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TORIC VARIETIES ASSOCIATED TO ROOT SYSTEMS

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

Abstract. Given a reductive group G and a parabolic subgroup P ⊂ G, with

maximal torus T , we consider the closure X of a generic T -orbit (in the sense
of Dabrowski’s work), and determine when X is a Gorenstein-Fano variety. We

establish a correspondence between the family of fans associated to a closure of

a generic orbit and the family fans associated to a root system; these fans are
characterized as those stable by the symmetries with respect to a facet. This

correspondence is not bijective, but allows to determine which complete fans

associated to a root system correspond to a Gorenstein-Fano variety. Lattice-
regular convex polytopes arise as the polytopes associated to a sub-family of

these fans — the lattice-regular complete fans.
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1. Introduction

Let R be a root system and ΛP the associated weight lattice. In [VoKl85],
V.E. Voskresenskĭı and A.A. Klyachko considered a family of strictly convex com-
plete fans in ΛR = R⊗Z Λ, constructed by “gluing together” selected adjacent Weyl
chambers, in such a way that the associated toric varieties are smooth; they classi-
fied all the Fano varieties of this family. Later, R. Dabrowski considered in [Dab96]
the geometry of the closure of a “generic T–orbit in G/P”, where G is a reductive
group over the complex numbers, T ⊂ P ⊂ G a maximal torus and a parabolic
subgroup associated to an anti-dominant weight λ respectively. The combinatorial
data associated to these complete toric varieties is given, as in Voskresenskĭı and
Klyachko’s work, by a fan in (ΛP )R, such that a cone of maximal dimension is the
union of some translates of the Weyl chambers.

On the other hand, given a lattice Λ, O. Karpenkov classified in [Kar06] the
lattice–regular convex polytopes in ΛR — that is, the convex polytopes generated by
elements of Λ, that are regular with respect to the group of affine transformations
preserving Λ. Later, in [MR09] the first author and N. Ressayre shown how to
canonically associate a root system to any such regular polytope.

In this paper we establish the notion of a complete toric variety (or fan) as-
sociated to a root system: a complete fan Σ is associated to a root system if the
symmetries with respect to any facet — that is a co-dimension one cone of the fan
— is an automorphism of Σ. It turns out that in this case the primitive elements
of the normal to the support hyperplane of the facets of Σ configure a root system
for the ambient space. Moreover, there exists a correspondence between this family
and the family of closure of generic T -orbits in G/P — generic closures from now
on. This correspondence is not bijective, but allows us to completely determine
which complete toric varieties associated to a root system are Q–Gorenstein-Fano
— this is done establishing which generic closures are Q–Gorenstein-Fano. The
key ingredient for this characterization is a description of the combinatorics of the
polytope generated by the set of primitive elements of the fan, in terms of the root
system and the associated fundamental weights. Lattice-regular polytopes are in
duality with a sub-family of the family of fans associated to root systems; namely,
the fans Σ that are that a regular for the action of the automorphisms group —
the lattice-regular complete fans, see Definition 4.12.

Explicit — and rather long — calculations allow to give a complete description
of the mentioned families. The computing for exceptional type are made by using
the following software: Sage [St] and the version of Gap3 [Sch97] maintained by
Jean Michel — that allow us to use the package Chevie (see [GHLMP96] and
[Mic2015]). In this regard, we warmly thank Cédric Bonnafé for his short, but
effective introduction to Gap3.

We describe now the content of this paper.

In Section 2 we collect some well known basic facts on toric varieties and their
associated fans, as well as some (also very well known) key results on root systems
and their associated weight lattices.

In Section 3 we first recall Dabrowski’s description of the fan associated to the
closure of a generic orbit, and establish some key facts on the combinatorics of
these fans (see lemmas 3.5 and 3.7 and their corollaries). These results allow us to
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characterize the Q–Gorenstein-Fano generic closures in Proposition 3.14: a generic
closure associated to an anti-dominant weight λ is Q–Gorenstein-Fano if and only
if the convex hull of Prim(σλ) — the primitive vectors of the cone σλ =

⋃
Wλ

wC,
where W is the Weyl group of G and C the anti-dominant Weyl chamber —, is a
(n − 1)-dimensional polytope, such that the normal of its support hyperplane is
interior to the cone generated by {ωi : i ∈ Iλ} (Iλ is the support of λ, see Definition
2.9).

In Section 4 we define toric varieties associated to a root system (see definitions
4.1 and 4.3, and Proposition 4.7) and establish correspondence between this family
and the family of the closures of a generic T -orbit in G/P (Proposition 4.4 and
Theorem 4.9) — this correspondence is not a bijection, see Remark 4.10. Lattice-
regular polytopes arise as a subfamily of the fans associated to root systems that are
Fano: the lattice-regular complete fans are those fans associated to a root system
such that their associated polytope is regular (see Proposition 4.14 and Corollary
4.15).

We include as an Appendix (Section 6) the explicit calculations of the Fano
generic closures. We use the previous results in order to completely classify Fano
closures of generic orbits. In view of the results of Section 3, given an anti-dominant
weight λ, one needs to construct Prim(σλ), the set of primitive generators of σλ
as a sets of orbits of the form Wλ · (−ωi), for some fundamentals weights ωi —
these weights depend on the given λ. Then one must check if

〈
Prim(σλ)

〉
aff

is
an hyperplane, and that nλ, the interior normal associated to the the hyperplane,
belongs to the interior of the cone R+〈ωi : i ∈ Iλ〉.

The cases An, Bn, Cn and Dn are dealt by doing generic calculations; we inten-
sively use the results of Section 3 of generic orbits, in particular corollaries 3.6 and
3.9. In order to deal with the exceptional cases F4, E6, E7 and E8 we use Gap3
functionalities in order to calculate a generating set of the cone σλ, and then Sage’s
“toric varieties” package in order to calculate the set of primitive elements of σλ.
Once this is done, we calculate nλ when dim

〈
Prim(σλ)

〉
aff

= n− 1.

A table resuming all the geometric properties is also given if Section 5.

All the varieties we consider are defined over an algebraically closed field k of
characteristic 0.

Acknowledgments: the authors thank the Instituto Franco-Uruguayo de Matemática
(Uruguay), MathAmSud Project RepHomol, CSIC (Udelar, Uruguay) and the In-
stitut Montpelliérain Alexander Grothendieck for partial financial support.

2. Preliminaries

2.1. Toric varieties.

Definition 2.1. Let Λ be a lattice and ΛR = Λ⊗ZR the associated ambient space.
A fan Σ in ΛR is a finite collection of rational polyhedral, strictly convex cones
Σ = {σi : i ∈ I}, such that for every i, j ∈ I, σi ∩ σj ∈ Σ is a common face of σi
and σj , and any face τ ⊂ σi belongs to Σ. The fan Σ is complete if

⋃
i∈I σi = ΛR.

We denote by Σ(r) the collection of r–dimensional cones in Σ.

A element a of a monoid S is primitive, if for all b, c ∈ S such that a = b+c then
b = 0 or c = 0. The set of primitive elements of S will be denoted Prim(S). The set



4 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

of primitive elements of the fan Σ is defined as PrimΛ(Σ) =
⋃
σ∈Σ(1) Prim(σ ∩ Λ).

In other words, a lattice element v ∈ Λ is primitive for Σ if v is primitive and
generates a one dimensional cone of Σ. If σ ∈ Σ(r), then PrimΛ(σ) = PrimΛ(Σ)∩σ
is the set of primitive elements of σ; clearly σ = R+

〈
PrimΛ(σ)

〉
and PrimΛ(Σ) =

∪σ∈Σ PrimΛ(σ).

When no confusion is possible, the subscript Λ will be omitted.

We define the baricenter bσ of a cone σ ∈ Σ as bσ =
∑
ν∈Prim(σ) ν; clearly

bσ ∈ (σ)
◦
, the interior of σ.

Remark 2.2. Let T be an algebraic torus and X (T ) its character group, and let
Λ = X (T )∨. It is well known that the family of fans in ΛR = R⊗Z Λ is in bijection
with the family of T -toric varieties. Under this correspondence, complete fans
correspond to complete toric varieties. If Σ is a fan, we denote XΣ the associated
toric variety. It is well known that the T–stable Weil divisors are in bijection with
the Z–linear combinations

∑
σ∈Σ(1) aσDσ, where aσ ∈ Z and Dσ is the T -stable

divisor associated to the cone σ ∈ Σ(1). We refer to [CLS11] for further properties
of this correspondence.

We recall now some well known properties that we will use in what follows.

Definition 2.3. Let Σ be a complete fan in ΛR. A support function is a function
ϕ : M → R that is linear in each cone σ ∈ Σ. A support function ϕ is integral
(resp. rational) if ϕ(Λ) ⊂ Z (resp. Q).

The following Lemma is a well-known result on toric varieties and their divisors
(for a proof, see for example [CLS11, theorems 4.2.12 and 6.2.1]).

Lemma 2.4. Let T be a n-dimensional torus with associated one-parameter sub-
group lattice Λ and consider the following sets of equivalence classes

(i) set of pairs (complete toric variety, ample T -stable Q–Cartier divisor)

T D =

{
(X,D) :

X is a complete toric variety,
D is a Q–Cartier divisor

}/
∼,

where (X1, D1) ∼ (X2, D2) if and only if there exists an isomorphism of toric
varieties ψ : X1 → X2, such that D1 ∼ ψ∗(D2) as divisors. Recall that a Weil
divisor D is Q–Cartier if some positive integer multiple is Cartier.

(ii) set of pairs (complete fan, strictly convex rational support function)

FD =

{
(Σ, ϕ) :

Σ a complete fan,
ϕ a strictly convex rational support function

}/
∼,

where (Σ1, ϕ1) ∼ (Σ2, ϕ2) if and only if there exists an integral isomorphism ρ :
ΛR → ΛR, such that Σ2 = ρ(Σ1) and ϕ1 = ρ∗(ϕ2).

(iii) set of full dimensional convex rational lattice polytopes — that is, full dimen-
sional polytopes P in M∨ = R⊗Z Λ∨ such that an integer multiple aP , a > 0, is a
lattice polytope.

P =
{
P ⊂ Λ∨R : P full dimensional convex rational lattice polytope

}/
∼,

where P1 ∼ P2 if and only if there exists an integral isomorphism g : Λ∨R → Λ∨R such
that P2 = g(P1).
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Then the assignments (Σ, ϕ) 7→ (XΣ, Dϕ) and (Σ, ϕ) 7→ Pϕ induce bijections
F : FD → T D and G : FD → P.

Under these correspondences Cartier divisors correspond to strictly convex inte-
gral support functions respectively lattice polytopes. �

Definition 2.5. Let Σ be a fan. The set of flags of cones of Σ is the set

FΣ =
{

0 = τ0 ( τ1 ( · · · ( τn : τi ∈ Σ(i)
}
.

Definition 2.6. A complete fan Σ is Q–Gorenstein-Fano (resp. Gorenstein-Fano,
resp. Fano) if the associated complete toric variety XΣ is Q–Gorenstein-Fano (resp.
Gorenstein-Fano, resp. Fano); that is, the anti-canonical divisor −KXΣ

is an ample
Q–Cartier divisor (resp. an ample Cartier divisor, resp. XΣ is a smooth Gorenstein-
Fano variety).

Recall that if XΣ is the toric variety associated to the complete fan Σ, then
−KXΣ =

∑
Dσ∈Σ(1)Dσ. By using this equality and [CLS11, Lemma 6.1.13], we

deduce the following equivalences.

Lemma 2.7. Let Σ be a complete fan in R⊗Λ ∼= Rn. Then the following assertions
are equivalent:

(i) Σ is Q–Gorenstein-Fano;

(ii) the elements of
{

Conv
(
Prim(σ)

)
: Σ(s) , s = 1, . . . , n

}
are the proper faces of

the polytope Conv
(
Prim(Σ)

)
;

(iii) for every cone σ ∈ Σ(n), the polytope F = Conv
(
Prim(σ)

)
is (n−1)-dimensional,

and if 〈Prim(σ)〉aff = n⊥σ , with 〈nσ, v〉 = −1 for v ∈ Prim(σ), then 〈n,w〉 > −1 for
every w ∈ Prim(Σ) \Prim(σ). In this case, ϕK(v) = 〈nσ, v〉 if v ∈ σ is the support
function associated to the anti-canonical divisor −KXΣ

.

