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ABSTRACT
The goal of this paper is characterize finite-length signals that
have a low-rank short-time Fourier transform. By using the
connection with Hankel matrices, we give a comprehensive
answer in case of maximal overlap, where the class of signals
includes products of complex exponentials and polynomials.
In the general case, other exotic examples may appear.

Index Terms— Short-time Fourier transform, Hankel
matrices, low-rank approximation

1. INTRODUCTION

Matrices of data are often modeled with a low-rank assump-
tion, which can be conveniently handled in optimization pro-
cedures [1]. Such approximations have proven to be very use-
ful for spectrograms in the context of audio signal processing,
where nonnegative matrix factorisation is typically performed
[2, 3]. However, the phase information is lost when consid-
ering the spectrograms. This results in limitations in audio
inverse problems like denoising [4], source separation [3, 5]
and inpainting [6, 7], where the amplitudes and phases are
generally estimated sequentially. In [8, 9] it was proposed
to perform low-rank approximation directly on the complex-
valued short-time Fourier transform (STFT), in the context of
inpainting missing coefficients in STFT matrices.

However, such an approach raises the following question:
what kind of signals have a low-rank STFT? An answer was
given in [8] and leads to a restricted class of possible sig-
nals, due to the circularity of the proposed time-frequency
transform – which comes down to analyzing a periodized ver-
sion of the original finite signal. The goal of this paper is to
provide an insight into the structure of signals with low-rank
STFT, without using a circular transform. This is beneficial
not only to avoid boundary effects, but also to obtain a larger
class of low-rank STFT matrices, allowing exponential damp-
ing and polynomial modulations. We use the relation between
STFT and Hankel/block-Hankel matrices, which allows us to
give a complete characterisation for the case of maximal over-
lap, and to give nontrivial examples for non-maximal overlap.

This work was partially supported by the Agence Nationale de la
Recherche under grant JCJC MAD (ANR-14-CE27-0002).

1.1. Notation and the definition of the STFT

We follow mainly the notation in [9]. For a nonnegative inte-
ger number K we define by [[K]] = {0, . . . ,K−1}. The vec-
tors are in boldface, e.g., a, and their elements will be indexed
as a(k); the matrices are denoted by capital boldface letters,
e.g., A and their elements are accessed as A(k, l). Note that
the vectors and matrices in this paper are indexed starting
from zero, similarly to many programming languages.

Let s = [s(m)]m∈Z be a signal, and w = [w(m)]m∈Z be
a window. Next, fix two positive natural numbers: (i) h —
so-called hop; (ii) K — number of frequencies. The STFT
is then defined for K frequencies νk = k

K , k ∈ [[K]] at time
instants tn = hn, n ∈ Z as follows.

Definition 1.1. For k ∈ [[K]] and n ∈ Z we define the short
time Fourier transform (STFT) as

Ŝ(k, n) =
∑
m∈Z

s(tn +m)w(m)e−2iπνkm.

In this paper, we use only band-pass convention for STFT;
there also exists a low-pass convention [8]. Note that in [8],
the notation SBP was used. We use the notation Ŝ instead,
because only the band-pass convention is considered.

2. FINITE SIGNALS AND MATRIX FORM

We consider only the first N time instants, and the window w
having finite length L ≤ K, so that w(m) = 0 if m < 0 or

m ≥ L. Then the STFT becomes a K ×N matrix Ŝ
(K×N)

:

Ŝ
(K×N)

(k, n) =

L−1∑
m=0

s(tn +m)w(m)e−2iπνkm, (1)

2.1. Matrix factorization

First, let us define the following K × L matrix F (K×L):

F (K×L) :=



1 1 · · · 1

1 e
−2iπ
K · · · e−2iπ(L−1)

K

1 e
−2iπ2
K · · · e

−2iπ2(L−1)
K

...
...

...

1 e
−2iπ(K−1)

K · · · e
−2iπ(K−1)(L−1)

K

 ,



i.e., F (K×L)(k,m) = e
−2iπkm

K . The matrix F (K×L) contains
the first L columns of the Fourier transform matrix. Since
L ≤ K, this matrix is full column rank.

