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GORENSTEIN-FANO GENERIC TORUS ORBITS IN G/P

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

Abstract. Given a simple algebraic group G and a parabolic subgroup P ⊂
G, with maximal torus T , we consider the closure X of a generic T -orbit (in the
sense of Dabrowski’s work) in G/P , and determine when X is a Gorenstein-

Fano variety. We deduce of this classification a list of some pairs of dual

reflexive polytopes.

1. Introduction

If Λ is a lattice and ΛQ the Q-vector generated by Λ, a fan Σ is a finite set,
stable by taking intersection and face, of polyhedral, strictly convex, lattice cones
in ΛQ. The theory of toric varieties associates to fans Σ, normal varieties XΣ on
which an algebraic torus T acts effectively and with an open orbit. Lattices and
fans come naturally in the theory of root systems and from the early beginning of
the theory of toric varieties, Mumford in [Kempf73] associated for each root system
R the fan defined by the set of all closed Weyl chambers, relatively to the weight
lattice. These varieties were studied a lot: for example in [Pro90], [DL94] or more
recently in [BaBl11].

In [VoKl85], V.E. Voskresenskĭı and A.A. Klyachko considered a larger family
of fans constructed by “gluing together” selected adjacent Weyl chambers. Let’s
formalize their construction. To a choice of a set of simple roots in a root system R
corresponds a set of reflections {si : i ∈ I} which generates W the Weyl group of R.
For each L ⊂ I, let’s define WL the subgroup of W generated by {si : i ∈ L}, then
we can consider the set σR,L as the union of wD∨ for w ∈WL and D∨ the dominant
Weyl chamber of the dual root system R∨. If L 6= I and R irreducible, σR,L is a
strictly convex polyhedral lattice cone. We can define the fan ΣR,L such that its
cones of maximal dimension are the translate of −σR,L by elements w in the whole
group W (see 3.2 for a precise definition). The variety associated to this fan was
denoted by XR,L. Note that we recover the original construction of Mumford by
considering L = ∅.

The fact that we consider D∨ in place of the dominant Weyl chamber of R can be
justified by the following: to each couple (R,L), we can also associate a generalized
flag variety which is an homogeneous space G/P where G is a simple group of root
system R and P is a parabolic group containing a fixed maximal torus T of G and
of Weyl group WL. In this context, R. Dabrowski in [Dab96] define a fine notion of
a “generic T–orbit in G/P”. The remarkable result of this work is that the closure
of a generic orbit is a normal variety, so this variety is toric and its associated fan
is ΣR,L.

In [VoKl85], V.E. Voskresenskĭı and A.A. Klyachko considered only couples
(R,L) such that varieties XR,L were smooth, and among these varieties they gave
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the list of the ones which are Fano, that is such that the anticanonical bundle −KX

is ample. The notion of Q–Gorenstein Fano variety is a natural generalization of
the notion of Fano variety. More precisely, if X is a normal variety, the anticanon-
ical bundle does not necessarily exist, but we can define an anticanonical divisor
−KX . We say that X is Q–Gorenstein Fano, if there exists an integer m such
that m(−KX) is an ample Cartier divisor, and Gorenstein Fano if we can take
m = 1. In this work, we give the list of closures of generic T -orbits in G/P (or in
an equivalent way, of varieties XR,L) which are Q–Gorenstein Fano or Gorenstein
Fano. Of course the list of V.E. Voskresenskĭı and A.A. Klyachko is included in our
list. In a way, this inclusion is wide: in the smooth case, it appears only irreducible
root systems of type An, Cn, G2 and the Fano Varieties forms three infinite series
plus one exceptional case. By releasing the smooth constraint, we obtain varieties
XR,L which is Q–Gorenstein Fano for all types of irreducible root systems except
E7 and E8, and the Q–Gorenstein Fano varieties form twelve infinite series plus
five exceptional cases.

It is well-known that Gorenstein Fano toric varieties are in correspondence with
reflexive polytopes. As a by product of our work, we obtain a list of some pairs
of dual reflexive polytopes. These pairs are as follow: in right hand, the polytope
defined by the convex hull of Prim(ΣR,L) (see section 2.1 for definition) defined
relatively to the weight lattice of R∨, in left hand convex hull of an orbit of W (i.e.
a Weyl polytope) relatively to the root lattice of R.

We describe now the content of this paper.

In Section 2 we collect some basic facts on toric varieties and their associated fans,
and we introduce the notion of Gorenstein Fano varieties in the toric context. In
section 3, we present our notations for root systems, and we detail the construction
of fans ΣR,L. Then we explain the work of Dabrowski [Dab96] which make a link
between these fans and the closure of the generic orbits.

In the section 4, we study combinatorial properties of the cone σR,L. This study
permits to characterize the Q–Gorenstein-Fano generic closures in theorem 4.14: a
generic closure associated to a subset L ⊂ I is Q–Gorenstein-Fano if and only if
the convex hull of Prim(σR,L) (the primitive vectors of the cone σR,L) is a (n− 1)-
dimensional polytope, such that the normal of its support hyperplane is interior to
the cone generated by {ωi : i ∈ I \ L}. In the section 5.1 we give a list of variety
XR,L which are (Q–)Gorenstein Fano for R irreducible roots system. In section 6,
by using results in the section 4, we give the proof of the classification.

Finally in the last section 8, we explicit pair of dual reflexive polytopes associated
to each Gorenstein Variety XR,L.

In a previous version of this paper, calculations for groups of exceptional type
E6, E7, E8, F4 were made by using the following softwares: Sage [St] and the version
of Gap3 [Sch97] maintained by Jean Michel — that allow us to use the package
Chevie (see [GHLMP96] and [Mic2015]). In this regard, we warmly thank Cédric
Bonnafé for his short, but effective introduction to Gap3. Although this program
is no longer necessary to prove our result, writing and using it allowed us to better
understand the cone σR,L. Interested readers can download this program online
(see [MR17]).
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2. Preliminaries

2.1. Toric varieties. Our general reference for toric varieties is the book of Cox,
Little and Schenck [CLS11]. Let T be an algebraic torus. We denote by Λ the
characters group of T which is a Z-lattice. We denote by Λ∨ its Z-dual and by ΛQ
(resp. Λ∨Q) the Q-vector space Q ⊗Z Λ (resp. Q ⊗Z Λ∨). For (u, v) ∈ ΛQ × Λ∨Q we
denote by 〈u, v〉 the natural pairing.

If X is a subset of a Q-finite dimensional vector space V , we denote by ConvX
the convex hull of X, by < X > the vector space generated by X, by < X >aff the
affine space generated by X and by Q+X the positive cone generated by X. We
denote also by X∗ ⊂ V ∨ the ”positive dual” of X, that is:

X∗ = {ϕ ∈ V ∨ : ∀x ∈ X, 〈x, ϕ〉 ≥ 0}

Now, we define toric variety.

