Leibler divergence of empirical distributions.

1. Introduction
Most discriminative machine learning algorithms have fo-
cused on learning problems where inputs can be represented
as feature vectors of fixed dimensions. This is the case of
popular algorithms like support vector machines (Schölkopf
& Smola, 2002) or random forest (Breiman, 2001). How-
ever, there exists several practical situations where it makes
more sense to consider input data as set of distributions
or empirical distributions instead of a larger collection of
single vector. As an example, multiple instance learning
(Dietterich et al., 1997) can be seen as learning of a bag
of feature vectors and each bag can be interpreted as sam-
ples from an underlying unknown distribution. Applications
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Cte d’Azur, OCA Lagrange, UMR 7293, CNRS, 3Université de
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related to political sciences (Flaxman et al., 2015) or as-
trophysics (Ntampaka et al., 2015) have also considered
this learning from distribution point of view for solving
some specific machine learning problems. This paper also
addresses the problem of learning decision functions that
discriminate distributions.

Traditional approaches for learning from distributions is to
consider reproducing kernel Hilbert spaces (RKHS) and
associated kernels on distributions. In this larger context,
several kernels on distributions have been proposed in the
literature such as the probability product kernel (Jebara
et al., 2004), the Battarachya kernel (Bhattacharyya, 1943)
or the Hilbertian kernel on probability measures of Hein &
Bousquet (2005). By leveraging on the flurry of distances
between distributions (Sriperumbudur et al., 2010), either
in a parametric or non parametric way, it is also possible
to build definite positive kernel by considering generalized
radial basis function kernels of the form

K(µ, µ′) = e−σd
2(µ,µ′) (1)

where µ and µ′ are two distributions, σ > 0 a parameter of
the kernel and d(·, ·) a distance between two distributions
satisfying some appropriate properties so as to make K
definite positive (Haasdonk & Bahlmann, 2004).

Another elegant approach for discriminating distributions
has been proposed by Muandet et al. (2012). It consists
in defining an explicit embedding of a distribution as a
mean embedding in a RKHS. Interestingly, if the kernel
of the RKHS satisfies some mild conditions then all the
information about the distribution is preserved by this mean
embedding. Then owing to this RKHS embedding, all the
machinery associated to kernel machines can be deployed
for learning from these (embedded) distributions.

As we can see, most works in the literature address the
question of discriminating distributions by consider either
implicit or explicit kernel embeddings. However, is this
really necessary? Our observation is that there are many
advantages of directly using distances or even dissimilarities
between distributions for learning. It would avoid the need
for two-stage approaches, computing the distance and then
the kernel, as proposed by Póczos et al. (2013) for distribu-
tion regression or estimating the distribution and computing
the kernel as introduced by Sutherland et al. (2012). Us-
ing kernels limits the choice of distribution distances as the



Wasserstein Distance Measure Machines

x1

x 2

Class 1
Class 2
Class 3

Figure 1. Illustrating the principle of the dissimilarity-based distribution embedding. We want to discriminate empirical normal distri-
butions in R2; their discriminative feature being the correlation between the two variables. An example of these normal distributions
are given in the left panel. The proposed approach consists in computing a embedding based on the dissimilarity of all these empirical
distributions (the blobs) to few of, them that serve as templates. Our theoretical results show that if we take enough templates and there is
enough samples in each template then with high-probability, we can learn a linear separator that produces few errors. This is illustrated in
the 3 other panels in which we represent each of the original distribution as a point after projection in an discriminant 2D space of the
embeddings. From left to right, the dissimilarity embedding respectively considers 10, 45 and 90 templates and we can indeed visualize
that using more templates improve separability.

resulting kernel has to be definite positive. For instance,
Póczos et al. (2012) used Reyni divergences for building
generalized RBF kernel that turns out to be non-positive.
Finally, computing Gram matrix can be potentially expen-
sive if the number of distribution examples in the training
set is large. This work aims at showing that learning from
distributions with distances or even dissimilarity is indeed
possible. Among all available distances on distributions,
we focus our analysis on Wasserstein distances which come
with several relevant properties, that we will highlight later,
compared to other ones (e.g Kullback-Leibler divergence).

Our contributions, depicted graphically in Figure 1, are the
following : (I) We show that by following the underlooked
works of Balcan et al. (2008), learning to discriminate popu-
lation distributions with dissimilarity functions comes at no
expense. While this might be considered a straightforward
extension, we are not aware of any work making this connec-
tion. (II) Based on the introduced framework, learnability
of a given problem depends on whether the dissimilarity
function satisfies some problem-dependent conditions. We
show in this paper that, for some problems, the Wasserstein
distance satisfies these conditions. (III) Our key theoretical
contribution is to show that Balcan’s framework also holds
for empirical distributions with Wasserstein distance as a
dissimilarity function. We provide theoretical guarantees in-
volving a trade-off between the number of distributions and
the number of samples in every empirical distribution, in
order to get a low-error decision function with high probabil-
ity. (IV) We illustrate the benefits of using this Wasserstein-
based dissimilarity functions compared to kernel approaches
in some simulated and real-world vision problems.

2. Framework
In this section, we introduce the global setting and present
the theory of learning with dissimilarity functions of Balcan
et al. (2008).

2.1. Setting

Define X as an non-empty subset of Rd and let P denotes
the set of all probability measures on a measurable space
(X ,A), whereA is σ-algebra of subsets of X . Given a train-
ing set {µi, yi}ni=1, where µi ∈ P and yi ∈ {−1, 1}, drawn
i.i.d from a probability distribution P on P× {−1, 1}, our
objective is to learn a decision function h : P 7→ {−1, 1}
that predicts the most accurately as possible the label as-
sociated to a novel measure µ. In summary, our goal is
to learn to classify probability distributions from a super-
vised setting. While we focus on a binary classification,
the framework we consider and analyze can be extended to
multi-class classification.

2.2. Dissimilarity function

Most learning algorithms for distributions are based on re-
producing kernel Hilbert spaces and leverage kernel value
k(µ, µ′) between two distributions where k(·, ·) is the kernel
of a given RKHS.

We depart from this approach and instead, we consider
learning algorithms that are built from pairwise dissimilarity
measures between distribution. The framework we consider
is an adaptation of the one proposed by Balcan et al. (2008).
Definitions and theorems are reminded and adapted so as to
suit our definition of bounded dissimilarity.

Definition 1. a dissimilarity function over P is any pairwise
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function D : P× P 7→ [0,M ].

