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INTRODUCTION

Matrices of data are often modeled with a low-rank assumption, which can be conveniently handled in optimization procedures [START_REF] Mishra | Lowrank optimization with trace norm penalty[END_REF]. Such approximations have proven to be very useful for spectrograms in the context of audio signal processing, where nonnegative matrix factorisation is typically performed [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF][START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF]. However, the phase information is lost when considering the spectrograms. This results in limitations in audio inverse problems like denoising [START_REF] Mowlaee | Iterative closed-loop phaseaware single-channel speech enhancement[END_REF], source separation [START_REF] Ozerov | Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation[END_REF][START_REF] Roux | Consistent Wiener filtering for audio source separation[END_REF] and inpainting [START_REF] Smaragdis | Missing data imputation for spectral audio signals[END_REF][START_REF] Le Roux | Computational auditory induction as a missing-data model-fitting problem with Bregman divergence[END_REF], where the amplitudes and phases are generally estimated sequentially. In [START_REF] Emiya | Being low-rank in the time-frequency plane[END_REF][START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF] it was proposed to perform low-rank approximation directly on the complexvalued short-time Fourier transform (STFT), in the context of inpainting missing coefficients in STFT matrices.

However, such an approach raises the following question: what kind of signals have a low-rank STFT? An answer was given in [START_REF] Emiya | Being low-rank in the time-frequency plane[END_REF] and leads to a restricted class of possible signals, composed sums of cisoids or Diracs, with frequencies or location on a fixed grid, due to the circularity of the proposed time-frequency transform.The goal of this paper is to provide an insight into the structure of signals with low-rank STFT, without using a circular transform. This is beneficial not only to avoid boundary effects, but also to obtain a larger class of low-rank STFT matrices, allowing exponential damping and polynomial modulations. We use the relation between STFT and (block-)Hankel matrices, which allows us to give a complete characterisation for the case of maximal overlap, and to give nontrivial examples for non-maximal overlap.

This work was partially supported by the Agence Nationale de la Recherche under grant JCJC MAD (ANR-14-CE27-0002).

Notation and the definition of the STFT

We follow mainly the notation in [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF]. Z, N, N * stand for the sets of integers, nonnegative integers and positive integers respectively. For K ∈ N ,we denote

[[K]] = {0, . . . , K -1}.
The vectors are in boldface, e.g., a, and their elements are indexed as a(k); the matrices are denoted by capital boldface letters, e.g., A and their elements are accessed as A(k, l). Vectors and matrices in this paper are indexed starting from zero, as in many programming languages.

Let s = [s(m)] m∈Z be a signal, and w = [w(m)] m∈Z be a window. Next, fix two numbers:

(i) h ∈ N * -so-called hop; (ii) K ∈ N * -number of frequencies. The STFT is defined for frequencies ν k = k K , k ∈ [[K]] at time instants t n = hn, n ∈ Z as follows. Definition 1.1. For k ∈ [[K]], n ∈ Z we define the STFT as S(k, n) = m∈Z s(t n + m)w(m)e -2iπν k m .
In this paper, we use only band-pass convention for STFT; there also exists a low-pass convention [START_REF] Emiya | Being low-rank in the time-frequency plane[END_REF]. Note that in [START_REF] Emiya | Being low-rank in the time-frequency plane[END_REF], the notation S BP was used. We use the notation S instead, because only the band-pass convention is considered.

FINITE SIGNALS AND MATRIX FORM

We consider only the first N time instants, and the window w having finite length L ≤ K, so that w(m) = 0 if m < 0 or m ≥ L. Then the STFT becomes a K × N matrix S (K×N ) :

S (K×N ) (k, n) = L-1 m=0 s(t n + m)w(m)e -2iπν k m . (1)

Matrix factorization

First, let us define the following K × L matrix F (K×L) :

F (K×L) :=         1 1 • • • 1 1 e -2iπ K • • • e -2iπ(L-1) K 1 e -2iπ2 K • • • e -2iπ2(L-1) K . . . . . . . . . 1 e -2iπ(K-1) K • • • e -2iπ(K-1)(L-1) K         , i.e., F (K×L) (k, m) = e -2iπkm K
. The matrix F (K×L) contains the first L columns of the Fourier transform matrix. Since L ≤ K, this matrix is full column rank.