Definition 2.1. Let T be an algebraic torus. A (T -)toric variety X is a normal
variety with an effective action of T and such that T has an open orbit in X.

The theory of toric varieties is based on a correspondence between combinatorial
objects called fans and some algebraic varieties.

Definition 2.2. A fan Σ is a finite collection of rational polyhedral, strictly convex
cones in Λ∨Q such that:

(i) if σ ∈ Σ and τ is a face of σ, then τ ∈ Σ;
(ii) for every σ, τ ∈ Σ, σ ∩ τ is a common face of σ and τ .

If Σ is a fan, we denote XΣ the associated toric variety. Here are some basic
properties of toric varieties that we use in the sequel.

Proposition 2.3. The variety XΣ is smooth if and only if for each σ ∈ Σ, σ is
generated by family in Λ∨ which can be completed in a basis of Λ∨.

The variety XΣ is complete if and only if Σ is complete i.e.
⋃
σ∈Σ σ = (Λ∨)Q

Other classic result: let’s denote by Σ(r) the set of cone σ ∈ Σ of dimension
r ; the set Σ(r) correspond to closed T -variety of co-dimension r, and the T–
stable Weil divisors are in one-to-one correspondence with the Z–linear combina-
tions

∑
σ∈Σ(1) aρDρ, where aρ ∈ Z and Dρ is the T -stable divisor associated to the

cone ρ ∈ Σ(1).

2.2. Gorenstein Fano Toric variety. If X is a normal variety, then we can define
its canonical sheaf and its dual the anti-canonical sheaf. These sheafs are reflexive,
we can associate a canonical divisor denoted by KX and a anti-canonical divisor
−KX .
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Definition 2.4. A normal variety X is a Q-Gorenstein Fano variety (resp. Goren-
stein Fano variety) if −KX is an ample, Q-Cartier divisor (resp. an ample, Cartier
divisor). If X is Q–Gorenstein, we denote by jX the smallest positive integer such
that jXKX is Cartier; jX is called the Gorenstein Index of X. A smooth variety
X is a Fano variety if −KX is an ample divisor.

In the case of X = XΣ is a toric variety associated to the fan Σ, we call Σ
Q-Gorenstein Fano, Gorenstein Fano, Fano if XΣ has the corresponding property.
In toric case, the anti-canonical divisor −KXΣ

has a very simple description. For
all ρ ∈ Σ(1), we have (see Theorem 8.2.3 of [CLS11] ):

−KXΣ
=

∑
ρ∈Σ(1)

Dρ.

For each ρ ∈ Σ(1) let uρ be the primitive element of the one dimensional monoid
ρ ∩ Λ∨. For each σ ∈ Σ we denote

Prim(σ) = {uρ : ρ ⊂ σ}

and

Prim(Σ) =
⋃
σ∈Σ

Prim(σ).

By using particular case of [CLS11, Lemma 6.1.13] and [CLS11, Theorem 4.2.8],
we deduce the following equivalences:

Lemma 2.5. Let Σ be a complete fan in Λ∨Q, the following assertions are equivalent:

(i) Σ is Q–Gorenstein-Fano;
(ii) the elements of

{
Conv

(
Prim(σ)

)
: σ ∈ Σ(s) , s = 1, . . . , n

}
are the proper

faces of the polytope Conv
(
Prim(Σ)

)
;

(iii) for every cone σ ∈ Σ(n), the polytope Conv
(
Prim(σ)

)
is (n− 1)-dimensional;

let ϕσ ∈ ΛQ be such that 〈ϕσ, v〉 = −1 for v ∈ Prim(σ). Then 〈ϕσ, w〉 > −1
for every w ∈ Prim(Σ) \ Prim(σ).

Moreover, a Q–Gorenstein-Fano fan Σ is Gorenstein-Fano if and only if 〈ϕσ, u〉 ∈
Z for all u ∈ Λ∨ and σ ∈ Σ(n).

3. Toric variety associated to Root systems

3.1. Root systems. When dealing with root systems, we follow the notations of
Bourbaki (see [Bou68], or its English translation [B68en]). In what follows, R
designed a root system of rank n and W the associated Weyl group. We denote
by R+ a chosen set of positive roots This choice define {αi : i ∈ I} the set of the
simple roots and {ωi : i ∈ I} the set of associated fundamental weights, n is so equal
to #I the cardinal of I. Recall that (αi)i∈I is a basis of the root lattice Λα and
(ωi)i∈I is a basis of the weight lattice Λω. The rational positive linear combination
of fundamental weights {ωi : i ∈ I} generate the dominant Weyl chamber D in
(Λω)Q,

We also use the dual root system R∨; let {α∨i : i ∈ I} the set of simple root
of R∨ and we denote by (ω∨i )i∈I the set of fundamental weight of R∨ (the set of
fundamental co-weight of R) and by D∨ the dominant Weyl Chamber of R∨. Recall
that for all (i, j) ∈ I2, we have 〈αi, ω∨j 〉 = δij and so (ω∨i )i∈I is a basis of Λ∨α the
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Z-dual of Λα. We denote (Λα)Q the Q–vector space (Λα) ⊗Z Q and by (Λ∨α)Q its
dual space.

Finally we choose in (Λω)Q and in (Λω)∨Q a scalar product W -invariant; this
scalar product will be denoted by (., .) in the two cases.

Remark 3.1. If the root system is simply laced, we can choose a scalar product such
that (α, α) = (α∨, α∨) = 2 for all roots. This scalar product gives an isomorphism
between R and R∨ and permits also to identify Λ∨α with Λω. This identification is
not true in general.

Finally if λ =
∑n
i=1 aiωi ∈ Λω is a weight, we define the support of λ as the set

Iλ = {i : ai 6= 0}.

3.2. Fans defined by root systems. Now we define a fan (and so a toric variety)
for a root system R and a subset of simple root of R, as follow.

Definition 3.2. Let R be a root system of rank n, and L ⊂ I; let WL be the
subgroup of W generated by the following set {sαi

: i ∈ L}. We define

σR,L =
⋃

w∈WL

wD∨

and Σ̃R,L the translate of −σR,L by W :

Σ̃R,L = {−wσR,L : w ∈WL}
where WL ⊂W is a set-theoretical section of W/WL.

To show that under a simple hypothesis, the cone σR,L is strictly convex, we
state a proposition about the dual cone of σR,L. This easy result appears without
proof in the work of Dabrowski [Dab96], we give it for completeness and to have a
precise formulation.

Proposition 3.3. Let (RL)+ be the set of positive roots which are not sum of
simple roots αi for i ∈ L and SL the sub-monoid generated by (RL)+. Then the
dual to the convex cone generated by the sub-monoid SL is equal to σR,L, that is to
say:

(Q+.(SL))∗ = σR,L.

Proof. We will show that: (
(RL)+

)∗
= σR,L.