While this definition emcompasses many functions, given
two probability distributions µ and µ′, we expect D(µ, µ′)
to be large when the two distributions are “dissimilar” and
to be equal to 0 when they are similar. As such any bounded
distance over P fits into our notion of dissimilarity, eventu-
ally after rescaling. Note that unbounded distance which is
clipped above M also fits this definition of dissimilarity.

Now, we introduce the definition that characterizes dissimi-
larity function that allows one to learn a decision function
producing low error for a given learning task.

Definition 2. (Balcan et al., 2008) A dissimilarity func-
tion D is a (ε, γ)-good dissimilarity function for a learning
problem L if there exists a bounded weighting function
w over P, with w(µ) ∈ [0, 1] for all µ ∈ P, such that
a least 1 − ε probability mass of distribution examples
µ satisfy : Eµ′∼P [w(µ′)D(µ, µ′)|`(µ) = `(µ′)] + γ ≤
Eµ′∼P [w(µ′)D(µ, µ′)|`(µ) 6= `(µ′)] . The function `(µ)
denotes the true labelling function that maps µ to its labels
y.

In other words, this definition translates into : a dissimilarity
function is “good” if with high-probability, the weighted
average of the dissimilarity of one distribution to those of
the same label is smaller with a margin γ to the dissimilarity
of distributions from the other class.

As stated in a theorem of Balcan et al. (2008), such a good
dissimilarity function can be used to define an explicit map-
ping of a distribution into a space. Interestingly, it can be
shown that there exists in that space a linear separator that
produces low errors.

Theorem 1. (Balcan et al., 2008) if D is an (ε, γ)-
good dissimilarity function, then if one draws a set
S from P containing n = ( 4M

γ )2 log( 2
δ ) positive ex-

amples S+ = {ν1, · · · , νn} and n negative exam-
ples S− = {ζ1, · · · , ζn}, then with probability 1 − δ,
the mapping ρS : P 7→ R2n defined as ρS(µ) =
(D(µ, ν1), · · · ,D(µ, νn),D(µ, ζ1), · · · ,D(µ, ζn)) has the
property that the induced distribution ρS(P) in R2n has a
separator of error at most ε+ δ at margin at least γ/4.

The above described framework shows that under some mild
conditions on a dissimilarity function and if we consider
population distributions, then we can benefit from the map-
ping ρS . We show in the next section that Wasserstein dis-
tance respects these conditions for some learning problems.
However, in practice, we do have access only to empirical
version of these distributions. Our theoretical contribution
in Section 4 proves that if the number of distributions n is
large enough and enough samples are obtained from each
of this distribution, then this framework is applicable with
theoretical guarantees to empirical distributions.

3. Wasserstein distance and population
learning problem

(ε, γ)- goodness of a dissimilarity function is a property
that depends on the learning problem. As such, it is diffi-
cult to characterize whether a dissimilarity will be good for
all problems. In this section, after a brief reminder on the
Wasserstein distance, we show that, for some discrimina-
tion problems involving normal distributions, this distance
satisfies Definition 2 and we exhibit the ε and γ associated.

3.1. Brief reminder on Wasserstein distance

Based on the theory of optimal transport, the Wasserstein
distance belongs to the class of integral probability metrics
that offer means to compare data probability distributions.
More formally, we first assume that X is endowed with
a metric dX . Let p ∈ (0,∞), and let µ ∈ P and ν ∈ P
be two distributions with finite moments of order p (i.e.∫
X dX (x, x0)pdµ(x) < ∞ for all x0 in X ). then, the p-

Wasserstein distance is defined as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
X×X

dX (x, y)pdπ(x, y)

) 1
p

.

(2)
Here, Π(µ, ν) is the set of probabilistic couplings π on
(µ, ν). As such, for every Borel subsets A ⊆ X , we have
that µ(A) = π(X × A) and ν(A) = π(A × X ). We re-
fer to (Villani, 2009, Chaper 6) for a complete and math-
ematically rigorous introduction on the topic. In machine
learning, it has recently found numerous applications in
important problems such as, for example, multi-label classi-
fication (Frogner et al., 2015), domain adaptation (Courty
et al., 2017) or generative models (Arjovsky et al., 2017).
Its efficiency comes from two major factors: i) it handles
empirical data distributions without resorting first to para-
metric representations of the distributions ii) the geometry
of the underlying space is leveraged through the embed-
ding of the metric dX . Also, there is no restriction on the
overlapping of the support of µ and ν, contrary to several
alternatives like Kullback-Leibler divergences. In some
very specific cases the solution of the infimum problem
is analytic. For instance, in the case of two Gaussians
µ ∼ N (m1,Σ1) and ν ∼ N (m2,Σ2) the Wasserstein
distance with dX (x, y) = ‖x− y‖2 reduces to:

W 2
2 (µ, ν) = ||m1 −m2||22 + B(Σ1,Σ2)2 (3)

where B(, ) is the so-called Bures metric (Bures, 1969):

B(Σ1,Σ2)2 = trace(Σ1 + Σ2− 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2). (4)

Yet, in a general machine learning setting, we make no as-
sumption on the form of the distributions, and distributions
are observed through samples. In this case, computing the
Wasserstein distance boils down to solve a discrete version
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of Equation 2 which is a linear programming problem. Ac-
celerated solutions of this linear program has been found by
adding an entropic regularization term (Cuturi, 2013). In
the remainder of the paper we restrict ourselves (without
loss of generality or further implications) to the case of the
Wasserstein of order 2, and we will note W2(µ, ν) simply
as W (µ, ν).

3.2. Discriminating normal distributions with the mean

Consider a binary distribution classification problem where
samples from both classes are defined by Gaussian distri-
butions in Rd. Means of these Gaussian distribution fol-
low another Gaussian distribution which mean depends
on the class while covariance are fixed. Hence, we have
µi ∼ N (mi,Σ) with mi ∼ N (m?

−1,Σ0) if yi = −1
and mi ∼ N (m?

+1,Σ0) if yi = +1 where Σ and Σ0

are some definite-positive covariance matrix. We sup-
pose that both classes have same priors. We also denote
D? = ‖m?

−1 −m?
+1‖22 which is a key component in the

learnability of the problem. Intuitively, assuming that the
volume of each µi as defined by the determinant of Σ is
smaller than the volume of Σ0, the larger D? is the easier
the problem should be. This idea appears formally in what
follows.