Next, we define the matrix SL×N ∈ CL×N containing
the “patches” of the signal stacked next to each other:

SL×N :=

 s(t0) s(t1) ··· s(tN−1)
s(t0+1) s(t1+1) ··· s(tN−1+1)

...
...

...
s(t0+L−1) s(t1+L−1) ··· s(tN−1+L−1)

 .
Then the matrix Ŝ

(K×N)
admits the following factorisation:

Ŝ
(K×N)

= F (K×L) Diag(w)SL×N , (2)

where Diag(w) denotes the diagonal matrix with the ele-
ments of w on the diagonal.

2.2. Rank of the STFT matrix

Since F (K×L) is full column rank, the rank of Ŝ
(K×N)

can
be expressed in terms of the rank of a submatrix of SL×N .

In order to have a complete description, we need to know
the support of the window w, which is defined as the set

L = {`0, . . . , `M−1} ⊂ [[L]] (3)

such that
w(m) 6= 0 ⇐⇒ m ∈ L.

Proposition 2.1. Let L be the support (3) of the window w.

Then the rank of the Ŝ
(K×N)

is equal to the rank of the matrix

SL×N :=

 s(`0+t0) s(`0+t1) ··· s(`0+tN−1)
s(`1+t0) s(`1+t1) ··· s(`1+tN−1)

...
...

...
s(`M−1+t0) s(`M−1+t1) ··· s(`M−1+tN−1)

 . (4)

Proof. Since F (K×L) is full column rank, we have that

rank(Ŝ
(K×N)

) = rank(Diag(w)SL×N ).

Since `-th row of Diag(w)SL×N is nonzero only if w(`) 6=
0, we have that rank(Diag(w)SL×N ) = rank(SL×N ).

2.3. Low-rank approximations

In the previous subsection, we established that the rank of the
STFT matrix can be computed in time domain. Before study-
ing signals with low-rank STFT matrices, we show that low-
rank approximations can be also computed in time domain.

Remark 2.2. For any unitarily invariant norm ‖ · ‖,

‖Ŝ
(K×N)

‖ = ‖Diag(w)SL×N‖.

This follows due to the fact that not only F (K×L) has full
column rank, but also because its columns are orthogonal.

This has a direct consequence for low-rank approxima-
tions and convex relaxations. First, consider a low-rank ap-
proximation problem as stated in [9]

min
Y ∈CK×N ,rank(Y )≤R

‖Ŝ
(K×N)

− Y ‖2F . (5)

Hence, by Proposition 2.1, we have that problem (5) is equiv-
alent to low-rank approximation in time domain

min
Z∈CK×N ,rank(Z)≤R

‖SL×N −Z‖2F,w, (6)

where ‖ · ‖F,w denotes the weighted Frobenius norm:

‖X‖2F,w := trace(XT Diag(w)2X).

In other words, the low-rank approximation problem can be
posed and solved in time domain. Note that the nuclear norm
is also orthogonally invariant, hence the nuclear norm mini-
mization [9] can be also treated in the time domain.

3. LOW-RANK HANKEL MATRICES

Before we proceed to classification of signals with low-rank
STFT, we recall Hankel matrices and their algebraic theory.

Let f = (f(0), . . . , f(T −1)) ∈ CT be a vector and L be
a nonnegative integer, so that 1 ≤ L ≤ T . Then the Hankel
matrix HL(f) ∈ CL×(T−L+1) is defined as follows

HL(f) =

 f(0) f(1) ··· f(T−L)
f(1) f(2) ··· f(T−L+1)

...
...

...
f(L−1) f(L) ··· f(T−1)

 . (7)

Note that there is a slight abuse of notation: L has a different
meaning from the one used in Section 2. Now we consider a
class of signals that is central to this paper: sum of products
of polynomial and exponential.