(iv) for every cone σ ∈ Σ(n), the polytope F = Conv
(
Prim(σ)

)
is (n−1)-dimensional,

and if 〈Prim(σ)〉aff = n⊥σ , then −nσ ∈ (σ)
◦
.

In this case, Σ is Gorenstein-Fano if and only if nλ ∈ Λ. �

2.2. Root systems.

In what follows, G is a semi-simple algebraic group and T ⊂ B ⊂ G are a
maximal torus and a Borel subgroup respectively. Denote by R,W the associated
root system and Weyl group respectively. Let α1, . . . , αn be the simple roots and
ω1, . . . , ωn be the fundamental weights. The type of G is the type of the associated
root system R.

We denote by ΛR the root lattice and by ΛP the weight lattice. Let N = R⊗ZΛP
andM = R⊗ZΛR. Then the duality given by 〈ωi, α∨j 〉 = δi,j , where α∨ is the co-root
associated to αi, induces an identification of M and N . Under such identification
ΛR ⊂ ΛP , and hyperplanes Hi = α⊥i are generated by {ω1, . . . , ωn} \ ωi. The
corresponding subdivision of M is given by the Weyl chambers associated to the
root system, which are simplicial rational cones. In particular, W acts by isometries,
transitively and freely on the Weyl chambers. We denote by D the dominant Weyl
chamber; C = −D is the anti-dominant (Weyl) chamber.

Definition 2.8. If λ ∈ D is a dominant weight, let P ⊂ G be the parabolic subgroup
associated to λ, that is P is a parabolic subgroup containing B− (the Borel subgroup
opposite to B), such that the Weyl group of P is WP = Wλ. Then λ can be extend
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to P . We denote by V (λ) the Weyl G–module

V (λ) = H0(G/P,Lλ) =
{
f ∈ k[G] : f(xy) = λ−1(y)f(x) ∀x ∈ G, y ∈ P

}
.

Definition 2.9. If λ =
∑n
i=1 aiωi ∈ ΛP is a weight, we define the support of λ as

the set Iλ = {i : ai 6= 0}.
If S is the Dynkin diagram associated to R, let 〈Iλ〉 ⊂ S generated by Iλ, that

is, S is the full sub-graph with set of vertices Iλ. We say λ is connected if 〈Iλ〉 is
an irreducible Dynkin diagram.

Remark 2.10. Let λ =
∑n
i=1 aiωi ∈ D be a dominant weight, and let Wλ ⊂ W

be the isotropy group of λ under the action of W on the weight lattice. Then

Wλ = W∑
i∈Iλ

ωi = W∑
i∈Iλ
− ωi =

〈
sαi : i ∈ Icλ

〉
=

`λ∏
i=1

〈Si〉,

where Si, i = 1, . . . , `λ, are the irreducible components of
〈
Icλ
〉
. In particular, Wλ

depends only on Iλ.

If j ∈ Icλ, we denote i(j) ∈ {1, . . . , `λ} the index such that j ∈ Si(j); then

(Wλ)ωj =
〈
sαi : i ∈ Si(j) \ {j}

〉
×
∏
i 6=i(j) Si.

In particular, if a 6= 0, then Wλ · (aωj) =
〈
sαt : t ∈ Si(j)

〉
· (aωj) = WSi(j) · (aωj),

where if A ⊂ S is a sub-graph, then WA denotes the Weyl group associated to the
root system of the Levi subgroup associated to A. It follows that

#Wλ · aωi =
#WSi

#W〈
sαi :i∈Si(j)\{j}

〉 .
Observe that the same results hold if λ ∈ C is an anti-dominant weight.

3. Generic orbits of G/P

From now on, we assume thatG is a semi-simple algebraic group, and T ⊂ B ⊂ G
a maximal torus and a Borel subgroup respectively.

3.1. General results.

Definition 3.1 (see [Dab96, §1]). Let λ ∈ C \ {0} be a non trivial anti-dominant
weight, and P ⊃ B be the parabolic subgroup associated to −λ. Let ∆P = {αi :
sαi ∈Wλ = W−λ}, and consider SP ⊂ ΛR, the sub-lattice generated by the positive
roots that are not sums of simple roots in ∆P .

Let Πλ =
{
µ ∈ ΛP : V (−λ)µ 6= 0

}
the set of T -weights of V (−λ) and Aλ be

the list of the T -weights counted with multiplicity. A set of Plücker coordinates
{fµ : µ ∈ Aλ} is a choice of a basis of T -semi-invariants functions fµ ∈ V (−λ)µ.

If x = uP ∈ G/P , we consider

Πλ(x) :=
{
µ ∈ Πλ : fµ(x) 6= 0 for some fµ in the Plücker basis

}
.

It is easy to see that Πλ(x) does not depends on the choice of the Plücker
coordinates. Moreover, λ− wΠλ(x) ⊂ SP ⊂ ΛR, for every w ∈W .

We say that the T -orbit T · x is generic if:

(i) W · λ ⊂ Πλ(x)
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(ii) The set λ− wΠλ(x) generates SP as a lattice.

We recall in the next theorem some of the properties of generic orbits shown on
[Dab96], that we need for the rest of this work.

Theorem 3.2. If x ∈ G/P is such that all its Plücker coordinates does not vanish,
then T · x is a generic orbit. In particular, generic orbits exist.

Let σλ =
⋃
w∈Wλ

wC. Then σλ is a convex convex rational cone. If T · x is a

generic orbit, then T -orbit closure T · x ⊂ G/P is a toric variety with associated
fan Σλ, with cones of maximal dimension given by

Σλ(n) = {wσλ : w ∈Wλ},

where Wλ ⊂W is a set-theoretical section of W/Wλ.

Moreover, Σλ(n) is the fan associated to the polytope −Pλ = −Conv(Πλ) —
that is, the fan obtained by considering the cones with vertex 0, generated by the
strict faces of −Pλ. �

Remark 3.3. (1) If λ is a regular anti-dominant weight, then σλ = C = −D.

(2) Let G be a simple group — equivalently, the associated root system is irre-
ducible. If λ ∈ C is an anti-dominant weight, then Pλ is non-degenerate (i.e. of
maximal dimension), and thus Σλ is a strictly convex fan.

(3) If G has associated root system R =
∏r
i=1Ri, with Ri an irreducible root

system, then ΛP =
∏
i ΛPi , where Pi is the weight lattice associated to Ri, C =∏

i CRi and and WR
∼=
∏
iWR1

.

It is clear that if λ =
∑
i λi, λi ∈ CRi , is an anti-dominant weight, then Σλ =∏

i Σλi . It follows that Σλ is a strictly convex fan if and only if λi 6= 0 for all
i = 1, . . . , r.

On the other hand, if λi = 0 then every cone in Σλ contains the subspace 〈ΛPi〉R.
It follows that that T · x is a complete T/Tx-toric variety, with associated fan the
projection of Σλ over N/〈

∏
λi=0ΛPiPλ〉R.

Therefore, we can always assume that the polytope Pλ is non–degenerate and Σλ
a strictly convex fan. Moreover, Σλ is Q–Gorenstein-Fano (resp. Gorenstein-Fano,
resp. Fano) if and only if Σλi is so for all i = 1, . . . , r. Hence, we can restrict our
calculations to the simple case.

Proposition 3.4. Let λ ∈ C be a non trivial anti-dominant weight. Then

(1) The weight λ is in the interior of σλ.
(2) Let γλ = R+〈−ωi : i ∈ Iλ〉 be the biggest face γ ⊂ C such that λ ∈ (γ)

◦
.

Then

γλ =
⋂

w∈Wλ

wC = (σλ)Wλ

(3) The fan Σλ is stable under the action of W , and Wλ = Wσλ . In particular,
#Σ(n) = #(W/Wλ) = #W/#Wλ.

Proof. (1) In order to prove that λ ∈ (σλ)
◦

observe that, in the notations of Theo-
rem 3.2, −λ is a vertex of −Pλ, and hence it corresponds to an interior point of σλ
under the duality between M and N .



8 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

(2) If w ∈Wλ, then w ·γλ is the maximal face of wC containing w ·λ = λ. It follows
that w ·γλ = γλ, and γλ ⊂

⋂
w∈Wλ

wC. On the other hand, since the decomposition
of the ambient space in Weyl chambers induces a fan — in the notations of Theorem
3.2, the fan Σ−

∑
ωi —, it follows that

⋂
w∈Wλ

wC is a face of C containing λ. Thus,⋂
w∈Wλ

wC ⊂ γλ. It is clear that γλ ⊂ (σλ)Wλ , and that (σλ)Wλ ⊂
⋂
w∈Wλ

wC.
(3) By construction, the Weyl group W acts transitively on Σ(n); therefore Σλ
is stable under the action of W . In order to prove the rest of the assertions,
we can assume that λ = −

∑
i∈Iλ ωi. It is clear then that Wλ ⊂ Wσλ . Since

γλ = R+〈−ωi : i ∈ Iλ〉 is it follows Let w′ ∈ Wσ. Then w′(wC) ⊂ σ for any
w ∈ Wλ. It follows that w′γλ = γλ, and thus w′{−ωi : i ∈ Iλ} = {−ωi : i ∈ Iλ}.
Hence w′λ = λ.

It is clear that {w ∈ W : λ ∈ wC} ⊂
⋃
{w∈W :λ∈Cw}. Let w ∈ W be such that

λ ∈ wC. Then λ ∈ w · C ∩ (σλ)
◦
. Since W acts transitively on the cones of Σλ(n),

it follows that w · C ⊂ σλ. �

Lemma 3.5. Let λ, µ ∈ C be anti-dominant weights. Then the following are equiv-
alent: (i) σµ ⊂ σλ; (ii) µ ∈ (σλ)

◦
; (iii) Iλ ⊂ Iµ; (iv) Wµ ⊂Wλ.

Proof. It is well known that (iii) is equivalent to (iv), see Remark 2.10.

Since σµ is a cone of maximal dimension and that µ ∈ (σµ)
◦
, it follows that

(i) implies (ii). On the other hand, if µ ∈ (σλ)
◦

and w ∈ Wµ, it follows from the
transitivity of the W -action (as in the proof of Proposition 3.4) that w · C ⊂ σλ.

It is clear that (iv) implies (i). Assume now that σµ ⊂ σλ. If w ∈ Wµ, then
wC ⊂ σλ and hence w ∈ Wλ — we are using here that W acts freely on the set of
Weyl chambers. �

Corollary 3.6. Let λ ∈ C be an anti-dominant weight and consider a face τ =
R+
〈
−ωi : i ∈ J ⊂ {1, . . . , n}

〉
⊂ C. Then τ is contained in a proper face of σλ if

and only if J 6⊃ Iλ; that is, if and only if λ 6∈ τ .

Proof. By Lemma 3.5, τ ∩ (σλ)
◦ 6= ∅ if and only if there exists an anti-dominant

weight µ ∈ τ such that Iµ ⊃ Iλ, that is if and only if J ⊃ Iλ. �

Lemma 3.7. Let λ ∈ C be an anti-dominant weight and consider a face γ ∈ σλ(r).
Then there exist faces γ1, . . . , γs(γ) ⊂ C(r) and elements ω1, . . . , ωs(γ) ∈ Wλ, wi 6=
wj if i 6= j, such that γ =

⋃s(γ)
i=1 wi · γi.

Let γ′ ∈ σλ(r) be another r–dimensional face, such that there exists 1 ≤ j ≤ s(γ)

and w′ ∈ Wλ with γ′ = w′γj
⋃s(γ′)−1
i=1 w′i · γ′i, w′i ∈ Wλ and γ′i ∈ C(r). Then

s(γ) = s(γ′) and {γ1, . . . , γs(γ)} = {γ′1, . . . , γ′s(γ)−1, γj}.