Based on Wasserstein distance between two normal distribu-
tions with same covariance matrix, we have W (µi, µj)

2 =
‖mi−mj‖22. In addition, given a µi with mean mi, regard-
less of its class, we have, with k ∈ {−1,+1}:

Eµj :mj∼N (m?
k,Σ0)[‖mi−mj‖22] = ‖mi−m?

k‖22 +Tr(Σ0)

Given α ∈]0, 1], we define the subset of Rd,

E−1 = {m : (m−m−1)>(m?
+1 −m?

−1) ≤ 1− α
2

D?

Informally, E−1 is an half-space containing of m−1 for
which all points are nearer to m−1 than m+1 with a margin
defined by 1−α

2 D?. In the same way, we define E+1 as :

E+1 = {m : (m−m?
+1)>(m?

−1 −m?
+1) ≤ 1− α

2
D?}

Based on these definition, we can state that W (·, ·) is a
(ε, γ) good dissimilarity function with γ = αD?, ε =
1
2

∫
Rd\E−1

dN (m−1,Σ0) + 1
2

∫
Rd\E+1

dN (m+1,Σ0) and
w(µ) = 1,∀µ. Indeed, it can be shown that for a given µi
with yi = −1, if mi ∈ E−1 then

‖mi −m?
−1‖22 + α‖m?

−1 −m?
+1‖22︸ ︷︷ ︸

γ

≤ ‖mi −m?
+1‖22

With a similar reasoning, we get an equivalent inequality for
µi of positive label. Hence, we have all the conditions given

in Definition 2 for the Wasserstein distance to be an (ε, γ)
good dissimilarity function for this problem. Note that the
γ and ε naturally depend on the distance between expected
means. The larger this distance is, the larger the margin and
the smaller ε are.

Remark 1. While the paper focuses on analyzing Wasser-
stein distance as a good dissimilarity measure, we can note
that for this specific problem of discriminating normal dis-
tribution, the Kullback-Leibler divergence defined as:

KL(µ1, µ2) =

∫
log

(
µ1

µ2

)
dµ1

is also a (ε, γ) good dissimilarity function. Indeed, for µ1

and µ2 being two normal distribution with same covariance
matrix Σ0, we have KL(µ1, µ2) = ‖m2 −m1‖2Σ−1

0

. And
following exactly the same steps as above, but replacing in-
ner product m>m′ with m>Σ−1

0 m′ leads to similar margin
γ = α‖m?

−1 −m?
+1‖2Σ−1

0

and similar definition of ε.

3.3. Discriminating normal distributions with the
covariance matrix

Consider now a binary distribution classification problem
where samples from both classes are defined by Gaussian
distributions in Rd sharing a common mean but with dif-
ferent covariances. We thus can use Equation 3 to com-
pute the squared Wasserstein distance. Let’s consider a
simple example, where the covariance matrices share a sim-
ilar structure : constant elements a on the diagonal and
a random anti-diagonal element. The distribution of this
element is given by b ∼ U(−a,−a/2) if yi = −1 and
b ∼ U(a/2, a) if yi = +1. By construction, every matrix
shares the same eigenvectors but the association between
eigenvalues λ = a ± b and eigenvectors switch between
classes. Geometrically classes are distinguished by the ori-
entation of the ellipsis corresponding to the covariances
matrices. The greater the quantity |b/a| is (i.e. the flatter
the ellipsis are), the easier it is to assign a class.

In such setting, the Wasserstein distance is:

W (µi, µj)
2 = ‖mi −mj‖22 + 4a

− 2

(√
(a+ yjbj)(a+ bi) +

√
(a− yjbj)(a− bi)

)
.

Based on this definition, and following similar steps than
in the previous case, we can show (details are in the ap-
pendix) that W (·, ·) is a (ε, γ)- good dissimilarity function
with γ = 2

√
2
(

7
3 −
√

3
)
α and ε = 1

2

∫
[−a,−a/2]\B−1

2
adb+

1
2

∫
[a/2,a]\B+1

2
adb (explicit expression of ε can be derived

from the equivalent condition).
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4. Learning with empirical distributions
In the above sections, we have introduced the notion of
(ε, γ) good dissimilarity function and we have shown that
for some learning problems, involving population normal
distributions, the Wasserstein distance satisfies the goodness
conditions. Naturally, goodness of Wasserstein distance
does not limit to these problems, but proving this property
for a larger set of problem is beyond the scope of this paper.
Furthermore, in practice, we do not have access to popu-
lation distributions but to their empirical counterparts. In
what follows, we prove that under some conditions on the
number of samples in each distribution, it is still possible to
learn a separator with low error.

4.1. Theoretical analysis

Suppose that we have at our disposal a dataset composed of
{µi, yi = 1}ni=1 where each µi is a distribution. How-
ever, each µi is not observed directly but instead we
observe it empirical version µ̂i = 1

Ni

∑Ni
j=1 δxi,j with

xi,1,xi,2, · · ·xi,Ni
i.i.d∼ µi. For a sake of simplicity, we

assume in the sequel that the number of samples for all
distributions are equal to N .

We now show that, assuming that the Wasserstein distance
is a (ε, γ) good dissimilarity function on population dis-
tributions, for a given learning problem, then building the
mapping ρS based on empirical distributions still leads to
a low-error separator. We formally translate this statement
into the following theorem:
Theorem 2. For a given learning problem, if the Wasser-
stein distance W is an (ε, γ)-good dissimilarity function
on population distributions, with w(µ) = 1, ∀µ and K a
parameter depending on this dissimilarity then, for a param-
eter λ ∈ (0, 1), if one draws a set S from P containing n =
32M2

γ2 log( 2
δ2(1−λ) ) positive examples S+ = {ν1, · · · , νn}

and n negative examples S− = {ζ1, · · · , ζn}, and from
each distribution νi or ζi, one draws N = 256

Kγ2 log( 1
δ2λ )

samples so as to build empirical distributions {ν̂i} or {ζ̂i},
then with probability 1 − δ, the mapping ρ̂S : P 7→ R2n

defined as

ρ̂S(µ̂) =
1

M
(W (µ̂, ν̂1), · · · ,W (µ̂, ν̂n),W (µ̂, ζ̂1), · · · ,W (µ̂, ζ̂n))

has the property that the induced distribution ρS(P) in R2n

has a separator of error at most ε + δ and margin at least
γ/4.

Let us point out some relevant insights from this theorem.
At first, due to the use of empirical distribution, the sample
complexity of the learning problem increases for achieving
similar error. Secondly, note that λ has a trade-off role
on the number n of samples νi and ζi and the number of
observations per distribution. Hence, for a fixed error ε+δ at

margin γ/4, having less samples has to be paid by sampling
more observations.

