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Multiscale Representation of Simulated Time

Rhys Goldstein1, Azam Khan1, Olivier Dalle2 and Gabriel Wainer3

Abstract
To better support multiscale modeling and simulation, we present a multiscale time representation consisting of data
types, data structures, and algorithms that collectively support the recording of past events and scheduling of future
events in a discrete-event simulation. Our approach addresses the drawbacks of conventional time representations:
limited range in the case of 32- or 64-bit fixed-point time values; problematic rounding errors in the case of floating-
point numbers; and the lack of a universally acceptable precision level in the case of brute force approaches. The proposed
representation provides both extensive range and fine resolution in the timing of events, yet it stores and manipulates the
majority of event times as standard 64-bit numbers. When adopted for simulation purposes, the representation allows a
domain expert to choose a precision level for his/her model. This time precision is honored by the simulator even when
the model is integrated with other models of vastly different time scales. Making use of C++11 programming language
features and the Discrete Event System Specification (DEVS) formalism, we implemented a simulator to test the time
representation and inform a discussion on its implications for collaborative multiscale modeling efforts.

Keywords
Multiscale simulation, time scale, floating-point arithmetic, rounding error, collaborative modeling

1. Introduction

Multiscale modeling and simulation has attracted con-
siderable attention in a number of fields, notably com-
putational biology and materials research where macro-
scopic transformations routinely emerge from interac-
tions between atoms and molecules. The fact is that
most real-world systems have the potential to be studied
over a spectrum of scales. Artificial systems, for exam-
ple, can be viewed as hierarchies of components, and the
smallest of these components can be investigated based
on their physical and chemical structures. Even if a do-
main expert’s goal is to obtain a simplified single-scale
model of the system of interest, multiscale approaches
are useful for ensuring the simple model is valid.

A look at past and present multiscale modeling efforts
reveals successes and shortcomings, both of which are
expressed in a position paper by Hoekstra et al. 1 :

Multiscale modelling is an actively pursued ap-
proach to make sense of wide ranges of phe-
nomena, both natural and anthropogenic. In
many different communities, impressive results
can be presented. [...] However, in most if not
all cases of concern, the research and associ-
ated funding to pursue such studies are con-
fined within the boundaries of individual scien-
tific and engineering disciplines. In our view,

this renders the field unnecessarily disparate
and fragmented. Indeed, it has already led to a
slowing down and even stagnation in many rel-
evant topics, to reinventing the wheel, to confu-
sion with respect to terminology and concepts,
and to sub-optimal solutions for the implemen-
tation of production mode multiscale models
running on state-of-the-art computing infras-
tructures.

According to Hoekstra et al., a single advancement
in multiscale modeling is typically confined to a single
community working in isolation. The lack of coordina-
tion between disciplines leads to the re-invention of sim-
ilar approaches rather than the enhancement of those
approaches. The emergence of inconsistent terminology
further complicates the sharing of ideas, making collab-
oration all the more difficult.

The popularity of multiscale approaches, combined
with the fragmented manner in which they are pur-
sued, produces a need for general solutions that can be
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adopted by researchers across a broad range of disci-
plines. The idea is to focus on scale-related challenges
that re-appear in many fields, and address these chal-
lenges in an optimal manner. This paper contributes a
general solution to a foundational problem: a flexible
computer representation of simulated time. While the
representation accommodates nearly all simulations, its
distinguishing features specifically target the demands
of collaborative, multiscale modeling efforts.

Commonly used computer representations of simu-
lated time, those based on standard 32- or 64-bit fixed-
point decimal numbers or binary floating-point numbers,
are problematic for multiscale simulation due to the in-
creased potential for numerical errors to alter simulation
results. Even with a single scale, the rounding of time
values may affect the timing of events to a degree. In
some cases, rounding errors may cause events to be re-
ordered2. But as we observe in Section 3, the presence of
multiple time scales dramatically increases the likelihood
and severity of time-related inaccuracies. The underly-
ing issue is that the magnitude of the largest temporal
rounding errors is determined by the longest time scales,
whereas the tolerance of the simulation to these errors
is constrained by the shortest time scales. If the longest
and shortest time scales differ greatly, significant dis-
tortions in small-scale behavioral patterns are likely to
occur.

The multiscale time representation presented in this
paper handles rounding errors in a controlled fashion,
alleviating many of the unexpected problems that can
arise when models featuring different time scales are inte-
grated. The representation takes the form of data types,
data structures, and algorithms that collectively support
the recording of past events and the scheduling of future
events in a discrete-event simulation. The overall ap-
proach provides the following benefits:

• SI time units (i.e. seconds, milliseconds, microsec-
onds, etc.) can be represented exactly.

• Time durations, used for modeling, exploit efficient
64-bit operations.

• Time points, used by simulators, provide both ex-
tensive range and fine resolution where needed.

• Event handling algorithms introduce no rounding
errors despite using mostly 64-bit operations.

When integrating models of vastly different scales, the
proposed representation is capable of honoring the spec-
ified precision of each model while storing and manip-
ulating the majority of event times as standard 64-bit
numbers. To realize these benefits, we embrace the well-
established use of composite models to define modular
or hierarchical structures containing instances of indi-
visible atomic models. We also rely on a core convention

of the Discrete Event System Specification (DEVS) for-
malism3, the fact that atomic models measure durations
relative to the current point in simulated time. Further-
more, each atomic model be sufficiently focused in scale
that its time durations can be represented as m·δt, where
m is any integer less than 1015 in magnitude and δt is
a unit of time precision assigned to the atomic model.
The end result is that each atomic model has essentially
one time scale, whereas a composite model may span a
range of time scales if its component models have differ-
ent precision levels.

As described in Section 4, our approach exhibits novel
features such as the notion of “perceived time”, an oper-
ation called “multiscale time advancement”, and the use
of epochs as part of the event scheduling process. Im-
portantly, a typical modeler should be able to enjoy the
benefits of the proposed approach without acquiring de-
tailed knowledge of these underlying concepts. Section 5
examines the implications of the multiscale time repre-
sentation from the modeler’s perspective, discusses its
implementation in a prototype simulator, and compares
experimental results to those obtained with conventional
time representations.

One aim of this work is to support modelers who ac-
tively pursue multiscale approaches, particularly for ap-
plications which involve extremely disparate time scales.
Examples of such applications include laser microma-
chining4, or the study of protein structural rearrange-
ments5. Yet even if domain experts contribute only
single-scale models to their respective communities, mul-
tiscale issues will emerge from (a) inevitable differences
in scale among models and (b) attempts to integrate
the models. Efforts to collaborate in the modeling of
complex systems will therefore lead communities toward
multiscale simulation, creating a demand for general so-
lutions including a common, effective, and complete rep-
resentation of time.

2. Multiscale modeling and simulation

The 2013 Nobel Prize in Chemistry, awarded for the “de-
velopment of multiscale models for complex chemical sys-
tems”6, draws attention to the importance of accounting
for multiple scales. But while publications on multiscale
approaches are often specific to one small-scale and one
large-scale system within a particular field of study, here
multiscale issues are considered from a broader interdis-
ciplinary perspective.

2.1. Scale

Experts often associate a model with an approximate
length or time measure referred to as the model’s “scale”.
Some models are considered to have a time scale but no
length scale, some have a length scale but no time scale,
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some have both length and time scales, and some mod-
els are described as having multiple scales in either space
or time. Despite the widespread practice of associating
models with scales7, the literature provides little guid-
ance on how a model’s scale should be assessed.

We assert that scale is not simply an aggregation of the
prominent distances or durations that appear in a model
or simulation. Rather, scale is an approximation of the
degree to which distances or durations must be altered to
have an appreciable effect on the implications of a model
or the results of a simulation. Suppose that a distance
∆x or duration ∆t appears somewhere in a modeling
project. Perhaps ∆x is a model parameter. Perhaps ∆t
is a duration that tends to re-occur during a simulation.
This does not mean ∆x or ∆t are representative of scale.
The question is whether changing distances by roughly
∆x, or changing durations by roughly ∆t, will effect the
outcome of a digital experiment based on the model.

2.1.1. One scale vs. multiple scales

Consider the models illustrated in Figure 1, which in-
volve one or two moving particles of radius r trapped
within a compartment of radius R. We assume the par-
ticles travel at a constant speed, and that the reflection
angle after each inward bounce is random.

Figure 1. Models featuring one or two small particles of radius
r inside a larger compartment of radius R. Both models involve
both long and short distance measures (i.e. compartment and
particle radii), but not necessarily two distinct scales.

Let us suppose the illustrations in Figure 1 are not to
scale, as r is actually a few orders of magnitude shorter
than R. Each model therefore features two vastly dif-
ferent distance measurements. Nevertheless, it could be
argued that only the model on the right has multiple
scales. The reasoning is as follows. The single-particle
model on the left of Figure 1 can predict, for example,
the average duration between events at which the parti-
cle bounces inward off the compartment wall. Although
technically this inter-bounce duration depends on both
R and r, the particle radius r has a negligible effect on
the distance the particle must travel between bounces.
(The travel distance will be between R and 2 ·R for most
reflection angles. The particle size reduces this distance
by 2 · r, but we have assumed r � R.) Were we to in-
crease r by some ∆r, then ∆r would have to be within

roughly an order of magnitude of R to significantly affect
the model’s predictions. Thus we claim the left model
has only a single length scale of approximately the com-
partment radius. By contrast, the model on the right
has an additional ability in that it can predict the fre-
quency of particle-particle collisions. This prediction is
affected by changes in r within an order of magnitude
of r. Hence the two-particle model has two scales: one
associated with the compartment radius and another as-
sociated with the particle radii.

