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TORIC VARIETIES ASSOCIATED TO ROOT SYSTEMS

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

ABSTRACT. Given a reductive group G and a parabolic subgroup P C G, with
maximal torus T, we consider the closure X of a generic T-orbit (in the sense
of Dabrowski’s work), and determine when X is a Gorenstein-Fano variety. We
establish a correspondence between the family of fans associated to a closure of
a generic orbit and the family fans associated to a root system; these fans are
characterized as those stable by the symmetries with respect to a facet. This
correspondence is not bijective, but allows to determine which complete fans
associated to a root system correspond to a Gorenstein-Fano variety. Lattice-
regular convex polytopes arise as the polytopes associated to a sub-family of
these fans — the lattice-regular complete fans.
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1. INTRODUCTION

Let R be a root system and Ap the associated weight lattice. In [VoKI85],
V.E. Voskresenskii and A.A. Klyachko considered a family of strictly convex com-
plete fans in Ag = R®z A, constructed by “gluing together” selected adjacent Weyl
chambers, in such a way that the associated toric varieties are smooth; they classi-
fied all the Fano varieties of this family. Later, R. Dabrowski considered in [Dab96]
the geometry of the closure of a “generic T—orbit in G/P”, where G is a reductive
group over the complex numbers, 7' C P C G a maximal torus and a parabolic
subgroup associated to an anti-dominant weight A respectively. The combinatorial
data associated to these complete toric varieties is given, as in Voskresenskii and
Klyachko’s work, by a fan in (Ap)g, such that a cone of maximal dimension is the
union of some translates of the Weyl chambers.

On the other hand, given a lattice A, O. Karpenkov classified in [Kar06] the
lattice—regular convex polytopes in Ag — that is, the convex polytopes generated by
elements of A, that are regular with respect to the group of affine transformations
preserving A. Later, in [MRO09] the first author and N. Ressayre shown how to
canonically associate a root system to any such regular polytope.

In this paper we establish the notion of a complete toric variety (or fan) as-
sociated to a root system: a complete fan X is associated to a root system if the
symmetries with respect to any facet — that is a co-dimension one cone of the fan
— is an automorphism of . It turns out that in this case the primitive elements
of the normal to the support hyperplane of the facets of ¥ configure a root system
for the ambient space. Moreover, there exists a correspondence between this family
and the family of closure of generic T-orbits in G/P — generic closures from now
on. This correspondence is not bijective, but allows us to completely determine
which complete toric varieties associated to a root system are Q—Gorenstein-Fano
— this is done establishing which generic closures are Q—Gorenstein-Fano. The
key ingredient for this characterization is a description of the combinatorics of the
polytope generated by the set of primitive elements of the fan, in terms of the root
system and the associated fundamental weights. Lattice-regular polytopes are in
duality with a sub-family of the family of fans associated to root systems; namely,
the fans ¥ that are that a regular for the action of the automorphisms group —
the lattice-regular complete fans, see Definition 4.12.

Explicit — and rather long — calculations allow to give a complete description
of the mentioned families. The computing for exceptional type are made by using
the following software: Sage [St] and the version of Gap3 [Sch97] maintained by
Jean Michel — that allow us to use the package Chevie (see [GHLMP96] and
[Mic2015]). In this regard, we warmly thank Cédric Bonnafé for his short, but
effective introduction to Gap3.

We describe now the content of this paper.

In Section 2 we collect some well known basic facts on toric varieties and their
associated fans, as well as some (also very well known) key results on root systems
and their associated weight lattices.

In Section 3 we first recall Dabrowski’s description of the fan associated to the
closure of a generic orbit, and establish some key facts on the combinatorics of
these fans (see lemmas 3.5 and 3.7 and their corollaries). These results allow us to
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characterize the Q—Gorenstein-Fano generic closures in Proposition 3.14: a generic
closure associated to an anti-dominant weight A is Q—Gorenstein-Fano if and only
if the convex hull of Prim(oy) — the primitive vectors of the cone o) = Uy, wC,
where W is the Weyl group of G and C the anti-dominant Weyl chamber —, is a
(n — 1)-dimensional polytope, such that the normal of its support hyperplane is
interior to the cone generated by {w; : ¢ € Iy} (I is the support of A, see Definition
2.9).

In Section 4 we define toric varieties associated to a root system (see definitions
4.1 and 4.3, and Proposition 4.7) and establish correspondence between this family
and the family of the closures of a generic T-orbit in G/P (Proposition 4.4 and
Theorem 4.9) — this correspondence is not a bijection, see Remark 4.10. Lattice-
regular polytopes arise as a subfamily of the fans associated to root systems that are
Fano: the lattice-regular complete fans are those fans associated to a root system
such that their associated polytope is regular (see Proposition 4.14 and Corollary
4.15).

We include as an Appendix (Section 6) the explicit calculations of the Fano
generic closures. We use the previous results in order to completely classify Fano
closures of generic orbits. In view of the results of Section 3, given an anti-dominant
weight A, one needs to construct Prim(cy), the set of primitive generators of oy
as a sets of orbits of the form W) - (—w;), for some fundamentals weights w; —
these weights depend on the given A. Then one must check if <Prim(a)\)>aff is
an hyperplane, and that ny, the interior normal associated to the the hyperplane,
belongs to the interior of the cone R¥{w; : i € I).

The cases A,,, By, C,, and D,, are dealt by doing generic calculations; we inten-
sively use the results of Section 3 of generic orbits, in particular corollaries 3.6 and
3.9. In order to deal with the exceptional cases Fy, Fg, E7 and Eg we use Gap3
functionalities in order to calculate a generating set of the cone oy, and then Sage’s
“toric varieties” package in order to calculate the set of primitive elements of o).

Once this is done, we calculate ny when dim<Prim(oA)>aﬁ =n—1
A table resuming all the geometric properties is also given if Section 5.

All the varieties we consider are defined over an algebraically closed field k of
characteristic 0.

Acknowledgments: the authors thank the Instituto Franco-Uruguayo de Matematica
(Uruguay), MathAmSud Project RepHomol, CSIC (Udelar, Uruguay) and the In-
stitut Montpelliérain Alexander Grothendieck for partial financial support.

2. PRELIMINARIES

2.1. Toric varieties.

Definition 2.1. Let A be a lattice and Ag = A ®7 R the associated ambient space.

A fan ¥ in Ag is a finite collection of rational polyhedral, strictly convex cones

Y = {o; : i € I}, such that for every i,j € I, 0; No; € ¥ is a common face of o;

and o;, and any face T C o; belongs to X. The fan ¥ is complete if Uiel o; = Ag.
We denote by 3(r) the collection of r—dimensional cones in ¥.

A element a of a monoid S is primitive, if for all b, ¢ € S such that a = b+ ¢ then
b= 0or ¢ =0. The set of primitive elements of S will be denoted Prim(S). The set
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of primitive elements of the fan ¥ is defined as Primy (X) = UUEZ(I) Prim(c N A).
In other words, a lattice element v € A is primitive for ¥ if v is primitive and
generates a one dimensional cone of X. If o € X(r), then Prim (o) = Prima(X)No
is the set of primitive elements of o; clearly 0 = RT(Primy(c)) and Primy(X) =
Uges Primp (o).

When no confusion is possible, the subscript A will be omitted.
We define the baricenter b, of a cone o € ¥ as b, = >
by € (0)°, the interior of o.

vePrim(o) Vi clearly

Remark 2.2. Let T be an algebraic torus and X (T) its character group, and let
A =X(T)V. Tt is well known that the family of fans in Ag = R ®z A is in bijection
with the family of T-toric varieties. Under this correspondence, complete fans
correspond to complete toric varieties. If 3 is a fan, we denote Xy the associated
toric variety. It is well known that the T—stable Weil divisors are in bijection with
the Z-linear combinations 2062(1) asD,, where a, € Z and D, is the T-stable
divisor associated to the cone o € £(1). We refer to [CLS11] for further properties
of this correspondence.

We recall now some well known properties that we will use in what follows.

Definition 2.3. Let ¥ be a complete fan in Ag. A support function is a function
@ : M — R that is linear in each cone o € ¥. A support function ¢ is integral
(resp. rational) if p(A) C Z (resp. Q).

The following Lemma is a well-known result on toric varieties and their divisors
(for a proof, see for example [CLS11, theorems 4.2.12 and 6.2.1]).

Lemma 2.4. Let T be a n-dimensional torus with associated one-parameter sub-
group lattice A and consider the following sets of equivalence classes
(i) set of pairs (complete toric variety, ample T-stable Q—Cartier divisor)

7D — {(X,D) : X is a complete toric variety, }/ ~

D is a Q-Cartier divisor

where (X1, D1) ~ (Xa,D2) if and only if there exists an isomorphism of toric
varieties ¢ : X1 — Xa, such that Dy ~ ¢¥*(D3) as divisors. Recall that a Weil
divisor D is Q—Cartier if some positive integer multiple is Cartier.

(i) set of pairs (complete fan, strictly convex rational support function)

FD — {(2790) : > a complete fan, }/N7

@ a strictly convex rational support function
where (31,¢1) ~ (X2,92) if and only if there exists an integral isomorphism p :
Ar = Ag, such that X9 = p(21) and ¢1 = p*(p2).

(i4i) set of full dimensional convex rational lattice polytopes — that is, full dimen-
sional polytopes P in MY =R ®z AV such that an integer multiple aP, a > 0, is a
lattice polytope.

P = {P C Ay : P full dimensional convex rational lattice polytope}/ ~,

where Py ~ Py if and only if there exists an integral isomorphism g : A — A such
that P2 = g(Pl)
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Then the assignments (X,¢) — (Xx,D,) and (X,¢) — P, induce bijections
F:FD—TD and G: FD — P.

Under these correspondences Cartier divisors correspond to strictly convex inte-
gral support functions respectively lattice polytopes. ([l

Definition 2.5. Let X be a fan. The set of flags of cones of ¥ is the set
fE:{O:TOQﬁ §~-'§Tn:n€2(i)}.

Definition 2.6. A complete fan 3 is Q—-Gorenstein-Fano (resp. Gorenstein-Fano,
resp. Fano) if the associated complete toric variety X is Q—Gorenstein-Fano (resp.
Gorenstein-Fano, resp. Fano); that is, the anti-canonical divisor —K x,, is an ample
Q-Cartier divisor (resp. an ample Cartier divisor, resp. X is a smooth Gorenstein-
Fano variety).