The proof of Theorem 3 follows the steps from Balcan et
al. but takes advantage of a key technical result on empiri-
cal distributions that we present below in Lemma 1. Note
that the theorem holds only for the Wasserstein distance
because the result in that Lemma applies only to Wasser-
stein distance. However, we will discuss below under which
property it can be extended to a larger class of dissimilarity
function.

Lemma 1. Denote µ as a fixed distribution sampled from
P of class y and µ̂ its empirical version composed of N
observations. Suppose that we have a set of n distributions
{νi}ni=1 which have the same label y, then the following
concentration inequality holds for any ε > 0 :

Pr
(∣∣ 1
n

∑n
i=1W (µ̂, ν̂i)−Eν∼P[W (µ, ν)|`(µ) = `(ν)]

∣∣ > ε
)

≤ e−KN
ε2

16 + 2e
−n ε2

2M2

This lemma tells us that, with high probability, the mean
average of the dissimilarity between an empirical distribu-
tion and some other empirical distribution of the same class
does not differ much from the expectation of this dissimilar-
ity measured on population distributions. Interestingly, the
bound on the probability is composed of two terms : the first
one is related to Wasserstein distance between a distribution
and its empirical version while the second one is due to the
empirical version of the expectation (resulting thus from
Hoeffding inequality). The detailed proof of this result is
given in the supplementary material.

Theorem 3 can be extended to any (ε, γ) good dissimilarity
function under the condition that it satisfies a concentration
inequality of the form : Pr (D(µ, µ̂) > ε) ≤ f(N, ε) where
µ is a population distribution, µ̂ its empirical version with
N samples and f is a function of the number of samples
in the empirical distribution and of the deviation ε, with f
going to 0 as N or ε goes to∞.

Hence, from a theoretical point of view, there is only one
reason for choosing one (ε, γ) good dissimilarity function
on population distributions from another. The rationale
would be to consider the dissimilarity function with the
fastest rate of convergence of the concentration inequality
Pr(D(µ, µ̂) > ε), as this rate will impact the upper bound
in Theorem 3.

4.2. On the benefit of Wasserstein distance

The approach we advocate for learning with distribution is
simple. It consists in computing pairwise Wasserstein dis-
tances between all training distributions and some of them
denoted as templates, and use this dissimilarity embedding
as feature for a linear separator algorithm (such as a SVM).
Note that while not theoretically justified by our framework,
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considering a non-linear classifier such as a Gaussian kernel
SVM is also possible and sometimes leads to better results.

Let us now discuss why the Wasserstein distance is an impor-
tant piece of the proposed approach. From an algorithmic
point of view, we need to compute dissimilarities of distri-
butions. There exists several family of distance/divergence
between probabilities, most common and popular ones being
the φ-divergence (Pardo, 2005), for which Kullback-Leibler
divergence is a particular case and the integral probability
metrics which encompasses the Wasserstein distance. In
practice, we need to compute these distances/divergences
from samples obtained i.i.d from the unknown distribution
µ and ν. The problem of estimating in a non-parametric way
some φ-divergence, especially the Kullback-Leibler diver-
gence have been thoroughly studied by Nguyen et al. (2007;
2010). For KL divergence, these estimations are obtained
by solving a quadratic programming problem. In a nutshell,
compared to Kullback-Leibler divergence, Wasserstein dis-
tance benefits from a linear programming problem compared
to a quadratic programming problem, which is far more ex-
pensive too compute. In addition, unlike KL-divergence,
Wasserstein distance takes into account the properties of X
and as such it does not diverge for distributions that do not
share support.

Non-parametric estimation of integral probability metrics
has been studied by Sriperumbudur et al. (2010) . In this
latter work, they have shown that the Wasserstein distance,
with the dX being the euclidean norm and p = 1 and some
other integral probability metrics can be estimated by solv-
ing a linear programming problem. For the Wasserstein-
1 distance, this was a well-known result based on the
Kantorovich-Rubinstein theorem (Villani, 2009). Note that
for other generic metrics dX , the Wassertein distance can
be computed, using the discrete version of Equation (2).
Interestingly, we shall remark that one integral probability
metric, the maximum mean discrepancy (MMD) (Gretton
et al., 2007; Sriperumbudur et al., 2010), is a metric between
empirical distributions that can be computed in closed-form.
MMD is the key component of the Support Measure Ma-
chines of Muandet et al. (2012), an extension of Support
Vector Machines for discriminating distributions. Com-
pared to another integral probability metrics such as MMD,
Wasserstein distance suffers the computational comparison
as MMD is just the averaged pairwise kernel evaluation
of all samples. Contrarily, Wasserstein distance, by con-
struction, somehow aims at finding the best match between
samples and unlike MMD, the resulting distance will de-
pend on fewer pairwise distances between samples of the
two distributions. Hence, we believe that the cheapness
of computation of MMD comes at the expense of losing
ability of finely comparing distributions. But the more in-
teresting argument in favor of Wasserstein is also the ability
to compare disributions that do not share support without

stagnating as MMD does. This property and the fact that its
gradient vanishes except when the distributions are identical
have been instrumental to the performances of Wasserstein
Generative Adversarial Networks (Arjovsky et al., 2017).

5. Numerical experiments
In this section, we have analyzed and compared the per-
formances of our Wasserstein distances based embedding
for learning to classify distributions. Several toy problems,
similar to those described in Section 3.2 and 3.3 have been
considered as well as a computer-vision real-world problem.

5.1. Competitors

Before describing the experiments we carried out, we first
discuss the algorithms we have compared. We have con-
sidered two variants of our approach. The first one embeds
the distributions based on ρ̂S by using, unless specified, all
distributions available in the training set. Then, we learn
either a linear SVM or a Gaussian kernel classifier resulting
in two methods dubbed in the sequel as WDMM + linear
SVM and WDMM + Gaussian SVM. In the family of inte-
gral probability metrics, we have considered as a competitor
the support measure machines of Muandet et al. (2012), de-
noted as SMM. We have considered its non-linear version
which used an Gaussian kernel on top of the MMD kernel.
In SMM, we have thus two kernel hyperparameters.

Note that in addition to SMM, other kernel on distributions
could have been considered by using generalized radial basis
function kernel involving squared-distance on distributions
as in Equation 1. However, most of these distances can
not be computed based on samples and need kernel density
estimation (Sutherland et al., 2016). Moreover positive
definiteness of resulting kernel may not be guaranteed.