The Figure 1 models focus on length scales, but the
same line of reasoning applies to time. If a model ex-
hibits a duration ∆t, we assess its time scale by asking
how much ∆t would have to be varied to significantly im-
pact the results. If a model features disparate duration
values, it may or may not have multiple time scales.

2.1.2. Time steps vs. time quanta

Time steps and time quanta are of particular importance
in the context of simulation models and their scales.
These measures relate to the fact that certain instants of
simulated time are associated with self-contained com-
putations known as events. The fact that certain time
points play a prominent role is the basis of a concept
called time granularity8,9,10. For our purposes, it suffices
to focus on two specific concepts related to granularity:
time resolution and time precision11.

Time resolution characterizes the frequency of time
points at which similar types of events occur. In discrete-
time simulation, time resolution may be expressed using
a fixed time step that separates consecutive event times.
The longer the time step, the coarser the resolution and
the larger the discretization errors.

Time precision characterizes the frequency of time
points to which event times are rounded. In discrete-
event simulation, time precision may be expressed using
a fixed time quantum that evenly divides all event times.
The longer the time quantum, the coarser the precision
and the larger the rounding errors.

The scale of a simulation model has important impli-
cations pertaining to time resolution and precision. If
a model’s time resolution is tied to a time step, then
lengthening the time step toward the model’s time scale
will tend to produce noticeable discretization errors that
affect the quality of simulation results. Similarly, if a
model’s time precision is tied to a time quantum, then
lengthening the quantum toward the model’s time scale
will produce significant rounding errors that also impact
the quality of the results.

Fortunately, in the case of time precision, it is typically
not costly to choose a quantum significantly shorter than
the model’s time scale. Choosing a fine precision level
means allocating more memory to each computed time
point, but it should not increase the number of events
since event frequency is tied to resolution. Neverthe-
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less, modelers may feel compelled to choose excessively
coarse precision levels when faced with multiple time
scales. It is possible that a long time quantum selected
to accommodate a large-scale model could approach the
time scale associated with a short-scale model. Such a
scenario might lead to rounding errors that adversely
affect a modeler’s digital experiments.

2.1.3. Scale vs. fidelity

One final observation about our definition of scale is that
it excludes the distinct yet important concept of fidelity,
meaning “level of detail”. To illustrate, consider two
models of the same electronic circuit. The high-fidelity
model includes every resistor, capacitor, transistor, and
basic component. The low-fidelity model treats various
sections of the circuit as higher-level components, ab-
stracting away the lower-level details. Now assume both
models neglect the physical layout of components, so
there is no length scale, and both neglect delays in the
propagation of voltage changes, so there is no time scale.
Combining these models would yield multiple levels of
detail, but not multiple scales.

Our interpretation of “scale” and “multiscale” is con-
sistent with the majority of the literature on multiscale
approaches, which we review in Section 2.2. It is also
a useful interpretation in that discrepancies in contin-
uous quantities of space and time give rise to the is-
sues addressed in this paper. Nevertheless, modeling
approaches which address the presence of multiple levels
of detail are both relevant and complementary to multi-
scale modeling. One problem common to both classes of
approaches is the introduction of error through the ag-
gregation and disaggregation of data12. Whereas this
paper focuses strictly on scale, discrepancies in both
scale and fidelity are often explored hand-in-hand13,14.

2.2. Multiscale modeling approaches

Imagine that computational resources were essentially
unlimited, and one could therefore perform unfath-
omably complex molecular dynamics simulations such as
one that tracks the location of every atom in a human
body. The information provided by such a model might
well span close to a dozen orders of magnitude. However,
we would not necessarily consider this a “multiscale ap-
proach” to modeling, since the entire simulation is based
on a single small-scale method.

A multiscale approach implies that some form of het-
erogeneity in the representation of a system is based on
a discrepancy in scale. More specifically, the model is
intentionally designed to exploit some scale-related ob-
servation about the represented system, and some bene-
fit is desired as a result. In many cases, the observation
involves a small-scale behavior arising only within small
regions of space, as in Figure 2a, or during short periods

of time, as in Figure 2b; these regions or time periods
can be modeled differently from all other regions or time
periods. The desired benefits of a multiscale approach
may include ease of inputting data or interpreting re-
sults. Though in most cases, the primary reason for
adopting such an approach is to make more effective use
of computational resources.

It is theoretically possible to simulate a wide range
of large-scale systems using a brute force application of
a small-scale method. The hypothetical application of
molecular dynamics to an entire human body is one ex-
ample. However, many such simulations would remain
beyond the capabilities of modern computing technology
even if the world’s digital infrastructure could be com-
mandeered to execute them. Brute force approaches are
limited by two seemingly inescapable trends. First, ex-
tending a simulation by a factor of 10 in either time (t)
or a single dimension of space (x, y, or z) typically in-
creases the number of operations and possibly also the
memory requirements by an order of magnitude or more.
Second, one is generally compelled to extend multiple di-
mensions (e.g. x and y, or x and z and t), as opposed
to extending just one dimension by itself (e.g. just x or
just t). Thus the computational requirements associated
with brute force approaches can be expected to increase
by multiple orders of magnitude for every desired 10-fold
increase in scale.

Fortunately, complex real-world systems tend to ex-
hibit scale-related characteristics that can be exploited
when allocating computational resources. In fact, multi-
scale approaches are sufficiently popular that three jour-
nals are largely dedicated to them: the Journal of Multi-
scale Modeling (World Scientific), the Journal of Multi-
scale Modeling and Simulation (SIAM), and the Journal
of Coupled Systems and Multiscale Dynamics (American
Scientific Publishers). Moreover, any journal related to
modeling might feature a few if not many papers de-
scribing multiscale modeling efforts. Three specific dis-
ciplines feature particularly wide arrays of multiscale
approaches: computational biology15,16, materials sci-
ence17, and applied mathematics18,19. We list some of
the best-known examples from these fields.

2.2.1. Computational biology

Popular among researchers in computational biology,
coarse-graining methods reduce the complexity of all-
atom resolution protein models by treating groups of
atoms as elementary particles. The exploited observa-
tion about real-world proteins is that certain configura-
tions of nearby atoms undergo comparatively little defor-
mation on the scale of the entire protein molecule. Saun-
ders and Voth 20 emphasize the importance of a formal
connection between a coarse-grained (CG) representa-
tion and the corresponding all-atom resolution molecular
dynamics (MD) model.
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(a) Small-scale computations in one region. (b) Intermittent small-scale computations. (c) Recurring transitions.

Figure 2. Strategies for focusing intensive small-scale computations on subregions (shown as dark, speckled areas) of a large-scale
spatiotemporal domain. The domains shown feature one dimension of space on the vertical axis, and time on the horizontal axis.

Although most applications of coarse-graining pertain
to molecular dynamics at extremely small scales, the
underlying idea of treating several entities as one has
been applied to somewhat larger-scale biological pro-
cesses. Examples include multiscale models of blood clot
formation developed using machine learning21 or graph
dynamical systems22.

2.2.2. Materials science

In materials science, a canonical example of a multiscale
approach is the simulation of crack propagation, where
the deformation rate is dramatically higher near the
crack tip than elsewhere. Abraham et al. 23 model a sili-
con slab using a coarse finite-element (FE) region, which
surrounds a more detailed molecular dynamics (MD) re-
gion, which in turn encompasses a growing crack, which
in turn features small but highly detailed quantum tight-
binding (TB) regions near either end of the crack. Two
additional “hand-shaking” regions line the FE-MD and
MD-TB interfaces.

Whereas crack propagation simulations are similar to
Figure 2a in that they dedicate intensive small-scale
computations to particular regions of a spatiotempo-
ral domain, Figure 2c illustrates multiscale approaches
based on repetition. Models may have recurring transi-
tions that can be computed once at a small scale, then
reapplied as needed in a large-scale simulation. Brere-
ton et al. 24 offer an example. To predict how electrons
traverse organic semiconductor materials, matrix calcu-
lations produce transition probabilities specific to low
energy regions where the electrons become temporarily
trapped. These probabilities inform a larger-scale simu-
lation. Note that instead of focusing on temporal tran-
sitions, as in Figure 2c, one may exploit repetition over
space using representative volumes25.

2.2.3. Applied mathematics

Multiscale approaches in applied mathematics tend to
focus on numerical integration involving vastly disparate

rates of change. Equation-free approaches recognize that
while the Euler, Runge-Kutta, and other numerical in-
tegration methods appear to require a closed-form ex-
pression for the derivative of a function, other means of
evaluating the derivative may suffice. In particular, the
slope of a slowly-varying quantity can be approximated
at various points through small-scale simulations, allevi-
ating the need for a differential equation26. The Hetero-
geneous Multiscale Method also uses small-scale com-
putations where needed, but differential equations are
closely scrutinized to develop problem-specific integra-
tion procedures. Emphasis is placed on the properties of
large-scale dynamics that emerge when small-scale fluc-
tuations are averaged out27.

When classifying an approach as multiscale, an im-
portant caveat is that the strategy for exploiting a scale-
related observation does not entail the elimination of all
but one scale from a modeling effort. For example, a
purely coarse-grained protein simulation does not consti-
tute a multiscale approach if the atom scale is neglected;
rather the CG simulation must be informed in some way
by all-atom models. In light of this caveat, multiscale
approaches generally retain each relevant scale in one
form or another. An exception to this rule is the seam-
less multiscale method, where for favorable differential
equations the smaller of two time scales is effectively re-
placed with an intermediate scale28. In this case the
two original scales are not both retained, but the model
resulting from the transformation still features two dis-
tinct scales. The seamless method has been generalized
to address three or more relevant scales29.