Recall that if Xy is the toric variety associated to the complete fan ¥, then
—Kx;, = Y Dyex1)Ds. By using this equality and [CLS11, Lemma 6.1.13], we
deduce the following equivalences.

Lemma 2.7. Let ¥ be a complete fan in RQA = R™. Then the following assertions
are equivalent:

(i) ¥ is Q-Gorenstein-Fano;
(i1) the elements of {Conv(Prim(c)) : (s), s =1,...,n} are the proper faces of
the polytope Conv(Prim(X));

(iii) for every cone o € X(n), the polytope F = Conv (Prim(c)) is (n—1)-dimensional,
and if (Prim(o))ag = nt, with (ny,v) = —1 for v € Prim(o), then (n,w) > —1 for
every w € Prim(X) \ Prim(o). In this case, px(v) = (ny,v) if v € o is the support
function associated to the anti-canonical divisor —Kx,.

(iv) for every cone o € $(n), the polytope F = Conv(Prim(c)) is (n—1)-dimensional,
and if (Prim(c))ag = nt, then —n, € (0)°.

In this case, ¥ is Gorenstein-Fano if and only if ny € A. (]

2.2. Root systems.

In what follows, G is a semi-simple algebraic group and ' C B C G are a
maximal torus and a Borel subgroup respectively. Denote by R, W the associated
root system and Weyl group respectively. Let a,...,a, be the simple roots and
w1, . ..,wn be the fundamental weights. The type of G is the type of the associated
root system R.

We denote by Ag the root lattice and by Ap the weight lattice. Let N = Rz Ap
and M = R®zAg. Then the duality given by (w;, a}/> = 0;,j, where o is the co-root
associated to «;, induces an identification of M and N. Under such identification
Ar C Ap, and hyperplanes H; = a; are generated by {wi,...,wn} \ w;. The
corresponding subdivision of M is given by the Weyl chambers associated to the
root system, which are simplicial rational cones. In particular, W acts by isometries,
transitively and freely on the Weyl chambers. We denote by D the dominant Weyl
chamber; C = —D is the anti-dominant (Weyl) chamber.

Definition 2.8. If A € D is a dominant weight, let P C G be the parabolic subgroup
associated to \, that is P is a parabolic subgroup containing B~ (the Borel subgroup
opposite to B), such that the Weyl group of P is Wp = W). Then A can be extend
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to P. We denote by V(\) the Weyl G-module
V(\) = HYG/P, L) = {f €k[G] : f(zy) = X" (y)f(x) YV € G,y € P}.
Definition 2.9. If A = Z?:l a;w; € Ap is a weight, we define the support of \ as
the set Iy = {i : a; # 0}.
If S is the Dynkin diagram associated to R, let (I\) C S generated by I, that

is, § is the full sub-graph with set of vertices I. We say A is connected if (I,) is
an irreducible Dynkin diagram.

Remark 2.10. Let A = Z?:l a;w; € D be a dominant weight, and let Wy Cc W
be the isotropy group of A under the action of W on the weight lattice. Then

£x
WA = WZ%EIAwi = WZ@'EIA —Ww; = <Sai 11 € I§> = H<8i>,
i=1
where §;, ¢ = 1,...,/,, are the irreducible components of <I§\> In particular, W

depends only on 1.

If j € I, we denote i(j) € {1,...,€x} the index such that j € S;¢;; then
(Wa)w, = <5a1: 1€ Sy \ {J}> x Hi;ﬁi(j) Si.

In particular, if a # 0, then W) - (aw;) = (sa, 1 t € Si(j)) - (aw;) = Ws,;, - (aw;),
where if A C S is a sub-graph, then W, denotes the Weyl group associated to the
root system of the Levi subgroup associated to A. It follows that

#Ws,

#W/\ s aw; = .
Sa; :iGSi(j)\{j}>

#W<
Observe that the same results hold if A € C' is an anti-dominant weight.

3. GENERIC ORBITS OF G/P

From now on, we assume that G is a semi-simple algebraic group, and T C B C G
a maximal torus and a Borel subgroup respectively.

3.1. General results.

Definition 3.1 (see [Dab96, §1]). Let A € C \ {0} be a non trivial anti-dominant
weight, and P D B be the parabolic subgroup associated to —A. Let Ap = {a; :
Sa, € Wa = W_,}, and consider S¥ C Ap, the sub-lattice generated by the positive
roots that are not sums of simple roots in Ap .

Let Iy = {p € Ap : V(=A), # 0} the set of T-weights of V(—X) and Ay be
the list of the T-weights counted with multiplicity. A set of Plicker coordinates
{fu: € A\} is a choice of a basis of T-semi-invariants functions f, € V/(=\),.

If x = uP € G/P, we consider
I\ (z) := {p € II : fu(x) # 0 for some f, in the Pliicker basis}.

It is easy to see that II)(x) does not depends on the choice of the Pliicker
coordinates. Moreover, A — wlly(z) C ST C Ap, for every w € W.

We say that the T-orbit T'- x is generic if:
(i) W-AcCI(z)
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ii) The set A — wIly(z) generates ST as a lattice.
(i) g

We recall in the next theorem some of the properties of generic orbits shown on
[Dab96], that we need for the rest of this work.

Theorem 3.2. If x € G/P is such that all its Plicker coordinates does not vanish,
then T - x s a generic orbit. In particular, generic orbits exist.

Let o0\ = UwEWA wC. Then oy is a convex convex rational cone. If T -x is a

generic orbit, then T-orbit closure T -x C G/P is a toric variety with associated
fan Xy, with cones of mazximal dimension given by

Ya(n) = {woy : w e WY,

where W C W is a set-theoretical section of W/W,.

Moreover, ¥x(n) is the fan associated to the polytope —P = — Conv(Il)) —
that is, the fan obtained by considering the cones with vertex 0, generated by the
strict faces of —Py. O

Remark 3.3. (1) If A is a regular anti-dominant weight, then o)y =C = —D.

(2) Let G be a simple group — equivalently, the associated root system is irre-
ducible. If A € C is an anti-dominant weight, then P, is non-degenerate (i.e. of
maximal dimension), and thus X is a strictly convex fan.

(3) If G has associated root system R = [[._, R;, with R; an irreducible root
system, then Ap = [[, Ap,, where P; is the weight lattice associated to R;, C =
Hi CRi and and WR = Hi WRl-

It is clear that if X = )", \;, A\; € Cg,, is an anti-dominant weight, then ¥, =
[L[; 5, It follows that ¥\ is a strictly convex fan if and only if A\; # 0 for all
i=1,...,7r.

On the other hand, if A; = 0 then every cone in ¥ contains the subspace (Ap,)g.
It follows that that T -« is a complete T'/T,-toric variety, with associated fan the
projection of Xy over N/([],,_oApr, Pk

Therefore, we can always assume that the polytope P is non—degenerate and X,
a strictly convex fan. Moreover, Xy is Q-Gorenstein-Fano (resp. Gorenstein-Fano,
resp. Fano) if and only if ¥y, is so for all ¢ = 1,...,r. Hence, we can restrict our
calculations to the simple case.

Proposition 3.4. Let A € C be a non trivial anti-dominant weight. Then

(1) The weight X is in the interior of oy.
(2) Let v, = RT(—w; : i € I,\) be the biggest face v C C such that X € (v)°.
Then
n=[] wC=()"
weWy
(3) The fan Xy is stable under the action of W, and Wy = W, . In particular,
#X(n) = #(W/Wy) = #W/#W..

Proof. (1) In order to prove that A € (0)° observe that, in the notations of Theo-
rem 3.2, —\ is a vertex of —Py, and hence it corresponds to an interior point of o
under the duality between M and N.
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(2) If w € Wy, then w-yy is the maximal face of wC containing w- A = A. It follows
that w-v\ = v, and ) C nweWA wC. On the other hand, since the decomposition
of the ambient space in Weyl chambers induces a fan — in the notations of Theorem
3.2, the fan ¥_ 5~ —, it follows that ﬂwGWA wC is a face of C containing A. Thus,

Nuwew, wC C . It is clear that ) C (o)™, and that (o))" c N wC.

(3) By construction, the Weyl group W acts transitively on X(n); therefore Xy
is stable under the action of W. In order to prove the rest of the assertions,
we can assume that A = —Zieh w;. It is clear then that W\ C W,,. Since
v = Rt (—w; : i € I,) is it follows Let w’ € W,. Then w'(wC) C o for any
w € Wy. It follows that w'yy = v, and thus w'{—w; : ¢ € [\} = {—w; : ¢ € I }.
Hence w'A = .

It is clear that {w € W : A € wC} C Ugyewnec,)- Let w € W be such that

A€ wC. Then A € w-C N (0y)°. Since W acts transitively on the cones of ¥ (n),
it follows that w - C C oy. O

weWy

Lemma 3.5. Let A\, u € C be anti-dominant weights. Then the following are equiv-
alent: (i) o, C ox; (ii) p € (02)°; (i) In C I,; (iv) W, C Wy.

Proof. It is well known that (iii) is equivalent to (iv), see Remark 2.10.

Since o, is a cone of maximal dimension and that u € (0,)°, it follows that
(i) implies (ii). On the other hand, if u € (0))° and w € W,,, it follows from the
transitivity of the W-action (as in the proof of Proposition 3.4) that w-C C o).

It is clear that (iv) implies (i). Assume now that o, C ox. If w € Wy, then
wC C o) and hence w € W) — we are using here that W acts freely on the set of
Weyl chambers. O

Corollary 3.6. Let A € C be an anti-dominant weight and consider a face T =
R+<—wi e JcCAl,... ,n}> C C. Then 7 is contained in a proper face of oy if
and only if J 2 Iy; that is, if and only if X & 7.