For this, let RL be the set of roots which are sum of simple roots in {αi : i ∈ L},
then by definition (RL)+ = R+ \ (RL ∩ R+), so the two sets (RL)+ and SL are

stable by WL. We deduce that
(
(RL)+

)∗
is stable by WL and as it contains the

dominant chamber D∨, we have the inclusion: σR,L ⊂
(
(RL)+

)∗
.

The set
(
(RL)+

)∗
is the intersection of half-space of type:

{χ∨ ∈ (Λ∨α)Q : 〈β, χ∨〉 ≥ 0}
with β positive root, so

(
(RL)+

)∗
is convex and union of Weyl chamber, which

conclude the proof. �

We denote by R =
∏k
k=1Rk the decomposition of the root system R in irre-

ducible root systems and we denote by I(k) the set of simple roots of Rk.
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Proposition 3.4. Suppose that for each k = 1, 2, . . . , r, L ∩ I(k) 6= I(k) then
σ(R,L) is a strictly convex polyhedral cone.

Proof. By using the proposition 3.3 and classical result on the dual cone, we have
essentially to show that the cone Q+(SL) generates the vector space (Λ∨α)Q. If R is
irreducible, it is well-known that if L is a strict subset of I, then (RL)+ generates
a space of maximal dimension. The general case can be deduced directly. �

Definition 3.5. Suppose that the hypothesis of the proposition 3.4 is verified, then
the set Σ̃R,L defined a fan which was denoted by ΣR,L; this fan and the co-weight
lattice (Λα)∨ define a toric variety XR,L.

Remark 3.6. (i) Clearly the fan ΣR,L is a product of the fan Σ(Rk, L∩ Ik) and
so the variety XR,L is a product of X(Rk, L∩Ik) for k = 1, 2, . . . , r. For study
the variety XR,L we can suppose that R is irreducible.

(ii) The justification of the minus sign in the definition of ΣR,L, of the choice of
the co-weight lattice and of the fact that we define σR,L in (Λ∨α)Q and not in
(Λω)Q will be appear now in the following section 3.3.

3.3. Generic orbits of G/P , results of Dabrowski. Let G be a semi-simple
group over k, let’s denote by T a maximal torus of G; let R be the root system
associated to the couple (G,T ). We choose a Borel subgroup B of G which induces
a choice of the set of positive roots R+. We take the same notation for R as in the
section 3. To each subset L of I, let’s define the parabolic subgroup P containing
the Borel subgroup B− opposite to B and such that the Weyl group WP of P
is equal to WL. Let’s define L = I \ L and let λ be a dominant weight such its
support Iλ is equal to L. Then λ can be extended to P . We denote by V (λ) the
Weyl G–module associated to λ — recall that

V (λ) =
{
f ∈ k[G] : f(xy) = λ−1(y)f(x) ∀x ∈ G, y ∈ P

}
.

Definition 3.7 (see [Dab96, §1]). Let L, P ⊃ B− and λ be defined as above.

Let Πλ =
{
µ ∈ ΛP : V (λ)µ 6= 0

}
the set of T -weights of V (λ) and Aλ be

the list of the T -weights counted with multiplicity. A set of Plücker coordinates
{fµ : µ ∈ Aλ} is a choice of a basis of T -semi-invariants functions fµ ∈ V (−λ)µ.

If x = uP ∈ G/P , we consider

Πλ(x) :=
{
µ ∈ Πλ : fµ(x) 6= 0 for some fµ in the Plücker basis

}
.

It is easy to see that Πλ(x) does not depends on the choice of the Plücker
coordinates. Moreover, λ− wΠλ(x) ⊂ SL ⊂ Λα, for every w ∈W .

We say that the T -orbit T · x is generic in the sense of Dabrowski if:

(i) W · λ ⊂ Πλ(x)
(ii) The set λ− wΠλ(x) generates SL as a sub-monoid.

We recall in the next theorem some of the properties of generic orbits shown on
[Dab96], that we need for the rest of this work.

Theorem 3.8 ([Dab96, Theorem 3.2]). If x ∈ G/P is such that all its Plücker
coordinates do not vanish, then T ·x is a generic orbit. In particular, generic orbits
exist.
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If T ·x is a generic orbit, then the T -orbit closure T · x ⊂ G/P is a toric variety.
This toric variey is isomorphic to the variety XR,L defined by the fan ΣR,L

Remark 3.9. The closure of a generic orbit is a toric variety, but not for the torus
T which doesn’t act effectively on G/P . But if the hypothesis off the proposition
3.4 is verified this closure is a toric variety for the quotient T/Z(G). Note that
the lattice Λα the lattice of characters of this quotient. This explain why the fan
ΣR,L is defined in the space (Λα)∨Q and relatively to the lattice Λ∨α (the lattice of
co-weights).

In the work of Dabrowski [Dab96] the fan associated to the generic orbit is
defined in the space (Λω)Q (relatively to the lattice (Λω)); but with this definition,
and if the root system is not simply laced, the fan obtained does not correspond to
the closure of a generic orbit. We give an explicit example in 6.4.

4. Various combinatorial properties of σR,L.

We gather here various properties of σR,L which are useful for the main result of
this paper. Now we always considers L ⊂ I such the hypothesis of the proposition
3.4 is verified.

First we make a link between ΣR,L and the Weyl Polytope associated to a dom-
inant weight.

Definition 4.1. Let R a root system, and λ ∈ (Λα)Q. We define the Weyl polytope:
WP(λ) = Conv(Wλ) ⊂ (Λω)Q.

Remark 4.2. Recall that if λ is a dominant weight then a classical result of rep-
resentation theory make a link between WPλ and SL:

Λα ∩ (λ−WP(λ)) = SL ∩ (λ−WP(λ)) .

We deduce of this remark and of the proposition 3.3 the following proposition:

Proposition 4.3. Let be R a root system, L be a subset of the set of simple root
which verify the hypothesis of the proposition 3.4; let λ be a dominant weight such
that Iλ = L, then the fan dual to the polytope Pλ is equal to ΣR,L.

Now we study the cone σR,L.

Proposition 4.4. Let’s σR,L(r) the set of faces of σR,L of dimension r, we have
the following equality:

WL (σR,L(r) ∩ D∨) = σR,L(r).

Proof. By definition, the cone σR,L is stable by WL, so if F ∈ σR,L(r) and w ∈WL,
then wF ∈ σR,L(r). This remarks shows the inclusion ⊂.

Reciprocally, et’s F ∈ σR,L(r), then by definition of σR,L, there exists w ∈ WL

such that F is a face of wD∨. This remark prove the inclusion ⊂. On the other
hand, F is a union of face (Fw)w∈Wl

with Fw is a face of the cone wD∨. As these
faces generate the same vector space, and the cone σR,L is strictly convex so all
faces Fw are equal which conclude the proof.

�
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Definition 4.5. We define the core of σR,L, denoted by C (σR,L), as the face of

D∨ generating by the set {ω∨i : i ∈ L}.

There is various way to define the core of σR,L.

Proposition 4.6. We have following equalities:

C (σR,L) = (D∨)WL =
⋂

w∈WL

wD∨ = (σR,L)WL .