2.3. Collaborative multiscale modeling

As mentioned, a multiscale approach to modeling implies
that heterogeneity in the representation of a system is
based on a discrepancy in scale. Generalizing the con-
cept, we suggest that systems science arises from the
introduction of any kind of heterogeneity into the repre-
sentation of any system. The presence of multiple scales
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is one aspect of a system that may serve as a fundamental
basis for heterogeneity1, though there are complemen-
tary aspects which may deserve equal or greater atten-
tion depending on the challenge at hand. In the case
of multi-domain modeling 30, heterogeneity in represen-
tation is based on the relevance of multiple domains, as
in multiple types of systems. Similarly, multi-paradigm
modeling 31 implies heterogeneity based on the utility of
multiple paradigms, as in multiple sets of techniques and
conventions for defining models.

Figure 3. Intersecting of multi-domain, multi-paradigm, and
multiscale modeling.

The fact that a diverse set of modeling efforts may in-
corporate multiple domains, multiple paradigms, and/or
multiple scales leads to the classification scheme illus-
trated in Figure 3. The idea is that any such effort can
be categorized into one of the eight sections formed by
the overlapping circles. There are separate sections for
purely multi-domain, purely multi-paradigm, and purely
multiscale efforts, and one outer section for efforts in-
volving a single domain, paradigm, and scale.

Multi-domain, multi-paradigm, and multiscale model-
ing often coexist. In fact, a single form of heterogeneity
in representation can be associated with more than one
of these aspects. The intersection of two or three of these
aspects is emphasized by the inner regions of Figure 3
where the circles overlap. If two domains are relevant,
for example (a) the behavior of humans and (b) their
impact on food and water resources, they may be mod-
eled using distinct paradigms such as (a) agent-based
simulation and (b) system dynamics; such scenarios fall
into the MD + MP category. Groen et al. 32 highlight the
MD + MS category by reviewing multiscale modeling in
conjunction with multiphysics applications, a subcate-
gory of multi-domain modeling. A focus on MP + MS
can be found in Vangheluwe et al. 31 . They list levels
of abstraction, which overlaps with multiscale modeling,
alongside multi-formalism modeling and meta-modeling

as key research directions in multi-paradigm modeling.
The close relationships among the three aspects of mod-
eling are evident in titles such as “Multi-scale and multi-
domain computational astrophysics”33, “Multi-paradigm
multi-scale simulations for fuel cell catalysts and mem-
branes”34, and “Multiscale coupling and multiphysics
approaches in earth sciences”35.

Collaborative modeling can be promoted by support-
ing the integration of models that differ in domain,
paradigm, and/or scale. Such efforts naturally lead to
multi-domain, multi-paradigm, and/or multiscale mod-
els, creating a need for general modeling solutions. For
multiple domains, one general solution is provided by
equation-based modeling, exemplified by the Modelica
language30. For multiple paradigms, a core technique
is the transformation of various formalisms onto a single
formalism such as DEVS31. For multiple scales, progress
has been made in the form of a multiscale modeling lan-
guage and framework by Chopard et al. 36 , which empha-
sizes scale-related strategies comparable to those shown
in Figure 2. There are also formalism extensions such
as Multi-Level DEVS37 and downward/upward atomic
models38, which facilitate the transformation of data
and time granularity among levels in a model hierar-
chy. Yet little attention is given to multiscale computer
representations of space and time. Whereas the three
dimensions of space give rise to a multitude of possible
representations, the single dimension of time presents its
own challenges and opportunities. As mentioned in Sec-
tion 2.1, a modeler may choose an excessively coarse pre-
cision level to accommodate the longest of several time
scales. Temporal rounding errors may then approach
the shortest time scale, affecting simulation results. We
address this challenge, aiming to remove a barrier to col-
laboration on multiscale modeling efforts.

3. Conventional time representations

Collaborative model development currently entails the
following dilemma: the larger the community of model-
ers, the greater the need for all modelers to adhere to
the same modeling conventions, but the harder the task
of choosing conventions that meet all modelers’ needs.
Here we explain why the most commonly used repre-
sentations of simulated time may fail to meet the needs
of large communities of collaborating modelers, particu-
larly if their models differ significantly in scale.

3.1. Fixed-point time representation

A fixed-point time representation implies that some time
quantum δt is common to an entire computational pro-
cess such as a simulation run, and any finite time value
in the process can be expressed as m · δt for some inte-
ger m. This is an extremely common representation of
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time in computer applications, particularly if δt is 1s,
1ms, 1µs, or 1ns. Discrete-time simulations often adopt
this approach with δt being the time step and m be-
ing the number of processed iterations. When discrete-
event simulations use fixed-point time values, the time
quantum serves as a common factor of all durations be-
tween events. A suitable common factor can often be
derived from a model specification11, though in practice
it is usually chosen arbitrarily. Let us limit our discus-
sion to fixed-point decimal representations, such that δt
is 10d seconds for some potentially negative integer d.
This measure is also known as time precision; a larger
δt is associated with a coarser level of precision. We
assume m is represented as a 32-bit or 64-bit two’s com-
plement number, which means that its range is either
−231 ≤ m < 231 or −263 ≤ m < 263.

The first problem with 32- or 64-bit fixed-point dec-
imal representations of time is the limited range they
provide. This is not typically a problem for discrete-time
simulation, as even the 32-bit option accommodates over
2 billion iterations. For discrete-event simulation, how-
ever, convention suggests that many of these bits would
be dedicated to achieving a precision level much finer
than the time scale of the model. Part of the motiva-
tion behind discrete-event simulation is to treat time as
a continuous quantity. Rounding all time values to a
coarse precision level would undermine this benefit.

To illustrate range limitations, consider the simulation
of a laser micromachining process. As indicated by Gat-
tass and Mazur 4 , the duration of each laser pulse can be
as short as 10fs whereas the resolidification period that
follows can persist beyond a microsecond. If time is rep-
resented using 32-bit fixed-point time values and a 1fs
time quantum, simulations are limited to just over 231 fs,
or 2µs. This is barely sufficient for a single pulse/reso-
lidication cycle. Furthermore, one must verify that tem-
poral rounding errors on the order of a femtosecond will
not invalidate the simulation of small scale effects during
the pulse. However 64-bit time values allow one to use
a 1ys time quantum, improving precision by a factor of
1,000,000 and permitting 10ms simulation runs that ac-
commodate many pulses. It is clear that only the most
ambitious multiscale models would challenge the range
of a 64-bit integer. Unfortunately, limited range is not
the only problem with fixed-point time values.

A fixed-point representation of time raises the issue of
how a common precision level is selected, and by whom.
The simplest and most computationally efficient option
is to hardwire the precision, ensuring consistency. One
of many examples of this approach can be found in the
time package of the Go programming language. The
Duration type is a 64-bit fixed-point time representa-
tion with a 1-nanosecond time quantum, which limits the
maximum duration to roughly 290 years39. One expects
this data type to be reasonable for most human-scale

simulations, but inappropriate for small-scale molecular
dynamics simulations or large-scale computational astro-
physics simulations. Another option is to allow users to
select the precision level prior to a simulation run. The
OMNeT++ simulation framework provides a global con-
figuration variable that specifies 1s, 1ms, 1µs, 1ns, 1ps,
1 fs, or 1as precision40. The ns-3 simulator uses a similar
approach, adding 1min, 1hr, 1day, and 1yr to the list
of allowable precision levels41.

Even if the common time precision is customizable,
as it is in OMNeT++ and ns-3, a problem remains in
that a model’s behavior may unexpectedly change when
a different precision level is chosen for the encompassing
simulation. For example, consider a model featuring a
(1/3)s delay. Suppose that temporal errors of around a
microsecond are tolerable, so the model requires a time
quantum of 1µs or shorter. If one simulates this model
with a 1µs time quantum, the delay is 333, 333µs. But
if the time quantum is later changed to 1ns, the delay
becomes 333, 333, 333ns leading to slightly different re-
sults, which may be unexpected.

In summary, the limited range of fixed-point time rep-
resentations can make it difficult to choose an appropri-
ately fine precision level while allowing for sufficiently
long simulation runs. A 64-bit multiplier offers a fair
degree of flexibility in this regard, but challenges arise
in selecting a time quantum common to a set of inte-
grated models. A final drawback with the fixed-point
option is the lack of a convenient way to represent pos-
itive and negative infinity, though this is addressed by
an implementation strategy discussed in Section 3.4.

3.2. Floating-point time representation

A floating-point time representation implies that the du-
ration between a representable time point t and the next
largest representable time point t′ is not a fixed time
quantum but rather scales with t. Thus while the rela-
tive error may be bounded, the absolute error from op-
erating on a time value will tend to be proportional to
the value itself. Conceptually, floating-point numbers
consist of a common positive integer base β, a value-
specific integer coefficient c, and a value-specific integer
exponent γ such that the represented quantity is the
real number c · βγ . Smaller bases are associated with
smaller rounding errors42, so binary floating-point num-
bers with β = 2 prevail. Unless otherwise stated, we
associate “floating point” with the IEEE 754 double pre-
cision standard, a 64-bit binary floating-point represen-
tation that allocates 11 bits to the exponent and 53 bits
to the coefficient including its sign. IEEE 754 dedicates
certain 64-bit sequences to special values such as infinity
and NaN (Not a Number), and incorporates these values
into its rules for mathematical operations.

The obvious advantage of floating-point time values is
the extraordinary range they provide. To fully appre-
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ciate this range, let us consider the most extreme time
scales under scientific investigation.