Proof. By Lemma 3.5, 7N (0)° # 0 if and only if there exists an anti-dominant
weight 11 € 7 such that I, D I, that is if and only if J D I,. O

Lemma 3.7. Let A € C be an anti-dominant weight and consider a face v € o (r).
Then there exist faces vy1,...,7sy) C C(r) and elements w1, ... ,wy~) € Wi, w; #
wj if i # j, such that v = Uf(jl) Wi - Vi

Let ' € o(r) be another r—dimensional face, such that there exists 1 < j < s(v)
and w' € Wy with v = w'v; Uf(:l/)_l wj -, w, € Wy and v} € C(r). Then
s(v) =s(v) and {y1, .- Vs } = {71+ Vagyy—1 Wi

Proof. Tt is clear that if v € o (r) is a r-face, then there exists at most only one face
T € C(r) such that 7 C ~. Indeed, is 7/ € C(r) is another r-face, then dim(rU7") > r.
Thus, the first assertion follows immediately from the transitivity of the W-action
on the Weyl chambers.
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Let v = Uj(:”l) w; - v; € ox(r) and assume that j = 1. Then w -y € o (r) for all
w € Wy, and it follows that s(v) = s(wy) for all w € W). In particular,

s(v) s(v)
wwit -y = U w'wi tw; -y = w'y U U U w'wy w; -y € aa(r)
i=1 i=2
It follows that w'w; ' -y =" and the result easily follows. O

Corollary 3.8. Let A € C be an anti-dominant weight. Then:
(1) If w; is a fundamental weight, then —w; € (03)° if and only if A = aw;, a < 0.

(2) There exists a subset Jy C {1,...,n}, such that Prim(oy) = Wy-Jx. If A = —w;,
then w; ¢ Jy.

(3) A facet C; = ' {(—w1, ..., —Wi—1, —Wit1,--., —wn) C C is contained in a facet
of ox if and only if © € I. In particular, #I facets of C are contained in a facet
of o, whereas the remaining n — #Iy facets of C contain points in (0y)°, and if
-\ =w; is a fundamental weight, then

U T = U wC;.

TETN(n—1) wEW

Proof. Assertion (1) is an easy consequence of Lemma 3.5. Assertion (2) follows
from Lemma 3.7 applied to the case r = 1. Assertion (3) is proved combining
lemmas 3.5 and 3.7. O

The comprehension of Prim(oy) given in Corollary 3.8 can be improved, by
describing the affine sub-space that this set generates.

Corollary 3.9. Let A\ € C be an anti-dominant weight, and consider Jy as in
Corollary 3.8. If —wy, € Jy, then, with the notations of Remark 2.10,

(Prim(oy)) o = — wk + <( U W (@) —wj) U{wi —w; 1,5 € J/\}>R =
PN

_wk+<{ai:i%f/\}u{wi_w’f:ie']’\}%z

Proof. Indeed, if 7,5 € Jy and f,g € W), then

fr(wi) =g (—w) = [ (—wi) —wi +w —wj +w;j — g (—wj),
and the first equality follows. As for the second equality, let f = s;---s1 € W),
with s; € {sq, 19 ¢ In}. Then f-(—w;) — w; € {a;)r, and the inclusion C follows.

Let i ¢ Iy; if sq,(v) = v for all v € Prim(oy), then s,, = Id; since o is of
maximal dimension, this is a contradiction. It follows that there exists v € Prim(cy)
such that s,,(v) # v, and therefore o; € <Prim(a,\)>alcf — Wg. O

Corollary 3.10. Let A € C be an anti-dominant weight. Then L, =1I\. In
particular, bey =3, cprim(oy) ¥ € (1)

Proof. By construction, b,, € (o)°. Thus, by Lemma 3.5, I C Iy, . On the other
hand, it follows from Corollary 3.9 that W - b,, = b,,. Hence, Ib”A C Iy. O
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Remark 3.11. Let G be a semi-simple group and A\, € C two anti-dominant
weights, such that I, C I. If 7 € o,(r), then (7N o)) € oa(s), where s < r. In
particular, if R*(—w;) € 0,(1), then R (—w;) € ox(1). This well known fact on
the geometry of rational cones will be useful for the description of the geometry of
the closure of the generic orbits — namely, the description of Prim(cy) NC.

3.2. Fano closures of generic orbits.

Definition 3.12. Let G be a semi-simple group and A € C an anti-dominant weight.
Then F) = Conv(Prim(cy)) is a face of —Py = Conv(Prim(2,)). We denote by
ny the interior normal to the face Fe; that is, ny is the unique element of Ag such
that (nx,v) = —1 for all v € Prim(o)).

Since the cones oy, and in particular the generating sets Prim(oy), are stable
by the Wj-action, one can give partial information about ConV(W,\ . (—wj)), for
—w; € CNPrim(oy), in terms of A and the baricenter by.

Lemma 3.13. Let G be a simple group and A = — Zz‘eh w; € C an anti-dominant
weight. Let —w; € Prim(oy) be an anti-fundamental weight that is a generator of
a ray of on. Then

<W)\ . (—wj)>aff C —wj; + (bi\ natn nf)

Proof. By Corollary 3.10, I, = L, ; therefore, b,, is fixed by Wy. It follows
that if w € Wy, then (by,,w - (—w;) + w;) = (bo,,—wj) + (bg,,w;) = 0. It
follows that (Wx(—w;)), s C —w; + by, . The same kind of calculations show that

(W(=w))) g © =y + AT O

Lemma 3.13 gives general but partial information on the polytope F. How-
ever, the previous results allow to give a combinatorial description of Fano generic
closures, as follows:

Proposition 3.14. Let G be a simple group and X\ € C an anti-dominant weight.
Then ny = Zieb\ a;w;, and the fan Xy is Q—-Gorenstein-Fano if and only if ny €
()" = ((R+<wi (i€ I,\>))o. That is, if and only if ny = Zielk a;w;, with a; > 0
for alli € Iy.

Proof. 1t follows from Corollary 3.9 that ny = Zieh a;w;. By Lemma 2.7, 3, is
Q-Gorenstein-Fano if and only if —ny € (0x)°. This implies our result. O

4. FANS ASSOCIATED TO ROOT SYSTEMS

4.1. Fans associated to root systems.

Definition 4.1. Let ¥ C Ag = R ®z A be a complete fan. The automorphisms
group of ¥ is defined as

Aut(S) = {f € GL(A) : f(0) € 2(r) Vo € E(r)}

Remark 4.2. Since any f € Aut(X) C GL(A) acts by permutations in (1), it
follows that Aut(X) acts by permutations on Prim(X). In particular, Aut(X) is a
finite group. From now on, we fix an internal product on Ag in such a way that
any automorphism of ¥ is an isometry of Ag.
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Definition 4.3. Let X be a complete fan in Ag, with dim Ag = n. We say that X
is associated to a root system if for every facet o € ¥(n—1), there exists a reflection
so that fixes the hyperplane H, = (o), that is also an element of Aut(X).

Since any automorphism is an isometry for the chosen internal product, it follows
that if ¥ is associated to a root system and o € ¥(n — 1) then the orthogonal
reflection fixing H, is the unique reflexion fixing that hyperplane belonging to
Aut(X). Let a, € A be such that +a, are the unique primitive elements of H}.
Let ®(X) = {£a, : ¢ € S(n — 1)}. be the set of such primitive elements. In
Proposition 4.7, we will prove that ®(X) is a root system; this fact justifies the
above definition.

Proposition 4.4. Let G be a simple group and A € C an anti-dominant weight.
Then Xy is a fan associated to a Toot system.

Proof. If 7 € ¥(n — 1) is a facet then, by Lemma 3.7, there exists w € W and a
facet o € C(n — 1) such that (7)gr = w - (o)g. Now, by construction, there exists a
simple root a; such that (o)g = a;-. It follows that ws,,w™! € W is the reflection
associated to 7. Since W C Aut(X,) (see Proposition 3.4), the result follows. O

Remark 4.5. The converse of Proposition 4.4 we will be proved in Theorem 4.9.
The reader should note however that the associated root system ®(X,) is not nec-
essarily the root system associated to G, see Example 4.6 and Remark 4.10 below.

Example 4.6 (G2-type groups). Let G be a simple group of type Ga. It is easy to
see that ¥_,,, and ¥_,,, have Ay as associated root system. Thus, the root system
associated to a generic orbit is not necessarily the one associated to the original
group G.

Proposition 4.7. Let ¥ a complete fan in Ag associated to a root system. Then

(1) The set ®(X) is a root system of Ag.
(2) The weight and root lattices of ®(X), denoted respectively by Ap and Ar, satisfy:

Ar CACAp.

(3) If W and Aut(®(X)) denote the Weyl and the automorphisms group of ®(X)
respectively, then
W C Aut(X) C Aut(®(X)).

Proof. (1) It is clear that ®(X) is finite, does not contain zero, spans Ag and that
Z-an®X) = {£a} for every a € ®(X). Indeed, 3(n) is composed of strictly
convex rational cones.

By construction, a € ®(X) if and only if —a € ®(X), and s, () = —a.

If B € ®(X), then B+ = (0p) for some o5 € X(n — 1). Since s, € Aut(Y), it
follows that sq(05) € X(n — 1), with s4(8)* = (sa(0p))r. Therefore, s, (®(X)) =
D(%).

It is clear that s,(8) — 8 is an element of A proportional to «. Since « has been
chosen primitive, it follows that s,(8) — 8 is an entire multiple of «. This ends the
proof of Assertion (1).

In order to prove Assertion (2) it suffices to prove that A C Ap, the other
inclusion being obvious. Let a € ®(X) and A € A. Then s,(X) = A — (A, a¥)a € A,
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where ¥ is the co-root associated to «. Since « is primitive on A, we deduce that
N\ aVY) eZ.

Finally, the inclusions W C Aut(X) C Aut(®(X)) are a direct consequence of
the proof of Assertion (1). O

Definition 4.8. The root system ®(X) is called the root system associated to X.

In Proposition 4.4 we showed that any fan associated to a generic orbit is as-
sociated to a root system. The following theorem shows that the converse is also
true.

Theorem 4.9. Let ¥ be a complete fan in Ag = R®z A =2 R"™, associated to a root

system. Then

(1) If o € X(n), then o is an union of Weyl chambers. If o is such that C C o, then

there exists an anti-dominant weight A = Zieh w; such that o = oy and X = 2.
In particular, the Weyl group W acts transitively on the set of cones of mazimal

dimension 3(n), and #X(n) = #(W/Wy) = #W/H#W.