Proof. It is clear that if γ ∈ σλ(r) is a r-face, then there exists at most only one face
τ ∈ C(r) such that τ ⊂ γ. Indeed, is τ ′ ∈ C(r) is another r-face, then dim〈τ∪τ ′〉 > r.
Thus, the first assertion follows immediately from the transitivity of the W -action
on the Weyl chambers.
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Let γ =
⋃s(γ)
i=1 wi · γi ∈ σλ(r) and assume that j = 1. Then w · γ ∈ σλ(r) for all

w ∈Wλ, and it follows that s(γ) = s(wγ) for all w ∈Wλ. In particular,

w′w−1
1 · γ =

s(γ)⋃
i=1

w′w−1
1 wi · γi = w′γ1 ∪

⋃ s(γ)⋃
i=2

w′w−1
1 wi · γi ∈ σλ(r)

It follows that w′w−1
1 · γ = γ′ and the result easily follows. �

Corollary 3.8. Let λ ∈ C be an anti-dominant weight. Then:

(1) If ωi is a fundamental weight, then −ωi ∈ (σλ)
◦

if and only if λ = aωi, a < 0.

(2) There exists a subset Jλ ⊂ {1, . . . , n}, such that Prim(σλ) = Wλ·Jλ. If λ = −ωi,
then ωi /∈ Jλ.

(3) A facet Ci = Z+〈−ω1, . . . ,−ωi−1,−ωi+1, . . . ,−ωn〉 ⊂ C is contained in a facet
of σλ if and only if i ∈ Iλ. In particular, #Iλ facets of C are contained in a facet
of σλ, whereas the remaining n − #Iλ facets of C contain points in (σλ)

◦
, and if

−λ = ωi is a fundamental weight, then⋃
τ∈σλ(n−1)

τ =
⋃

w∈Wλ

wCi.

Proof. Assertion (1) is an easy consequence of Lemma 3.5. Assertion (2) follows
from Lemma 3.7 applied to the case r = 1. Assertion (3) is proved combining
lemmas 3.5 and 3.7. �

The comprehension of Prim(σλ) given in Corollary 3.8 can be improved, by
describing the affine sub-space that this set generates.

Corollary 3.9. Let λ ∈ C be an anti-dominant weight, and consider Jλ as in
Corollary 3.8. If −ωk ∈ Jλ, then, with the notations of Remark 2.10,〈

Prim(σλ)
〉

aff
= − ωk +

〈( ⋃
j∈Jλ

Wλ · (ωj)− ωj
)
∪ {ωi − ωj : i, j ∈ Jλ}

〉
R

=

− ωk +
〈
{αi : i /∈ Iλ} ∪ {ωi − ωk : i ∈ Jλ}

〉
R

Proof. Indeed, if i, j ∈ Jλ and f, g ∈Wλ, then

f · (−ωi)− g · (−ωj) = f · (−ωi)− ωi + ωi − ωj + ωj − g · (−ωj),

and the first equality follows. As for the second equality, let f = s` · · · s1 ∈ Wλ,
with si ∈ {sαi : i /∈ Iλ}. Then f · (−ωi)− ωi ∈ 〈αi〉R, and the inclusion ⊂ follows.

Let i /∈ Iλ; if sαi(ν) = ν for all ν ∈ Prim(σλ), then sαi = Id; since σλ is of
maximal dimension, this is a contradiction. It follows that there exists ν ∈ Prim(σλ)
such that sαi(ν) 6= ν, and therefore αi ∈

〈
Prim(σλ)

〉
aff
− ωk. �

Corollary 3.10. Let λ ∈ C be an anti-dominant weight. Then Ibσλ = Iλ. In

particular, bσλ =
∑
ν∈Prim(σλ) ν ∈ (γλ)

◦
.

Proof. By construction, bσλ ∈ (σλ)
◦
. Thus, by Lemma 3.5, Iλ ⊂ Ibσλ . On the other

hand, it follows from Corollary 3.9 that Wλ · bσλ = bσλ . Hence, Ibσλ ⊂ Iλ. �



10 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

Remark 3.11. Let G be a semi-simple group and λ, µ ∈ C two anti-dominant
weights, such that Iµ ⊂ Iλ. If τ ∈ σµ(r), then (τ ∩ σλ) ∈ σλ(s), where s ≤ r. In
particular, if R+〈−ωi〉 ∈ σµ(1), then R+〈−ωi〉 ∈ σλ(1). This well known fact on
the geometry of rational cones will be useful for the description of the geometry of
the closure of the generic orbits — namely, the description of Prim(σλ) ∩ C.

3.2. Fano closures of generic orbits.

Definition 3.12. LetG be a semi-simple group and λ ∈ C an anti-dominant weight.
Then Fλ = Conv

(
Prim(σλ)

)
is a face of −Pλ = Conv

(
Prim(Σλ)

)
. We denote by

nλ the interior normal to the face FC ; that is, nλ is the unique element of ΛR such
that 〈nλ, ν〉 = −1 for all ν ∈ Prim(σλ).

Since the cones σλ, and in particular the generating sets Prim(σλ), are stable
by the Wλ-action, one can give partial information about Conv

(
Wλ · (−ωj)

)
, for

−ωj ∈ C ∩ Prim(σλ), in terms of λ and the baricenter bλ.

Lemma 3.13. Let G be a simple group and λ = −
∑
i∈Iλ ωi ∈ C an anti-dominant

weight. Let −ωj ∈ Prim(σλ) be an anti-fundamental weight that is a generator of
a ray of σλ. Then 〈

Wλ · (−ωj)
〉

aff
⊂ −ωj +

(
b⊥σλ ∩ λ

⊥ ∩ n⊥λ
)
.

Proof. By Corollary 3.10, Iλ = Ibσλ ; therefore, bσλ is fixed by Wλ. It follows

that if w ∈ Wλ, then
〈
bσλ , w · (−ωj) + ωj

〉
=
〈
bσλ ,−ωj

〉
+
〈
bσλ , ωj

〉
= 0. It

follows that
〈
Wλ(−ωj)

〉
aff
⊂ −ωj + b⊥σλ . The same kind of calculations show that〈

Wλ(−ωj)
〉

aff
⊂ −ωj + λ⊥. �

Lemma 3.13 gives general but partial information on the polytope FC . How-
ever, the previous results allow to give a combinatorial description of Fano generic
closures, as follows:

Proposition 3.14. Let G be a simple group and λ ∈ C an anti-dominant weight.
Then nλ =

∑
i∈Iλ aiωi, and the fan Σλ is Q–Gorenstein-Fano if and only if nλ ∈

(γλ)
◦

=
((
R+〈ωi : i ∈ Iλ〉

))◦
. That is, if and only if nλ =

∑
i∈Iλ aiωi, with ai > 0

for all i ∈ Iλ.

Proof. It follows from Corollary 3.9 that nλ =
∑
i∈Iλ aiωi. By Lemma 2.7, Σλ is

Q–Gorenstein-Fano if and only if −nλ ∈ (σλ)
◦
. This implies our result. �

4. Fans associated to root systems

4.1. Fans associated to root systems.

Definition 4.1. Let Σ ⊂ ΛR = R ⊗Z Λ be a complete fan. The automorphisms
group of Σ is defined as

Aut(Σ) =
{
f ∈ GL

(
Λ
)

: f(σ) ∈ Σ(r) ∀σ ∈ Σ(r)
}

Remark 4.2. Since any f ∈ Aut(Σ) ⊂ GL
(
Λ
)

acts by permutations in Σ(1), it
follows that Aut(Σ) acts by permutations on Prim(Σ). In particular, Aut(Σ) is a
finite group. From now on, we fix an internal product on ΛR in such a way that
any automorphism of Σ is an isometry of ΛR.
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Definition 4.3. Let Σ be a complete fan in ΛR, with dim ΛR = n. We say that Σ
is associated to a root system if for every facet σ ∈ Σ(n−1), there exists a reflection
sσ that fixes the hyperplane Hσ = 〈σ〉R, that is also an element of Aut(Σ).

Since any automorphism is an isometry for the chosen internal product, it follows
that if Σ is associated to a root system and σ ∈ Σ(n − 1) then the orthogonal
reflection fixing Hσ is the unique reflexion fixing that hyperplane belonging to
Aut(Σ). Let ασ ∈ Λ be such that ±ασ are the unique primitive elements of H⊥σ .
Let Φ(Σ) =

{
±ασ : σ ∈ Σ(n − 1)

}
. be the set of such primitive elements. In

Proposition 4.7, we will prove that Φ(Σ) is a root system; this fact justifies the
above definition.

Proposition 4.4. Let G be a simple group and λ ∈ C an anti-dominant weight.
Then Σλ is a fan associated to a root system.

Proof. If τ ∈ Σ(n − 1) is a facet then, by Lemma 3.7, there exists w ∈ W and a
facet σ ∈ C(n− 1) such that 〈τ〉R = w · 〈σ〉R. Now, by construction, there exists a
simple root αi such that 〈σ〉R = α⊥i . It follows that wsαiw

−1 ∈W is the reflection
associated to τ . Since W ⊂ Aut(Σλ) (see Proposition 3.4), the result follows. �

Remark 4.5. The converse of Proposition 4.4 we will be proved in Theorem 4.9.
The reader should note however that the associated root system Φ(Σλ) is not nec-
essarily the root system associated to G, see Example 4.6 and Remark 4.10 below.

Example 4.6 (G2-type groups). Let G be a simple group of type G2. It is easy to
see that Σ−ω1

and Σ−ω2
have A2 as associated root system. Thus, the root system

associated to a generic orbit is not necessarily the one associated to the original
group G.

Proposition 4.7. Let Σ a complete fan in ΛR associated to a root system. Then

(1) The set Φ(Σ) is a root system of ΛR.

(2) The weight and root lattices of Φ(Σ), denoted respectively by ΛP and ΛR, satisfy:

ΛR ⊂ Λ ⊂ ΛP .

(3) If W and Aut(Φ(Σ)) denote the Weyl and the automorphisms group of Φ(Σ)
respectively, then

W ⊂ Aut(Σ) ⊂ Aut
(
Φ(Σ)

)
.

Proof. (1) It is clear that Φ(Σ) is finite, does not contain zero, spans ΛR and that
Z · α ∩ Φ(Σ) = {±α} for every α ∈ Φ(Σ). Indeed, Σ(n) is composed of strictly
convex rational cones.

By construction, α ∈ Φ(Σ) if and only if −α ∈ Φ(Σ), and sα(α) = −α.

If β ∈ Φ(Σ), then β⊥ = 〈σβ〉 for some σβ ∈ Σ(n − 1). Since sα ∈ Aut(Σ), it
follows that sα(σβ) ∈ Σ(n− 1), with sα(β)⊥ = 〈sα(σβ)〉R. Therefore, sα

(
Φ(Σ)

)
=

Φ(Σ).

It is clear that sα(β)− β is an element of Λ proportional to α. Since α has been
chosen primitive, it follows that sα(β)− β is an entire multiple of α. This ends the
proof of Assertion (1).

In order to prove Assertion (2) it suffices to prove that Λ ⊂ ΛP , the other
inclusion being obvious. Let α ∈ Φ(Σ) and λ ∈ Λ. Then sα(λ) = λ−〈λ, α∨〉α ∈ Λ,
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where α∨ is the co-root associated to α. Since α is primitive on Λ, we deduce that
〈λ, α∨〉 ∈ Z.

Finally, the inclusions W ⊂ Aut(Σ) ⊂ Aut
(
Φ(Σ)

)
are a direct consequence of

the proof of Assertion (1). �

Definition 4.8. The root system Φ(Σ) is called the root system associated to Σ.

In Proposition 4.4 we showed that any fan associated to a generic orbit is as-
sociated to a root system. The following theorem shows that the converse is also
true.

Theorem 4.9. Let Σ be a complete fan in ΛR = R⊗Z Λ ∼= Rn, associated to a root
system. Then

(1) If σ ∈ Σ(n), then σ is an union of Weyl chambers. If σ is such that C ⊂ σ, then
there exists an anti-dominant weight λ =

∑
i∈Iλ ωi such that σ = σλ and Σ = Σλ.

In particular, the Weyl group W acts transitively on the set of cones of maximal
dimension Σ(n), and #Σ(n) = #(W/Wλ) = #W/#Wλ.