At the smaller end of the spectrum, molecular dy-
namics is among the more popular classes of simulation
techniques. MD models generally rely on time steps on
the order of 10 femtoseconds43. For example, 2.5fs time
steps were used for a number of state-of-the-art all-atom
MD simulations performed on the special-purpose An-
ton 2 supercomputer44. In the lesser known field of
quantum chromodynamics, time is often measured in
fm/c, or roughly 3.34 ·10−24 s, the time required for light
to travel one femtometer45. One of the shortest dura-
tions in the literature is known as the Planck time. A
theory has been proposed that physical time does not
advance continuously but rather “ticks” forward by this
quantum-like duration46. The Planck time is just under
10−43 seconds, which does not even approach the lower
limit of a floating-point number. Double precision values
can be smaller than 10−307, or less than 10−323 if one
considers subnormal values that become available when
the 11-bit exponent reaches its most negative value.

At longer time scales, the Illustris Project is a note-
worthy effort in which a 13-billion-year simulation tracks
the cosmic evolution of the Universe from shortly after
the Big Bang until roughly the present day47. If we
turn our attention from the origins of the universe to
astrophysicists’ predictions of its fate, even longer time
scales are discussed. After 1038 years, the only remain-
ing “stellar-like objects” will be black holes, and around
10100 years all protons in the universe will have decayed
and all black holes will have “evaporated”48. To sim-
ulate the demise of all black holes in the universe, one
would require a time representation with an upper limit
of around 10108 seconds or higher. Double precision time
values meet this requirement with ease, as they can reach
just over 10308 s.

It is difficult to imagine a useful simulation that would
challenge a 64-bit floating-point time value’s range. Pre-
cision, however, is a different matter. The 53-bit coeffi-
cient offers 53 bits of precision, after one first subtracts
the sign bit and then adds the hidden bit that is assumed
to be 1 for normalized numbers. These 53 bits translate
to about 16 decimal digits, which may seem decent. But
the practical consequence is that models should only be
coupled, arguably, if they differ by no more than 6 orders
of magnitude in time scale. For example, a nanosecond-
scale model can be integrated with a millisecond-scale
model, but not a second-scale model. The reason why
we start with 16 orders of magnitude, but end up with
6, is that 6 orders are lost if one wishes to keep round-
ing errors below one millionth of the shorter time scale,
and another 4 are lost if the simulation is to progress
10,000 times the longer time scale. A desire for longer
simulation runs would further detract from the allowable
difference between the two scales.

A lack of precision is cited as one of the reasons
that floating-point time values were factored out of OM-
NeT++. The following is from Varga 40 :

Why did OMNeT++ switch to int64-based
simulation time? double’s mantissa [the co-
efficient, excluding the sign and hidden bits] is
only 52 bits long, and this caused problems in
long simulations that relied on fine-grained tim-
ing, for example MAC [media access control]
protocols. Other problems were the accumula-
tion of rounding errors, and non-associativity
(often (x + y) + z 6= x + (y + z), see Gold-
berg 42) which meant that two double [64-bit
floating-point number] simulation times could
not be reliably compared for equality.

The latter half of Varga’s quote highlights another sig-
nificant problem with floating-point time values: the fact
that rounding error is introduced as a result of addition
and subtraction operations. Both fixed- and floating-
point representations incur rounding errors for other op-
erations such as multiplication and division. Yet ad-
dition and subtraction errors are particularly problem-
atic in the case of simulated time, for several reasons.
First, the addition and subtraction of time values are
extremely common operations in model code, so these
types of rounding errors will accumulate quickly. Sec-
ond, simulation development frameworks such as OM-
NeT++ separate user-defined models from a common
model-independent simulator; a typical simulator adds
and/or subtracts time values, and will therefore impose
unavoidable errors on the user if these operations are
not exact. Note that general-purpose simulators rarely
multiply or divide time values as part of the simulation
process. Third, a modeler with a basic understanding of
digital technology should expect rounding errors in mul-
tiplication and division, but he/she might expect addi-
tion and subtraction to yield exact results.

There is yet another unfortunate side effect of floating-
point time representations, one particularly relevant to
discrete-event simulation. Simulations typically feature
a current time variable t that repeatedly advances, mim-
icking the progression of physical time. Strangely, if t is
represented as floating-point number, then rounding er-
rors will tend to increase as the simulation progresses.
To understand why this happens, consider the common
operation in (1), where ∆t is any positive duration added
to the current time t to yield a future time t′.

t′ = t+ ∆t (1)

The ∆t values produced by a model often vary over
simulated time, but rarely trend upward or downward.
Hence they become progressively shorter relative to the
advancing t, and therefore temporal rounding errors re-
sulting from t+∆t operations tend to worsen as a simula-
tion progresses. Particularly troublesome are situations
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in which t and ∆t become so disparate that t′ is rounded
down to t, and events that should have been scheduled
for different time points instead occur at a common in-
stant. Effectively, the duration ∆t is rounded to zero.

Multiscale approaches dramatically increase the risk
of positive durations being rounded to zero. Imagine
a case where two separate teams develop two distinct
models, both relying on floating-point time values. The
first team produces a large-scale model, which performs
accurately because ∆t is never short. The second team
works on a small-scale model, which also proves accurate
because t never grows long. The models are integrated
and tested for a short duration of simulated time. Now
t progresses quickly due to the large-scale model, caus-
ing some rounding error to emerge in the small-scale
model’s durations. But the errors are small and go un-
noticed. The multiscale model, considered valid, is then
deployed for scientific investigation. Longer simulations
are conducted in which t becomes very large relative
to the small-scale model’s ∆t values. At some point
these durations round to zero and severely undermine
the quality of the results.

It is worth acknowledging that there is a well-known
technique for coping with floating-point rounding errors.
Instead of comparing two values x and y for equality (i.e.
x = y), one tests whether their difference lies within
some small, arbitrary epsilon value ε. If |x− y| < ε, the
assumption is made that rounding error alone is respon-
sible for the difference between x and y, and hence the
values should be treated as equal. In the context of sim-
ulated time, the interpretation is that two or more events
with slightly different time points should be treated as
occurring at the same instant. Unfortunately, it is dif-
ficult to ensure that every simulation-based experiment
uses an appropriate ε, particularly if multiple scales are
involved. Furthermore, the effect of any ε will change
over the course of a simulation run as t increases rela-
tive to the ∆t values. Finally, a choice of ε will typically
be based on assumptions, and it is difficult to ensure ev-
ery assumption remains valid when a model is modified
or reused by other developers.

A number of parameters similar to epsilon values have
been proposed in a simulation context for specific pur-
poses. Wieland 49 ’s threshold of simultaneity δ can be
viewed as an epsilon value that provides an upper limit
on randomly generated event time offsets. The purpose
of these offsets is to avoid any arbitrary ordering of si-
multaneous events. Zeigler et al. 50 propose a time gran-
ule d that improves the performance of synchronous par-
allel simulation algorithms by treating nearly simultane-
ous events as simultaneous. Although Wieland’s δ and
Zeigler’s d offer statistical and performance-related bene-
fits for certain applications, they do not provide a general
solution to the drawbacks of floating-point time repre-
sentations. Even with δ or d, one may still encounter the

above-stated problems associated with epsilon values.

To summarize, the excellent range of a floating-point
time value is counterbalanced by its limited precision,
while serious problems result from rounding errors intro-
duced by addition and subtraction. The fact that round-
ing errors increase as a simulation progresses means that
harmful effects may not surface until a model has been
tested and put to use. Another disadvantage of binary
floating-point time values is that fractional SI time units,
such as milliseconds or microseconds, cannot be exactly
represented. These units are important due to their pop-
ularity as a means of specifying duration parameters.
Most of these drawbacks have previously been identi-
fied2. The implications we most wish to emphasize are
those pertaining to multiple time scales, which dramat-
ically increase the chance that floating-point rounding
errors will approach the smallest time scale in magni-
tude. The potential impact of these scale-related effects
is revealed in the following section.

3.3. Experimentally observed impact of fixed-
and floating-point time representations

To investigate time representations, we introduce a mul-
tiscale model inspired by earthquake warning systems
used in Japan, Mexico, and California51. By detecting
P waves, such systems predict the arrival of the sub-
sequent S waves which cause most of the devastation.
Although the P waves may precede S waves by only tens
of seconds, this advance notice can be used to deceler-
ate trains in anticipation of a possible derailment, or to
encourage individuals to seek protection from potential
falling objects. One plausible reason to simulate earth-
quake warning systems is to evaluate their performance
and choose the best possible design. However, our inter-
est lies not in the application but rather in the discrep-
ancy among its relevant time scales: the multi-year pe-
riods between earthquakes, the tens of seconds between
P and S waves, and the much shorter time durations
associated with seismic noise.

We note that our model is only loosely inspired by
earthquake warning systems. The signal processing in-
volved in the detection system is greatly simplified. We
also generalize the model to dissociate it from any par-
ticular time scale. In place of earthquakes, our model
involves a more general type of undesirable event called
an incident. Each incident is preceded not by a P-wave,
but by a general type of informative event called an oc-
currence. We model a prediction system that detects
an occurrence and predicts whether the subsequent in-
cident is life-threatening or benign. The performance
of the system is intended to improve over time, since it
learns from past occurrences and their associated inci-
dents. The key elements of the prediction system are
illustrated at multiple scales in Figure 4.
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Figure 4. A simulation of a prediction system that learns over
time, plotted at different time scales. The upper plot shows
one prediction, revealing measurements of an informative pulse
obscured by a drift and noise. The middle plot shows four of
these predictions. The lower plot covers the full simulation pe-
riod. Dark vertical lines (red and gold) indicate false predictions,
several of which are emphasized at the bottom.