Proof. This proof are left to the reader. �

For a polyhedral convex cone C in a Q-vector space, we denote by C̊ the relative
interior of X, that is the set of positive linear combination of elements in arrays of
C.

We state now elementary properties of the core but essential for the final Goren-
stein Fano criteria.

Proposition 4.7. We have the inclusion:

C̊ (σR,L) ⊂ σ̊R,L.

and the equality:

C̊ (σR,L) = (̊σR,L)WL .

Proof. By a classic result on the convex polyhedral cone and by using the propo-
sition 3.3, an element u belongs to the relative interior of σR,L if 〈β, u〉 > 0 for all
β ∈ (RL)+.

Let v be an element of the relative interior of the core, then by definition:

v =
∑
i∈I

aiω
∨
i

with ai > 0 for all i ∈ Iλ. And by definition of (RL)+, we have 〈v, β〉 > 0 for all
β ∈ (RL)+, the inclusion is proven.

We deduce that C̊ (σR,L) ⊂ (̊σR,L)WL . For the reverse inclusion, suppose that
v ∈ (̊σR,L)WL , then v belongs to (D∨)WL ∩ σ̊R,L by proposition 4.6. If v belongs
to a proper face of (D∨)WL , then by proposition 4.4, v belongs to a face of σR,L
which is a contradiction. So v belongs to the relative interior of (D∨)WL which is

equal to C̊ (σR,L) by proposition 4.6. �

To describe Prim(σR,L) and the affine space generated by it, we need the follow-
ing definition.

Definition 4.8. We define JL as the set of j ∈ {1, 2, . . . , n} such that ω∨j belongs
to Prim(σR,L).

Proposition 4.9. Let’s L ⊂ I, let’s choose ω∨k ∈ JL, then we have

(i)

Prim(σR,L) = WL{ω∨j | j ∈ JL}



GORENSTEIN-FANO GENERIC TORUS ORBITS IN G/P 9

(ii)〈
Prim(σR,L)

〉
aff

= ω∨k +
〈( ⋃

j∈JL

WL · (ω∨j )− ω∨j
)
∪ {ω∨i − ω∨j : i, j ∈ JL}

〉
= ω∨k +

〈
{α∨i : i ∈ L} ∪ {ω∨i − ω∨k : i ∈ JL}

〉
Proof. The point (i) is a direct consequence of the proposition 4.4.

For point (ii) first note that if i, j ∈ JL and f, g ∈WL, then

f · (−ω∨i )− g · (−ω∨j ) = f · (−ω∨i )− ωi + ω∨i − ω∨j + ω∨j − g · (−ω∨j ),

and the first equality follows.

For the second equality, let f = s` · · · s1 ∈ WL, with si ∈ {sα∨
i

: i ∈ L}. Then

f · (−ω∨i )− ω∨i ∈ 〈αi〉Q, and the inclusion ⊂ follows.

Let i ∈ L; if sαi
(ν) = ν for all ν ∈ Prim(σR,L), then sαi

= Id; since σR,L
is of maximal dimension, this is a contradiction. It follows that there exists ν ∈
Prim(σR,L) such that sαi(ν) 6= ν, and therefore α∨i ∈

〈
Prim(σR,L)

〉
aff
− ωk. �

The set JL is fundamental for describe the cone σR,L. By using the duality
between the cone σR,L and the cone Q+.SP and the work of Khare [Kha17], we can
decide when a fundamental co-weight belongs to JL. For this, we define the notion
of essential fundamental co-weight relatively to λ.

Definition 4.10. Let λ a dominant weight and Dλ the Dynkin diagram of G, with
vertices belong to Iλ marked. The fundamental dominant co-weight ω∨i is essential
relatively to λ if each irreducible components of the graph Dλ \ {ω∨i } contains a
marked vertex.

Example 4.11. Consider the following Dynkin diagram:

1 2 3 4 5

6

7

where marked points correspond to points . Then the essential fundamental co-
weights are: {ω∨1 , ω∨3 , ω∨6 , ω∨7 }.

Now we can describe the set JL.

Theorem 4.12. Let L be a subset of I and λ a dominant weight such that Iλ = L,
then the fundamental co-weight ω∨j belongs to JL if and only if ω∨j is essential
relatively to λ.

Proof. The duality between σR,L and SP , induces a bijection between the set
Prim(σR,L) and the set of facets of SP . But thess facets are precisely the facets
of the Weyl polytope WP(λ) containing λ, see remark 4.2. Facets of this Weyl
polytope are described in the work of Khare [Kha17] (theorem C) in a more general
setting. Traducing the condition of this theorem in our particular case implies the
description of JL. �
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4.1. A criteria for ΣR,L to be Gorenstein Fano.

Definition 4.13. Let G be a semi-simple group and L ⊂ I. Let’s define FL as the
convex hull of the set Prim(σR,L) and PR,L the convex hull of Prim(ΣR,L). Then
FL is either a facet of −PR,L or n–dimensional. If FL is a facet, we denote by nL
the exterior normal to the face FL relatively to the scalar product; that is, nL is
the unique element of (Λ∨α)Q such that (nL, ν) = 1 for all ν ∈ Prim(σR,L). If FL is
n-dimensional, we define nL = 0.

Now we can state an useful criteria to decide which variety XR,L will be Goren-
stein Fano.

Theorem 4.14. Let R be a root system and L be a subset of I, let’s nL ∈ (Λ∨α)Q
defined as above, then XR,L is Q-Gorenstein-Fano if and only if nL ∈ C̊ (σR,L).
Moreover, XR,L is Gorenstein Fano if (nL, v) ∈ Z for all v ∈ Λ∨α.

Proof. First suppose that nL ∈ C̊ (σR,L); by the proposition 4.7, we have nL ∈ σ̊R,L.
As σR,L is stable by WL the vector nL is WL invariant. By using the action of W ,
for all w ∈ W the vector −wnl is a normal vector to the affine space generated
by Prim(−wσR,L). So for all σ ∈ ΣR,L(n) the convex hull FσL of Prim(σ) is of
codimension 1. Moreover suppose that there exists w ∈ W such that −w.σR,L is
distinct from −σR,L but with wnL = nL, then we can suppose that w = sαi

for
i ∈ I, but this implies nL ∈ (α∨i )⊥, so nL /∈ (̊σR,L)WL which is a contradiction.

If nL /∈ C̊ (σR,L), then by the proposition 4.6, nL ∈ (αi)
⊥, with i /∈ L, so the

cone σR,L and sαi
σR,L are distincts but defined the same face of Conv ΣR,L; we

conclude by the lemma 2.5.

The last assertion is a simple translation of the final assertion of the lemma 2.5.

�

The following lemma is useful to verify the existence of the normal nL and to
compute it.