(2) If λ =
∑
i∈Iλ ωi, then Aut

(
Φ(Σ)

)
σλ

= Aut
(
Φ(Σ)

)
λ

and

Aut(Σ) = W ·
(

Aut
(
Φ(Σ)

)
σλ
∩Aut(Σ)

)
= W ·

(
Aut

(
Φ(Σ)

)
λ
∩Aut(Σ)

)
.

Proof. (1) Let σ ∈ Σ(n); by definition of Φ(Σ), there exist ` ≥ n and βi ∈ Φ(Σ),
i = 1, . . . , `, such that

σ =
⋂̀
s=1

{
v ∈ ΛR : 〈v, βi〉 ≥ 0

}
.

Let E be a Weyl chamber such that (E)
◦ ∩ (σ)

◦ 6= ∅, and consider a choice of

positive roots Φ(Σ)+ such that E =
⋂
α∈Φ(Σ)+

{
v ∈ ΛR : 〈v, α〉 ≥ 0

}
. If βi ∈ Φ(Σ)−

for some i, then v ∈ (E)
◦ ∩ (σ)

◦
is such that 〈v, βi〉 ≥ 0 and 〈v,−βi〉 > 0; this is a

contradiction. It follows that E ⊂ σ.

Assume now that C ⊂ σ and let λ =
∑
ν∈Prim(σ) ν. We affirm that λ ∈ C and

that σ = σλ; then Assertion (1) follows from Theorem 3.2.

We first prove that Wλ = Wσ. If w ∈ Wλ then λ = w · λ ∈ (σ)
◦ ∩ (w · σ)

◦
, and

it follows from Proposition 4.7 that w · σ = σ. On the other hand, if w ∈Wσ then
w · Prim(σ) = Prim(σ); therefore, w · λ = w ·

∑
ν∈Prim(σ) ν =

∑
ν∈Prim(σ) ν = λ.

Let w′ ∈ W be such that w′ · λ ∈ C. Then w′ · λ ∈ (w′ · σ)
◦ ∩ C ⊂ (w′ · σ)

◦ ∩ σ.
Hence, w′ · σ = σ, and it follows that w′ ∈Wσ = Wλ. Therefore, λ ∈ C.

Next, observe that we have proved in particular that σλ ⊂ σ. If σλ ( σ, then
there exists a weight µ ∈ (σ\σλ)∩ΛP . Let w′ ∈W be such that w′ ·µ ∈ C. Applying
the same reasoning as before, since W acts on Σ(n), it follows that w′ · σ = σ and

thus w′ ∈Wσ = Wλ is such that w′
−1 ·C 6⊂ σλ =

⋃
w∈Wλ

w·C; this is a contradiction.

(2) If f ∈ Aut
(
Φ(Σ)

)
, then f is an isometry (f respects the angles and lengths of

the simple roots) such that f(ΛR) = ΛR and therefore f(ΛP ) = ΛP . Moreover, f
stabilizes the set of Weyl chambers.

if f ∈ Aut
(
Φ(Σ)

)
λ

and E is a Weyl chamber contained in σλ, then λ = f(λ) ∈
f(E). It follows that f(E) ⊂ σλ; that is, f ∈ Aut

(
Φ(Σ)

)
σλ

.
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If g ∈ Aut
(
Φ(Σ)

)
σλ

, consider as usual γλ = R+
〈
ωi : i ∈ Iλ

〉
=
⋂
w∈Wλ

w·C. Since

g(σλ) = σλ, it follows that g
(
{w · C : w ∈Wλ}

)
= {w · C : w ∈Wλ}. Thus, g(γλ) =

γλ. Since g is an automorphism, it follows that g
(
PrimΛP (σλ)

)
= PrimΛP (σλ), and

we deduce that g
(∑

i∈Iλ ωi
)

=
∑
i∈Iλ ωi. Therefore, g ∈ Aut

(
Φ(Σ)

)
λ
.

Recall that, by Proposition 4.7, W ⊂ Aut(Σ) ⊂ Aut
(
Φ(Σ)

)
. Moreover, W ⊂

Aut
(
Φ(Σ)

)
is a normal subgroup that acts transitively on Σ(n). Thus, Aut(Σ) ⊂

W ·Aut
(
Φ(Σ)

)
σλ

.

Let f ∈ Aut(Σ); then f(C) = w · C for some w ∈ W . Therefore, w−1f ∈
Aut

(
Φ(Σ)

)
σλ

. Hence, Aut(Σ) = W ·
(

Aut
(
Φ(Σ)

)
λ
∩Aut(Σ)

)
and the result follows.

�

Remark 4.10. Observe that even if Theorem 4.9 provides a converse for Proposi-
tion 4.4, these results do not establish a bijection between closure of generic orbits
in G/P and fans associated to root systems. Indeed, as noted in Remark 4.5, the
root system associated to a closure of a generic orbit in G/P is not necessarily the
root system associated to G.

In particular, Example 4.6, shows that if we consider G of type G2 and λ = −ω1,
then the fan Σ−ω1

is isomorphic to the fan associated to the pair (G a group of
type A2, λ = −

∑
ωi) — the subdivision in Weyl chambers for A2.

On the other hand; Σ−ω2
is also associated to the root system A2, but Σ−ω1

6∼=
Σ−ω2

as fans. Indeed, Prim(σ−ω2
) is a basis of the lattice Λ — in other words

XΣ−ω2
is a smooth toric variety, whereas Prim(σ−ω1

) is not a basis of the lattice

Λ, since −ω1 /∈ 〈−ω1,−ω2〉Z.

Definition 4.11. Let G be a simple group and λ ∈ C a non trivial anti-dominant
weight. The minimal pair associated to Σλ is the a pair (R′, µ), where R′ is the root
system associated to the fan Σλ (as in Proposition 4.7) and µ is the anti-dominant
weight given by Theorem 4.9 (for the fan Σλ in (ΛP )R); we will describe R′ by its
type. It should be noted that the lattice of weights associated to the root system
R of G, is a sub–lattice of ΛP ′ , the lattice of weights associated to R′.

Note that the minimal pair is uniquely determined by (G,λ).

4.2. Lattice-regular complete fans.

Definition 4.12. Let Σ be a complete fan in ΛR. We say that Σ is lattice-regular
complete if Aut(Σ) acts transitively on the flags of cones of Σ. A lattice-regular
toric variety is a complete toric variety which associated fan is lattice-regular.

Example 4.13. Let G be a simple group of type A3. Then it is easy to see that
Σ−ωi is lattice-regular; see also Theorem 4.16.

Proposition 4.14. Let Σ be a lattice-regular complete fan in ΛR. Then Σ is
associated to a root system.

Proof. Consider an inner product on ΛR such that Aut(Σ) is composed of isometries.
We need to prove that if τ ∈ Σ(n− 1), then sτ , the reflection associated to τ , is an
element of Aut(Σ).

Let σ1, σ2 ∈ Σ(n) be such that τ = σ1 ∩ σ2, and consider the two flags of the
form F1) {0} ( τ1 ( · · · ( τn−1 = τ ( σ1 and F2) {0} ( τ1 ( · · · ( τn−1 = τ ( σ2.
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Then there exists f ∈ Aut(Σ) such that f(F1) = F2. We affirm that f
∣∣
〈τ〉R

=

Id
∣∣
〈τ〉R

, and thus, since f is an isometry, f is the reflection by 〈τ〉R.

We will prove by induction that if f ∈ Aut(Σ) is such that f stabilizes a partial
flag {0} ( τ1 ( · · · ( τr, τi = Σ(i), i = 1, . . . , r ≤ n, then f

∣∣
〈τr〉R

= Id
∣∣
〈τr〉R

; the

assertion will then follow.

Let ν in Prim(Σ) be such that f
(
R+〈ν〉

)
= R+〈ν〉. Since ν is primitive, it follows

that f(ν) = ν. Assume now that we have proved the assertion for any partial flag
of the form {0} ( τ1 ( · · · ( τr, τi ∈ Σ(i), and let {0} ( σ1 ( · · · ( σr+1,
σi ∈ Σ(i), be a partial flag stabilized by f . Then f

∣∣
〈σr〉R

= Id
∣∣
〈σr〉R

. If we prove

that f(ν) = ν for some vν ∈ Prim(σr+1) \ Prim(σr) we are done. Since σr−1 is a
(r−1)-dimensional face of σr+1, it follows that there exists an unique r-dimensional
face τ of σr+1 such that σr−1 = σr ∩ τ . Since f(τ) is a r-dimensional face of
f(σr+1) = σr+1 and that f(σr) = σr, it follows that f(τ) = τ . Then f stabilizes
the partial flag {0} ( σ1 ( · · · ( σr−1, τ and the result follows by induction. �

As an easy consequence of Proposition4.14, we have the following result.

Corollary 4.15. Let Σ be a lattice-regular complete fan and let Prim(Σ) the set of
generating primitive vectors. Then P (Σ), the convex hull of Prim(Σ) is a regular
polytope, with Aut

(
P (Σ)

) ∼= Aut(Σ).

Conversely, let Q be a centered lattice-regular convex polytope, and let Σ be the
complete fan obtained by considering the cones from 0 to any face F of Q. Then Σ
is a lattice-regular complete fan.

Proof. Indeed, it follows from Proposition 4.14 that P (Σ) =
{
u ∈ N : ϕ(u) ≥ −a

}
is a convex polytope, with integer vertex. Let f : N → N be such that f ∈
GL
(
X (T )

)
. Then, by construction, f ∈ Aut

(
P (Σ)

)
if and only if f ∈ Aut(Σ).

The converse is proved in the same way. �

Theorem 4.16. Let F : FD → T D and G : FD → P be the canonical bijections
given in Lemma 2.4. Then G induces a bijection between the (class of the) pairs
(Σ, ϕΣ), where Σ is a lattice-regular complete fan and ϕΣ is as in Definition 2.3, and
the (class of the) lattice-regular polytopes. In particular, G◦F−1 induces a bijection
between the lattice-regular toric varieties and the lattice-regular polytopes, where we
associate to each lattice-regular variety the first multiple of the anti-canonical divisor
that is a Cartier divisor.

Moreover, if P the reduced, centered, lattice-regular polytope corresponding to
(Σ, ϕΣ), then the duality GL(M) → GL(N), f 7→ f∗, f∗(u)(v) = u

(
f(v)

)
induces

an isomorphism between the abstract groups Aut(Σ) and Aut(P ).

Proof. Let Σ be a lattice-regular complete fan. Then the convex hull 〈Prim(Σ)〉conv ={
v ∈ N : ϕΣ(v) ≥ −a

}
is a regular polytope. By construction, P = G(Σ, ϕΣ) =

Prim(Σ)∨, where the notation ·∨ stands for the polar dual of a polytope. It easily
follows that P is a regular polytope (see for example [MR09, §3]). Furthermore,
observe that by construction, and in view of Corollary 4.15, f ∈ Aut(Σ) if and only
if f∗ ∈ Aut(P ).
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Let P ⊂ N be a centered, reduced, regular polytope and consider (Σ, ϕ) =
G−1(P ). If Prim(Σ) = {v1, . . . , v`

}
, then there exist a1, . . . , a` > 0 such that

P =
{
u ∈ N : 〈vi, u〉 ≥ ai

}
.

In particular, Prim(Σ) = {v1, . . . , v`}, and {vi1 , . . . , vis} are the primitive genera-
tors of a cone σ ∈ Σ(r), if and only if P∩

⋂r
j=1{vi(u) = −ai} is a (n−r)–dimensional

face of P .

If f ∈ Aut(P ), then it is clear that f∗ ∈ Aut(Σ). The regularity of P implies
then that Σ is a lattice-regular complete fan.

We affirm that a1 = · · · = a` = a. It follows that

P∨ =
⋃̀
i=1

{
v ∈ ΛR : ϕ(v) ≥ −a

}
,

and hence a is the smallest positive integer number such that −aK is a Cartier
divisor, with support function ϕ, and P as associated polytope.

In order to prove the assertion, let i 6= j ∈ {1, . . . , `} and consider the corre-
sponding facets Fi = P ∩ {vi(u) = −ai} and Fj := {vj(u) = −aj}. Then there
exists f ∈ Aut(P ) such that f(Fi) = Fj . It follows that

P = f(P ) =
{
u ∈ N : 〈vi, f−1(u)〉 ≥ ai

}
=
{
u ∈ N : 〈f∗(vi), u〉 ≥ ai

}
.