The upper plot in Figure 4 focuses on a single oc-
currence and its subsequent incident. As shown at the
top of this plot, an occurrence is associated with an in-
stantly appearing and rapidly decaying pulse. Larger
pulses suggest life-threatening incidents. The magnitude
of each pulse is obscured by a low-frequency drift rep-
resented as a constant offset, as well as high-frequency
noise. The waveform at the bottom is the superposition
of the pulse, drift, and noise, sampled at 12 measure-
ment points. Note that the drift and noise are assumed
to be present at all times, but are only simulated over
periods encompassing these measurements.

Taking a closer look at the top of Figure 4, the 12 mea-
surements include 6 at a high sampling rate followed by
another 6 at a low rate. The first 6 are averaged to
filter out noise and aggregate the pulse in combination
with the drift. The next 6, which are also averaged to
reduce noise, aggregate the drift alone. By subtracting
the average of the latter 6 measurements from the aver-
age of the first 6, one obtains a feature value that can be
used to predict whether the impending incident is life-
threatening or benign. The feature is compared with a
threshold, which is always the midpoint of two averages:
the average feature values of past life-threatening and
benign incidents. The system learns by simply recalcu-
lating this threshold after every incident.

To evaluate the accuracy of the prediction system, we
categorize each prediction as follows.

• True positive: the incident is predicted to be life-
threatening, which turned out to be correct

• True negative: the incident is predicted to be be-
nign, which turned out to be correct

• False positive: the incident is predicted to be life-
threatening, which turned out to be wrong

• False negative: the incident is predicted to be be-
nign, which turned out to be wrong

The middle plot in Figure 4 expands the view to en-
compass four predictions, one of each type. A true pos-
itive, such as the first prediction, is shown using a faint
green line to mark the incident. A true negative, such
as the second prediction, is indicated by a light green
color. The third prediction is a false negative, shown
using dark red. The last of the four predictions is a false
positive, indicated by a gold-colored incident.

The lower plot in Figure 4 covers the full time period
of the simulation run, which encompasses exactly 100
predictions. Because the prediction system learns over
time, the likelihood of a true prediction should gradually
increase. This trend of increasing accuracy can be seen
in the plot, notwithstanding a couple prominent clusters
of false predictions toward the end of the simulation.
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Figure 5. Composition of the prediction system model. The pulse height for benign (〈ypulse〉k=0) and life-threatening (〈ypulse〉k=1)
incidents, the drift height (ydrift ), and the noise height (ynoise) are sampled from the uniform distributions at the top right.

Instead of using time scales associated with earth-
quakes, we test a variety of relatively long average occur-
rence durations (∆t̄occurrence) between occurrences and
relatively short average incident durations (∆t̄incident)
between occurrences and their subsequent incidents.
These two duration parameters are each varied by sev-
eral orders of magnitude. For every combination of
∆t̄occurrence and ∆t̄incident , the simulation is repeated
1000 times and the average accuracy of the system is re-
ported as the ratio of true predictions (true positives plus
true negatives) to total predictions. It should be noted
that for this experiment, the purpose of the model is not
to maximize the reported accuracy. Rather, the goal is
to simply report accuracy values that reliably capture
the performance of the system being modeled.

The prediction system is modeled as a composition of
eight submodels, connected as shown in Figure 5. At in-
tervals averaging ∆t̄occurrence in duration, the occurrence
instance randomly generates positive (k = 1) or negative
(k = 0) messages with equal probability. These mes-
sages trigger a succession of events in the downstream
components. The pulse, drift, and noise instances each
randomly generate y-values, which are superimposed in
waveform to produce the 12 measurements. Each mea-
surement is communicated as a separate ywaveform mes-
sage. All 12 such messages are processed by feature to
produce yfeature , the average of the first 6 measurements
minus the average of the latter 6. The predictor instance
receives this feature value and immediately predicts the
class k. The prediction is either confirmed or contra-
dicted some time later, when incident finally outputs the
same message it received earlier from occurrence.

The model is simulated for 100 combinations of two
duration parameters: 10 values for each parameter, with
a 10-fold gap between successive values. The large-scale
average duration between occurrences is varied from 10
seconds to 1010 seconds (≈ 317 years). The small-scale
average duration between an occurrence and its subse-
quent incident is varied from 1 second to 1 nanosecond.

∆t̄occurrence ∈ {101 s, 102 s, . . . , 1010 s}

∆t̄incident ∈ {100 s, 10−1 s, . . . , 10−9 s}

The actual occurrence and incident durations are ran-
domly generated from uniform probability distributions
according to the formulas below.

∆toccurrence ∼ U( 1
2 ,

3
2 ) ·∆t̄occurrence

∆tincident ∼ U( 1
2 ,

3
2 ) ·∆t̄incident

A number of shorter durations are defined below. All
are constants, except for the actual noise segment dura-
tion which is sampled from an exponential distribution.
The use of fractions 1

3 and 1
7 is based on a concern that

factors of 1
2 or 1

10 might be seen as favoring, respectively,
binary floating-point time values or fixed-point decimal
time values.

∆tpredictor = 1
3 ·∆t̄incident

{
encompasses all
measurements

∆tsparse = 1
7 ·∆tpredictor

{
separates sparse
measurements

∆tdecay = 1
3 ·∆tsparse

{
pulse decay
time constant

∆tdense = 1
7 ·∆tsparse

{
separates dense
measurements

∆t̄noise = 1
3 ·∆tdense

{
average noise
segment duration

∆tnoise ∼ Exp(∆t̄noise)

{
actual noise
segment duration

Observe that ∆tpredictor deliberately encompasses all
12 measurements with time to spare. The 6 high- and 6
low-frequency measurements require a total duration of
6 ·∆tdense + 6 ·∆tsparse , which is equal to 7 ·∆tsparse −
∆tdense , which equals ∆tpredictor − ∆tdense . Thus the
multiscale modeling technique of simulating the drift and
noise for durations of only ∆tpredictor should have no
effect on the results of interest.

The experiment is conducted using a general-purpose
discrete-event simulation library modified to support
both fixed- and floating-point time representations. For
each representation, 1000 repetitions are performed for
all 100 combinations of ∆t̄occurrence and ∆t̄incident .

For 32- and 64-bit fixed-point time representations,
the simulations use the shortest base-1000 SI time unit
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Figure 6. Mean accuracy results using 32-bit fixed-point time
values. A value near 76 is considered an acceptable result. An
F indicates a failed simulation.

δt that can accommodate the maximum duration of each
simulation run, roughly 101 ·∆t̄occurrence . The formula
for δt is given in (2), where nbits is either 32 or 64.

δt = 1000dlog1000(101·∆t̄occurrence/2
nbits−1)e (2)

The use of base-1000 SI time units is intuitive to mod-
elers and consistent with OMNeT++ and ns-3. A sim-
ulation run is considered to have failed if its shortest
duration constant, the average width of a noise segment
∆t̄noise , rounds to zero.

Figure 6 shows the results of the 10 by 10 configura-
tions simulated using 32-bit fixed-point time values. The
accuracy values of roughly 76 or 77 are the averages over
1000 repetitions of the number of true predictions out of
100 in each repetition. Based on results obtained from
two different simulators and four different time repre-
sentations, we consider the prediction system’s inherent
accuracy to be slightly over 76%. Our model is designed
such that the system’s accuracy does not depend on the
times scales used. This characteristic allows us to at-
tribute any variability in the results to errors caused by
the time representation. In the case of a 32-bit fixed-
point representation, only 3 out of 100 configurations
yield the desired value, and only 7 of 100 permit the
simulation to complete. In the modern era of 64-bit
computing, one has little need to restrict a time value
to 32 bits. Yet we include these results to highlight the
severely limited range of this representation.

Figure 7 provides the accuracy results for 64-bit fixed-
point time values. Doubling the number of bits, a con-
siderably greater fraction of the test cases complete.

Figure 7. Mean accuracy results using 64-bit fixed-point time
values. With 64 bits instead of 32, a far greater separation
between scales is accommodated. Yet extremely diverse scales
still lead to failure.

The mean accuracy is roughly 76%. The variability is
consistent with the standard error values we obtained,
which were slightly under 0.14 for all 73 successfully
simulated configurations. However, 9 particular config-
urations result in mean accuracies between 76.9% and
77.5%. These outliers are conspicuously situated adja-
cent to failed configurations, suggesting that computa-
tional problems emerge when a simulation approaches
the upper limit of a fixed-point time representation.

As mentioned in Section 3.2, a floating-point time rep-
resentation alleviates the need for a time quantum and
practically eliminates restrictions on range. But as evi-
dent from the accuracy values in Figure 8, floating-point
time values can have a severe and seemingly erratic ef-
fect on simulation results. The general trend in Figure 8
can be summarized as follows. The lower left major-
ity of the configurations feature a relatively small range
of time scales, and their reported accuracies of around
76% are consistent with one another and with the fixed-
point results. Approaching the top right corner of the
plot, time scales grow further apart and accuracy val-
ues begin to decrease. The accuracies dip below 60%
in some cases before dramatically increasing toward a
plateau of about 96.5%. Aside from this trend of decline
and increase toward the top right corner, no definitive
patterns can be found. This suggests that many factors
contribute to the overall impact of floating-point time
computations.