Lemma 4.15. Let v =
∑
i∈I aiω

∨
i be a vector in (Λ∨α)Q; we have equivalence:

(i) the vector v is a non zero multiple of the normal nL and v ∈ C̊ (σR,L);
(ii) The two conditions are verified:

(a) ai > 0 for all i ∈ L and ai = 0 for i ∈ L;
(b) the scalar product

(
v, ω∨j

)
is independent of j for all j ∈ JL.

Proof. Recall that a normal vector v to the affine space generated by Prim(σR,L)
is WL invariant, so it is sum of the vector ω∨i for i ∈ L and also a sum of the root
α∨i with i ∈ L.

By proposition 4.9 the direction to the affine space generated by Prim(σR,L) is
equal to: 〈

{αi : i ∈ L} ∪ {ω∨i − ω∨k : i ∈ JL}
〉
.

So a vector v which is a sum of ω∨i for i ∈ L is a normal vector to this affine space
if and only if the condition (b) is verified. The positivity of the coefficient ai for

i ∈ L is equivalent to v ∈ C̊ . �
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The following lemma permits to show that numerous variety ΣR,L are not Goren-
stein Fano. So its statement avoids repeating the same argument several times.

Lemma 4.16. Let j, j′ be two distinct elements j, j′ in JL; let’s define:

bi =
(
ω∨i , ω

∨
j′ − ω∨j

)
for i ∈ L; suppose that (bi)i∈L are non negative but not all zero. Then there is no
vector n proportional to nL and such that:

n =
∑
i∈L

aiω
∨
i

with ai positive for all i ∈ L.

Proof. By absurd, suppose there exists a vector n proportional to nL such that
n =

∑
i∈L aiω

∨
i with ai positive for all i ∈ L; then by the lemma 4.15, we have

(n, ω∨j′) = (n, ω∨j ) for all (j, j′) ∈ J2
L. But this implies:

0 =
(
n, ω∨j′ − ω∨j

)
=
∑
i∈L

aibi

but by the hypothesis the last sum is positive and cannot be equal to zero. �

5. Fano generic closures

Theorem 5.1. The table next page gives a complete list of all Q–Gorentein-Fano,
Gorenstein-Fano and Fano among varieties obtained by closures of generic orbits
of T in G/P , where G is a simple algebraic group and P a class of conjugation of
parabolic groups of G. The first column give the irreducible root system R of G.
In the second column, there is the Dynkin diagram of R∨ where the vertices belong
to the set L are in black. In the third column, we give some information about the
geometry of the variety.
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type(G) rank Dynkin(R∨) and L Geometry

An

n ≥ 1
1 2 n

Smooth, Fano

n ≥ 2
1 2 n− 1 n

Gorenstein Fano

n odd, n ≥ 3
1 n−1

2
n− 1

Gorenstein Fano

n even, n ≥ 4
1 n

2
n
2
+ 1 n

Smooth, Fano

Bn n ≥ 2 1 2 n− 1 n
Gorenstein Fano

1 2 n− 1 n
Smooth, Fano

Cn n ≥ 3

1 2 n− 1 n
Gorenstein Fano

1 2 n− 1 n
Gorenstein Fano

1 2 n− 1 n
Gorenstein Fano, if n even

Q–Gorenstein Fano, if n odd

Dn n ≥ 4 1 2
n− 2

n− 1

n

Gorenstein Fano

1 2
n− 2

n− 1

n

Gorenstein Fano

E6 6
1

2

3 4 5 6
Gorenstein Fano

F4 4 1 2 3 4
Q–Gorenstein Fano

1 2 3 4
Gorenstein Fano

G2 2 1 2
Q–Gorenstein Fano

1 2
Smooth, Fano
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Remark 5.2. (i) The list is modulo automorphisms of the root system; for ex-
ample, varieties X(An,L\{1}) and X(An,L\{n}) are isomorphic (and both Fano).
In the same spirit, conditions given on the rank permit to avoid repetition.

(ii) In cases of strict Q–Gorenstein Fano, the index is two for Bn and F4 cases
and three for the G2 case.

6. Proof of theorem 5.1 in rank 1 and 2

These cases are straight forward, and the classification can be done just by
examination of the figures of root systems. In figures 1–8, for each couple (R,L),
we draw the cone σR,L in gray.

6.1. The case n = 1. In this case, there is just one couple possible A1, {1}; the
associated variety is P1 which is Fano.

6.2. Explicit calculations for G of type A1 × A1. In this case the Dynkin
diagram is:

1 2

To have the hypothesis of the proposition 3.4 verified, we have to choose L =
I = {1, 2}; then XR,L is isomorphic to P1 × P1 and is a Fano variety.

ω1

ω2

Fig. 1

6.3. Explicit calculations for G of type R = A2. The Dynkin diagram of R
and R∨ are the same:

1 2

As follows from figures 2 and 3, ΣA2,L is a smooth Fano complete fan for all L
strict subset of I = {1, 2}. The variety XA2,{1} and XA2,{2} are isomorphic to P2

and X(A2, ∅) is isomorphic to the blowing of P2 in three generic points.
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α∨1

α∨2

ω∨1

ω∨2

Fig. 2

α∨1

α∨2

ω∨1

ω∨2

Fig. 3

6.4. Explicit calculations for G of type R = B2. The Dynkin diagram of
R = B2 is:

1 2

and the dynkin diagrams of R∨ = C2 is:

1 2
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Then we have two possibilities for L such that X(B2, L) is Gorenstein Fano. First
if L = {1} which corresponds to the figure 4, the variety X(B2, {1}) is a smooth
Fano variety isomorphic to P1 × P1.

α∨1

α∨2

ω∨1

ω∨2

Fig. 4

The second possibility is L = {2} which corresponds to the figure 5. The as-
sociated variety is not smooth. Following Dabrowski [Dab96], we give an explicit
description of this variety: on V = k5 and in the canonical basis (e1, . . . , e5), let q
be the non-degenerate quadratic form q(x) = x1x3 +x2x4−2x5. Let G = SO(q) be
the subgroup of determinant one linear transformations of V , preserving q. Then
G is a connected, rank 2, simple algebraic group over k of root system B2. Let l
be the line generated by e1, and let P ⊂ G be the stabilizer of l. Then P is the
parabolic subgroup of G such that WP = WL with L = {2}. Moreover G/P is nat-
urally isomorphic to the smooth quadric hypersurface Q in the complex projective
space P(V ) given by the homogeneous equation q(x) = 0. The torus T is equal to
{diag(t1, t2, l/t1, 1/t2, 1) : ti ∈ k∗, i = 1, 2}. The orbit of the line generating by the

vector v = (1, 1, 1, 1, 1) is generic and its closure X = T.(kv) is the singular closed
subvariety of P(V ) given by homogeneous equations x1x3 = x2

5, x2x4 = x2
5 (the

singular points of X are [1 : 1 : 0 : 0 : 0], [1 : 0 : 0 : 1 : 0], [0 : 1 : 1 : 0 : 0], and
[0 : 0 : 1 : 1 : 0]). Therefore the fact that the fan of the generic orbits belongs to
the space generated by coroots is essential in the non simply laced case.