(2) If A= er, wi, then Aut((I)(E))UA = AUt(‘I)(E)),\ and

Aut(Z) = W-(Aut(2()),, NAut(Z)) = W-(Aut(2(X)), NAut(L)).

Proof. (1) Let o € X(n); by definition of ®(X), there exist £ > n and 3; € ®(%),
i=1,...,¢, such that

o= é{vEAR:<v,ﬂi>ZO}.

Let € be a Weyl chamber such that (£)° N (0)° # (), and consider a choice of
positive roots ®(3)T such that & = ﬂa€¢(2)+{v €Ar: (v,a) > O}. If g, € (X))~
for some i, then v € (£)° N (0)° is such that (v, 3;) > 0 and (v, —f3;) > 0; this is a
contradiction. It follows that £ C o.

Assume now that C C o and let A =3 p,;, () v- We affirm that A € C and
that o = oy; then Assertion (1) follows from Theorem 3.2.

We first prove that Wy = W,. If w € Wy then A=w -\ € (¢)° N (w-0)°, and
it follows from Proposition 4.7 that w - ¢ = ¢. On the other hand, if w € W, then
w - Prim(c) = Prim(); therefore, w - A= w3 cpyimo) ¥ = 2veprim(o) ¥ = A

Let w’ € W be such that w' - A € C. Then w’ -\ € (w'-0)°NC C (v -0)° No.
Hence, w’ - ¢ = 0, and it follows that w’ € W, = W,. Therefore, A € C.

Next, observe that we have proved in particular that oy C o. If 0y C o, then
there exists a weight p € (0\ox)NAp. Let w’ € W be such that w’-u € C. Applying
the same reasoning as before, since W acts on X(n), it follows that w’ - o = o and
thus w' € W, = W) is such that w'~*-C Z oy = UwEWA w-C; this is a contradiction.
(2) If f € Aut(®(X)), then f is an isometry (f respects the angles and lengths of
the simple roots) such that f(Ag) = Ar and therefore f(Ap) = Ap. Moreover, f
stabilizes the set of Weyl chambers.

if f € Aut(®(¥)), and € is a Weyl chamber contained in oy, then A = f()) €
f(E). Tt follows that f(€) C oy; that is, f € Aut(<I>(Z))JA
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Ifg € Aut((ID(E))m7 consider as usual yx = R (w; : i € In) = e, w-C. Since
g(ox) = oy, it follows that g({w-C:w € Wi}) = {w-C:w e W,}. Thus, g(7\) =
Y. Since g is an automorphism, it follows that g(Primy, (o)) = Primy (o), and
we deduce that Q(Zielk w;i) = > ic1, wi- Therefore, g € Aut (@(%)),.

Recall that, by Proposition 4.7, W C Aut(X) C Aut(®(X)). Moreover, W C
Aut(®(X)) is a normal subgroup that acts transitively on 3(n). Thus, Aut(Z) C
w- Aut((I’(Z))GA

Let f € Aut(X); then f(C)

w - C for some w € W. Therefore, w™'f €
Aut(CI)(Z))GA. Hence, Aut(X) (Au

(@(Z)))\ NAut(X)) and the result follows.
(]

w-

Remark 4.10. Observe that even if Theorem 4.9 provides a converse for Proposi-
tion 4.4, these results do mot establish a bijection between closure of generic orbits
in G/P and fans associated to root systems. Indeed, as noted in Remark 4.5, the
root system associated to a closure of a generic orbit in G/P is not necessarily the
root system associated to G.

In particular, Example 4.6, shows that if we consider G of type G5 and A = —wy,
then the fan ¥_,,, is isomorphic to the fan associated to the pair (G a group of
type Aa, A = — > w;) — the subdivision in Weyl chambers for As.

On the other hand; ¥_,, is also associated to the root system Ao, but X_,, 2
¥ _., as fans. Indeed, Prim(o_,,) is a basis of the lattice A — in other words
Xx_,,, is a smooth toric variety, whereas Prim(o_,, ) is not a basis of the lattice
A, since —wq ¢ (—w1, —w2)z.

Definition 4.11. Let G be a simple group and A € C a non trivial anti-dominant
weight. The minimal pair associated to Xy is the a pair (R', u), where R’ is the root
system associated to the fan ¥y (as in Proposition 4.7) and p is the anti-dominant
weight given by Theorem 4.9 (for the fan ¥y in (Ap)gr); we will describe R’ by its
type. It should be noted that the lattice of weights associated to the root system
R of G, is a sub-lattice of Ap/, the lattice of weights associated to R’.

Note that the minimal pair is uniquely determined by (G, \).

4.2. Lattice-regular complete fans.

Definition 4.12. Let X be a complete fan in Ag. We say that X is lattice-regular
complete if Aut(X) acts transitively on the flags of cones of ¥. A lattice-reqular
toric variety is a complete toric variety which associated fan is lattice-regular.

Example 4.13. Let G be a simple group of type As. Then it is easy to see that
3_, is lattice-regular; see also Theorem 4.16.

Proposition 4.14. Let ¥ be a lattice-reqular complete fan in Agx. Then X is
associated to a root system.

Proof. Consider an inner product on Ag such that Aut(X) is composed of isometries.
We need to prove that if 7 € X(n — 1), then s, the reflection associated to 7, is an
element of Aut(X).

Let 01,09 € X(n) be such that 7 = o1 N o2, and consider the two flags of the
fOI‘IIlFl) {0}§71§~~~§Tn_1:7'§01 anng) {0}§71§~-~§Tn_127§02.
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Then there exists f € Aut(X) such that f(F)) = F». We affirm that f|< L=
TIR

Id |<T>R, and thus, since f is an isometry, f is the reflection by (7)g.

We will prove by induction that if f € Aut(X) is such that f stabilizes a partial
flag{0} S C - C7, 7 =3(), i =1,...,7r <n, then f|< L= Id|< = the
assertion will then follow. o o

Let v in Prim(X) be such that f(R*(v)) = R*(v). Since v is primitive, it follows
that f(v) = v. Assume now that we have proved the assertion for any partial flag
of the form {0} C = € -+ C 7, 7; € X(i), and let {0} € 01 € -+ C opy1,
0; € X(i), be a partial flag stabilized by f. Then f|< = Id} . If we prove

orIR

(or)r
that f(v) = v for some vv € Prim(o,41) \ Prim(o,) we are done. Since o,_1 is a

(r —1)-dimensional face of 0,1, it follows that there exists an unique r-dimensional
face 7 of 0,41 such that 0,1 = o, N 7. Since f(7) is a r-dimensional face of
flor41) = or41 and that f(o,) = o, it follows that f(7) = 7. Then f stabilizes
the partial flag {0} C o1 C --- C o,_1, 7 and the result follows by induction. O

As an easy consequence of Proposition4.14, we have the following result.

Corollary 4.15. Let X be a lattice-regular complete fan and let Prim(X) the set of
generating primitive vectors. Then P(X), the convex hull of Prim(X) is a regular
polytope, with Aut(P(X)) = Aut(X).

Conversely, let Q) be a centered lattice-regular convex polytope, and let 3 be the
complete fan obtained by considering the cones from 0 to any face F' of Q. Then
is a lattice-regular complete fan.

Proof. Indeed, it follows from Proposition 4.14 that P(X) = {u € N : ¢(u) > —a}
is a convex polytope, with integer vertex. Let f : N — N be such that f €
GL(X(T)). Then, by construction, f € Aut(P(X)) if and only if f € Aut(X).

The converse is proved in the same way. O

Theorem 4.16. Let F': FD — TD and G : FD — P be the canonical bijections
given in Lemma 2.4. Then G induces a bijection between the (class of the) pairs
(3, ¢x), where ¥ is a lattice-reqular complete fan and vy is as in Definition 2.3, and
the (class of the) lattice-regular polytopes. In particular, Go F~' induces a bijection
between the lattice-regular toric varieties and the lattice-reqular polytopes, where we
associate to each lattice-reqular variety the first multiple of the anti-canonical divisor
that is a Cartier divisor.

Moreover, if P the reduced, centered, lattice-reqular polytope corresponding to
(2, ¢x), then the duality GL(M) — GL(N), f — f*, f*(u)(v) = u(f(v)) induces
an isomorphism between the abstract groups Aut(X) and Aut(P).

Proof. Let ¥ be a lattice-regular complete fan. Then the convex hull (Prim(X))cony =
{v e N:ps(v) > —a} is a regular polytope. By construction, P = G(Z, px) =
Prim(X)Y, where the notation -V stands for the polar dual of a polytope. It easily
follows that P is a regular polytope (see for example [MR09, §3]). Furthermore,
observe that by construction, and in view of Corollary 4.15, f € Aut(X) if and only
if f* € Aut(P).
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Let P C N be a centered, reduced, regular polytope and consider (%,p) =
G~(P). If Prim(2) = {v1, ..., v}, then there exist ai,...,as > 0 such that

P={ueN:(v,u)>a}.

In particular, Prim(X) = {v1,...,v¢}, and {v;,,...,v; } are the primitive genera-
tors of a cone o € ¥(r), if and only if PN;_, {vi(u) = —a;} is a (n—r)-dimensional
face of P.

If f € Aut(P), then it is clear that f* € Aut(X). The regularity of P implies
then that ¥ is a lattice-regular complete fan.

We affirm that a; = --- = ap = a. It follows that

¢
Py = U{U € AR : p(v) > —a},

and hence a is the smallest positive integer number such that —aK is a Cartier
divisor, with support function ¢, and P as associated polytope.

In order to prove the assertion, let i # j € {1,...,¢} and consider the corre-
sponding facets F; = P N {v;(u) = —a;} and Fj = {v;(u) = —a;}. Then there
exists f € Aut(P) such that f(F;) = F}. It follows that

P=f(P)={ueN: (v, f"(uw)>a;} ={ueN:(f(v)u)>a}

Since f € Aut(X), f permutes all the facets of P, and f* € Aut(X) permutes the
primitive generators accordingly. It follows that f*(v;) = v;, and thus a; = a;. O

In view of the results proved in [MR09] for lattice-regular polytopes, Proposition
4.19 below and its corollaries can be obtained as an easy consequence of Theorem
4.16. We include direct proofs of these results, in order to explicitly show how the
strategies developed in [MR09] can be applied in this context.