Since f ∈ Aut(Σ), f permutes all the facets of P , and f∗ ∈ Aut(Σ) permutes the
primitive generators accordingly. It follows that f∗(vi) = vj , and thus ai = aj . �

In view of the results proved in [MR09] for lattice-regular polytopes, Proposition
4.19 below and its corollaries can be obtained as an easy consequence of Theorem
4.16. We include direct proofs of these results, in order to explicitly show how the
strategies developed in [MR09] can be applied in this context.

Definition 4.17. Let Σ be a fan and σ ∈ Σ(r). The star of base σ, denoted by
S(σ), is the fan composed by all the cones τ ∈ Σ such that σ ⊂ τ .

Remark 4.18. It is well known that if Oσ = T · x ⊂ XΣ is an (n− r)-dimensional
orbit corresponding to σ, and π : M →M/〈σ〉R, then π

(
S(σ)

)
is the fan associated

to the toric T/Tx-variety X = Oσ. Under this projection, σY (s) = π
(
S(σ)(r+ s)

)
.

Proposition 4.19. Let Σ be a lattice-regular complete fan and consider σ ∈ Σ(1)
and S(σ), the star of base σ (see Definition 4.17). Then πσ

(
S(σ)

)
⊂ σ⊥ is a

lattice-regular complete fan. Moreover, Φ
(
πσ(S(σ))

)
= Φ(Σ) ∩ σ⊥; this is a Levi

subsystem of Φ(Σ).

Proof. It follows from Remark 4.18 that πσ
(
S(σ)

)
is a complete fan. Let f ∈

Aut(Σ) be such that f |
σ

= Id |
σ
. Since Aut(Σ) ⊂ O(ΛR) ∩ GL(Λ), it follows

that f(Λ ∩ σ⊥) = Λ ∩ σ⊥ and f ◦ πσ = πσ ◦ f . In particular f(σ⊥) = σ⊥ and
f
(
πσ(τ)

)
= πσ

(
f(τ)

)
. In other words, f |

σ⊥
∈ Aut

(
πσ
(
S(σ)

))
. Moreover, since

Aut(Σ) acts transitively on the flags containing σ, it follows that πσ
(
S(σ)

)
is a

lattice-regular complete fan.

By Remark 4.18 again, it follows that Φ
(
πσ
(
S(σ)

))
⊂ Φ(Σ) ∩ σ⊥. Let α ∈

Φ(Σ) ∩ σ⊥, we need to prove that there exists τ ∈ S(σ)(n − 1) such that α ∈ τ⊥.
Let Hα be the hyperplane fixed by the reflection sα. Then σ ⊂ Hα, and Hα∩σ⊥ is



16 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

an hyperplane of σ⊥. In particular, τ
(
S(σ)

)
= S(σ). Since πσ

(
S(σ)

)
is a complete

strictly convex polyhedral fan, it follows that there exists γ ∈ πσ
(
S(σ)

)
(n−2) such

that if β is a root associated to γ, then β 6⊂ Hα ∩ σ⊥. If β is co-linear to α, we
are done. Assume that β is not co-linear to α and let τ ∈ S(σ)(n − 1) be such
that πσ(τ) = γ – the cone τ exists by construction. Then β is a root associated
to τ , and it follows that Φ(Σ) ∩ Vect(α, β) is a root system of type A2. Changing
eventually α by −α we may assume that α + β is a root. Since σ ⊂ (α⊥ ∩ β⊥),
it follows that sα+β(τ) ∈ S(σ). It suffices now to observe that sα+β(β) is a root
associated to πσ

(
sα+β(τ)

)
, and that this root is parallel to α. �

Corollary 4.20. Let X be a lattice-regular toric variety, and O ⊂ X an orbit.
Then O is a lattice-regular toric variety.

Proof. We prove this result by nœtherian induction. Let Σ be the complete lattice-
regular complete fan associated X. Recall that if O is an orbit of co-dimension
1, then O is a toric variety. Moreover, if σ ∈ Σ(1) is the cone associated to O,
then, with the notations of Proposition 4.19, it follows that πσ

(
S(σ)

)
is the fan

associated to O, see for example [CLS11, §3.2] for more details. The result is thus
a straightforward consequence of Proposition 4.19. �

5. Description of Fano toric varieties associated to root systems

The following table describes all the pairs (root system type, anti-dominant
weight) such that the closure of the associated generic orbit is Fano. The last
column indicates the minimal pair associated to the generic orbit. We refer to
Section 6 for the explicit calculations that led to this description.

The first column describes the generic orbit by stating the simple group G and
the corresponding anti-dominant weight λ. Since WG acts transitively on Σ(n)
and that (WG)λ acts transitively on Prim(σλ), it suffices to explicitly describe
Prim(σλ)∩{−ω1, . . . ,−ωn} in order to completely describe Σλ (see Corollary 3.8);
this is done in the second column. The third column describes the geometry of
Σλ. The fourth column shows the minimal pair (P, µ) determined by (G,λ); we
also identify the lattice Λ in terms of ΛR and ΛP (see Proposition 4.7). Finally,
the fifth column collects the information on the action of Aut(Σλ) on the (partial
flags): there it is indicated if the fan Σλ is lattice-regular or not.

Observe that a fortiori, we obtain the following characterization of Fano closures
of generic orbits.

Corollary 5.1. Let λ =
∑
i∈Iλ −ωi be a an anti-dominant weight. Then Σλ is

Fano if and only if nλ = −λ.
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6. Appendix: Explicit calculations

In this section we present the explicit calculations we made in order to describe
which toric varieties associated to a root system are Fano (Section 5). In order to
produce this classification, we take two different approaches, according to the type
of root system:

Toric varieties associated to root systems of type G2, F4, E6, E7, E8: we make ex-
plicit calculation with GAP3 and Sage (see [MR17] for the code and explicit results).

Toric varieties associated to root systems of type An, Bn, Cn, Dn: in this case we
deal with the whole family, as follows:

(i) In order to apply Proposition 3.14, we use Lemma 3.13 in order to describe
Prim(σλ).

(ii) Remark 3.11 allows us to find some elements of C ∩ Prim(σλ) by looking
onto weights µ with support Iµ ⊂ Iλ.

(iii) Recall that if v ∈ σλ, then R+v ∈ Σλ(1) if and only if v =
∑
i∈I aivi, with

vi ∈ Prim(σλ), ai > 0 implies #I = 1. Since −ωi ∈ C ∩ Prim(σλ) if and
only if Wλ(−ωi) ⊂ Prim(σλ), it follows that −ωi is not primitive if and
only if −ωi ∈ R+

〈
∪j 6=iWλ(−ωj)

〉
.

(iv) Concerning the minimal pair (R′, µ) associated to Σλ, note that if τ ⊂ C
is a maximal face such that 〈τ〉R = α⊥ is a supporting hyperplane of σλ,
then W ·α ⊂ R (see Lemma 3.7) . Since W acts transitively in the roots of
same length, it follows that R contains all the roots of length ‖α‖. Hence,
by Corollary 3.8, R = W · {αi : i ∈ Iλ}, the set of roots having length
equal to ‖αi‖ for some i ∈ Iλ. In particular, if the root system R of G is
simply laced, then the minimal pair associated to Σλ is (R, λ), with lattice
Λ = ΛP .

We begin by presenting explicit and complete calculations for root systems R
of rank 1, 2 and for R of type A3, F4. Then we deal with the An case in a rather
complete way. The types Bn, Cn, Dn and An present a very similar behavior “far
away from αn”, so we focus mainly in the relationship of λ and −ωn.

Notations 6.1. We follow the following conventions:

• A sub-list of elements indexed by i is always presented in ascending order. For
instance, if a > b, then {u1, va, . . . vb, w1, w2} = {u1, w1, w2}. This not-so orthodox
convention allows to simplify the description of the sets Prim(σλ) and the sets of
generators of

〈
Prim(σλ)

〉
aff

.

• When dealing with root systems and their associated weights, we follow the
notations of Bourbaki (see [Bou68, pp 250–276], or its English translation [B68en]).

• In figures 1–8, for each pair (R, λ) of root system R and anti-dominant weight λ,
we draw the chamber−w0σλ in gray, and the convex hull of the weightsW ·Prim(σλ)
in thick lines.

When describing the minimal pair (R′, µ) associated to a Fano variety Σλ, we also
describe the lattice Λ in terms of ΛR′ and ΛP ′ (see Proposition 4.7).



TORIC VARIETIES ASSOCIATED TO ROOT SYSTEMS 19

Recall that if G is simply laced, then the minimal pair associated to a generic
orbit Σλ is (R, λ), with lattice Λ = ΛP . In view of this remark, we will omit the
(trivial) data of the associated minimal pair in the simply laced cases.

6.1. Explicit calculation for small ranks.

Example 6.2 (Explicit calculations for A1).

If G is of type A1, then G/B ∼= P1(k) is a Fano (trivially lattice-regular) toric
variety, with associated fan the subdivision of M by the Weyl chambers: ΣP1(k) ={

0,R+〈w1〉,R+〈−w1〉
}

.

Example 6.3 (Explicit calculations for R = A1 ×A1).

Clearly, Σλ is Fano if and only if λ = −(ω1 + ω2); in this case, Σ−ω1−ω2
is a

smooth, lattice-regular toric variety. See Figure 1.

ω1

ω2

Fig. 1

Example 6.4 (Explicit calculations for R = A2).

As follows from figures 2 and 3, Σλ is Fano for λ = −ω1,−ω2 or −(ω1 + ω2).
Clearly, Σ−ω1

∼= Σ−ω2
as toric varieties. In in all three cases Σλ is a smooth,

lattice-regular toric variety.

Example 6.5 (Explicit calculations for R = B2 = C2).

If R = B2, then Σλ is Fano if and only if λ = −ωi. The minimal pair associated to
Σ−ω1

is
(
A1×A1, (−ω1,−ω1)

)
, with lattice Λ = ΛP ′ . The minimal pair associated

to Σ−ω2
is
(
A1 × A1, (−ω1,−ω1)

)
, with lattice Λ = ΛA2

1
. See figure 1. Note that

both varieties Σ−ωi are smooth and and lattice-regular.

Example 6.6 (Explicit calculations for R = G2).

In this case Σλ is Fano if and only if λ = −ωi. The toric variety Σ−ω2 is smooth,
whereas Σ−ω1 is Q–Gorenstein Fano; both varieties are lattice-regular. The minimal
pair associated to Σ−ω1

is (A2,−ω1−ω2), with lattice Λ = ΛA2
. The minimal pair

associated to Σ−ω2
is (A2,−ω1 − ω2), with lattice Λ = ΛP ′ . See figures 6 and 7.
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ω2

ω1

Fig. 2

ω2

ω1

Fig. 3

Example 6.7. Let G be of type G2, and consider Σ as in the picture 8; clearly,
Σ is a lattice-regular complete fan. However, Σ does not correspond to a generic
T -orbit of an homogeneous space G/P . Thus, there exist Fano toric varieties whose
maximal cones are union of Weyl chambers, but are not of the form Σλ for some
anti-dominant weight.

Note that Σ is associated to the root system A1 × A1 with lattice ΛR ( Λ =〈
(ε/2, 0), (0, ε)

〉
Z = ΛPA1

×ΛA1
( ΛP and (−ω1,−ω1) as associated anti-dominant

weight.
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ω2

ω1

Fig. 4

ω1

ω2

Fig. 5

6.2. Explicit calculations for An, n ≥ 3.

Case λ = −ωn

In this case W−ωn(−ω1) =
{
−ε1 + 1

n+1

∑n+1
i=1 εi, . . . ,−εn + 1

n+1

∑n+1
i=1 εi

}
. It is

then clear that −ω1 is the unique anti-fundamental weight that generates a ray.
Indeed, −ωi ∈ R+

〈
W−ωn(−ω1)

〉
for i = 2, . . . , n. Thus,

Prim(σ−ωn) = W−ωn · (−ω1)〈
Prim(σ−ωn)

〉
aff

= −ω1 + 〈α1, . . . , αn−1〉R.