Next, we define the matrix S L×N ∈ C L×N containing "patches" of the signal stacked next to each other:

S L×N :=   s(t0) s(t1) ••• s(t N -1 ) s(t0+1) s(t1+1) ••• s(t N -1 +1) . . . . . . . . . s(t0+L-1) s(t1+L-1) ••• s(t N -1 +L-1)   .
Then the matrix S (K×N ) admits the following factorization:

S (K×N ) = F (K×L) Diag(w)S L×N , (2) 
where Diag(w) denotes the diagonal matrix with the elements of w on the diagonal.

Rank of the STFT matrix

Since F (K×L) is full column rank, the rank of S (K×N ) can be expressed in terms of the rank of a submatrix of S L×N .

In order to have a complete description, we need to know the support of the window w, which is defined as the set

L = { 0 , . . . , M -1 } ⊂ [[L]] (3) 
such that w(m) = 0 ⇐⇒ m ∈ L.

Proposition 2.1. Let L be the support (3) of the window w.

Then the rank of the S

(K×N )
is equal to the rank of the matrix

S L×N :=   s( 0+t0 ) s( 0+t1) ••• s( 0 +t N -1 ) s( 1+t0 ) s( 1+t1) ••• s( 1 +t N -1 ) . . . . . . . . . s( M -1 +t0) s( M -1 +t1) ••• s( M -1 +t N -1 )   . ( 4 
)
Proof. Since F (K×L) is full column rank, we have that

rank( S (K×N ) ) = rank(Diag(w)S L×N ).
Since -th row of Diag(w)S L×N is nonzero only if w( ) = 0, we have that rank(Diag(w)S L×N ) = rank(S L×N ).

Low-rank approximations

In the previous subsection, we established that the rank of the STFT matrix can be computed in time domain. Before studying signals with low-rank STFT matrices, we show that lowrank approximations can be also computed in time domain. This follows due to the fact that not only F (K×L) has full column rank, but also because its columns are orthogonal.

This has a direct consequence for low-rank approximations and convex relaxations. First, consider a low-rank approximation problem as stated in [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF] min

Y ∈C K×N ,rank(Y )≤R S (K×N ) -Y 2 F . (5) 
Hence, by Proposition 2.1, we have that problem ( 5) is equivalent to low-rank approximation in time domain

min Z∈C K×N ,rank(Z)≤R S L×N -Z 2 F,w , (6) 
where • F,w denotes the weighted Frobenius (semi-)norm:

X 2 F,w := trace(X H Diag(w) 2 X).
In other words, low-rank approximation problems can be posed and solved in time domain. Hence a rich body of research on Hankel low-rank approximation [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF][START_REF] Condat | Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements[END_REF][START_REF] Andersson | Fixed-point algorithms for frequency estimation and structured low rank approximation[END_REF]] may be used. Second, due to orthogonal invariance, nuclear norm minimization [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF] can be treated in the time domain.

LOW-RANK HANKEL MATRICES

Before we proceed to classification of signals with low-rank STFT, we recall Hankel matrices and their algebraic theory.

Let f = (f (0), . . . , f (T -1)) ∈ C T be a vector and L be a nonnegative integer, so that 1 ≤ L ≤ T . Then the Hankel matrix

H L (f ) ∈ C L×(T -L+1) is defined as follows H L (f ) =   f (0) f (1) ••• f (T -L) f (1) f (2) ••• f (T -L+1) . . . . . . . . . f (L-1) f (L) ••• f (T -1)   . (7) 
Note that there is a slight abuse of notation: the meaning of L is different from the one used in Section 2. Now we consider a class of signals that is central to this paper: sum of products of polynomials and exponentials. Let (ν 1 , λ 1 ), . . . , (ν s , λ s ) ∈ N * ×(C\{0}), and ν 0 , ν ∞ ∈ N be the numbers such that