Definition 4.17. Let ¥ be a fan and o € X(r). The star of base o, denoted by
S(0), is the fan composed by all the cones 7 € ¥ such that o C 7.

Remark 4.18. It is well known that if O, =T -z C Xy, is an (n — r)-dimensional
orbit corresponding to o, and 7 : M — M/(o)g, then 7(S(c)) is the fan associated
to the toric T'/T,-variety X = O,. Under this projection, oy (s) = 7(S(o)(r + s)).

Proposition 4.19. Let ¥ be a lattice-reqular complete fan and consider o € %(1)
and S(0), the star of base o (see Definition 4.17). Then m,(S(c)) C ot is a
lattice-regular complete fan. Moreover, ®(m,(S(0))) = ®(X) No™; this is a Levi
subsystem of ®(X).

Proof. Tt follows from Remark 4.18 that 7,(S(0)) is a complete fan. Let f €
Aut(X) be such that f|, = Id|,. Since Aut(X) C O(Ar) N GL(A), it follows
that f(ANot) = ANot and fon, = 7, o f. In particular f(ol) = o+ and
f(7e(7)) = 7 (f(7)). In other words, fl.. € Aut(7,(S(0))). Moreover, since
Aut(X) acts transitively on the flags containing o, it follows that 7, (S(0)) is a
lattice-regular complete fan.

By Remark 4.18 again, it follows that ®(m,(S(0))) C ®(X) Not. Let a €

®(X) Not, we need to prove that there exists 7 € S(o)(n — 1) such that « € 7+.
Let H, be the hyperplane fixed by the reflection s,. Then o C H,, and H,No* is
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an hyperplane of o*. In particular, 7(S(0)) = S(0). Since 7, (S(c)) is a complete
strictly convex polyhedral fan, it follows that there exists v € 7, (S(0))(n —2) such
that if 3 is a root associated to v, then 8 ¢ H, No*. If B is co-linear to a, we
are done. Assume that § is not co-linear to « and let 7 € S(o)(n — 1) be such
that m,(7) = 7 — the cone 7 exists by construction. Then f§ is a root associated
to 7, and it follows that ®(X) N Vect(a, 8) is a root system of type As. Changing
eventually o by —a we may assume that a + (3 is a root. Since o C (at N ),
it follows that sqa45(7) € S(o). It suffices now to observe that sq45(3) is a root
associated to 74 (sa+5(7)), and that this root is parallel to . O

Corollary 4.20. Let X be a lattice-regular toric variety, and O C X an orbit.
Then O 1is a lattice-regular toric variety.

Proof. We prove this result by ncetherian induction. Let X be the complete lattice-
regular complete fan associated X. Recall that if O is an orbit of co-dimension
1, then O is a toric variety. Moreover, if ¢ € ¥(1) is the cone associated to O,
then, with the notations of Proposition 4.19, it follows that 7, (8(0)) is the fan
associated to O, see for example [CLS11, §3.2] for more details. The result is thus
a straightforward consequence of Proposition 4.19. O

5. DESCRIPTION OF FANO TORIC VARIETIES ASSOCIATED TO ROOT SYSTEMS

The following table describes all the pairs (root system type, anti-dominant
weight) such that the closure of the associated generic orbit is Fano. The last
column indicates the minimal pair associated to the generic orbit. We refer to
Section 6 for the explicit calculations that led to this description.

The first column describes the generic orbit by stating the simple group G and
the corresponding anti-dominant weight \. Since Wg acts transitively on X(n)
and that (Wg), acts transitively on Prim(oy), it suffices to explicitly describe
Prim(oy) N{-w1,...,—wy,} in order to completely describe Xy (see Corollary 3.8);
this is done in the second column. The third column describes the geometry of
Y. The fourth column shows the minimal pair (P, ) determined by (G, \); we
also identify the lattice A in terms of Ar and Ap (see Proposition 4.7). Finally,
the fifth column collects the information on the action of Aut(Xy) on the (partial
flags): there it is indicated if the fan X is lattice-regular or not.

Observe that a fortiori, we obtain the following characterization of Fano closures
of generic orbits.

Corollary 5.1. Let A = >
Fano if and only if ny = —A\.

ier, —wi be a an anti-dominant weight. Then Xy is
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6. APPENDIX: EXPLICIT CALCULATIONS

In this section we present the explicit calculations we made in order to describe
which toric varieties associated to a root system are Fano (Section 5). In order to
produce this classification, we take two different approaches, according to the type
of root system:

Toric varieties associated to oot systems of type Ga, Fy, Eg, F7, Es: we make ex-
plicit calculation with GAP3 and Sage (see [MR17] for the code and explicit results).

Toric varieties associated to root systems of type Ay, By, Chn, Dy: in this case we
deal with the whole family, as follows:

(i) In order to apply Proposition 3.14, we use Lemma 3.13 in order to describe
Prim(oy).

(ii) Remark 3.11 allows us to find some elements of C N Prim(cy) by looking
onto weights p with support I, C I.

(iii) Recall that if v € oy, then RTv € ¥5(1) if and only if v = Y, ; a;v;, with
v; € Prim(oy), a; > 0 implies #I = 1. Since —w; € C N Prim(o}) if and
only if Wy(—w;) C Prim(coy), it follows that —w; is not primitive if and
only if —w; € R+<Uj¢iW>\(—wj)>.

(iv) Concerning the minimal pair (R’, ) associated to Xy, note that if 7 C C
is a maximal face such that (7)g = o is a supporting hyperplane of o,
then W-a C R (see Lemma 3.7) . Since W acts transitively in the roots of
same length, it follows that R contains all the roots of length ||a||. Hence,
by Corollary 3.8, R = W - {«; : i € I,}, the set of roots having length
equal to ||a;|| for some i € Iy. In particular, if the root system R of G is
simply laced, then the minimal pair associated to Xy is (R, A), with lattice
A= Ap.

We begin by presenting explicit and complete calculations for root systems R
of rank 1,2 and for R of type As, Fy. Then we deal with the A,, case in a rather
complete way. The types B,,C,, D, and A, present a very similar behavior “far
away from «,,”, so we focus mainly in the relationship of A and —w,,.

Notations 6.1. We follow the following conventions:

e A sub-list of elements indexed by i is always presented in ascending order. For
instance, if @ > b, then {uy, v, ... vp, w1, w2} = {ur, wy, we}. This not-so orthodox
convention allows to simplify the description of the sets Prim(oy) and the sets of
generators of <Prim(a)\)>aff.

e When dealing with root systems and their associated weights, we follow the
notations of Bourbaki (see [Bou68, pp 250-276], or its English translation [B68en]).

e In figures 1-8, for each pair (R, \) of root system R and anti-dominant weight A,
we draw the chamber —wgo ), in gray, and the convex hull of the weights W-Prim(o )
in thick lines.

When describing the minimal pair (R’ u) associated to a Fano variety Xy, we also
describe the lattice A in terms of Ars and Aps (see Proposition 4.7).
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Recall that if G is simply laced, then the minimal pair associated to a generic
orbit ¥y is (R, A), with lattice A = Ap. In view of this remark, we will omit the
(trivial) data of the associated minimal pair in the simply laced cases.

6.1. Explicit calculation for small ranks.

Example 6.2 (Explicit calculations for A;).

If G is of type Aj, then G/B = P!(k) is a Fano (trivially lattice-regular) toric
variety, with associated fan the subdivision of M by the Weyl chambers: ¥p1 ) =
{0, RT(wy), R (—w1)}.

Example 6.3 (Explicit calculations for R = 41 x A;).

Clearly, ¥y is Fano if and only if A = —(w; + ws); in this case, ¥_,, ., is a
smooth, lattice-regular toric variety. See Figure 1.

W2
w1
Fic. 1
Example 6.4 (Explicit calculations for R = A,).
As follows from figures 2 and 3, X, is Fano for A = —wj, —ws or —(w1 + w2).

Clearly, ¥_,, = X¥_,, as toric varieties. In in all three cases ¥ is a smooth,
lattice-regular toric variety.

Example 6.5 (Explicit calculations for R = By = C3).

If R = By, then Xy is Fano if and only if A = —w;. The minimal pair associated to
Y_w, is (Ay x Ay, (—wi, —wy)), with lattice A = Ap/. The minimal pair associated
to Xy, is (A1 X Ay, (w1, —w1)), with lattice A = Ay2. See figure 1. Note that
both varieties ¥_,,, are smooth and and lattice-regular.

Example 6.6 (Explicit calculations for R = Ga).

In this case ¥ is Fano if and only if A = —w;. The toric variety X_,,, is smooth,
whereas ¥_,, is Q-Gorenstein Fano; both varieties are lattice-regular. The minimal
pair associated to X_,,, is (Aa, —w1 — ws), with lattice A = A4,. The minimal pair
associated to X_,,, is (Ag, —w1 — wa), with lattice A = Ap:. See figures 6 and 7.
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Fic. 2

Fic. 3

Example 6.7. Let G be of type G, and consider ¥ as in the picture 8; clearly,
3 is a lattice-regular complete fan. However, 3 does not correspond to a generic
T-orbit of an homogeneous space G/P. Thus, there exist Fano toric varieties whose
maximal cones are union of Weyl chambers, but are not of the form X, for some
anti-dominant weight.

Note that X is associated to the root system A; x A; with lattice Ag € A =

((£/2,0),(0,¢)), = Ap,, x Aa, S Ap and (—wy, —w1) as associated anti-dominant
weight.
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w2
w1
Fic. 4
w2
w1
Fic. 5
6.2. Explicit calculations for A,, n > 3.
CASE A = —w,
In this case W_,, (—wi) = {—e1 + n%rl ?;11 €iyevny—En + n-ls-l ::11 g }. Ttis

then clear that —w; is the unique anti-fundamental weight that generates a ray.
Indeed, —w; € RY(W_,, (—w1)) for i = 2,...,n. Thus,

Prim(o_,, ) =W_,, - (—w1)

<Prim(a_wn)>aﬂ = —wi + <041, ceey an_1>R.
In particular, dimFz = n — 1, and n_,, = w,. Since <(n + Dwp, —&; +
n%rl Z?jll g;) = —1, and that Prim(c_,,,) is a basis for the weight lattice Ap,

it follows that ¥_,, is a smooth Fano toric variety.