Kullback-Leibler divergence can replace the Wasserstein
distance in our framework. For instance, we have high-
lighted that for the problem in Section 3.2, KL-divergence
is an (ε, γ) good dissimilarity function. We have thus imple-
mented the non-parametric estimation of the KL-divergence
based on quadratic programming (Nguyen et al., 2010;
2007). Pairwise distances have then be used for building
an empirical map ρ̂S followed by a linear or a non-linear
classifier, leading to a KL-variant of our approach.

After few experiments on the toy problems, we finally de-
cided to not report performance of the KL-divergence based
approach due to its poor computational scalability. For
instance, for the first toy problem, KL achieved similar per-
formances than other competitors. However for n = 200, it
took several days of computations for running 1 trial while
other methods had already finished the 20 trials.
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Figure 2. Examples of the 2D toy problems we addressed. For each problem, the number of empirical distributions is 10 per class and
we have 30 samples per distribution. (left) binary classification problem as described in Section 3.2. distributions can be discriminated
through their means. (middle) 3-class problem in which discriminative features are based on covariance matrix. This is an extension of
the problem describe in Section 3.3. (right) 3-class problem based on mixture of Gaussians. Discriminative features are the number of
modes in the distributions and their means.

5.2. Simulated problems

These problems aim at studying the performances of our
models in controlled setting. The first toy problem is the
one describing in Section 3.2 and it also correspond to the
toy problem employed by Muandet et al. (2012) In this case,
Mean of a given distribution follows a normal distribution
which mean is either m?

−1 = [1, 1] or m?
−1 = [−1,−1]

with an identity covariance matrix. The covariance of the
distribution is fixed for the two classes and is σI, with
σ = 0.1. The second toy problem corresponds to the
one described in Section 3.2 but with 3 classes. For all
classes, mean of a given distribution follows a normal dis-
tribution with mean m? = [1, 1] and covariance matrix σI
with σ = 5. For class i, covariance matrix of a distribution
is Σi = [a, bi; bi, a] where a = 0.005 with b1 ∼ U(a/2, a),
b2 ∼ U(−a,−a/2) and b3 = 0. The last toy aims at dis-
criminating the number of mode in mixture of Gaussians
distributions. For all classes, each Gaussian in the mix-
tures have pre-defined means and covariance matrix σI with
σ = 0.01. For all classes, sample varies according to a
translation defined by a zero-mean unit-variance normal
distribution. An example of realization for all toy problems
is given in Figure 2.

For these experiments, we have analyzed the effect of the
number of training examples n (which is also the number
of templates) and the number of samples N in each distribu-
tion. We define a trial for a given n, and N as follows. We
have sampled the corresponding distributions. We have per-
formed cross-validation on all parameters of all competitors.
For WDMM based approaches, this includes the entropic
regularization term λ for computing the Wasserstein dis-
tance and all classifier parameters. For KL-divergence, we
also have a regularization term in the estimator QP problem.
For SMM, this involves all kernel and classifier parameters.
Approaches are then evaluated on of 2000 distributions. 20
trials have been considered for each n and N .

Figure 3 represents the averaged classification accuracy
for N = 10 and N = 30 samples per classes and with
increasing n of the different competitors.

We remark on the left plots of Figure 3 that SMM and WD-
MMs performs similarly. There is no clear advantage of one
method compared to the other regardless of n and N . The
problem seems to be easy enough for both approaches. Re-
sults for the second toy problem are reported in the middle
panels. We note that this problem is more difficult and SMM
struggles in achieving good performance. While SMM and
WDMM yield similar performances for small n, WDMM
benefits from a larger number of training examples. For
n = 1000, the difference in performance is almost 20% of
accuracy. Difference between top and bottom panels also
show that both approaches take advantages of the increased
number of samples in each distribution. SMM gains about
7% of performances for n ≥ 200 while WDMM gains
approximatively 10%. Interestingly, for this toy problem,
using a Gaussian kernel on top of the WD embeddings helps
in improving performances. For the third toy problem, we
note that WDMM + linear SVM outperforms all competi-
tors. This difference in performance compared to SMM is
about 20% for small number of training examples.

5.3. Natural scene categorization

We have compared the performance of SMM and our
WDMM approaches on a computer vision problem. For
this purpose, we have reproduced the experiments carried
out by Muandet et al. (2012). Their idea is to consider an
image of a scene as an histogram of codewords, where the
codewords have been obtained by k-means clustering of
128-dim SIFT vector and thus to use this histogram as a
discrete probability distribution for classifying the images.
Details of the feature extraction pipeline can be found in
the paper Muandet et al. (2012). The only difference our
experimental set-up is that we have used an enriched ver-
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Figure 3. Comparing performances of Support Measure Machines and Wasserstein distance + classifier. From left to right, we have the
results on toy problem denoted as Mean, Cov and Mod. The top row represents results when the number of samples per distribution is
N = 10 for the bottow row N = 30. Performances have been averaged over 20 trials.
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Figure 4. Performances on SMM and WDMM on Scenes dataset.
Results are averaged over 10 trials with random drawn of the
training set.

sion of the dataset 1 they used. Similarly, we have used 100
images per class for training and the rest for testing. Again,
all hyperparameters of all competing methods have been
selected by cross-validation.

The averaged results over 10 trials are presented in Figure 4.
They illustrate the benefit of WDMM approaches compared
to SMM as both linear and non-linear approaches perform
better and SMM. We believe that the gain in performance is
due to the ability of the Wasserstein distance of matching

1The dataset is available at http://www-cvr.ai.uiuc.
edu/ponce_grp/data/

samples of one distribution to only few samples of the other
distribution. By doing so, we believe that it is able to capture
in an elegant way complex interaction between samples of
distributions.

6. Conclusion
This paper introduces a method for learning to discriminate
probability distributions based on dissimilarity functions.
The algorithm consists in embedding the distributions into a
space of dissimilarity to some template distributions and to
learn a linear decision function in that space. From a theo-
retical point of view, when considering population distribu-
tions, our framework is an extension of the one of Balcan
et al. (2008). But we provide a theoretical analysis showing
that for embeddings based on empirical distributions, given
enough samples, we can still learn a linear decision func-
tions with low error with high-probability with empirical
Wasserstein distance. The experimental results illustrate the
benefits of using empirical dissimilarity on distributions on
toy problems and real-world data.