In particular, dimFC = n − 1, and n−ωn = ωn. Since
〈
(n + 1)ωn,−εi +

1
n+1

∑n+1
i=1 εi

〉
= −1, and that Prim(σ−ωn) is a basis for the weight lattice ΛP ,

it follows that Σ−ωn is a smooth Fano toric variety.

Case λ = −ω1
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ω1

ω2

Fig. 6

ω1

ω2

Fig. 7

This case is dual to the previous one, but it is convenient for us to recall that

Prim(σ−ω1
) = W−ω1

(−ωn)

=
{
ε2 −

1

n+ 1

n+1∑
i=1

εi, . . . , εn+1 −
1

n+ 1

n+1∑
i=1

εi = −ωn
}

〈
Prim(σ−ω1)

〉
aff

= −ωn + 〈α2, . . . , αn〉R.
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ω1

ω2

Fig. 8

Hence, n−ω1
= (n+ 1)ω1 and Σ−ω1

is Fano.

Case λ = −ωj, 1 < j < n

It follows from Remark 2.10 that

W−ωj (−ω1) =
{
−ω1 = −ε1 +

1

n+ 1

n+1∑
i=1

εi, . . . ,−εj +
1

n+ 1

n+1∑
i=1

εi

}
W−ωj (−ωn) =

{
εj+1 −

1

n+ 1

n+1∑
i=1

εi, . . . , εn+1 −
1

n+ 1

n+1∑
i=1

εi = −ωn
}
.

We deduce as before that −ωi /∈ Prim(σ−ωj ) if i 6= 1, n. Therefore,

Prim(σ−ωj ) = W−ωj (−ω1) ∪W−ωj (−ωn)〈
Prim(σ−ωj )

〉
aff

= −ω1+
〈
α1, . . . , αj−1, αj+1, . . . , αn, ωn − ω1

〉
R.

If follows that n−ωi = aωj and verifies the additional condition 〈nλ, ωn−ω1〉 = 0,
that is 0 = 〈nλ, ωn−ω1〉 = 〈nλ, (−n+ 2j − 1)αj〉 = a(−n+ 2j − 1). It follows that
if n 6= 2j− 1, then Σλ is not Fano, and that if n = 2j− 1 then nλ = ωj is such that

〈nλ,−εk+ 1
n+1

∑n+1
i=1 εi〉 = −3j+1

2j−1 . Hence, Σ−ωj is Q–Gorenstein-Fano — note that

in this case Σ−ωj is not smooth.

Case λ = −ωs − ωr, s < r

Sub-case 1 < s < r < n
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It follows from Remark 3.11 applied to µ = −ωr (resp. −ωs) that −ω1 (resp.
−ωn) belongs to Prim(σλ). Since

Wλ · (−ω1) =
{
ω1 = −ε1 +

1

n+ 1

n+1∑
i=1

εi, . . . ,−εs +
1

n+ 1

n+1∑
i=1

εi

}
Wλ · (−ωn) =

{
εr+1 −

1

n+ 1

n+1∑
i=1

εi, . . . , εn+1 −
1

n+ 1

n+1∑
i=1

εi = −ωn
}
,

it follows that {−ω2, . . . ,−ωs,−ωr, . . . ,−ωn−1} ⊂ R+
〈
Wλ·(−ω1)∪Wλ·(−ωn)

〉
, and

Prim(σλ) ⊂ Wλ · {−ω1,−ωs+1, . . . ,−ωr−1,−ωn}. We affirm that equality holds,
that is −ωh ∈ Prim(σλ) for h = s+ 1, . . . , r − 1.

If s < j < r then

Wλ · (−ωj) =
{
−

s∑
i=1

εi −
r∑

i=s+1

aiεi +
j

n+ 1

n+1∑
i=1

εi : ai = 0, 1,

r∑
i=s+1

ai = j − s
}
.

Let vj = εi − 1
n+1

∑n+1
i=1 εi, j = 1, . . . , n and wj , j = s + 1, . . . , r − 1, k =

1, . . . ,
(
r−s
j−s
)

be such that{
vjk :k = 1, . . . ,

(
r−s
j−s
)}

={
−

s∑
i=1

εi −
r∑

i=s+1

ajkiεi +
j

n+ 1

n+1∑
i=1

εi : ajki = 0, 1,

r∑
i=s+1

ajki = j − s
}
.

Assume that for some h ∈ {s+ 1, . . . , r − 1},

−ωh =

s∑
j=1

bj(−vj) +

r−1,(r−sj−s)∑
j=s+2,k=1

bjkvjk +

n∑
j=r+1

bjvk,

with bj , bjk ≥ 0. Looking at the coefficients of εi, i = 1, . . . , n+ 1 we deduce that

(1, i=1,...,s) −bi +

s∑
j=1

bj
n+1 −

n+1∑
j=r+1

bj
n+1+

r−1,(r−sj−s)∑
j=s+1,k=1

bjk(−n+j−1)
n+1 =−n−1+h

n+1

(2, i=s+1,...,h)

s∑
j=1

bj
n+1 −

n+1∑
j=r+1

bj
n+1+

∑
jk:ajki=1

bjk(−n+j−1)
n+1 +

∑
jk:ajki=0

jbjk
n+1 =−n−1+h

n+1

(3, i=h+1,...,r)

s∑
j=1

bj
n+1 −

n+1∑
j=r+1

bj
n+1+

∑
jk:ajki=1

bjk(−n+j−1)
n+1 +

∑
jk:ajki=0

jbjk
n+1 = h

n+1

(4, i=r+1,...,n+1)bi +

s∑
j=1

bj
n+1 −

n+1∑
j=r+1

bj
n+1+

r−1,(r−sj−s)∑
j=s+1,k=1

jbjk
n+1 = h

n+1

Subtracting equations (1, i) and (2, j) (resp. (4, i) and (3, j)) for any possible
choice of i, j and using the fact that the coefficients bj , bjk are non negative, we
easily deduce that bi = 0 for i = 1, . . . , s, r + 1, . . . , n, and that bjk = 0 if ajki = 0
for some i = s + 1, . . . , r or ajki = 1 for some i = r + 1, . . . , n. We deduce that
bjk = 0 unless vjk = −ωh, and it follows that −ωh ∈ Prim(σλ).
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Hence,

C ∩ Prim(σλ) =
{
−ω1,−ωs+1, . . . ,−ωr−1,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs−1, αs+1, . . . , αr−1, αr+1, . . . , αn,

ωs+1 − ω1, . . . , ωr−1 − ω1, ωn − ω1

〉
R

It follows that nλ = aωs + bωr satisfies the additional conditions

〈nλ, ωs+1 − ω1〉 = · · · = 〈nλ, ωr−1 − ω1〉 = 〈nλ, ωn − ω1〉 = 0

Equivalently, nλ = aωs + bωr satisfies the system:

(1){
a
[
(n− j + 1)s− (n− s+ 1)

]
+ b(n− r + 1)(j − 1) = 0 j = s+ 1, . . . , r − 1

a(n− 2s+ 1) + b(n− 2r + 1) = 0

Sub-case r = s+ 1

In this case the first line of equation (1) is empty. Therefore, a, b are such that
(n− 2s+ 1)a+ (n− 2s− 1)b = 0. Thus, if n 6= 2s then ab < 0 and it follows that
Σ−ωs−ωs+1 is not Fano. On the other hand, if n = 2s then 〈ωs + ωs+1, v〉 = −1 for
all v ∈ Prim(σ−ωs−ωs+1

), and therefore Σ−ωs−ωs+1
is Fano — note that in this case

Σλ is smooth.

Sub-case s+ 2 > r

The first line of equation (1) for j = s+ 1 together with the last line of the same
equation conform the system{

(i) a
[
(n− s)s− (n− s+ 1)

]
+ b(n− r + 1)s = 0

(ii) a(n− 2s+ 1) + b(n− 2r + 1) = 0

The coefficient of b in equation (i) above is greater or equal than zero, whereas
the coefficient for a is the polynomial p(s) = −s2 + (n + 1)s − (n + 1), with roots
−(n+1)±

√
(n+1)(n−3)

−2 . If follows that σ−ωs−ωr is not Fano if s ≥ 2.

Assume now that s = 1; then equation (ii) is verified for some a, b > 0 if and
only if r = n; in this case a = b = 1 is a solution of Equation (1), and it follows that
Σ−ω1−ωn is Gorenstein-Fano. Note that Σ−ω1−ωn is smooth if and only if n = 2.

Case λ = −ωs − ωs+1 − ωs+2

Since I−ωs−ωs+2 ⊂ Iλ, in view of Remark 3.11, it follows that

Prim(σλ) =
{
−ω1, . . . ,−εs +

1

n+ 1

∑
εi,−ωs+1, εs+2 −

1

n+ 1

∑
εi, . . . ,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +
〈
α1, . . . , αs−1, αs+3, . . . , αn, ωs+1 − ω1, ωn − ω1

〉
R

It follows that nλ = aωs + bωs+1 + cωs+2 satisfies the additional conditions{
〈nλ, ωn − ω1〉 = 0
〈nλ, ωs+1 − ω1〉 = 0

That is, {
(−n+ 2s− 1)a+ (−n+ 2s+ 1)b+ (−n+ 2s+ 3)c = 0

((s− 1)(n− s)− 1)a+ s(n− s)b+ s(n− s− 1)c = 0
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It follows that if 2s+ 1 ≥ n then ac ≤ 0. By symmetry, if 2(n− s− 2 + 1) + 1 ≥ n
— that is if n ≤ 2s+ 1 – then ac ≤ 0. It follows that Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi+· · ·+

∑r`
i=s`
−ωi, si ≤ ri, ri+1 < si+1, #Iλ ≥ 3, r`−s1 > 2

Since I−ωs1−ωr` ⊂ Iλ, it follows that

C ∩ Prim(σλ) =
{
−ω1,−ωs1+1, . . . ,−ωr`−1,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs1−1, αs1+2, . . . , αs`−2, α`+1, . . . , αn,

ωs1+1 − ω1, ωr`−1 − ω1, ωn − ω1

〉
R
,

were we used the fact that ωi−1−2ωi+ωi+1 = αi. It follows that if r`−s1 > 4 then
nλ = λ =

∑r1
i=s1

aiωi+ · · ·+
∑r`
i=s`

aiωi is such that ai = 0 for i = s1 +2, . . . , r`−2.
Hence, Σλ is not Fano unless

λ =

 −ωs − ωs+1 − ωs+2+j − ωs+3+j j ≥ 0
−ωs − ωs+1 − ωs+3+j j ≥ 0
−ωs − ωs+2+j − ωs+3+j j ≥ 0

Sub-case λ = −ωs − ωs+1 − ωs+2+j − ωs+3+j, j ≥ 0

In this case, nλ = asωs + as+1ωs+1 + as+2+jωs+2+j + as+3+jωs+3+j satisfies
(among others) the additional condition as((n−s)(s−1)−1)+as+1(n−s)s+as+2+j(n−s−j−

1)s+as+3+j(n−s−j−2)s=〈nλ,ωs+1−ω1〉=0

It follows that if s 6= 1, then Σλ is not Fano.

If s = 1 we consider the conditions{
(1) a1(−1)+a2(n−1)+a3+j(n−j−2)+a4+j(n−j−3) =〈nλ,ω2−ω1〉=0

(2) a1(−n+1)+a2(−n+3)+a3+j(−n+2j+5)+a4+j(−n+2j+7) =〈nλ,ωn−ω1〉=0

It easily follows that Σλ is not Fano (e.g. considering the linear combination
(−n+ 1)(1) + (2)).

Sub-case λ = −ωs − ωs+1 − ωs+3+j, j ≥ 0

In this case, nλ = asωs + as+1ωs+1 + as+3+jωs+3+j satisfies (among others) the
additional condition

as
(
(n−s)(s−1)−1

)
+as+1

(
(n−s)s

)
+as+3+j

(
s(n−s−2)

)
= 〈nλ, ωs+1−ω1〉 = 0

If s 6= 1, since n ≥ s+ 3, it follows that Σλ is not Fano.

If s = 1, then nλ verifies (among others) the conditions{
(1) −a1 + (n− 1)a2 + (n− 3)a3+j = 〈nλ, ω2 − ω1〉 = 0
(2) (−n+ 1)a1 + (−n+ 3)a2 + (−n+ 4 + 2j)a3+j = 〈nλ, ωn − ω1〉 = 0

Since n ≥ j + 3, from the linear combination (−j − 1)(1) + (2) we deduce that
Σλ is not Fano.