CASE A = —wq



22

PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

Fic. 6

Fic. 7

This case is dual to the previous one, but it is convenient for us to recall that
Prim(o_y,) = Wy, (—wn)
n+1 n+1

1 1
{52_M;€i7”"6n+l_rl—&-1;€i__wn}

<P1rim(0,wl)>aﬂ = —wy, + (ag,...,an)r.
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FiGc. 8
Hence, n_,,, = (n+ 1)w; and X_,,, is Fano.

CASE A= —w;, 1 <j<n

It follows from Remark 2.10 that
1 n+1 n+1

W_wj(—uh) = {—W1 = —€1 + m;Ei,...,—?j + ngz}

1 n+1 1 n+1
waj(_wn) = {5j+1 - m ;51'7 ceesEngl — m ;&?i = _wn}~

We deduce as before that —w; ¢ Prim(o_,,,) if i # 1,n. Therefore,
Prim(o_y;) = W_y,,(—w1) UW_y, (—wy)
<Prim(c7,wj)>aLff = —w1—|—<a17 QG gy e ey Oy, Wy — w1>R.
If follows that n_,,, = aw; and verifies the additional condition (ny,w, —wi) =0,
that is 0 = (nn,wn, —w1) = (N, (—n+2j — 1)) = a(—n+2j — 1). It follows that
if n # 25 —1, then X is not Fano, and that if n = 25 — 1 then n) = w; is such that

1 _3j . .
(nx, —ex+ n%rl Z::rl g;) = 2‘;’,3_431 . Hence, ¥, is Q-Gorenstein-Fano — note that
in this case X_,; is not smooth.

CASE A= —ws —w,, s<T

SUB-CASE 1 <s<r<mn
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It follows from Remark 3.11 applied to p = —w, (resp. —ws) that —w; (resp.
—wy,) belongs to Prim(oy). Since

n+1 1 n+1
Wi (—w1) :{ 51+Z<€u---355+’n_~_1;5i}
n+1 1 n+1
W)\'(_Wn):{gr+1 +1Zgza---75n+l_mizzlgi:_wn}7
it follows that {—ws, ..., —ws, =Wy, ..., —wp_1} C R+<W>\-(—w1)UWA-(—wn)>, and
Prim(oy) C Wy - {—w1, —Ws41y.+ ., —Wr—1, —wyn }. We affirm that equality holds,

that is —wp, € Prim(oy) for h=s+1,...,r — 1.
If s < j <r then

s T . n+1
W,\~(—wj):{—Z€i— Z a;ci + Zel a; =0,1, Z a; = j—S}
=1 i=s+1 1=s+1
n+1 . .
Let v; = &; — n+1zz 1€, =1...,nand w;, j =s+1,....r—1,k =

1,..., (;:f) be such that
{om =1, (=)} =
n+1

S T .
{*Zgi - Z ki€ + Zgz ajr; = 0,1, Z ki =J — 5}
=1

1=s+1 1=s+1

Assume that for some h € {s+1,...,r — 1},

s 7‘71,(;:2) n
—wp = E bj(—’Uj) + E bjkvjk + E bj’Uk,
Jj=1 j=s+2,k=1 Jj=r+1
with b;,b;, > 0. Looking at the coefficients of €;, i = 1,...,n + 1 we deduce that
n+1 r—1 (] <) ( )
. _ bj bjk(—n+j—1 __ —n—1+h
(1,i=1,....s b; + E n+1 g it E : ntl !
j=r+1 Jj=s+1,k=1
s n+1
o b; bjk(=n+j—1) § : Jbik _ —n—1+h
(2, i=s+1,...,h) § :n+1 § : n+1+ E : n+1 Lt ntl = n+tl
Jj=1 Jj=r+l1 Jkia k=1 Jk:a;ki=0
s n+1
. b, E : bjk(=n+j—1) § : Jbjk h
(3, th-i-l,“.,r) n+1 n+1 n+1 + n+1 = n+l
j=1 j=r+1 jkiajri=1 jk:ajr:=0
n+1 r—1 (] @)
. bj Jbjk h
(4, i=r+1,..,n+1p; + E n+1 g gt g o = T
j=r+1 j=s+1,k=1

Subtracting equations (1, i) and (2, j) (resp. (4, i) and (3, j)) for any possible
choice of i, j and using the fact that the coefficients bj;, b;, are non negative, we
easily deduce that b; =0 fori=1,...,s5,7r4+1,...,n, and that b;; =0if ajz; =0
for some i = s+ 1,...,7 or a;i; = 1 for some ¢ = r +1,...,n. We deduce that
bjr = 0 unless v, = —wp, and it follows that —wy; € Prim(oy).
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Hence,
CNPrim(oy) = {—wl, —Wet1y- -y —Wp_1, —wn}
. Ay, g1, e Op1, Qe e, Qe
<an(o,>\)> H:7W1+ 1 s bs—15 41, s Gep—1, Q41 s &nyy
a Ws+1 — W1y vy Wp—1 — W1, Wn — W1 R

It follows that n) = aw, + bw, satisfies the additional conditions
(A, Wsp1 —wi) =+ = (Nx,wp1 —w1) = (N, wp —w1) =0
Equivalently, ny = aw; + bw, satisfies the system:
(1)

{a[(n—j+l)s—(n—s+l)] + bn—r+1)(Gj—-1)
aln—2s+1) + bn—2r+1)

|
o

j=s+1,...,r—1

|
o

SUB-CASE r =5+ 1

In this case the first line of equation (1) is empty. Therefore, a,b are such that
(n—2s+1)a+ (n—2s—1)b=0. Thus, if n # 2s then ab < 0 and it follows that
Y&, —w.s, 18 not Fano. On the other hand, if n = 2s then (ws + wsy1,v) = —1 for
all v € Prim(o_, —w,,, ), and therefore ¥_, _, ., is Fano — note that in this case
Y.y is smooth.

SUB-CASE s+2 > 1
The first line of equation (1) for j = s+ 1 together with the last line of the same
equation conform the system
(i) a[(n—s)s—(n—s+1)] + bn—r+1)s = 0
(i) a(n—2s+1) + bn—-2r+1) = 0

The coefficient of b in equation (i) above is greater or equal than zero, whereas
the coefficient for a is the polynomial p(s) = —s? + (n + 1)s — (n + 1), with roots
SIUARMES V_(;H)(n_g). If follows that o_,,, . is not Fano if s > 2.

Assume now that s = 1; then equation (ii) is verified for some a,b > 0 if and
only if r = n; in this case a = b = 1 is a solution of Equation (1), and it follows that
Y wi—w, is Gorenstein-Fano. Note that ¥_, _,, is smooth if and only if n = 2.

CASE A\ = —ws — Wst1 — Wst2
Since I_.,,—w,,, C I, in view of Remark 3.11, it follows that
. 1 1
Prim(oy) = {*wh - il Z&:, —Ws+1,Es+2 — il Z&:, S *wn}
<P1rim(a>\)>aff = —wp + <a1, ey Qg 1, (g 3y e vy Ol W] — W1, Wy — w1>R

It follows that ny = aws + bwsy1 + cwsqo satisfies the additional conditions
(ny,wp —w1)= 0
(nx,wep1 —wi)= 0
That is,

{(—n—|—25—1)a—|—(—n+2s+1)b—|—(—n+25+3)c: 0
(s—D(n—s)—1a+s(n—s)b+sn—s—1)c= 0



26 PIERRE-LOUIS MONTAGARD AND ALVARO RITTATORE

It follows that if 2s + 1 > n then ac < 0. By symmetry, if 2(n—s—24+1)+1>n
— that is if n < 2s + 1 — then ac < 0. It follows that X, is not Fano.

CASE A =>"10  —wite o+ >0 —wyy 8 <y i+l < sip1, #Iy >3, rp—51 > 2

=81 1=58y —

Since Iy, ~w,, C Ix, it follows that

C N Prim(oy) = {—wl, — Wy b1y e ey —Wrp—1, —wn}
. Oy Qg 1, Q e, O, 2, QX RUNYs"
<Pr1m(0>\)>aff:—w1+ 1 sy gy —1, (g1 42, s Kgp—2, P41, y &Xny ,
Wsy 41 — W1, Wry,—1 — W1, Wy — W1 R

were we used the fact that w;—1 —2w; +w;+1 = «;. It follows that if 7y —s; > 4 then
ny=A\A= E:;Sl a;w;+ - - .+E:isz a;w; is such that a; = 0 for i = s1+2,...,r,—2.
Hence, ¥, is not Fano unless

—Ws — Ws41 — Ws4245 — Ws4345 j=0

A= —Ws T Ws1 T Ws4345 j=0
TWs T Wst245 T Ws43+4j J=0
SUB-CASE A = —ws — Wst1 — Ws42+4j5 — Ws+3+5, 7>0

In this case, ny = asws + As41Wst1 + Asp24jWet24j + Got34+jWsyay; satisfies
(among others) the additional condition a,((n—s)(s—1)—1)4ass1(n—s)s+astat;(n—s—j—
)st+asystj(n—s—j—2)s=(nx,ws41—w1)=0

It follows that if s # 1, then X is not Fano.

If s = 1 we consider the conditions

(1) ar(=1)+az(n—1)+asy, (n—j—2)+ass; (n—j—3) =(nx,w2—w1)=0
(2) a1 (—n+1)4az(—n+3)+asy;(—n+25+5)+asy; (—n+25+7) =(nx,wn—w1)=0

It easily follows that 3y is not Fano (e.g. considering the linear combination
(=n+1)(1) +(2)).
SUB-CASE A\ = —wg — Ws41 — Ws43+5, j= 0

In this case, ny = asws + As41Wst1 + As+3+;Wst34; satisfies (among others) the
additional condition

as((n—s)(s—1)=1) +as1((n—5)s) + ass34j(s(n—s—2)) = (ny,wsp1 —wi) =0

If s # 1, since n > s + 3, it follows that Xy is not Fano.
If s = 1, then ny verifies (among others) the conditions

{ (1) —a1+(n—1as+ (n—3)agy; = (N, wr —w1) =
(2) (—n+1lai+(—n+3)as+ (—n+4+2j)agy; = (ny,w, —wi) =

Since n > j + 3, from the linear combination (—j — 1)(1) + (2) we deduce that
Y, is not Fano.