As one scans Figure 8 from bottom left to top right,
the first statistically significant sign of error is the ac-
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Figure 8. Mean accuracy results using 64-bit floating-point time
values. The results become erratic as the time scales diverge.

curacy value of 73.0% near the center of the plot. To
understand why the accuracy is underestimated here,
we examine a single simulation run. Figure 9 reveals
two issues in the last of the run’s 100 predictions. Re-
call that noise and drift are simulated over a duration
of ∆tpredictor , which theoretically encompasses all mea-
surements with time to spare. Yet here the noise signal
ends noticeably early, and on close examination the drift
signal ends just slightly before the last measurement.
The reason why these signals end prematurely relates to
the discrepancy between the increasing current time t
and the comparatively stable durations ∆t added to it.
Rounding errors in t + ∆t expressions grow with t, and
eventually become large relative to ∆t. As explained in
Section 3.2, the problem worsens as disparate time scales
are incorporated into a model.

For the noise signal, individual noise segments are gen-
erated until their combined duration reaches ∆tpredictor .
However, when the individual segment durations are
added to the current time t in the simulator, t advances
by less than ∆tpredictor . The fact that the noise signal is
shortened, rather than lengthened, is likely due to short
noise segments being rounded to zero.

In the case of the drift, a close investigation reveals
that the signal is actually lengthened beyond ∆tpredictor

due to rounding error. Unfortunately, the measurement
durations are also rounded upward, and to such an ex-

Figure 9. Impact of floating-point time values at ∆t̄occurrence =
105 s and ∆t̄incident = 10−6 s. Both drift and noise signals end
before the last measurement, rendering it invalid.

tent that they surpass the end of the drift signal. This
causes the drift to be excluded from the final measure-
ment. This unexpected behavior occurs toward the end
of a simulation run, after the prediction system is mostly
trained. The result is an increase in false predictions,
and an underestimated accuracy of 73.0%.

Could the problems seen in Figure 9 be fixed with
a more robust implementation of the model? The an-
swer is yes, at least for this specific configuration. In
fact, it may be sufficient to simply lengthen ∆tpredictor

by a small amount while keeping the shorter duration
constants the same. Such model-specific or experiment-
specific fixes, however, are less than satisfactory. The
main concern is not how to eliminate harmful rounding
errors, but rather how to prevent them from going un-
detected. With the help of Figure 8 we can see that
the 73.0% result is suspicious; it differs from configura-
tions expected to yield statistically equal accuracies. Yet
this verification procedure is not generally applicable, so
temporal rounding errors may well go unnoticed.

The 73% configuration is an interesting case where the
relevant time scales are just sufficiently disparate that
floating-point arithmetic has a significant impact on the
simulation results. As the time scales diverge, the sim-
ulation runs become nearly impossible to salvage with
minor implementation improvements. Consider the con-
figuration yielding 79.1% accuracy, just slightly above
and to the right of 73% in Figure 8. The problems with
this simulation run can be seen in the first of 100 pre-
dictions, shown in Figure 10. As before, the last mea-
surement occurs after the end of the drift signal due
to rounding error. But here the noise signal ends ex-
tremely early, with all but a few segments rounding to
zero. The reduction in noise promotes consistency in the
low-frequency measurements, which should bias the ac-
curacy upward. A third problem is that the durations
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Figure 10. Impact of floating-point time values at
∆t̄occurrence = 107 s and ∆t̄incident = 10−7 s. The drift sig-
nal ends just slightly ahead of the last measurement. Also, a
variety of other problems are evident.

between the high-frequency measurements have rounded
to zero, and so the first 6 measurements now occur at
a single point in simulated time. As we approach the
top right corner of Figure 8, the scales become so dis-
parate that all types of events seen in Figures 9 and 10
collapse to a single instant. This collapsing of events
promotes consistency, causing prediction accuracy to be
overestimated.

Revisiting Figure 8, observe the three failures for con-
figurations with ∆t̄occurrence ∈ {105 s, 106 s, 107 s} and
∆t̄incident = 10−8 s. With these particular combinations
of time scales, the kincident message is occasionally sent
before the yfeature needed to predict the class of the in-
cident. The model has a condition to fail in such cases.
The condition could be removed, allowing the simula-
tions to complete, but the results would be invalid.

To summarize the experiment, a number of the draw-
backs listed in Sections 3.1 and 3.2 are evident in the
results produced with 32-bit fixed-point, 64-bit fixed-
point, and 64-bit floating-point time representations.
The experiment excludes 32-bit floating-point time val-
ues, but with only 24 bits of precision the outcome would
be poor for most if not all of the 100 configurations.
A clear trend in all the results is that the impact of
temporal rounding error increases with the discrepancy
between a model’s longer and shorter time scales. In
the fixed-point case, the longest time scale compels the
selection of a long time quantum, and problems arise
when this quantum approaches or surpasses the shortest
time scale. Although there is no time quantum in the
floating-point case, rounding errors proportional to the
longest time scale cause varying degrees of havoc as they
approach the shorter time scales.

3.4. Time implementation strategies

Various strategies have been used to implement time rep-
resentations in the form of data types and associated
operations. While a number of these strategies mitigate
some of the drawbacks of fixed- and floating-point time
values, no existing implementation seems to satisfy all
concerns pertaining to the collaborative development of
multiscale simulation models.

The first strategy we consider could be described as a
“brute force approach” to representing simulated time.
The idea is to use a fixed-point time representation con-
sisting of (a) a universal time precision fine enough for
all intended users, and (b) an arbitrary-precision inte-
ger multiplier. Arbitrary-precision integers are not con-
strained to 32 or 64 bits, but rather expand in memory
as needed to accommodate increases in magnitude with-
out sacrificing resolution. This representation addresses
both the range limitations of 32- and 64-bit fixed-point
time values as well as the undesirable rounding effects
associated with floating-point time values.

To illustrate the advantages of a brute force approach
to time representation, we extend the experiment in Sec-
tion 3.3 to include fixed-point time values with arbitrary-
precision multipliers. We select a time quantum of 10−30

seconds, which appears to be sufficiently short for any
computer simulation we have encountered in the litera-
ture. As shown in Figure 11, believable mean accuracy
values close to 76% are reported for all combinations of
time scales.

Figure 11. Mean accuracy results for Section 3.3 experiment
using arbitrary-precision fixed-point time values.

Though it seems to eliminate all of the many problems
encountered in the Section 3.3 experiment, a brute force
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approach to time representation has two drawbacks. The
obvious drawback is a reduction in computational effi-
ciency when compared with standard 32- or 64-bit al-
ternatives. But our main concern with the brute force
approach is its reliance on a common time precision.
Modelers might assume different precision levels, caus-
ing software testing/maintenance issues. Moreover, no
universal time precision is suitable for all disciplines.

Consider the 10−30 s time quantum used to produce
the Figure 11 results. We would expect quantum chro-
modynamics researchers to be satisfied with this preci-
sion level. Molecular biologists might find it unnecessar-
ily fine-grained, yet tolerable. Modelers concerned with
human-scale systems would find 10−30 s absurdly short,
and might decide against adopting the time representa-
tion. Computational astrophysicists would find it even
less acceptable. While the underlying issue is the per-
ception of performance loss, the important point is the
discriminating nature of the approach. The astrophysi-
cist would not want to dedicate over 150 bits of preci-
sion to every time value knowing that experts of small-
scale phenomena need dedicate only 64 bits. Choosing
a coarser precision would better accommodate the mod-
elers of large-scale systems, but might exclude modelers
of small-scale systems.

In short, the brute force approach retains the fixed-
point representation’s inconvenient trait of requiring a
common time precision.

Another implementation strategy involves the use of
a rational number data type, which stores both a nu-
merator and denominator as separate integers. Rational
simulated time values are explored by Vicino et al. 2 in
conjunction with a hybrid representation that strives to
improve computational efficiency with special treatment
for powers of two. To simplify the discussion, we focus on
basic rational number data types without such optimiza-
tions. We assume that the numerator and denominator
are both arbitrary-precision integers. Rational numbers
are compelling in that they accommodate exact results
not only for addition and subtraction, but also for mul-
tiplication and division. Rational time values require no
preselected precision levels, have no range limitations,
and can exactly represent durations such as 1

3 s that in-
volve neither binary nor decimal fractions.

While rational time values appear to solve a number
of rounding problems, their benefits over fixed-point rep-
resentations may be limited in practical situations. For
example, consider a model that generates messages sep-
arated by exponentially distributed durations of simu-
lated time. Suppose the time constant is 17s. Theo-
retically, these durations are irrational numbers, but in
practice they will be rounded off. If time values are
rational numbers, one must arbitrarily select a precision
level, and the most obvious approach is to fix the denom-
inator. Suppose the denominator is fixed at 1,000,000.

The numerator is then exponentially distributed with a
mean value of 17,000,000. Although rational numbers
do no harm to the result here, they offer little advantage
over a fixed-point representation with a time quantum
of 1µs. Some modelers may prefer the fact that with
rational numbers, the precision is implicit in the round-
ing that occurs within each model. Other modelers may
prefer precision levels to be explicitly specified.

The C++11/14 Chrono Library provides a fixed-point
representation in which the multiplier is an integer and
the precision level is a rational number52. Although the
number of bits of each time value is not strictly stan-
dardized, it appears typical that the multiplier and the
numerator/denominator of the precision level are limited
to 64 bits for the sake of efficiency. The precision level
is a template argument and must therefore be inferrable
at compile time. This promotes efficiency and early er-
ror detection, though for certain applications it might
be preferable to determine the precision at run time. A
reliance on templates discouraged us from adopting the
Chrono Library as a basis for our multiscale time rep-
resentation, but we still consider it a viable option for
fixed-point simulated time values in C++.

One final implementation strategy is the use of a 64-bit
floating-point number as the multiplier in a fixed-point
time representation. The key observation is that a 64-
bit floating-point number can exactly represent all con-
secutive positive integers with a magnitude of at most
253, or 9,007,199,254,740,992. Using an object-oriented
programming language such as C++, a floating-point
multiplier and a precision level can be encapsulated in
a class. When an arithmetic operation is invoked on an
instance of that class, the calculation is performed first
with floating-point arithmetic, and the resulting multi-
plier is rounded if needed. An important caveat is that
the multiplier not exceed 253 − 1.