Let (ν1, λ1), . . . , (νs, λs) ∈ N∗×(C\{0}), and ν0, ν∞ ∈
N be the numbers such that

ν0 + ν1 + · · ·+ νs + ν∞ = R. (8)

Consider a signal f ∈ CT such that

f(t) =

ν0∑
j=1

ajδj−1(t) +

ν∞∑
l=1

blδT−l(t)︸ ︷︷ ︸
transient terms (beginning and end)

+

s∑
k=1

pk(t)λtk, (9)

where (i) pk(t) is a polynomial of degree νk − 1; (ii) δx(t) is
a (Kronecker) delta-function:

δx(t) =

{
1, x = t,

0, x 6= t;

(iii) and aν0 6= 0, bν∞ 6= 0. As shown in [10], low-rank
Hankel matrices correspond exactly to signals of the form (9).
Note that similar results were obtained and used in sampling
theory, in the context of finite rate of innovation [11].



Theorem 3.1 (Special case of [10, Thm. 8.2]). Let R be an
integer such that 0 < R < min(L, T − L + 1). Then the
Hankel matrix rank(HL(f)) is of rank R if and only if the
signal f has the form (9). Moreover, the representation (9)
(called canonical representation in [10]), is unique.

Example 1 (Cisoids). First, a signal

s(t) = c1e
2iπω1t + c2e

2iπω2t + c3e
2iπω3t,

has rank 3 for any distinct {ω1, ω2, ω3}, as in [9, Fig. 2].
Note that frequencies do not have to lie on the Fourier grid.
We can also consider damped exponentials (i.e., e(2iπω−α)t).

Example 2 (Polynomial modulation). The function

f(t) = (at2 + bt+ c) cos(2πωt+ φ)

corresponds to a rank-6 Hankel matrix. Signals with polyno-
mial modulations are useful for modelling of music records
[12] and in other contexts [13].

Example 3 (Transients). Finally, let us give an example for
a transient. The signal in Fig. 1 has rank-4 Hankel matrix,

0 1 2 3 4 5 6 7 8 9

1

2

3 [−1 2 0 0 0
2 0 0 0 0
0 0 0 0 0
0 0 0 0 3
0 0 0 3 0

]
,

Fig. 1. A “transient” signal, and the Hankel matrix H4(s).

since ν0 = ν∞ = 2. Adding the signal to any of previous
examples increases the rank by 4.

Note that transient terms in (9) are allowed only in the
beginning and/or at the end of the signal, thus there should
be at least L zero-valued consecutive samples in between the
transient terms.

4. CLASSES OF LOW-RANK STFT MATRICES

In this section we discuss the structure of (4), which will help
us to describe the class of signals with low-rank STFT. The
descriptions rely on the algebraic theory of Hankel matrices.

4.1. Some simplifications for most common windows

Note that for most windows used in practice, the support of
the window (the set L in (3)) is the whole interval [[L]], maybe
without the endpoints, i.e. one of the following three options:

L = [[L]], or L = {1, . . . , L− 1}, or L = {1, . . . , L− 2},

where the last case is more typical if a symmetric window is
used. These cases can be represented in a unified form. Let

∆ = `0 ∈ {0, 1}, M ∈ {L,L− 1}, and L = [[M ]].

Then the matrix (4) has the form s(∆) s(∆+h) ··· s(∆+h(N−1))
s(∆+1) s(∆+h+1) ··· s(∆+h(N−1)+1)

...
...

...
s(∆+M−1) s(∆+h+M−1) ··· s(∆+h(N−1)+M−1)

 . (10)

4.2. Maximum overlap: a complete classification

In the case of the maximum overlap, h = 1. In this case, the
matrix (10) is just a Hankel matrix. The following corollary
characterizes all signals having low-rank STFT.

Corollary 4.1. Let s ∈ CT be a signal, and Ŝ
(K×N)

be its
STFT with the hop h = 1, and window parameters (∆ andM )

as in Section 4.1. Then we have that (i) rank(Ŝ
(K×N)

) ≤
min(M,N) for any signal; (ii) rank(Ŝ

(K×N)
) = R <

min(M,N) if and only if the subvector s(∆ : ∆+N+M−2)
has the representation (9) with R given in (8).

Remark 4.2. Note that only a subvector of s is considered, so
that the values s(t) for 0 ≤ t < ∆ or ∆+N+M−1 ≤ t < T
can take arbitrary values. In other words, we may have more
transient values in the beginning and in the end of the signal.