SUB-CASE A\ = —wg — Ws42+4j — Ws+3+7, j= 0

We deduce by symmetry that in this case X is not Fano.
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6.3. Explicit calculations for B,,.

CASE A = —w,

In this case, Prim(o_,,) = W_,, (—w1) = {—€1,...,—¢&, } and (Prim(c_,,,))
—w1 + (01, ..., p_1)R-

It follows that n_,, = wp, and X_,, is Gorenstein-Fano. Since the support-

ing hyperplanes are orthogonal to the roots ¢;, it follows that the minimal pair
associated to ¥_,, 1is (A1 X o0 X Al,(—wl,...,wl)), with lattice Aun C A =

<€1,...,€n,%Z€i>Z g_ Ap/.

af'f:

CASE A = —wq

By Remark 2.10, #W_,,, (—w,) = 2"~ 1. Easy calculations show then that
W, (—wyn) = { [2(—e1+ Z :l:si)}.
i=2

It follows that —w; € RT(W_y, (—w,)) for i = 1,...,n — 1; thus Prim(c_,, ) =
W_i, (—wp) = { f2(—e1+ 30, j:ei)} and (Prim(o_,)), s = —wWn+ (€2, ., En)r.

In particular, n_,,, = 2w;, and ¥_,,, is Gorenstein-Fano. If n = 2, then ¥_,,,
is smooth. Since the roots €; are not orthogonal to any facet of o_,,, it follows
that they are not orthogonal to any facet of ¥_,,,. Therefore, the minimal pair
associated to X_,, is (B, —w1), with lattice A = Ap/. Indeed, %(E::ll € —€Ep) =

n—1 ) 1 n )
D1 € — 3 Qi Eie
CASE A= —w;, 1 <j<n

In this case,

Prim(o_.,) = W_y,(—w1) UW_y,, (—wn) =

{_517”.’_;;—].71/2(—0-)3' + i igi)}

i=j+1
<Prim(o_wj)>alcf = —wy + <a1, ey O, O, - e Oy, Oy, Wy, — w1>R.
Therefore, n_,,, = aw; verifies the additional condition <n_w_7.,wn —wp)=0. If
J #2thenn_,, =0 that is dim<Prim(J,wj)>aLff =n, and X_,, is not Fano. If
j =2, then n,,, = wy and ¥_,, is Gorenstein-Fano.
CASE A = —ws —w,, s<7r
It follows from Remark 3.11 applied to p = —w, (resp. —ws) that —w; (resp.

—wy,) belongs to Prim(oy). It is clear that W_,, _,, - (—w1) = {—¢€1,...,—¢€s}
and W_,, _o, - (—wn) = {1/2(7(,% + Z?:T_H j:slv)}. Thus, {-wa,...,—ws} C
RT(W_y,—w, - (—w1)) and {—wy,...,—wn—1} CRT(W_iy o, - (—wy)). It follows
that

(2)  Prim(oy) € Wa(—w1) UWa(~wsp1) U=+ U Wy (—wp—1) UWa(—wn)
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If s < j <r, then

W v —w. (= w] { Z aig;ra; =0,1 Zazf]fs}

1=s+1
Let {'Ujl...,v(r;s)} =W_w,—w.(—wj), j=s+1,...,r =1, {w,...,wen—r} =

W_i,—w, (—wn), and denote vjp = —ws—Y_1__  Cjri€i, Wy = 1/2(—wr+§j§’:r+l djigi).
Ifh=s+1,...,r—1,let

r— 1( ) n
—wh—z —bjej + Z bjkvik + Z djw;,

j=s+1,k=1 j=r+1
with bj, bjka dj Z 0. Then

(1,i=1,...,s) bFijHZ@: 1
(2,i=s+1,...,h) Z bjk+z =1

jkicjri=1
(3,i=h+1,...,r) > @HZ
kCJ)“—l
dd
4i=r+1,... LE=0
4,i=r+1,...,n) Z 5

j

Combining equations (1,i) and (2,i’) for all possible values of i,i', we deduce
that b; = 0 for j = 1,...,s and that b;; = 0 if ¢ = 0 for some i = s+ 1,...,h.
From equation (3,i) we deduce that d; = 0 for j = 1,...,2""" and that bj; = 0 if
¢jki = 1 for some i = h+1,...r. If follows that c;p = 0 unless v, = —wy,. In other
words, —wp, € Prim(o)).

Hence,
CNPrim(oy) = {—wl, —Wet1s--- ,wr_l,—wn}
. A1y..., 01, e, Op 1, Q0 e 4
<Pr1m(—ws _wr)>aﬂ = —w; + 1 y Hg—1y Ls+1, y Bp—1,y K41, y &ny
Ws41 — Wiy, Wpr—1 — W1, Wn — W1 R

Easy calculations (e.g. imposing the additional necessary (ny,w, —w;) = 0 if
r=s+1or (ny,wst1 —wi) = 01if s+2 < r) show that in this case X is not Fano.
CASE A\ = —Wws — Wst1 — Wst2

Since Iy, —w,,, C I, in view of Remark 3.11, it follows that

C NPrim(oy) = {—wl, —Wsi1, —wn}
<P1rim((7,\)>aff = —wi + <a1, ey Qg1 (gt 3y e e vy Oy W] — W1, Wy — w1>R.

It follows that ny = aws + bwsy1 + cwsya. Again, easy calculation using the
additional conditions satisfied by n) allow to verify that ¥ is not Fano.

CasSE A=Y 2
7”271

—w; + +Zz se Wi SiSTi;Ti+1<5i+17#I)\Z3a s1+2<

1=81
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Since I —w , C I, it follows that

"

cn Prim(oA) = {—whwslﬂ, ceey —Wr, 1, —wn}
. Apyeony Qg 1, ey Oy 2, (X e,
<an(o_/\)> H:_w1+ 1 s s —1, Bs1 425 s Qpp—2, Gy 41, y Geny
& €542, Ws 41 — W1, Wn — W1 R

were we used the fact that w;—1 — 2w; + w11 = ;. if i <n — 2. It follows that if
rg—s81 >4thenny =X=>" aquw;+---+ D" , aiw; is such that a; = 0 for

1=81 1=s
i=351+2,...,70 — 2. It follows that X, is not Fano unless
—Ws — Wst1 — Wegoyj — Wsyzrs J =0
A= —Ws — Ws41 — Ws4345 ] >0
—Ws — Wst24j — Wst34j j=0

Again, easy calculations show that is these remaining cases Yy is not Fano.

6.4. Explicit calculations for C,,.

This case is very similar to the case B,,:

CASE A = —w;
It is easy to show that Prim(c_u,) = W_y, (—wn) = {—e1 + > i, +e;} and
<P1rim(a,wl)>abff = —wy + {€2,...,n)r. Therefore, n_,, = w; and in particular,

¥_., is Gorenstein-Fano. The minimal pair associated to ¥_,,, is (Dy, —w1), with
lattice A = Apr.

CASE A = —w,,

In this case, Prim(o_,,,) = W_,,, (—w1) = {—¢1,...,—en} and (Prim(c_y,,)), o =

—w1 + (a1, ...,an_1)r. In particular, n_,, = w, and ¥_,,  is Gorenstein-Fano. If
n = 2, then ¥_,,, is smooth — recall that By = Cs. The minimal pair associated to
¥ o, s ( mo(—wr, ... ,wl)), with lattice Aan C A = <51, ey Emy % ZEQZ C Ap.
CASE A= —w;, 1 <j<n

In this case,

Prim(o_.,) = W_o, (—w1) UW_y, (—wn) = {—€1,..., —&j, —w; + Z +e;}.
i=r+1

As in the analogous B,, case, it follows that
<P1"im(o:w].)>aff = —wy + <a1, ey O, Qg e Oy, Oy, Wy — w1>R.

Therefore, dim(Prim(c_,,)) . =n, and ¥_,, is not Fano.

aff
CASE A= —ws —w,, s<7r
Calculations similar to the corresponding B,, case show that
C N Prim(oy) = {—wl, —Wgg 1y ey —Wr_1, —wn}.

It is easy now to see that X is not Fano.

T1
i:sl

GENERAL CASE A = >
#I>3

—wi 4 Dl —wi, T+ 1 < sig1, 51+ 2 <1y,

1=8y
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Since I —w , C I, it follows that

"

CNPrim(oy) = {—wi, —Ws;+1, - - -y Wry—1, —Wn }
. A1y, 0g, -1, ey O, 1, QU NS
<Pr1m(o_)\)>%ﬂ‘:_w1+ 1 y gy —1, Cis+1, y Qopryp—1, Kprp4-1, y Uny ,
b Wsy41 — Wiy .o - Wrp—1 — W1, Wn — W1 aff

As in the corresponding B, case, we deduce that if r, — s; > 4 then ny = A =
Yoty aiwit- -+ 300 aiw; is such that a; = 0 for i = s142,...,7¢—2. It follows

1=81 1=s

that > is not Fano unless

—Wg T Ws41 — Ws42 — Ws+3
A= —Ws T Ws1 T Ws345 J > 0
—Ws — Wst24j — Wst34j j=0

Almost the same calculations made for the case the B, imply that X, is not
Fano.

6.5. Explicit calculations for D,,, n > 4.
CASE A = —w;

First, we calculate the W_,,, -orbits of —w,_1, —wpy:

W_i,  (—wp_1) = {1/2(—51 - iaﬁi) fa; = il,Hai = —1}

and
n

wal . (_Wn) = {1/2(—51 - Zaiai) La; = :Izl,Hai = 1},
=2 i
It follows that

{—wi,.. o —wn2} CRY (W ) (—wp—1) UW_yy, - (—wn)) =

R+<1/z(—51 — iaiei) ta; = i1>.