Sub-case λ = −ωs − ωs+2+j − ωs+3+j, j ≥ 0

We deduce by symmetry that in this case Σλ is not Fano.
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6.3. Explicit calculations for Bn.

Case λ = −ωn
In this case, Prim(σ−ωn) = W−ωn(−ω1) =

{
−ε1, . . . ,−εn

}
and

〈
Prim(σ−ωn)

〉
aff

=

−ω1 + 〈α1, . . . , αn−1〉R.

It follows that n−ωn = ωn, and Σ−ωn is Gorenstein-Fano. Since the support-
ing hyperplanes are orthogonal to the roots εi, it follows that the minimal pair
associated to Σ−ωn is

(
A1 × · · · × A1, (−ω1, . . . , ω1)

)
, with lattice ΛAn1 ( Λ =〈

ε1, . . . , εn,
1
2

∑
εi
〉
Z ( ΛP ′ .

Case λ = −ω1

By Remark 2.10, #W−ω1(−ωn) = 2n−1. Easy calculations show then that

W−ω1(−ωn) =
{

1/2
(
− ε1 +

n∑
i=2

±εi
)}
.

It follows that −ωi ∈ R+
〈
W−ω1(−ωn)

〉
for i = 1, . . . , n− 1; thus Prim(σ−ω1) =

W−ω1
(−ωn) =

{
1/2
(
−ε1 +

∑n
i=2±εi

)}
and

〈
Prim(σ−ω1

)
〉

aff
= −ωn+〈ε2, . . . , εn〉R.

In particular, n−ω1
= 2ω1, and Σ−ω1

is Gorenstein-Fano. If n = 2, then Σ−ω1

is smooth. Since the roots εi are not orthogonal to any facet of σ−ω1 , it follows
that they are not orthogonal to any facet of Σ−ω1 . Therefore, the minimal pair

associated to Σ−ω1
is (Bn,−ω1), with lattice Λ = ΛP ′ . Indeed, 1

2 (
∑n−1
i=1 εi − εn) =∑n−1

i=1 εi −
1
2

∑n
i=1 εi.

Case λ = −ωj, 1 < j < n

In this case,

Prim(σ−ωj ) = W−ωj (−ω1) ∪W−ωj (−ωn) ={
−ε1, . . . ,−εj , 1/2

(
−ωj +

n∑
i=j+1

±εi
)}

〈
Prim(σ−ωj )

〉
aff

= − ω1 +
〈
α1, . . . ,−αj−1, αj+1, . . . , αn−1, αn, ωn − ω1

〉
R.

Therefore, n−ωj = aωj verifies the additional condition 〈n−ωj , ωn − ω1〉 = 0. If

j 6= 2 then n−ωj = 0 – that is dim
〈
Prim(σ−ωj )

〉
aff

= n, and Σ−ωj is not Fano. If
j = 2, then nω2 = ω2 and Σ−ω2 is Gorenstein-Fano.

Case λ = −ωs − ωr, s < r

It follows from Remark 3.11 applied to µ = −ωr (resp. −ωs) that −ω1 (resp.
−ωn) belongs to Prim(σλ). It is clear that W−ωs−ωr · (−ω1) = {−ε1, . . . ,−εs}
and W−ωs−ωr · (−ωn) =

{
1/2
(
−ωr +

∑n
i=r+1±εi

)}
. Thus, {−ω2, . . . ,−ωs} ⊂

R+
〈
W−ωs−ωr · (−ω1)

〉
and {−ωr, . . . ,−ωn−1} ⊂ R+

〈
W−ωs−ωr · (−ωn)

〉
. It follows

that

(2) Prim(σλ) ⊂Wλ(−ω1) ∪Wλ(−ωs+1) ∪ · · · ∪Wλ(−ωr−1) ∪Wλ(−ωn)
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If s < j < r, then

W−ωs−ωr · (−ωj) =
{
−ωs −

r∑
i=s+1

aiεi : ai = 0, 1,
∑

ai = j − s
}
.

Let {vj1 . . . , v(r−sj )} = W−ωs−ωr (−ωj), j = s + 1, . . . , r − 1, {w1, . . . , w2n−r} =

W−ωs−ωr (−ωn), and denote vjk = −ωs−
∑r
i=s+1 cjkiεi, wj = 1/2

(
−ωr+

∑n
i=r+1 djiεi

)
.

If h = s+ 1, . . . , r − 1, let

−ωh =

s∑
j=1

−bjεj +

r−1,(r−sj )∑
j=s+1,k=1

bjkvjk +

n∑
j=r+1

djwj ,

with bj , bjk, dj ≥ 0. Then

(1, i = 1, . . . , s) bi −
∑
jk

bjk +
∑
j

dj
2

= 1

(2, i = s+ 1, . . . , h)
∑

jk:cjki=1

bjk +
∑
j

dj
2

= 1

(3, i = h+ 1, . . . , r)
∑

k:cjki=1

bjk +
∑
j

dj
2

= 0

(4, i = r + 1, . . . , n)
∑
j

djdji
2

= 0

Combining equations (1,i) and (2,i′) for all possible values of i, i′, we deduce
that bj = 0 for j = 1, . . . , s and that bjk = 0 if ckji = 0 for some i = s + 1, . . . , h.
From equation (3,i) we deduce that dj = 0 for j = 1, . . . , 2n−r and that bjk = 0 if
cjki = 1 for some i = h+ 1, . . . r. If follows that cjk = 0 unless vjk = −ωh. In other
words, −ωh ∈ Prim(σλ).

Hence,

C ∩ Prim(σλ) =
{
−ω1,−ωs+1, . . . , ωr−1,−ωn

}
〈
Prim(−ωs − ωr)

〉
aff

= −ω1 +

〈
α1, . . . , αs−1, αs+1, . . . , αr−1, αr+1, . . . , αn,

ωs+1 − ω1, . . . , ωr−1 − ω1, ωn − ω1

〉
R

Easy calculations (e.g. imposing the additional necessary 〈nλ, ωn − ω1〉 = 0 if
r = s+ 1 or 〈nλ, ωs+1−ω1〉 = 0 if s+ 2 ≤ r) show that in this case Σλ is not Fano.

Case λ = −ωs − ωs+1 − ωs+2

Since I−ωs−ωs+2 ⊂ Iλ, in view of Remark 3.11, it follows that

C ∩ Prim(σλ) =
{
−ω1,−ωs+1,−ωn

}〈
Prim(σλ)

〉
aff

= −ω1 +
〈
α1, . . . , αs−1, αs+3, . . . , αn, ωs+1 − ω1, ωn − ω1

〉
R.

It follows that nλ = aωs + bωs+1 + cωs+2. Again, easy calculation using the
additional conditions satisfied by nλ allow to verify that Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi + · · ·+

∑r`
i=s`
−ωi, si ≤ ri, ri + 1 < si+1, #Iλ ≥ 3, s1 + 2 ≤

r` − 1
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Since I−ωs1−ωr` ⊂ Iλ, it follows that

C ∩ Prim(σλ) =
{
−ω1, ωs1+1, . . . ,−ωr`−1,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs1−1, αs1+2, . . . , αr`−2, αr`+1, . . . , αn,

εs1+2, ωs1+1 − ω1, ωn − ω1

〉
R

were we used the fact that ωi−1 − 2ωi + ωi+1 = αi. if i ≤ n − 2. It follows that if
r` − s1 > 4 then nλ = λ =

∑r1
i=s1

aiωi + · · · +
∑r`
i=s`

aiωi is such that ai = 0 for
i = s1 + 2, . . . , r` − 2. It follows that Σλ is not Fano unless

λ =

 −ωs − ωs+1 − ωs+2+j − ωs+3+j j ≥ 0
−ωs − ωs+1 − ωs+3+j j ≥ 0
−ωs − ωs+2+j − ωs+3+j j ≥ 0

Again, easy calculations show that is these remaining cases Σλ is not Fano.

6.4. Explicit calculations for Cn.

This case is very similar to the case Bn:

Case λ = −ω1

It is easy to show that Prim(σ−ω1
) = W−ω1

(−ωn) =
{
−ε1 +

∑n
i=2±εi

}
and〈

Prim(σ−ω1)
〉

aff
= −ωw + 〈ε2, . . . , εn〉R. Therefore, n−ω1 = ω1 and in particular,

Σ−ω1
is Gorenstein-Fano. The minimal pair associated to Σ−ω1

is (Dn,−ω1), with
lattice Λ = ΛP ′ .

Case λ = −ωn
In this case, Prim(σ−ωn) = W−ωn(−ω1) = {−ε1, . . . ,−εn} and

〈
Prim(σ−ωn)

〉
aff

=

−ω1 + 〈α1, . . . , αn−1〉R. In particular, n−ωn = ωn and Σ−ωn is Gorenstein-Fano. If
n = 2, then Σ−ω2 is smooth — recall that B2 = C2. The minimal pair associated to
Σ−ωn is

(
An1 , (−ω1, . . . , ω1)

)
, with lattice ΛAn1 ( Λ =

〈
ε1, . . . , εn,

1
2

∑
εi
〉
Z ( ΛP ′ .

Case λ = −ωj, 1 < j < n

In this case,

Prim(σ−ωj ) = W−ωj (−ω1) ∪W−ωj (−ωn) = {−ε1, . . . ,−εj ,−ωj +
n∑

i=r+1

±εi}.

As in the analogous Bn case, it follows that〈
Prim(σ−ωj )

〉
aff

= −ω1 +
〈
α1, . . . , αj−1, αj+1, . . . , αn−1, αn, ωn − ω1

〉
R.

Therefore, dim
〈
Prim(σ−ωj )

〉
aff

= n, and Σ−ωj is not Fano.

Case λ = −ωs − ωr, s < r

Calculations similar to the corresponding Bn case show that

C ∩ Prim(σλ) =
{
−ω1,−ωs+1, . . . ,−ωr−1,−ωn

}
.

It is easy now to see that Σλ is not Fano.

General case λ =
∑r1
i=s1
−ωi + · · · +

∑r`
i=s`
−ωi, ri + 1 < si+1, s1 + 2 < r`,

#I ≥ 3
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Since I−ωs1−ωr` ⊂ Iλ it follows that

C ∩ Prim(σλ) = {−ω1,−ωs1+1, . . . , ωr`−1,−ωn}〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs1−1, αs+1, . . . , αr`−1, αr`+1, . . . , αn,

ωs1+1 − ω1, . . . ωr`−1 − ω1, ωn − ω1

〉
aff

,

As in the corresponding Bn case, we deduce that if r` − s1 > 4 then nλ = λ =∑r1
i=s1

aiωi+ · · ·+
∑r`
i=s`

aiωi is such that ai = 0 for i = s1 +2, . . . , r`−2. It follows
that Σλ is not Fano unless

λ =

 −ωs − ωs+1 − ωs+2 − ωs+3

−ωs − ωs+1 − ωs+3+j j ≥ 0
−ωs − ωs+2+j − ωs+3+j j ≥ 0

Almost the same calculations made for the case the Bn imply that Σλ is not
Fano.

6.5. Explicit calculations for Dn, n ≥ 4.

Case λ = −ω1

First, we calculate the W−ω1-orbits of −ωn−1,−ωn:

W−ω1 · (−ωn−1) =
{

1/2
(
−ε1 −

n∑
i=2

aiεi
)

: ai = ±1,
∏
i

ai = −1
}

and

W−ω1 · (−ωn) =
{

1/2
(
−ε1 −

n∑
i=2

aiεi
)

: ai = ±1,
∏
i

ai = 1
}
.

It follows that

{−ω1, . . . ,−ωn−2} ⊂ R+
〈
W−ω1

· (−ωn−1) ∪W−ω1
· (−ωn)

〉
=

R+
〈

1/2
(
−ε1 −

n∑
i=2

aiεi
)

: ai = ±1
〉
.