ν 0 + ν 1 + • • • + ν s + ν ∞ = R. (8) 
Consider a signal f ∈ C T such that

f (t) = ν0 j=1 a j δ j-1 (t) + ν∞ l=1 b l δ T -l (t)
transient terms (beginning and end)

+ s k=1 p k (t)λ t k , (9) 
where (i) each p k (t) is a polynomial of degree ν k -1;

(ii) δ x (t) is the (Kronecker) delta-function:

δ x (t) = 1, x = t, 0, x = t;
(iii) and a ν0 = 0, b ν∞ = 0. As shown in [START_REF] Heinig | Algebraic methods for Toeplitzlike matrices and operators[END_REF], low-rank Hankel matrices correspond exactly to signals of the form [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF]. Note that similar results were obtained and used in sampling theory, in the context of finite rate of innovation [START_REF] Vetterli | Sampling signals with finite rate of innovation[END_REF].

Theorem 3.1 (Special case of [START_REF] Heinig | Algebraic methods for Toeplitzlike matrices and operators[END_REF]Thm. 8.2]). Let R be an integer such that 0 < R < min(L, T -L + 1). Then the Hankel matrix rank(H L (f )) is of rank R if and only if the signal f has the form (9). Moreover, the representation (9) (called canonical representation in [START_REF] Heinig | Algebraic methods for Toeplitzlike matrices and operators[END_REF]), is unique.

Example 1 (Cisoids). As in [9, Fig. 2], for any distinct {ω 1 , ω 2 , ω 3 } ∈ [0, 1) and nonzero c 1 , c 2 , c 3 , the signal

s(t) = c 1 e 2iπω1t + c 2 e 2iπω2t + c 3 e 2iπω3t ,
has Hankel matrix of rank 3. Note that ω k do not have to lie on the Fourier grid. We can also consider damped exponentials (i.e., e (2iπω-α)t ).

Example 2 (Polynomial modulation). The function

s(t) = (at 2 + bt + c) cos(2πωt + φ)
corresponds to a rank-6 Hankel matrix. Signals with polynomial modulations are useful for modelling of music records [START_REF] Badeau | Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées[END_REF] and in other contexts [START_REF] Badeau | Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials[END_REF]. 

ν 0 = ν ∞ = 2.
Adding the signal to any previous example either increases the rank by 4 or makes the matrix full rank.

Note that transient terms in [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF] are allowed only in the beginning and/or at the end of the signal, thus there should be at least L zero-valued consecutive samples in between the transient terms in order to have a rank-deficient Hankel matrix.

CLASSES OF LOW-RANK STFT MATRICES

In this section we discuss the structure of ( 4), which will help us to describe the class of signals with low-rank STFT. The descriptions rely on the algebraic theory of Hankel matrices.

Some simplifications for most common windows

Note that for most windows used in practice, the support of the window (the set L in (3)) is the whole interval [[L]], maybe without the endpoints, i.e. one of the following three options:

L = [[L]], or L = {1, . . . , L -1}, or L = {1, . . . , L -2},
where the last case is more typical if a symmetric window is used. These cases can be represented in a unified form. Let

∆ = 0 ∈ {0, 1}, M ∈ {L, L -1}, and L = [[M ]].
Then the matrix (4) has the form

  s(∆) s(∆+h) ••• s(∆+h(N -1)) s(∆+1) s(∆+h+1) ••• s(∆+h(N -1)+1) . . . . . . . . . s(∆+M -1) s(∆+h+M -1) ••• s(∆+h(N -1)+M -1)   . (10)

Maximum overlap: a complete classification

In the case of the maximum overlap, h = 1. In this case, the matrix ( 10) is just a Hankel matrix. The following corollary characterizes all signals having low-rank STFT. Remark 4.2. Note that only a subvector of s is considered, so that the values s(t) for 0 ≤ t < ∆ or ∆+N +M -1 ≤ t < T can take arbitrary values. In other words, we may have more transient values in the beginning and in the end of the signal.