α∨1

α∨2

ω∨1

ω∨2

Fig. 5
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6.5. Explicit calculations for G of type R = G2. The Dynkin diagram are the
following:

R :
1 2

R∨ :
1 2

For completeness, we give the matrix of a scalar product on (Λ∨α)Q W -invariant:Å
2 3
3 6

ã
Then there is only two possibilities for L such that X(G2, L) is Gorenstein Fano.
First the case L = {1} which correspond to the figure 6. The associated variety

α∨1

α∨2
ω∨1

ω∨2

Fig. 6

is Fano and isomorphic as P2 blowing up in three generic points (as in the case
associated to (R,L) = (A2, ∅)).

The second possibility is the case L = {2} which corresponds to the figure 7.
The variety is Q-Gorenstein Fano of Gorenstein index 3.

Example 6.1. Let G be of type G2, and consider Σ as in the picture 8; clearly, Σ
is a smooth complete fan. However, Σ does not correspond to a generic T -orbit of
an homogeneous space G/P . Thus, there exists Fano toric varieties whose maximal
cones are union of Weyl chambers, but are not of the form ΣR,L for some subset
L.

7. Proof of theorem 5.1 for rank n ≥ 3

Here we give the calculation for all type for rank n ≥ 3 . The strategy is similar
for all cases. For each root system R, we describe for the dual root system R∨ a
matrix of a scalar product W -invariant in the basis of the fundamental co-weight.
Note that this matrix is a multiple of the symmetrized of the inverse of the Cartan
Matrix associated to R∨. This inverse is given for example in the book of Onischik
and Vinberg [OV90] (p295) or in a article of Wei and Zou [WZ17]. Then for each
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α∨1

α∨2
ω∨1

ω∨2

Fig. 7

α∨1

α∨2
ω∨1

ω∨2

Fig. 8

L, we compute the rays of σR,L which belongs to D∨ with the proposition 4.4 and
then we deduce the normal to the face FL. Note that for simplicity of computing,
we reason on L rather than L.

7.1. Explicit calculations for G of type An, n ≥ 3. Here R and R∨ are
isomorphic, with following Dynkin diagram:

1 2 n− 1 n
.
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The matrix in the basis of fundamental (co)-weight of a W -invariant scalar product
is:

n n− 1 n− 2 . . . . . . . . . 2 1
n− 1 2.(n− 1) 2(n− 2) . . . . . . . . . 2.2 2

...
... . . . . . . . . .

...
...

n− i+ 1 2.(n− i+ 1) . . . i.(n− i+ 1) i.(n− i) . . . i.2 i
...

... . . . . . . . . .
...

...
1 2 3 . . . . . . . . . n− 1 n


Let L be a subset of I = {1, 2, . . . , n}; we denote by m (resp. M) the minimum
(resp. the maximum) of the set L.

7.1.1. Case L = {1}. In this case JL contains a single element: ω∨n . Then by the
corollary 4.9, any vector proportional to ω∨1 has a scalar product constant with all
elements in Prim(σR,L), and FL is of dimension n − 1. The vector nL defined in
definition 4.13 is so equal to ω∨1 . The variety ΣR,L is Fano: indeed in this case, the
set Prim(σR,L) can be computing (see remark (4) in [VoKl85]):

Prim(σR,L) = WL.(ω
∨
n ) = {ω∨n , ω∨n−1 − ω∨n , ω∨n−2 − ω∨n−1, . . . , ω

∨
1 − ω∨2 }.

So, rays of the cone σR,L is a basis of the weight lattice and the variety XR,L is
Fano.

Note that the case L = {n} is similar by using the symmetry of the Dynkin
diagram.

7.1.2. Case L = {i} i 6= 1, n. In this case JL contains ω∨1 and ω∨n . We verify that
(ω∨1 , ω

∨
i ) 6= (ω∨n , ω

∨
i ), except if n = 2i− 1. So if n 6= 2i− 1, the variety ΣR,L is not

Fano. If n = 2i− 1, then FL is of dimension n− 1. The scalar product (ω∨i , ω
∨
n ) is

equal to i, so

nL =
ω∨i
i
.

Then, we verify that
(
nL, ω

∨
j

)
is an integer for all j ∈ {1, 2, . . . , n} and so ΣR,L is

Gorenstein Fano. Note that Prim(σR,L) is the union of the two orbits:

WL.(ω
∨
1 ) = {ω∨1 , ω∨2 − ω∨1 , . . . , ω∨i − ω∨i−1}

and

WL.(ω
∨
n ) = {ω∨n , ω∨n−1 − ω∨n , . . . , ω∨i − ω∨i+1}.

So Prim(σR,L) is not simplicial and Σλ is not smooth.

7.1.3. Case M = m + 1. In this case the set JL contains two elements: 1 and n.
Let nL be the vector as in the definition 4.13, suppose that nL = aω∨m + bω∨m+1,
with a, b two positive rational numbers such that (nL, ω

∨
1 − ω∨n ) = 0. But, as

(ω∨i , ω
∨
1 − ω∨n ) = n− 2i+ 1

we must have:

(a+ b)(n− 2m) + (a− b) = 0.

If n 6= 2m, this equation has no solution and ΣR,L is not Fano. If n = 2m, then
the face FL is of dimension n − 1 and is orthogonal to ω∨m + ω∨m+1. We have
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nL = (ω∨m + ω∨m+1). In this case, the variety ΣR,L is Fano. Indeed, Prim(σR,L) is
equal to the union of the two orbits: WL.(ω

∨
1 ) ∪WL.(ω

∨
n ). But this two orbits are:

WL(ω∨1 ) = {ω∨1 , ω∨2 − ω∨1 , . . . , ω∨m − ω∨m−1}

and

WL.(ω
∨
n ) = {ω∨n , ω∨n−1 − ω∨n , . . . , ω∨m+1 − ω∨m+2}.

And this union is a basis of the weight lattice.

7.1.4. Case #L ≥ 2, M < n and m 6= M − 1. In this case, the set JL is given by:

{1} ∪ {m+ 1, . . . ,M − 1} ∪ {n}.

Let nL be the vector normal to FL such that :

nL =
∑
i∈L

aiω
∨
i

with ai >. Then as n and M − 1 belong to JL we have:

(1)
∑
i∈L

ai
(
ω∨i , ω

∨
M−1 − ω∨n

)
= 0.

The coefficient of the i-th row of the matrix of the scalar product is a strict
unimodal sequence with peak at the i-place, so:

(
ω∨i , ω

∨
M−1 − ω∨n

)
> 0 for all i

such that i ≤ M − 1. And as M < n, we also have:
(
ω∨M , ω

∨
M−1 − ω∨n

)
> 0.

Since L ⊂ {m,m + 1, . . . ,M}, we can using the proposition 4.16 and ΣR,L is not
Gorenstein Fano.