Futur works will be oriented toward analyzing a more gen-
eral class of regularized optimal transport divergence, such
as the Sinkhorn divergence (Genevay et al., 2017) in the
context of Wasserstein distance measure machines. Also,
we will consider extensions of this framework to regression
problems, for which a direct application is not immediate.

http://www-cvr.ai.uiuc.edu/ponce_grp/data/
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
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A. All the details of discriminating with the
covariance matrix

Consider now a binary distribution classification problem
where samples from both classes are defined by Gaussian
distributions in Rd sharing a common mean but with differ-
ent covariances. Remember that as the covariances differ,
the Wasserstein distance between the two normal distribu-
tions is now

W (µi, µj)
2 = ‖mi−mj‖22+Tr(Σi+Σj−2(Σ

1/2
i ΣjΣ

1/2
i )1/2).

Let’s consider a simple example with p = 2, where the
covariance matrices share a similar structure : constant
elements a on the diagonal and a random anti-diagonal el-
ement. The distribution of this element is given by b ∼
U(−a,−a/2) if yi = −1 and b ∼ U(a/2, a) if yi = +1.
By construction, every matrix shares the same eigenvec-
tors but the association between eigenvalues λ = a ± b
and eigenvectors switch between classes. Geometrically
classes are distinguished by the orientation of the ellipsis
corresponding to the covariances matrices. The greater the
quantity |b/a| is (i.e. the flatter the ellipsis are), the easier it
is to assign a class.

In such setting, the Wasserstein distance is:

W (µi, µj)
2 = ‖mi −mj‖22 + 4a

− 2

(√
(a+ yjbj)(a+ bi) +

√
(a− yjbj)(a− bi)

)
.

The expectation w.r.t. µj is then given by

Eµj [W (µi, µj)
2] = ‖mi −m?‖22 + Tr(Σ0) + 4a

− 2 ∗ 2 ∗ 2

3
∗ 1

yj

√
a
√
a+ bi

(
(1 + yj)

3/2 − (1 +
yj
2

)3/2
)

− (−1)
8
√
ayj
3

√
a− bi

(
(1− yj)3/2 − (1− yj

2
)3/2

)
.

ie

Eµj [W (µi, µj)
2] = ‖mi −m?‖22 + Tr(Σ0) + 4a

− 8
√
a

3

√
a+ bi

(
yj(1 + yj)

3/2 − yj(1 +
yj
2

)3/2
)

− 8
√
a

3

√
a− bi

(
(−yj)(1− yj)3/2 − (−yj)(1−

yj
2

)3/2
)
.

as yj(1 + yj) = (1 + yj) and −yj(1− yj) = (1− yj)

Eµj [W (µi, µj)
2] = ‖mi −m?‖22 + Tr(Σ0) + 4a

− 2
√

2a

3

(
2
√

2(1 + yj)
3/2 − yj(2 + yj)

3/2
)√

a+ bi

− 2
√

2a

3

(
2
√

2(1− yj)3/2 − (−yj)(2− yj)3/2
)√

a− bi.
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Given α ∈]0, 1], we define the subset of [−a, −a2 ],

B−1 =
{
b :
√
a− b ≥

√
a+ b+

√
2aα

}
.

In geometric term, the selected set consists in the ”flatest” el-
lipsis of the set as the inegality posits some minimal distance
between the eigenvalues.

Then, it can be shown that for a given µi with bi ∈ B−1

Eµj ,yj=−1[W (µi, µj)
2] + γ ≤ Eµj ,yj=+1[W (µi, µj)

2]

as shown by the following expression

Eµj ,yj=−1[W (µi, µj)
2]−Eµj ,yj=−1[W (µi, µj)

2] =

− 2
√

2a

3

(
7− 3

√
3
)(√

a− bi −
√
a+ bi

)
≤ 4

3

(
7− 3

√
3
)
aα

In the same way, we define the subset of [a2 , a]

B+1 =
{
b :
√
a+ b ≥

√
a− b+ α

√
2a
}
.

and with a similar reasoning, we get similar inequality for
µi of positive label. Based on these definition, we can
state that W(,̇)̇ is a (ε, γ)- good dissimilarity function with
γ = 2

√
2
(

7
3 −
√

3
)
α and ε =

∫
[−a,−a/2]\B−1

1/adb +∫
[a/2,a]\B+1

1/adb (explicit expression of ε can be derived

from the equivalent condition |b| ≥ α
√

2− α2a).

B. Preliminary results
B.1. Property I

Let W be the Wasserstein distance on P × P Let µi, µj
be two probability distribution and µ̂i, µ̂j their empirical
version. We have:

|W (µi, µj)−W (µ̂i, µ̂j)| ≤W (µi, µ̂i) +W (µj , µ̂j) (5)

Proof. Owing to triangular inequality, we have

W (µi, µj) ≤W (µi, µ̂i) +W (µ̂i, µj) (6)
≤W (µi, µ̂i) +W (µ̂i, µ̂j) +W (µ̂j , µj) (7)

We thus have

W (µi, µj)−W (µ̂i, µ̂j) ≤W (µi, µ̂i) +W (µ̂j , µj)

In addition, we also have:

W (µ̂i, µ̂j) ≤W (µ̂i, µi) +W (µi, µ̂j) (8)
≤W (µ̂i, µi) +W (µi, µj) +W (µj , µ̂j) (9)

Hence :

−(W (µi, µj)−W (µ̂i, µ̂j)) ≤W (µ̂i, µi) +W (µj , µ̂j)
(10)

leading to

|W (µi, µj)−W (µ̂i, µ̂j)| ≤W (µ̂i, µi) +W (µj , µ̂j)

B.2. Property II

This result is a direct application of concentration inequal-
ity of Wasserstein distance (Bolley et al., 2007) applied to
Gaussian distribution and to distribution defined on compact
space.

Lemma 2. Let µi be a probability distribution on a metric
space (Rn, d), µ̂i the associated empirical distribution and
N the number of samples. If µi is a Gaussian distribution or
µi has a compact support, ∃K > 0,P(W (µi, µ̂i) > ε) ≤
e−KNε

2

Proof. First case: if µi is a Gaussian distribution on Rn, it
is well known that the Talagrand inequality T2 is verified
(see (Gozlan, 2015): Theorem 2.3). Hence, the property is a
direct application of the theorem 1.1 in (Bolley et al., 2007).
Remark: roughly speaking, the Talagrand inequality is

defined by W (µ, ν) ≤
√

2
λH(ν|µ),H being the relative

entropy of ν with respect to µ(for more information on
Talagrand inequalities, see (Bolley et al., 2007): section
1.1)

Second case: if µi has a compact support K ⊂ Rn,
we have ∀y ∈ Rn and ∀α > 0:∫
Rn
eαd

2(x,y)dµ(x) =

∫
Rn
eαd

2(x,y)dµ(x)

≤ max
x∈K

(d2(x, y))µ(K)

≤ max
x∈K

(d2(x, y))

The last inequality is due to the fact that µ is a probability
distribution. Since a distance is a continuous function and a
continuous function attains its maximum on a compact set,
we have:∫
Rn e

αd2(x,y)dµ(x) <∞: this corresponds to the existence
of a square-exponential moment for the probability
distribution µ, which implies the Talagrand inequality T1

(see (Bolley et al., 2007)). With this condition, the theorem
1.1 in (Bolley et al., 2007) gives our property.