Hence,
Prim(a_wl) = W—wl : (_wn—l) U W—w1 : (_w”)
and it easily follows that
(Prim(0_u,)), 5 = —wn + (@2, .., an)r = —wn + (€2, ., En)g-

Thus, ny = w1, and X_,,, is Gorenstein-Fano — clearly, ¥_,, is not smooth.
CASE A = —wp_1

If n = 4 it is clear that ¥_,,, is isomorphic to ¥X_,,; in particular, ¥_,, is
Gorenstein-Fano. Assume that n > 4. Since

Wy (—wp) ={~wn} U {—1/2(721 aigi) +enia; = j:l,Zai =n— 3}

and that W_,,, | - (—wi) = {—¢1,...,—&p_1}, it follows that
Prim(o_y, ,)=W_y, , - (—wi) UW_, | - (—wp),

and
<Prim(0_wn_1)>aﬂ = —w; + <a1, ey Qp_2, Oy, Wy — w1>R.
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Hence, ny = aw,_1 verifies the additional condition (ny,w, — w;) = 0; that is
(n —4)a = 0. Hence, dim Fz = n and ¥_,,,_, is not Fano.

CASE A = —w,,

This case is dual to the A = —w,_1 case: if n = 4 then ¥_,, = ¥_,,, a
Gorenstein-Fano singular toric variety. If n # 4, then C N Prim(o_,,,) = {—w1,-
Wn—1}, <P1rim(c7,wn)>aff = R™ and therefore ¥_,, is not Fano.

CASE A= —wj, 1<j<n—-2

In this case, W_,, - (—w1) = {—527 ce =€t
n
W_y, - (—wn-1) = {1/2(—wj = Y aiei)rai=+1]Jai = —1}
i=j+1 i
and

n

W_wj . (7(4)”) = {1/2(*&)]' — Z aiei) La; = :tl,HCLi = 1}
i=j+1 i
It follows that
Prim(o_o,) = W_y, - (~w1) UW_y, - (—wn—1) UW_y,, - (—wn)
and
<P1rinr1(a,wl)>af_r = —wy + <o¢17 s Q15 €4, By Y2(—E1 e+ + En)>R

—W]_+<Oé]_7...,Oéj,]_,aj+1,-..,an,—€1 +€2+"'+€n>R~

Hence, ny = aw;, with (aw;, —e1 +e2+ -+ +&,) = 0. It follows that if j # 2, then
Y _w,; is not Fano. If j = 2, then ny = 2w and ¥_,,, is Gorenstein-Fano. Note that
Xsz is smooth if and only if n = 4.

CASE A= —ws —w,, s<r<n-—2

In this case, —w1, —wp—1, —wy € Prim(oy), with orbits

Wi(—w1) = {—e1,...,—s},
Wi (—wp—1) = SY2(—w, = X0 g aig) s a; = £1,]], a5 = —1},

Wi (—wn) = Y2(—wr — D0, g aigi) s a; = £1, ][, a0 = 1},

Wi (—wj) = §—ws — > i_yiq @ici) s a; =0,1,0 < Y a :jfs} s<j<r

It follows that {—wa, -+ —ws, —wWr, ..., —Wp—2} C R+<W,\(—w1) UWa(—wp—1)U
Wi(—wy)).

On the other hand, —w; € Prim(oy) for ¢ = s+ 1,...,r — 1. Indeed, let
{v1,..., van—r-1} = Wx-(—wp—1), withv; = 1/2(—W7~—Z?:T+1 ajiei), {wy, ..., wogn—r—1} =
Wi-(—wn), with w; = Y2(—w,—> 21" L bjiei), and {vj1, . .. ,'Uj7(7‘;s)} = Wx-(—wj),
with v, = —ws — Y1 1 ajgi€;. Assume that = wp, s +1<h<r<n-1lisa

linear combination with positive coefficients of the form

S
—Wp = ZC]'(—EJ') + ZCjk’Ujk + Zdjvj + Zejwj
Jj=1 Jk J
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Then,
. dj €;
(1,2:1,...,8) Ci—i-ZCjk—‘rZ?—l—ZE: 1
Jk J d J
P , i} € _
(2,i=s+1,...,h) - Z c]k+z 5 —|—Z 5 = 1
Jk:ajri=1 J J J
_ A 4 € _
(B,i=h+1,....7) | Z cjk+z, 5 +Z. 5 = 0
Jjkiajki=1 i J J b
s 3§ Ajk €05k
4,i=r+1,...,n) ZT+ZT— 0
jk Jjk
We deduce from equation (3,i) that d; = e; = 0 for all j = 1,...,2""""1 and
cjr = 01if ¢jp; = 1 for some i = h+1,...,r. From equations (1,i) and (2,i") we
deduce that ¢; =0 for j =1,...,s and ¢jp = 0 if ¢jp; = 0 for some i = s+1,..., h.
It follows that c;; = 0 unless v, = wj; therefore, —wy;, € Prim(oy).
Thus,
CﬂPfim(U/\) = {—Wh _werlw"7_wT717_wn717_wn}
. _ Apyeee gy Ug1y0gp1yeeeyXp_1,Qpg1y...,0p,
(Prim(ox)),q = w1+< Wetl — Wiy- v o, Wp1 — W1, Wy — W1 >R’
Therefore, ¥y is not Fano.
CASE A= —ws —wp_1, s<n—2
In this case,
W,\(—wl) = {—81, ey —83},
W)\ : (*wn—l) = {*Wn—l}
Wy (—wn) = {—wp, —V2(ws + Z?;;H aigi —en)ia; =+1,Ya;=n—s— 3}7
Wy - (—wj) = —wS—Z;:SlJrlaiei:ai =0,1,>a; :j—s} s<j<n-—2
It follows that —w,_2 = —wy + Sa, (—wn) ¢ Prim(oy). If s < j < n—2, by

considerations similar to the ones made in previous cases, we deduce that —w; €
Prim(coy). Therefore,

CNPrim(oy) = {~w1, ~Wsy1," " — Wn—3, ~Wn—1, —Wn}

<Pr1m(0>\)> = —w; + Alyeeey As—1,0s415...,0p_2,0n, — R"
aff €s+1,Wn — W1, Ws41 — W1,En R

It follows that 3 is not Fano.

CASE A = —ws —wp, s<n—2

This case is dual to the previous one: C N Prim(oy) = {—wi,—wst1, - —
Wn—3, —Wn—_1, —wy } and Xy is not Fano.

CASE A = —wp_1 — Wn,
It is easy to see that Prim(cy) = {—51, ey €1, —Wn_1, —wn}. It follows
that <Prim(a>\)>aﬂr = —wp + <a1, ey Qg Wy — wl,an} = R™. Therefore, 3, is

not Fano.
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CASE A\ = —ws —Wsy1 —Wsy2, S+2<n—2
In this case, C N Prim(oy) = {—wl, —Wst1, —Wn_1, —wn} and
<Prim(a>\)>aff = —wp + <a17 ey Qg1 Qg3 e v vy Oy Wy — W1, Wsp1 — W1, }

It is easily checked that X is not Fano.

CASE A\ = —Wp—3 — Wp—2 — Wp—1
Since —wp—2 = —wWp—S5aq,, (—wy), it follows that CNPrim(oy) = {fwl, —Wn_1, fwn}
and
<Prim(a>\)>aﬁ, = —wi + <a1, e O, Oty Wy — wl,an}.

Thus, ¥, is not Fano.

CASE A\ = —Wwp_3 — Wp—2o — Wy,

This case is dual to the previous one: C N Prim(oy) = {—wl, —Wn—1, —wn} and
>y is not Fano.

CASE A = —Wwp_9 — Wp_1 — Wy,
In this case C N Prim(oy) = {—wl, —Wp—1, —wn} and
<P1rilrn(a>\)>a{_f = —wi + <a1, e, O3, Wy — W1, En}.

It easily follows that (n —4)a + /2(n —4 +n —2)b = 0. Hence, Xy is not Fano.

CASE A = —ws — Wpn_1 —Wp, s<n—3
In this case, CNPrim(oy) = {fwl, —Wetly ey —Wne2, —Wn—_1, fwn}, with Wi (—w;) =
{—ws — Z::;H aigi,a; =010, =7 — s} if s <j<n-—2. It follows that
<Prim(0>\)>aff = —wp + <0417 ey Qg 1, Qg 9y e ey Q2 Wy — W1, Wt ] — whsn}.

It follows that X, is not Fano.

CASE A = Y00 —wi+ -+ 2L, —wi, i+ 1 < sip1, 7o — 51> 3, #Ix > 3,
re<n-—1

We deduce from the preceding cases that

CNPrim(oy) = {—w1, —wWs41,. -y —Wn—3, —Wn—1, —Wn }
. A1ye..,0g, -1, ey g1, X A Py
<Pr1m(0A)>aﬁ:_w1+ 15 y thgy —15 Xy 41, y bgo—15 Ko +-1, y bgp—15 .
Qro41y- 5 Ony Es1425 -+ Erp—1,En; Wy +1 — W1, Wy — W1 [

An easy calculation shows that (Prim(oy))ag = R™; therefore Xy is not Fano.

CASE \ = Z?:Sl _wi'i‘""f’E:is[ —wi, i +1 < si01, 7o — 81 > 3, #I > 3,
re=mn—1

In this case
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C NPrim(oy) = {—wh Wty —wn}
. Alyeno g, 1, ey g, 1, B Ty
<Pr1m(0-)\)>aﬁ':_wl+ 1 sy gy —1, Gy 41, sy Bgo—15 g 41, y Bgp—1,5 :Rn7
Arptlyee s OnyEs1 42y -+, EnyWsy 41 — W1, Wn — W1 R

It follows that X, is not Fano.

CASE )\:Z:;SI —wi+"'+2?;82 —Wi — W, T+ 1< 811, re— 81 >3, #I, >3,
re<n—2

This case is dual to the previous one: ¥y is not Fano.

CASEA= 10 —wi+ -+ D0t —wi—wp1 —wp, 7+ 1< 841, 70— 81 >3,

1=81 =xy)

#I >3, 10 <n-—2

Since {s1,n — 1} C I, it follows that

CNPrim(oy) = {—wi, —Ws, 41, ., —wn }

. Alyee oy Qg 1, Qpyply ey Mgy 15, Ay 1y -0y Qg1 n
<Pr1m(a>\)>aLﬂC =—w; + =R",
831+2;"'7€n7w81+1 — W1, Wnp — W1 R

and we deduce that X, is not Fano.
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