The case #Iλ ≥ 2, 1 < m and m 6= M −1 is obtained from the preceding one by
using the automorphism of the Dynkin diagram. So the following is the last case.

7.1.5. Case m = 1 and M = n. Here we have JL = {1, . . . , n}. Let nL be the
vector normal to the face FL, then as(

ω∨1 + ω∨n , ω
∨
j − ω∨j′

)
= 0

nL is proportional to ω∨1 + ω∨n . So if L 6= {1, n}, ΣR,L is not Gorenstein-Fano.

If L = {1, n}, then it is easy to verify that:

nL =
ω∨1 + ω∨n
n+ 1

,

and that ΣR,L is Gorenstein-Fano, but not Fano because the cone Prim(σR,L),
which is convex hull of

WL.{ω∨j | j ∈ JL}

is clearly not simplicial.
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7.2. Explicit calculations for G of type Bn.

The Dynkin diagram of the root system Bn is:

1 2 n− 1 n
.

and R∨ is the root system Cn with Dynkin diagram:

1 2 n− 1 n
.

A W–scalar product matrix in the basis of the fundamental co-weight (relatively
to R∨) is given by: 

1 1 1 . . . . . . . . . 1 1
1 2 2 . . . . . . . . . 2 2
...

... . . . . . . . . .
...

...
1 2 3 . . . i . . . i i
...

... . . . . . . . . .
...

...
1 2 3 . . . . . . . . . n− 1 n


7.2.1. Case #L = 1. Suppose that L = {i} with i 6= 1, n. Then JL = {1, n}, and
nL is proportional to ω∨i . Then by considering the matrix of the scalar product, we
have (ω∨1 , ω

∨
i ) = 1 and (ω∨n , ω

∨
i ) = i, so nL = 0 and ΣR,L is not Gorenstein Fano.

Suppose now that L = {1}, then JL = {n}. As (ω∨1 , ω
∨
n ) = 1, we have nL = ω∨1

and the variety is Gorenstein-Fano. By considering the cardinality of the WL orbits
of ω∨n , we see that the cone σL is not simplicial and the XR,L cannot be smooth.

Finally, suppose that L = {n}, then JL = {1} and we have nL = ω∨n and the
variety is Gorenstein Fano. Moreover, we have WL.ω

∨
1 = {ω1, ω2 − ω1, . . . , ωn −

ωn−1}(see remark (4) in [VoKl85] ) and so the XR,L is smooth.

7.2.2. Case #L > 1. In this case, because n ≥ 3, the set JL contains at least two
elements, let’s denote it by j′ > j. By considering the scalar product matrix, we
have the following inequalities:

(2)
(
ω∨j′ , ω

∨
i

)
≥
(
ω∨j , ω

∨
i

)
for all i ∈ I. So we can apply the lemma 4.16 and the variety XR,L is not Gorenstein
Fano.

7.3. Explict calculations for G of type Cn. .

This case is the symmetric of the precedent. The matrix of a scalar product is
equal to: 

2 2 2 . . . . . . . . . 2 1
2 4 4 . . . . . . . . . 4 2
...

... . . . . . . . . .
...

...
2 4 6 . . . 2i . . . 2i i
...

... . . . . . . . . .
...

...
1 2 3 . . . . . . . . . n− 1 n/2
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7.3.1. Case #L = 1. Suppose that L = {i} with i 6= 1, 2, n. Then JL = {1, n}, and
the vector normal to nL is proportional to ω∨i . Then by considering the matrix of
the scalar product, we have (ω∨1 , ω

∨
i ) = 2 and (ω∨n , ω

∨
i ) = i, so nL = 0 and ΣR,L is

not Gorenstein Fano.

The case L = {1} is quite similar to the case R = Bn and L = 1, we do not give
the details.

Suppose that L = {n}, then JL = {1} and nL = ω∨n , but as (ω∨n , ω
∨
i ) = i if i 6= n

and (ω∨n , ω
∨
n ) = n/2 the variety is Gorenstein Fano if n is even, and Q–Gorenstein

Fano of index 2 if n is odd. It is easy to computing the WL orbit of ω∨n , it is equal
to :{ω1, ω2 − ω1, . . . , 2ωn − ωn−1} (see remark (5) in [VoKl85]), so the fan ΣR,L is
simplicial but not smooth.

Now suppose that L = {2}. We have JL = {1, n} and we have following equali-
ties:

(ω∨1 , ω
∨
2 ) = 2 = (ω∨n , ω

∨
2 ) .

So the vector normal nL is equal to (ω∨2 )/2. The variety is Gorenstein Fano, but
not smooth because σL is not simplicial.

7.3.2. Case #L > 1. If L 6= {n − 1, n} then JL contains two elements j′ > j with
j′ 6= n, then by using the lemma 4.16, we have that the corresponding variety is
not Gorenstein Fano.

If L = {n−1, n}, then JL = {1, n}. By a simple calculation, we verify that there
is no vector nL = aω∨n−1 + bω∨n such that (nL, ω

∨
1 − ω∨n ) = 0 for positive a and b.

7.4. Explicit calculations for G of type R = Dn. In this case R and R∨ are
isomorphic with the same Dynkin diagram:

1 2
n− 2

n− 1

n

.

and the matrix of a scalar product is:

4 4 4 . . . . . . 4 2 2
4 8 8 . . . . . . 8 4 4
...

... . . . . . . . . .
...

...
4 8 12 . . . 4i 2i 2i
...

... . . . . . . . . .
...

...
2 4 6 . . . . . . 2(n− 2) n n− 2
2 4 6 . . . . . . 2(n− 2) n− 2 n


7.4.1. Case #L = 1. Then L = {i}; suppose first that i 6= 1, 2, n− 1, n and n > 4.
Then JL is equal to {1, n − 1, n}. We have (ω∨i , ω

∨
1 ) = 4 but (ω∨n , ω

∨
1 ) 6= 4 so the

variety XR,L is not Gorenstein Fano.

Suppose that L = {n}, then JL = {1, n− 1} but (ω∨1 , ω
∨
n ) 6=

(
ω∨n−1, ω

∨
n

)
and the

associated variety is not Gorenstein Fano. Note that by using the symmetry of the
Dynkin diagram, the case L = {n− 1} is identical to the case L = {n}.
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Suppose now that L = {1}, then JL = {n−1, n}. Clearly (ω∨1 , ω
∨
n ) =

(
ω∨1 , ω

∨
n−1

)
and nL = (ω∨1 )/2 is the normal to FL. As (nL, ω

∨
i ) is an integer for all i ∈ I, the

variety XR,L is Gorenstein Fano. The cone σL is not simplicial, this variety is not
smooth.

If L = {2}, then JL = {1, n−1, n}. By considering the scalar products, (ω∨2 , ω
∨
1 ),(

ω∨2 , ω
∨
n−1

)
,(ω∨2 , ω

∨
n ), we see that the normal nL is equal to (ω∨2 )/4 and the variety

XR,L is Gorenstein Fano.