B.3. Property III

Given a distribution µi, if the distributions {µj}1≤j≤n are
independent, the following inequality holds:



Wasserstein Distance Measure Machines

P(| 1
n

n∑
j=1

W (µi, µj)− Eµ∼P(W (µi, µ))| > ε) ≤ 2e−
2nε2

M2

Proof. Since we consider a bounded Wasserstein dis-
tance W by a positive constant M, the random
variables{W (µi, µj)}1≤j≤n are bounded by M with prob-
ability 1. Given that the variables {W (µi, µj)}1≤j≤n are
bounded (boundedness of W ) and independent (due the in-
dependence of the {µj}1≤j≤n, the continuity of W and its
boundedness) , the Hoeffding’s inequality yields:

P(| 1
n

n∑
j=1

W (µi, µj)− Eµ∼P(W (µi, µ))| > ε) ≤ 2e−
2nε2

M2

B.4. Property IV

Let S1 and S2 be two subsets of a set Ω.
S1∩S2 = {x ∈ Ω|x ∈ S1, x ∈ S2} = ∅ ⇒ S1 ⊂ Ω\S2 =
{x ∈ Ω|x /∈ S2}
Proof:
Let x ∈ S1. There are two possibilities: x ∈ S1 \ S2 or
S1 ∩ S2. Since S1 ∩ S2 = ∅ by hypothesis, we have:
x ∈ S1 \ S2

⇒ x ∈ S1 and x /∈ S2

⇒ x ∈ Ω and x /∈ S2 (since S1 ⊂ Ω)
⇒ x ∈ Ω \ S2

C. Proof of Lemma 1 in the paper
Our main result is the inequality:

P(| 1
n

n∑
j=1

W (µ̂i, µ̂j)− Eµj∼P(W (µi, µj))| > ε) ≤ g(ε)

with g(ε) = e−
KN
16 ε

2

+ 2e−
nε2

2M2 ,∀ε > 0, µ̂j referring to
the empirical distribution of µj .
One can easily notice that g(ε)→ 0 when ε→∞.

Proof. Let’s denote

Γ = | 1
n

n∑
j=1

W (µ̂i, µ̂j)− Eµj∼P(W (µi, µj))|

Γ = | 1
n

n∑
j=1

W (µ̂i, µ̂j)−
1

n

n∑
j=1

W (µi, µj) +
1

n

n∑
j=1

W (µi, µj)

−Eµj∼P(W (µi, µj))|

By triangular inequality for the absolute value, we have:

Γ ≤ Γ2 + Γ1 (11)

with:

Γ2 = | 1
n

n∑
j=1

W (µ̂i, µ̂j)−
1

n

n∑
j=1

W (µi, µj)|

Γ1 = | 1
n

n∑
j=1

W (µi, µj)− Eµj∼P(W (µi, µj))|

We now have Γ2 ≤ 1
n

∑n
j=1 |W (µ̂i, µ̂j) − W (µi, µj))|

(triangular inequality for the absolute value) and

Γ2 ≤
1

n

n∑
j=1

W (µi, µ̂i) +W (µj , µ̂j)

owing to the following preliminary results section: Prop-
erty I)
The set {W (µj , µ̂j)}1≤j≤n is a finite set of real numbers.
Thus, it admits at least one maximum. Let’s denote n0 the
index of one maximum, i.e.:
n0 = argmax1≤j≤nW (µj , µ̂j)
The last implication (obtained by the property I in the pre-
liminary results section) yields:
Γ2 ≤ 1

n

∑n
j=1W (µi, µ̂i) +W (µj , µ̂j)

⇒ Γ2 ≤ 1
n

∑n
i=1 2W (µn0 , µ̂n0) (by definition of n0)

⇒ Γ2 ≤ 2W (µn0
, µ̂n0

)
⇒ P(W (µn0

, µ̂n0
) ≤ ε1) ≤ P(Γ2 ≤ 2ε1) (because

W (µn0
, ˆµn0

) ≤ ε1 ⇒ Γ2 ≤ 2ε2)
⇒ 1− P(W (µn0

, µ̂n0
) ≤ ε1) ≥ 1− P(Γ2 ≤ 2ε1)

⇒ P(W (µn0 , µ̂n0) > ε1) ≥ P(Γ2 > 2ε1).
Since P(W (µn0 , µ̂n0) > ε1) ≤ e−KNε21 (property II of the
preliminary results section), we have:
P(Γ2 > 2ε1) ≤ P(W (µn0 , µ̂n0) > ε1) ≤ e−KNε21
⇒ 1− P(Γ2 ≤ 2ε1) ≤ e−KNε21
⇒ 1− e−KNε21 ≤ P(Γ2 ≤ 2ε1)

⇒ 1− e−KNε21 ≤ P(−Γ2 ≥ −2ε1)
Thus:

1− e−KNε
2
1 ≤ P(ε−Γ2 ≥ ε− 2ε1),∀ε1 > 0, ε > 0 (12)

By definition, we have:
Γ ≤ Γ2 + Γ1(see the equation (11))
P(ε ≤ Γ) ≤ P(ε ≤ Γ1 + Γ2) (because ε ≤ Γ ⇒ ε ≤
Γ1 + Γ2)
Hence, we have:

P(ε ≤ Γ) ≤ P(ε− Γ2 ≤ Γ1) (13)
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At this point, we have the two equations given by (12) and
(13):
P(ε ≤ Γ) ≤ P(ε−Γ2 ≤ Γ1) and 1−e−KNε21 ≤ P(ε−Γ2 ≥
ε− 2ε1),∀ε1 > 0, ε > 0.
By choosing ε1 = ε

4 , we have:

P(ε ≤ Γ) ≤ P(ε− Γ2 ≤ Γ1︸ ︷︷ ︸
S1

) (14)

and

1− e−KNε
2

16 ≤ P(ε− Γ2 ≥
ε

2︸ ︷︷ ︸
S2

),∀ε > 0 (15)