According to the definitions in Sections 3.1 and 3.2,
the strategy described above constitutes a fixed-point
representation notwithstanding the internal use of a
floating-point number. An encapsulated floating-point
multiplier reduces the need for type conversions when
performing time value operations involving multiplica-
tion and division. Furthermore, IEEE 754 floating-point
numbers include a representation of infinity and its as-
sociated mathematical rules, providing a convenient way
to incorporate infinite durations.

4. Multiscale time representation

Having examined both fixed-point and floating-point
time values as well as a number of implementation strate-
gies, we remain without a computer representation of
simulated time that convincingly addresses the needs of
collaborative, multiscale modeling and simulation. Par-
ticularly unsettling are the potential consequences of
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floating-point time values. It is true that the most harm-
ful effects occur only with vastly disparate time scales.
But the subtlety of these effects, their tendency to sur-
face in a variety of forms, and the fact they occur without
warning leads us away from the floating-point option.
Our solution more closely aligns with the fixed-point
approach in that time durations associated with mod-
els include precision levels and multipliers. Yet we avoid
introducing any practical range limitations, as well as
any need to impose a common time quantum on the en-
tire simulation. Despite the need for arbitrary-precision
data types in certain places, the solution is itself a mul-
tiscale approach in that its associated event schedul-
ing and recording algorithms can be implemented using
mostly 64-bit operations. Here we describe the princi-
ples, key features, and design of the proposed multiscale
time representation.

4.1. Representation principles

The proposed representation of simulated time is based
on the following principles:

1. Every atomic model should have a specified time
precision, and modelers should be able to assume
that all time durations encountered by any instance
of the model are rounded to this precision level.
There is no universal time quantum that all mod-
elers must agree on, as inevitable disagreements
would then discourage the sharing of models. Fur-
thermore, there is no selection of a common preci-
sion level on a per-simulation basis, as this might
contradict the levels specified for one or more mod-
els included in the run. Respecting a model’s spec-
ified time precision promotes consistent model be-
havior.

2. An atomic model’s precision level is assigned using
a base-1000 SI time unit (i.e. kiloseconds, seconds,
milliseconds, etc.). Although minutes and hours
may not serve as specified precision levels, we note
that multiples of these durations can be exactly rep-
resented with a 1s time precision. The restriction of
time quanta to base-1000 SI units means that quan-
tities such as 1

3 s or fm/c cannot be exactly repre-
sented. We consider this limitation outweighed by
the advantage of having a common factor (i.e. 1000)
separate each assignable time unit (e.g. nanosec-
onds) from the next (e.g. picoseconds).

3. Atomic model code should use 64-bit fixed-point
time values. The rationale for a single representa-
tion is to simplify the reading and writing of model-
specific code for the benefit of modelers, who may be
experts in a variety of disciplines but not necessar-
ily software engineering. The restriction to 64 bits
ensures that most mathematical operations on time

values will be supported on nearly any platform,
and that they will be computationally efficient. The
fixed-point option avoids any unexpected behavior
arising from floating-point arithmetic.

4. Whereas atomic models should be restricted to 64-
bit fixed-point time values, a simulator may be im-
plemented using an assortment of time-related data
types and data structures. The rationale for tolerat-
ing greater complexity in simulator code is that its
developers are expected to have considerable soft-
ware engineering expertise. The internal complex-
ity of a model-independent simulator must be hid-
den from the domain experts who apply it to their
models.

5. An atomic model instance’s simulated time values
may be approximate, so long as any error is bounded
by the model’s time quantum δt. Uncertainty in the
time durations which separate events is a necessary
consequence of the principles above, but this uncer-
tainty should be bounded.

6. Whereas time values encountered by atomic mod-
els may only approximate the actual progression of
simulated time, a simulator must maintain the ex-
act current time point and the exact time points
associated with recorded and scheduled events.

7. Although simulators may use arbitrary-precision
arithmetic in places to satisfy the principles above,
64-bit operations should be used where possible to
reduce memory and processing requirements.

4.2. Representation features

The principles listed in the previous section demand a
solution that maintains the convenience and predictable
rounding behavior of a fixed-point representation, yet
tracks event times with a degree of exactness tradi-
tionally accomplished only through the exclusive use of
arbitrary-precision data types. The features described
here collectively satisfy these requirements. The pri-
mary novelties of our approach include a scale-related
rationale for distinguishing between durations and time
points (Section 4.2.1), the notion of “perceived time” in
the context of scale (Section 4.2.2), the operation called
“multiscale time advancement” (Section 4.2.3), the in-
corporation of epochs into the event scheduling mecha-
nism (Section 4.2.4), and the re-purposing of the event
scheduling data structure for tracking elapsed durations
(Section 4.2.5).

4.2.1. Durations vs. time points

Certain computer representations of time use the same
data type for all time values, whereas others use differ-
ent data types for durations of time and points in time.
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In the C++11/14 Chrono Library, durations and time
points are distinguished so that duration-related code
can be more easily reused among systems that differ in
the epochs used to encode dates52. An additional benefit
of this approach is that certain operations can be defined
for durations only, or time points only, but not both. For
example, it makes sense to multiply a 20-second duration
by 3 to obtain a 1-minute duration, but multiplying the
time point March 14, 1:59 AM by 3 requires a reference
point, which is generally arbitrary.

For the multiscale time representation, we must dis-
tinguish between durations and time points simply be-
cause Principle 3 of Section 4.1 demands 64-bit time val-
ues for model implementations, whereas Principle 6 re-
quires simulators to use arbitrary-precision time values
to track event times. Event times are time points, so our
proposed time point data type has a variable number of
digits. In model code, we discourage the use of these
arbitrary-precision time values by avoiding the need to
express event times. This is done by adopting a core con-
vention of the DEVS formalism whereby models express
time values in durations relative to the current point in
simulated time. We refer to these time values as elapsed
durations, measured from the most recent past event,
and planned durations, measured to the most imminent
future event of those that are currently planned. For
example, if the simulator labels a previous, current, and
future event with the time points 58, 67, and 72, respec-
tively, the model might only be aware that the elapsed
duration is 9 and the planned duration is 5. Our repre-
sentation therefore complements the arbitrary-precision
time point data type with a duration data type based on
64-bit operations. The duration type is used to represent
elapsed durations, planned durations, and other relative
quantities of time.

Listed below are several key operations involving dura-
tion operands (∆t), time point operands (t), or operands
of both data types (∆t, t):

• Negation (∆t): The unary operation −∆t reverses
the sign (positive/negative) of the duration.

• Scaling (∆t): The binary operations a·∆t and ∆t·a
multiply the magnitude of the duration by the real
number a.

• Binary addition (∆t): The binary operation
∆tA + ∆tB adds the magnitudes of two durations
to yield a new duration.

• Binary subtraction (∆t, t): The binary operation
∆tB − ∆tA subtracts the magnitudes of two dura-
tions to yield a new duration, whereas the binary
operation tB− tA subtracts two time points to yield
a duration. The resulting durations are always ex-
act provided the difference between the operands
can be represented using the 64-bit representation;

if the result requires too many bits, the operation
yields an infinite duration.

• Gap estimation (t): The binary operation tB	 tA
yields a duration that approximates the difference
between the two time points. The approximation
must be sufficiently accurate that the earlier time
point tA eventually reaches the later time point tB
if tA is repeatedly advanced by tB 	 tA.

• Time accumulation (∆t, t): The operation t+∆t
adjusts the time point by the exact value of the
duration.

• Time advancement (∆t, t): The operation t .∆t
adjusts a time point representing the current time
according to an operation that may not give the
same result as time accumulation (t+∆t). A specific
form of this operation called “multiscale time ad-
vancement” is introduced in Section 4.2.3 to honor
the specified precision of each integrated model.

We will revisit some of these operations as we discuss
other features of the multiscale representation and its de-
sign. The mathematics associated with these and other
operations can be found in Appendix A.

4.2.2. Perceived time

Principle 5 of Section 4.1 states that an atomic model
instance’s simulated time values may be approximate,
so long as any error is bounded by the model’s time
quantum δt. This scale-related form of approximation
is a necessary consequence of Principles 1–4, and here
we elaborate on the concept. In essence, an atomic in-
stance can not necessarily determine the current simu-
lation time t. From the instance’s perspective, t is any-
where in the range t̂ ≤ t < t̂+δt, where δt is the model’s
time quantum and t̂ is its perceived time. In other words,
the perceived time is the actual time rounded down to a
multiple of the model’s time quantum.

As illustrated in Figure 12, different perceived times
coexist within a multiscale model. In the scenario shown,
every model with a forest-unit time precision has a per-
ceived time of 375. This means that the current time
t is in the range 375 ≤ t < 500. Models with a tree-
unit precision perceive the current time as 425, though
based on their knowledge the current time could be al-
most as advanced as 450. Leaf-unit precision models per-
ceive the current time correctly as 448, assuming they
are the finest-scale models in the system. Yet as far as
the models are aware, the current time is in the range
448 ≤ t < 449. Note that the factor of 5 separating
one time precision from the next is a convention we use
only for illustrative purposes. In the actual representa-
tion, successive precision levels are separated by factors
of 1000, consistent with Principle 2.
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Figure 12. A current time of 448 at leaf-unit precision is perceived as 445, 425, and 375 at the branch-, tree-, and forest-unit
precision levels.