Example 4. Take a specific example of a signal given by s(t) = a 0 δ 10 (t) + (t 2 + t + 1)e (ln(0.95)+2iπ0.1)t ,

for which ν 0 = 11, ν 1 = 3. The length of the signal is T = 256 and its real part is plotted in Fig. 2. Next, we compute the STFT of the signal with hop size h = 1, Hann window of length 32, and compute its SVD, which are plotted in Fig. 3 (the singular vectors being represented by the modulus only). The numerical rank is 14 = ν 0 + ν 1 , as predicted.

The first two SVD components, with left singular vectors well-localized in frequency, mainly explain the modulated exponential component, while SVD components 2 to 13, with right singular vectors well-localized in time, explain the Dirac component. However, the shape of left singular vectors 2 to 13 around frequency 0.1 shows that there is no perfect assignation of SVD components to one of the terms in [START_REF] Condat | Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements[END_REF]. 

Case of general overlap

The matrix ( 10) is a submatrix of the Hankel matrix H L (s), obtained by taking every h-th column. Therefore, any signal of the form (9) will have an STFT matrix with rank ≤ R, as illustrated in Example 5. Example 6. Suppose we consider an STFT with the hop h > 1. Take an arbitratry FIR filter g ∈ C h and consider a spike train1 , with the interval between spikes equal to h:

f (t) = c 0 δ 0 (t) + c 1 δ h (t) + • • • + c N -1 δ h(N -1) (t),
where c k = ak + b. Then for the convolution s = f * g, the rank of the matrix (10) is 2. An example for h = 3, M = 6, c k = k + 1, together with the matrix [START_REF] Ishteva | Factorization approach to structured low-rank approximation with applications[END_REF], is shown in Fig. 5. These examples are due to the fact that the matrix (10) is, in fact, a truncated block-Hankel matrix. Although there is also an algebraic theory of block-Hankel matrices [START_REF] Heinig | Kernel structure of block Hankel and Toeplitz matrices and partial realization[END_REF], it is more difficult to have a simple description (as in ( 9)).

CONCLUSIONS

We have shown that the finite signals with low-rank STFT include polynomially modulated complex exponentials with possibly some transient terms [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF]; moreover, only signals ( 9) have a low-rank STFT in the case of maximal overlap. For the general overlap, the rank may become smaller for signals [START_REF] Hamon | De la faiblesse de rang en temps-fréquence[END_REF] and less dependent on transient terms. However, there are much more signals with a low-rank STFT in the general case.

We leave for future research the practical implications of these results. Other questions could be considered, for example, why and when the components of the signals separate into different components of the SVD2 in Examples 4 and 5.
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 41 Let s ∈ C T be a signal, and S (K×N ) be its STFT with the hop h = 1, and window parameters (∆ and M ) as in Section 4.1. Then we have that (i) rank( S (K×N ) ) ≤ min(M, N ) for any signal; (ii) rank( S (K×N ) ) = R < min(M, N ) if and only if the subvector s(∆ : ∆+N +M -2) has the representation (9) with R given in (8).
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 2 Fig.2. The real part of the signal[START_REF] Condat | Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements[END_REF].
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 3 Fig.3. SVD of the STFT of[START_REF] Condat | Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear Measurements[END_REF], maximum overlap (h = 1).
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 5 We continue Example 4, but now we take h = 8. The computed STFT and its SVD are shown in Fig.4. Note that the rank of the matrix was reduced to 5, because there are only two STFT columns where the transient appears.
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 4 Fig. 4. SVD of the STFT of (11), general overlap (h = 8)
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 5 Fig. 5. Convolution with g = [1, 1.5, 1];
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 7 For h > 1, and a piecewise polynomial function of degree d < h -1, where the breakpoints are equispaced (with hop h). Then the matrix (10) has rank at most (d+1)N . Again, take an example of h = 3. Then for the following signal, the corresponding matrix (10) has rank 4.

Note that f does not play the same role as in Section 3.

Note that in view of Section 2.3, for a rectangular window, the SVD of an STFT matrix can be obtained from the SVD of the Hankel matrix. Separability of signals in that case was studied in the context of time series analysis[START_REF] Golyandina | Analysis of Time Series Structure: SSA and Related Techniques[END_REF] and harmonic retrieval[START_REF] Badeau | Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials[END_REF].