Hence,
Prim(σ−ω1

) = W−ω1
· (−ωn−1) ∪W−ω1

· (−ωn)

and it easily follows that〈
Prim(σ−ω1

)
〉

aff
= −ωn +

〈
α2, . . . , αn〉R = −ωn +

〈
ε2, . . . , εn

〉
R.

Thus, nλ = ω1, and Σ−ω1
is Gorenstein-Fano – clearly, Σ−ω1

is not smooth.

Case λ = −ωn−1

If n = 4 it is clear that Σ−ω3
is isomorphic to Σ−ω1

; in particular, Σ−ω3
is

Gorenstein-Fano. Assume that n > 4. Since

W−ωn−1
· (−ωn) = {−ωn} ∪

{
−1/2

(n−1∑
i=1

aiεi
)

+ εn : ai = ±1,
∑

ai = n− 3
}

and that W−ωn−1
· (−ω1) =

{
−ε1, . . . ,−εn−1}, it follows that

Prim(σ−ωn−1) = W−ωn−1 · (−ω1) ∪W−ωn−1 · (−ωn),

and 〈
Prim(σ−ωn−1

)
〉

aff
= −ω1 +

〈
α1, . . . , αn−2, αn, ωn − ω1

〉
R.
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Hence, nλ = aωn−1 verifies the additional condition 〈nλ, ωn − ω1〉 = 0; that is
(n− 4)a = 0. Hence, dimFC = n and Σ−ωn−1 is not Fano.

Case λ = −ωn

This case is dual to the λ = −ωn−1 case: if n = 4 then Σ−ω4
∼= Σ−ω1 , a

Gorenstein-Fano singular toric variety. If n 6= 4, then C ∩ Prim(σ−ωn) = {−ω1,-
ωn−1},

〈
Prim(σ−ωn)

〉
aff

= Rn and therefore Σ−ωn is not Fano.

Case λ = −ωj, 1 < j ≤ n− 2

In this case, W−ωj · (−ω1) =
{
−ε2, . . . ,−εj},

W−ωj · (−ωn−1) =
{

1/2
(
−ωj −

n∑
i=j+1

aiεi
)

: ai = ±1,
∏
i

ai = −1
}

and

W−ωj · (−ωn) =
{

1/2
(
−ωj −

n∑
i=j+1

aiεi
)

: ai = ±1,
∏
i

ai = 1
}
.

It follows that

Prim(σ−ωj ) = W−ωj · (−ω1) ∪W−ωj · (−ωn−1) ∪W−ωj · (−ωn)

and〈
Prim(σ−ω1

)
〉

aff
= − ω1 +

〈
α1, . . . , αj−1, εj+1, . . . , εn, 1/2(−ε1 + ε2 + · · ·+ εn)

〉
R

− ω1 +
〈
α1, . . . , αj−1, αj+1, . . . , αn,−ε1 + ε2 + · · ·+ εn

〉
R.

Hence, nλ = aωj , with 〈aωj ,−ε1 + ε2 + · · ·+ εn〉 = 0. It follows that if j 6= 2, then
Σ−ωi is not Fano. If j = 2, then nλ = 2ω2 and Σ−ω2

is Gorenstein-Fano. Note that
XΣ−ω2

is smooth if and only if n = 4.

Case λ = −ωs − ωr, s < r ≤ n− 2

In this case, −ω1,−ωn−1,−ωn ∈ Prim(σλ), with orbits

Wλ(−ω1) = {−ε1, . . . ,−εs},
Wλ · (−ωn−1) =

{
1/2
(
−ωr −

∑n
i=r+1 aiεi

)
: ai = ±1,

∏
i ai = −1

}
,

Wλ · (−ωn) =
{

1/2
(
−ωr −

∑n
i=r+1 aiεi

)
: ai = ±1,

∏
i ai = 1

}
,

Wλ · (−ωj) =
{
−ωs −

∑r
i=s+1 aiεi

)
: ai = 0, 1, 0 <

∑
ai = j − s

}
s < j < r

It follows that {−ω2, · · ·−ωs,−ωr, . . . ,−ωn−2} ⊂ R+
〈
Wλ(−ω1)∪Wλ(−ωn−1)∪

Wλ(−ωn)
〉
.

On the other hand, −ωi ∈ Prim(σλ) for i = s + 1, . . . , r − 1. Indeed, let
{v1, . . . , v2n−r−1} = Wλ·(−ωn−1), with vj = 1/2

(
−ωr−

∑n
i=r+1 ajiεi

)
, {w1, . . . , w2n−r−1} =

Wλ·(−ωn), with wj = 1/2
(
−ωr−

∑n
i=r+1 bjiεi

)
, and {vj1, . . . , vj,(r−sj )} = Wλ·(−ωj),

with vjk = −ωs −
∑r
i=s+1 ajkiεi. Assume that = ωh, s + 1 ≤ h ≤ r < n − 1 is a

linear combination with positive coefficients of the form

−ωh =

s∑
j=1

cj(−εj) +
∑
jk

cjkvjk +
∑
j

djvj +
∑

ejwj
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Then, 

(1, i = 1, . . . , s) ci +
∑
jk

cjk +
∑
j

dj
2

+
∑
j

ej
2

= 1

(2, i = s+ 1, . . . , h)
∑

jk:ajki=1

cjk +
∑
j

dj
2

+
∑
j

ej
2

= 1

(3, i = h+ 1, . . . , r)
∑

jk:ajki=1

cjk +
∑
j

dj
2

+
∑
j

ej
2

= 0

(4, i = r + 1, . . . , n)
∑
jk

djajk
2

+
∑
jk

ejbjk
2

= 0

We deduce from equation (3,i) that dj = ej = 0 for all j = 1, . . . , 2n−r−1, and
cjk = 0 if cjki = 1 for some i = h + 1, . . . , r. From equations (1,i) and (2,i’) we
deduce that cj = 0 for j = 1, . . . , s and cjk = 0 if cjki = 0 for some i = s+ 1, . . . , h.
It follows that cjk = 0 unless vjk = ωj ; therefore, −ωh ∈ Prim(σλ).

Thus,

C ∩ Prim(σλ) =
{
−ω1,−ωs+1, . . . ,−ωr−1,−ωn−1,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs−1, αs+1, . . . , αr−1, αr+1, . . . , αn,

ωs+1 − ω1, . . . , ωr−1 − ω1, ωn − ω1

〉
R
,

Therefore, Σλ is not Fano.

Case λ = −ωs − ωn−1, s ≤ n− 2

In this case,

Wλ(−ω1) = {−ε1, . . . ,−εs},
Wλ · (−ωn−1) = {−ωn−1}
Wλ · (−ωn) =

{
−ωn,−1/2

(
ωs +

∑n−1
i=s+1 aiεi − εn

)
: ai = ±1,

∑
ai = n− s− 3

}
,

Wλ · (−ωj) =
{
−ωs −

∑n−1
i=s+1 aiεi : ai = 0, 1,

∑
ai = j − s

}
s < j ≤ n− 2

It follows that −ωn−2 = −ωn + sαn(−ωn) /∈ Prim(σλ). If s < j < n − 2, by
considerations similar to the ones made in previous cases, we deduce that −ωj ∈
Prim(σλ). Therefore,

C ∩ Prim(σλ) = {−ω1,−ωs+1, · · · − ωn−3,−ωn−1,−ωn}〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs−1, αs+1, . . . , αn−2, αn,
εs+1, ωn − ω1, ωs+1 − ω1, εn

〉
R

= Rn.

It follows that Σλ is not Fano.

Case λ = −ωs − ωn, s ≤ n− 2

This case is dual to the previous one: C ∩ Prim(σλ) = {−ω1,−ωs+1, · · · −
ωn−3,−ωn−1,−ωn} and Σλ is not Fano.

Case λ = −ωn−1 − ωn

It is easy to see that Prim(σλ) =
{
−ε1, . . . ,−εn−1,−ωn−1,−ωn

}
. It follows

that
〈
Prim(σλ)

〉
aff

= −ω1 +
〈
α1, . . . , αn−2, ωn − ω1, εn

}
= Rn. Therefore, Σλ is

not Fano.
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Case λ = −ωs − ωs+1 − ωs+2, s+ 2 ≤ n− 2

In this case, C ∩ Prim(σλ) =
{
−ω1,−ωs+1,−ωn−1,−ωn

}
and〈

Prim(σλ)
〉

aff
= −ω1 +

〈
α1, . . . , αs−1, αs+3, . . . , αn, ωn − ω1, ωs+1 − ω1,

}
.

It is easily checked that Σλ is not Fano.

Case λ = −ωn−3 − ωn−2 − ωn−1

Since−ωn−2 = −ωn−sαn(−ωn), it follows that C∩Prim(σλ) =
{
−ω1,−ωn−1,−ωn

}
and 〈

Prim(σλ)
〉

aff
= −ω1 +

〈
α1, . . . , αn−4, αn, ωn − ω1, εn

}
.

Thus, Σλ is not Fano.

Case λ = −ωn−3 − ωn−2 − ωn

This case is dual to the previous one: C ∩ Prim(σλ) =
{
−ω1,−ωn−1,−ωn

}
and

Σλ is not Fano.

Case λ = −ωn−2 − ωn−1 − ωn

In this case C ∩ Prim(σλ) =
{
−ω1,−ωn−1,−ωn

}
and〈

Prim(σλ)
〉

aff
= −ω1 +

〈
α1, . . . , αn−3, ωn − ω1, εn

}
.

It easily follows that (n− 4)a+ 1/2(n− 4 + n− 2)b = 0. Hence, Σλ is not Fano.

Case λ = −ωs − ωn−1 − ωn, s ≤ n− 3

In this case, C∩Prim(σλ) =
{
−ω1,−ωs+1, . . . ,−ωn−2,−ωn−1,−ωn

}
, withWλ(−ωj) ={

−ωs −
∑n−1
i=s+1 aiεi, ai = 0, 1 : ai = j − s

}
if s < j < n− 2. It follows that〈

Prim(σλ)
〉

aff
= −ω1 +

〈
α1, . . . , αs−1, αs+2, . . . , αn−2, ωn − ω1, ωs+1 − ω1, εn

}
.

It follows that Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi + · · · +

∑r`
i=s`
−ωi, ri + 1 < si+1, r` − s1 > 3, #Iλ ≥ 3,

r` ≤ n− 1

We deduce from the preceding cases that

C ∩ Prim(σλ) = {−ω1,−ωs+1, . . . ,−ωn−3,−ωn−1,−ωn}

〈Prim(σλ)〉aff = −ω1 +

〈
α1, . . . , αs1−1, αr1+1, . . . , αs2−1, αr2+1, . . . , αs`−1,

αr`+1, . . . , αn, εs1+2, . . . , εr`−1, εn, ωs1+1 − ω1, ωn − ω1

〉
R
.

An easy calculation shows that 〈Prim(σλ)〉aff = Rn; therefore Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi + · · · +

∑r`
i=s`
−ωi, ri + 1 < si+1, r` − s1 > 3, #Iλ ≥ 3,

r` = n− 1

In this case
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C ∩ Prim(σλ) =
{
−ω1,−ωs1+1, . . . ,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs1−1, αr1+1, . . . , αs2−1, αr2+1, . . . , αs`−1,
αr`+1, . . . , αn, εs1+2, . . . , εn, ωs1+1 − ω1, ωn − ω1

〉
R

= Rn,

It follows that Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi + · · ·+

∑r`
i=s`
−ωi−ωn, ri + 1 < si+1, r`− s1 > 3, #Iλ ≥ 3,

r` ≤ n− 2

This case is dual to the previous one: Σλ is not Fano.

Case λ =
∑r1
i=s1
−ωi + · · · +

∑r`
i=s`
−ωi − ωn−1 − ωn, ri + 1 < si+1, r` − s1 > 3,

#Iλ ≥ 3, r` ≤ n− 2

Since {s1, n− 1} ⊂ Iλ, it follows that

C ∩ Prim(σλ) =
{
−ω1,−ωs1+1, . . . ,−ωn

}
〈
Prim(σλ)

〉
aff

= −ω1 +

〈
α1, . . . , αs1−1, αr1+1, . . . , αs2−1, αr2+1, . . . , αs`−1

εs1+2, . . . , εn, ωs1+1 − ω1, ωn − ω1

〉
R

= Rn,

and we deduce that Σλ is not Fano.
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