• First Case: S1 ∩ S2 6= ∅

S1 = (S1 \ S2) ∪ (S1 ∩ S2)
⇒ P(S1) ≤ P(S1 \ S2) + P(S1 ∩ S2)
⇒ P(S1) ≤ P(Ω \S2) +P(S1 ∩S2) (S1 \S2 ⊂ Ω \S2,Ω
being the universe)
⇒ P(S1) ≤ 1− P(S2) + P(S1 ∩ S2)(**)
⇒ P(S1) ≤ e−KNε

2

16 + P(S1 ∩ S2) (by equation (12))
S1 ∩ S2 ⊂

{
ε
2 ≤ Γ1

}
⇒ P(S1 ∩ S2) ≤ P(Γ1 ≥ ε

2 )
Given that P(S1) ≤ 1− P(S2) + P(S1 ∩ S2) by (**), we
have by the equation (15):
P(S1) ≤ e−KNε

2

16 + P(Γ1 ≥ ε
2 )

Since P(ε ≤ Γ) ≤ P(S1) by the equation (14), we have:
⇒ P(ε ≤ Γ) ≤ e−KNε

2

16 + P(Γ1 ≥ ε
2 ),∀ε > 0

⇒ P(ε ≤ Γ) ≤ e−
KN
16 ε

2

+ P(Γ1 ≥ ε
2 ) ≤

e−
KN
16 ε

2

+ 2e−
nε2

2M2 (property III of the preliminary
results section)

• Second case: S1 ∩ S2 = ∅

By the property IV of the preliminary results section, we
have:
S1 ⊂ Ω \ S2

⇒ P(S1) ≤ P(Ω \ S2) = 1− P(S2)

⇒ P(S1) ≤ e−KNε
2

16 ,∀ε > 0 (by the equation (15))
⇒ P(Γ ≥ ε) ≤ e−KNε

2

16 ,∀ε1, ε > 0

⇒ P(Γ ≥ ε) ≤ e−KN16 ε2 + P(Γ1 ≥ ε
2 )

⇒ P(Γ ≥ ε) ≤ e−
KN
16 ε

2

+ 2e−
nε2

2M2 ,∀ε > 0 (property III
of the preliminary results section)

D. Proof of Theorem 2
Theorem 3. For a given learning problem, if the Wasser-
stein distance W is an (ε, γ)-good dissimilarity function on
population distributions, with w(µ) = 1, ∀µ, and K a pa-
rameter depending on this dissimilarity then, for a parameter
λ ∈ (0, 1), if one draws a set S from P containing

n =
32M2

γ2
log(

2

δ2(1− λ)
)

positive examples S+ = {ν1, · · · , νn} and n negative ex-
amples S− = {ζ1, · · · , ζn}, and from each distribution νi
or ζi, one draws

N =
256

Kγ2
log(

1

δ2λ
)

samples so as to build empirical distributions {ν̂i} or {ζ̂i},
then with probability 1 − δ, the mapping ρ̂S : P 7→ R2n

defined as

ρ̂S(µ̂) =
1

M
(W (µ̂, ν̂1), · · · ,W (µ̂, ν̂n),W (µ̂, ζ̂1), · · · ,W (µ̂, ζ̂n))

has the property that the induced distribution ρS(P) in R2n

has a separator of error at most ε + δ at margin at least
γ/4.

Proof. Note that we reproduce here the proof of Balcan et
al but we invoke Lemma 1 of the paper at some points.

Consider the linear separator w̃ in the ρ̂S space defined
as w̃i = 1, for i ∈ {1, · · · , n} and w̃i = −1, for
i ∈ {n + 1, · · · , 2n}. We will show that, with prob-
ability at least (1 − δ), w̃ has error at most ε + δ at
margin γ/4. Let Good be the set of µ satisfying the
inequality Eµ′∼P [w(µ′)W (µ, µ′)|`(µ) = `(µ′)] + γ ≤
Eµ′∼P [w(µ′)W (µ, µ′)|`(µ) 6= `(µ′)]. By assumption, we
have Prµ∈P [µ ∈ Good] ≥ 1− ε.

Consider some fixed point µ ∈ Good. We show that for any
such µ,

PrS+,S−

(
`(µ)

w̃>ρ̂S(µ̂)

‖w̃>‖‖ρ̂S(µ̂)‖
≥ γ

4

)
≥ 1− δ2.

To do so, based on Lemma 1, we notice that n and N are
large enough so that with high probability, at least 1− δ2,
we have∣∣∣∣∣ 1n

n∑
i=1

W (µ̂, ν̂i)−Eν∼P[W (µ, ν)|`(µ) = `(ν)]

∣∣∣∣∣ ≤ γ

4

and∣∣∣∣∣ 1n
n∑
i=1

W (µ̂, ζ̂i)−Eζ∼P[W (µ, ζ)|`(µ) = `(ζi)]

∣∣∣∣∣ ≤ γ

4
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Let’s consider now the case when `(µ) =
1. In this case, we have `(µ)w̃>ρ̂S(µ̂) =
n
M

(
1
n

∑n
i=1 w(νi)W (µ̂, ν̂i)− 1

n

∑n
i=1 w(ζi)W (µ̂, ζ̂i)

)
,

and so combining these facts, we have that with
probability at least (1 − δ2) the following holds
: `(µ)w̃>ρ̂S(µ̂) ≥ n

M (Eν∼P[w(ν)W (µ, ν)|`(ν) =
1]− γ/4−Eν∼P[w(ν)W (µ, ν)|`(ν) = −1]− γ/4). Since
µ ∈ Good, this then implies that `(µ)w̃>ρ̂S(µ̂) ≥ n

M γ/2.
Finally, since w̃(ν) ∈ [−1, 1] for all ν and since
W (µ, ν) ∈ [0,M ] for all pairs ν, µ, we have ‖w̃‖ ≤

√
2n

and ‖ρS‖ ≤ 1
M

√
2n which implies that

PrS+,S−

(
`(µ)

w̃>ρ̂S(µ)

‖w̃>‖‖ρ̂S(µ)‖
≥ γ

4

)
≥ 1− δ2.

Since the above holds for any µ ∈ Good, it is also true
for random µ ∈ Good, which implies by Markov’s in-
equality that with probability 1 − δ, the vector w̃ has er-
ror at most δ at margin γ/4 over P restricted to distri-
butions µ ∈ Good. Adding back the ε probability mass
of points µ not satisfying Eµ′∼P [w(µ′)D(µ, µ′)|`(µ) =
`(µ′)] + γ ≤ Eµ′∼P [w(µ′)D(µ, µ′)|`(µ) 6= `(µ′)] yields
the theorem.