Finally in the case n = 4, by using the extra symmetry of D4, we remark that
all varieties XR,L with #L = 1 are Gorenstein Fano.

7.4.2. Case #L > 1. We use again the lemma 4.16 by distinguish two cases: first
L 6= {n− 1, n} and second the case L = {n− 1, n}.

7.5. Explicit calculations for G of type R = E6, E7, E8. In this case R and R∨

are isomorphic and the Dynkin diagram are:

1

2

3 4 5 6

1

2

3 4 5 6 7

1

2

3 4 5 6 7 8
.

We choose the following matrix of the scalar product:
4 3 5 6 4 2
3 6 6 9 6 3
5 6 10 12 8 4
6 9 12 18 12 6
4 6 8 12 10 5
2 3 4 6 5 4




4 4 6 8 6 4 2
4 7 8 12 9 6 3
6 8 12 16 12 8 4
8 12 16 24 18 12 6
6 9 12 18 15 10 5
4 6 8 12 10 8 4
2 3 4 6 5 4 3
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4 5 7 10 8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 8 4
10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 8 12 10 8 6 3
2 3 4 6 5 4 3 2


7.5.1. #L = 1. Suppose that L contains a single element i with 1 ≤ i ≤ n (with
n = 6, 7, 8). Then by considering all possibilities of JL and products (

(
ω∨i , ω

∨
j

)
with

j ∈ JL, we can see that the only possibility for X(En,L\{i}) to be Gorenstein Fano
is n = 6 and i = 2. In this case we have JL = {1, 6}, nL = (ω∨2 )/3 and the variety
is Gorenstein Fano and not smooth because σR,L is not simplicial.

7.5.2. #L > 1. Then the set JL contains always 1, 2 and n; if n 6= 6 or if n = 6
and 1 /∈ L, suppose that

nL =
∑
i∈L

aiω
∨
i

with ai > 0 for all i ∈ L, then as (nL, ω
∨
2 ) ≥ (nL, ω

∨
1 ), the variety XR,L is not

Gorenstein Fano by the lemma 4.16.

If n = 6 and suppose that 1 ∈ L, then in the two sub-cases 6 ∈ L and 6 /∈ L, we
conclude that the corresponding variety is not Gorenstein Fano by using the lemma
4.16.

7.6. Explicit calculations for G of type F4. The Dynkin diagram of R is the
following:

1 2 3 4

and that of R∨ is:

1 2 3 4

We choose the scalar product in (Λ∨α)Q given by the following matrix:Ü
2 3 4 2
3 6 8 4
4 8 12 6
2 4 6 4

ê
7.6.1. Case #L = 1. Suppose that L = {i}, then if i is not equal to 1 or 4, then JL
contains 1 and 4 and in the two case a non zero vector nL orthogonal to FL does
not exist.

If i = 1, then JL = {4}, so nL = (ω∨1 )/2, the variety is Q-Gorenstein Fano of
Gorenstein index 2. If i = 4, then JL = {1}, and nL = (ω∨4 )/2, the variety is
Gorenstein Fano but not smooth.

7.6.2. Case #L > 1. In this case JL contains at least 1, 4. But for all j ∈ I, we
have

(
ω∨j , ω

∨
4

)
>
(
ω∨j , ω

∨
1

)
, and we conclude with the lemma 4.16.
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8. Some pairs of dual reflexive polytopes

Let’s recall some definitions. If P ⊂ ΛQ is a lattice polytope, the dual polytope
P◦ of a polytope P is defined by:

P◦ = {u ∈ Λ∨Q : 〈v, u〉 ≥ −1 ∀v ∈ P}.

If P◦ is a lattice polytope, P is called a reflexive polytope. It is well-known
that a toric projective variety XΣ is Gorenstein Fano if and only if the polytope
PR,L = Conv(Prim(Σ)) is reflexive (see for example theorem 8.3.4 of [CLS11]). So
the classification of Gorenstein Fano varieties XR,L give a list of a pair of dual
lattice polytopes

(
PR,L,PR,L◦

)
.

To describe this two polytopes, we recall some facts. The couple (L, JL) deter-
mine completely the polytope PR,L. Note that if JL contains a single fundamental
co-weight ω∨, then PR,L is simply the Weyl polytope WP(−ω∨).

On the other hand, the dual polytope PR,L◦ can be defined as

PR,L◦ = Conv{uF : F facet of PR,L}
where uF ∈ Λα is the inward-pointing facet normal. If XR,L is Gorenstein Fano,
the outward-pointing normal (related to the scalar product) to the cone σR,L is the
vector nL ∈ (Λ∨α). So the set of the inward-pointing facet normal to PR,L are the
W–orbit W.ϕnL

, where ϕnL
∈ Λα is defined by 〈ϕnL

, u〉 = (nL, u) for all u ∈ Λ∨α.
From this discussion, we deduce the following proposition:

Proposition 8.1. If the variety XR,L is Gorenstein Fano the weight lattice polytope
PR,L ⊂ (Λ∨α)Q is reflexive and its dual is the root lattice Weyl polytope WP(ϕnL

) ⊂
(Λα)Q.

In the next table, for each root system R, such that XR,L is Gorenstein Fano,
we give in the third column the Dynkin diagram of R∨, where blank circles
corresponding to elements in L and label J for elements in JL. In the last column,
we encode ϕnL

=
∑
i∈I aiωi as follow: on the Dynkin diagram of type R, if ai 6= 0

we put the coefficient ai under the corresponding vertice. To compute ϕnL
we use

the matrix: (
〈ωi, ω∨j 〉

)
i,j∈I

which is the inverse of the Cartan Matrix and computed in [OV90].
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type(G) rank Dynkin(R∨), L and JL Dynkin(R) and ϕnL

An

n ≥ 1
J n+ 1

n ≥ 2
J J J J 1 1

n odd, n ≥ 3
J J 2

n even, n ≥ 4
J J n+ 1 n+ 1

Bn n ≥ 2 J 1

J 2

Cn

n ≥ 3

J 2

J J 1

J 1
n even

Dn n ≥ 4

J

J

2

J

J

J

1

E6 6
J J

1

F4 4
J 1

G2 2
J 1

We conclude with figures of some reflexive polytopes and their duals. For the
type A2 (figure 9 ), we have two pairs: interiors polytopes are PR,L with vertices in
the weight lattice and duals are exterior polytopes in the root lattice. For the type
B2 and L = {1}, in the figure 10, the polytope PR,L is the interior polytope in the
weight lattice of C2 and its dual is in the root lattice of B2 (which is obtained from
C2 by permutation of the simple roots). In dimension two, there is 16 reflexive
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polygons (see for example [CLS11] p 382). Among these, we find five built from
root systems.

α∨1

ω∨1

ω∨2

α∨2

α∨1

α∨2

ω∨2
ω∨1

Fig. 9
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α∨1

α∨2

ω∨1

ω∨2

Fig. 10
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