Example 4. Take a specific example of a signal given by

s(t) = a0δ10(t) + (t2 + t+ 1)e(ln(0.95)+2iπ0.1)t, (11)

for which ν0 = 11 and ν1 = 3. Its real part is plotted in
Fig. 2. Next, we compute the STFT of the signal with hop

0 100 200

200

100

0

100

200

300
Signal

Fig. 2. The real part of the signal (11).

size h = 1, and its SVD, which are plotted in Fig. 3 (the
singular vectors being represented by the modulus only). The
numerical rank is 14 = ν0 + ν1, as predicted.

The first two SVD components, with left singular vectors
well-localized in frequency, mainly explain the modulated
exponential component, while SVD components 2 to 13, with
right singular vectors well-localized in time, explain the
Dirac component. However, the shape of left singular vectors
2 to 13 around frequency 0.1 shows that there is no perfect
assignation of SVD components to one of the terms in (11).
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Fig. 3. SVD of the STFT of (11), maximum overlap (h = 1).

4.3. Case of general overlap

The matrix (10) is a submatrix of the Hankel matrix HL(s),
obtained by taking every h-th column. Therefore, any signal
of the form (9) will have an STFT matrix with rank ≤ R, as
illustrated in Example 5.

Example 5. We continue Example 4, but now we take h = 8.
The computed STFT and its SVD are shown in Fig. 4. Note
that the rank of the matrix was reduced to 5, because there
are only two STFT columns where the transient appears.
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Fig. 4. SVD of the STFT of (11), general overlap (h = 8)

We now exhibit examples of signals that are not of the
form (9) but have a low-rank STFT matrices for h > 1.

Example 6. Suppose we consider an STFT with the hop h >
1. Take an arbitratry FIR filter g ∈ Ch and consider a spike
train1, with the interval between spikes equal to h:

f(t) = c0δ0(t) + c1δh(t) + · · ·+ cN−1δh(N−1)(t),

where ck = ak + b. Then for the convolution s = f ∗ g, the
rank of the matrix (10) is 2. An example for h = 3, M = 6,
ck = k+ 1, together with the matrix (10), is shown in Fig. 5.

0 1 2 3 4 5 6 7 8 91011121314

1

2

3

4

5

6  1 2 3 4
1.5 3 4.5 6
1 2 3 4
2 3 4 5
3 4.5 6 7.5
2 3 4 5

 .

Fig. 5. Convolution with g = [1, 1.5, 1];

Remark 4.3. The same could be said about arbitrary se-
quence ck of the form (9), for example, ck = cos(2πωk).

Example 7. For h > 1, and a piecewise polynomial of degree
d < h − 1 function, where the breakpoints are equispaced
(with hop h). Then the matrix (10) has rank at most (d+1)N .

Again, take an example of h = 3. Then for the following
signal, the corresponding matrix (10) has rank 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4  0 1 3 0 2
2 1 2 0 3
4 1 1 0 4
1 3 0 2 3
1 2 0 3 3
1 1 0 4 3

 ,
These examples are due to the fact that the matrix (10) is,

in fact, a truncated block-Hankel matrix. Although there is
also an algebraic theory of block-Hankel matrices [14], it is
more difficult to have a simple description (as in (9)).

5. CONCLUSIONS

We have shown that the finite signals with low-rank STFT
include polynomially modulated complex exponentials with
possibly some transient terms (9); moreover, only signals (9)
have a low-rank STFT in the case of maximal overlap. For
the general overlap, the rank may become smaller for signals
(9) and less dependent on transient terms. However, there are
much more signals with a low-rank STFT in the general case.

We leave for future research the practical implications of
these results. Other questions could be considered, for ex-
ample, why and when the components of the signals separate
into different components of the SVD2 in Examples 4 and 5.

1Note that f does not play the same role as in Section 3.
2Note that in view of Section 2.3, for a rectangular window, the SVD

of an STFT matrix can be obtained from the SVD of the Hankel matrix.
Separability of signals in that case was studied in the context of time series
analysis [15] and harmonic retrieval [13].
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