Perceived time allows durations to be accumulated
error-free at every independent scale. Consider, for ex-
ample, a model with 1s precision and 1000s time steps.
The simulation begins at t = 0, and an instance of the
model schedules an event at t = 1000. But suppose the
instance receives a message at t = 2.2. To maintain its
scheduled t = 1000 event, the instance must then yield
a planned duration of 997.8s. Inconveniently, its 1s pre-
cision level only allows it to produce a planned duration
of 998s. If conventional time accumulation is used, the
future event will be scheduled at t = 1000.2, introduc-
ing error. Such errors can then accumulate over time.
But if the 998s planned duration is applied to the per-
ceived message time (t = 2 instead of t = 2.2), then the
t = 1000 event occurs exactly when planned.

Perceived time points are not explicitly represented
in any of the data types or data structures in our ap-
proach. They exist only implicitly as a result of an op-
eration called multiscale time advancement, explained
in Section 4.2.3. However, an expert modeler can make
perceived time explicit if he/she so choses. Let us as-
sume a simulation begins at t = 0. An instance of the
time point data type can be stored as a state variable in
an atomic model instance, and set to t = 0 on initializa-
tion. If the time point is then advanced—using multi-
scale time advancement—by every encountered elapsed
duration, the time point will track the perceived time.
If this is done by the smallest scale model in the system,
the associated time point is the current time. Again, we
consider this an expert technique. Domain experts need
not use the time point data type. In fact, they need not
be familiar with the concept of perceived time. It is gen-
erally sufficient to know that some models measure time
more precisely than others, and that the simulator sorts
out any discrepancies.

4.2.3. Multiscale time advancement

Multiscale time advancement is the operation that in-
troduces perceived time into a simulation, despite the
fact perceived time values are not explicitly represented.
Essentially, multiscale time advancement increases a per-
ceived time point by exactly the duration specified, even
though the actual time point may increase by a shorter
duration. More precisely, the actual time point is in-
creased by the shortest possible amount such that the

model specifying the duration still perceives time as if it
progressed exactly as much as expected.

Figure 13 illustrates multiscale time advancement in
three distinct scenarios. In all three cases, a time point
of 448 leaf units is advanced by a duration with a mag-
nitude of 100 leaf units. However, the duration is ex-
pressed with a different precision level in each scenario,
which changes the outcome of the operation. In the up-
per plot, the duration is expressed as 100 leaf units, and
time progresses by the expected amount. In the middle
plot, the perceived time of 445 at the branch-unit scale
increases by exactly the specified duration of 20 branch
units, but the actual time increases by only 97 leaf units
(from 448 to 545). In the lower plot, the perceived time
of 425 at the tree-unit scale advances by exactly 4 tree
units, but the actual time increases by only 77 leaf units
(448 to 525).

Section 4.2.1 introduced the notation for multiscale
time advancement, t . ∆t. The notation is inspired by
Nutaro 53 , who uses the . operator for advancing a rather
different form of time representation. Nutaro’s time val-
ues are pairs (t, c), where t is the simulated time and c
is a count which orders events that share a simulated
time point. Extensive work has been done on simi-
lar time representations incorporating one or more non-
physical components54,55,56,57,58,59,60,61. The multiscale
representation described here deals only with simulated
time: the t component in Nutaro’s (t, c) time values. Yet
the manner in which multiscale time advancement trun-
cates small-scale information is somewhat analogous to
the reseting of the c component, which occurs when a
(t, c) time point is advanced by a positive duration of
simulated time.

4.2.4. Event scheduling epochs

As the multiscale representation was under development,
a primary consideration was the question of whether the
proposed time values and operations would reasonably
accommodate the complete set of data structures and
algorithms needed to implement a generic simulator. As
the focus was on discrete-event simulation, we dedicated
much of our efforts to the enhancement of priority queues
that handle the scheduling of future events.

Inconveniently, neither the time point data type nor
the duration data type are suitable for tracking the tim-
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Figure 13. Using multiscale time advancement, advancing a time point (448) by equal durations (100 leaf units = 20 branch
units = 4 tree units) produces a different result depending on the time unit of the advancement duration.

ing and ordering of large numbers of future events. As-
signing an arbitrary-precision time point to every future
event would contradict Principle 7 of Section 4.1, which
states that 64-bit operations be used where possible to
reduce memory and processing requirements. And al-
though our duration time values are based on 64-bit
operations, they are inappropriate for a different rea-
son. Recall from Section 4.2.1 that planned durations
are measured from the current point in simulated time.
If every future event was tracked using its planned dura-
tion, then all of the durations stored in the queue would
have to be updated whenever the current time advances.
We prefer to avoid such obvious inefficiencies.

Note that the issue of how to represent future event
times is orthogonal to the choice of priority queue al-
gorithm. This point deserves elaboration. Rönngren
and Ayani 62 compare the performance of several prior-
ity queue algorithms including the implicit binary heap,
the splay tree, and the calendar queue. Any of these
methods could be combined with the multiscale time
representation we propose. What our approach affects
is the encoding and interpretation of the time value as-
sociated with each event. To distinguish between the
challenge of how to physically handle future event infor-
mation, and the challenge of how to encode and interpret
event times for multiscale simulation, we adopt a new
term. In the context of our approach, a time queue is an
event-tracking data structure that encapsulates both a
priority queue algorithm (i.e. one of those compared by
Rönngren and Ayani 62) and our method for processing
time values associated with different scales.

Our time queue data structure introduces epochs into
the event scheduling process. We define an epoch as
the time period starting at an epoch reference time, or
“epoch date”, and ending at the most distant time point
that can be represented as a positive fixed-point offset
from the reference time. For example, the January 1,
1970 epoch date popularized by C, C++, and Unix is
widely used in conjunction with a 1s precision level and
a signed 32-bit integer multiplier. This convention gives
rise to the so-called “Year 2038 Problem”, the prospect
of widespread system failures coinciding with the end of
the epoch. Incidentally, this is further evidence of the
inadequacy of 32-bit time values.

The epochs we introduce are juxtaposed end on end,
allowing the full extent of a simulation run to be accom-
modated regardless of how much simulated time elapses
or how precisely event times are resolved. Every future
event time is then stored as an offset from the beginning
of its encompassing epoch. We refer to the stored offsets
as planned phases. Planned phases, planned durations,
and epochs are illustrated in Figure 14. Note that all
time points and durations in this diagram are specific
to the leaf scale, regardless of where they are drawn. In
the example, an epoch at the leaf scale coincides with a
single time quantum at the forest scale.

The current epoch contains the current time. In Fig-
ure 14, the current time is 422, and the current epoch
stretches from time 375 to 499. An event scheduled for
time 479 is also in this epoch. The planned duration for
this event is 57 (479 − 422), but will decrease as time
advances. The corresponding planned phase will retain
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Figure 14. The illustrated time queue tracks two planned durations, which are measured relative to the current time (422), by
storing the corresponding planned phases, which are measured relative to the beginnings of epochs. The first planned duration
is within the current epoch (375-499), which contains the current time. The second planned duration is within the next epoch
(500-624), which will eventually become the current epoch. All time points and durations shown are specific to the leaf scale.
Epochs at the leaf scale coincide with time quanta at the forest scale.

its value of 104 (479 − 375) as time advances, which
is why the time queue data structures stores planned
phases internally. Planned phases are converted to and
from planned durations as needed.

The next epoch begins after the current epoch ends. In
Figure 14, the next epoch starts at time 500 and contains
a scheduled event at time 535. Again, the planned phase
is stored because it remains constant as time advances.
Observe that a planned phase in the current epoch is
at least as long as its corresponding planned duration;
in the next epoch, a phase is always shorter than its
planned duration because it is measured from a more
advanced point in time (i.e. time 500 instead of 375).

A compelling feature of this approach is that it is un-
necessary to record which epoch contains each planned
phase. Given only an event’s phase value, one can deter-
mine its associated epoch, its planned duration, and its
time point. The calculation requires the current time t,
the only time point stored by a time queue. Using t, one
computes the epoch phase, the number of time quanta
separating t from the beginning of the current epoch. If
a planned phase is at least the epoch phase, the event is
in the current epoch. If the planned phase is less than
the epoch phase, the event is in the next epoch. Note
that these are the only two cases. Scheduled events can
never precede the current epoch because they would have
already occurred. Likewise, the epoch that begins after
the next epoch is irrelevant, as we impose a limit of one
epoch width on the duration data type used to specify
planned durations. In Figure 14, the epoch width and
planned duration limit are both 53, or 125. The actual
representation uses an epoch width and duration limit
of 10005, As explained in Section 4.3.

Figure 14 shows only events scheduled by models with
a common time precision (leaf-unit precision, in this
case). A number of complications arise when tracking
events scheduled by models with different precision lev-
els. Yet even if all events are handled by the same time
queue instance, it remains possible to store future event
times using planned phases, and to compare these phases
without resorting to arbitrary-precision arithmetic. The
algorithms required to achieve this functionality are pro-
vided in Appendix A.5.

4.2.5. Other event tracking features

In addition to tracking future events, it is often nec-
essary to store and retrieve durations and time points
associated with past events.

To record all past event times as they occur, we de-
fine a relatively simple data structure called the time se-
quence. When an instance of this data structure receives
its first event time as an instance of the time point data
type, it stores the full arbitrary-precision value along
with a zero-valued offset of type duration. When new
event times are added, the structure appends additional
duration-valued offsets from the initial time point. If the
new event time is sufficiently advanced or sufficiently
precise that it cannot be exactly represented with an
offset, then the full time point is recorded along with
a duration of zero. Thereafter, additional event times
are measured from this new time point. Details can be
found in Appendix A.4.

Finally, though discrete-event simulation is character-
ized by the use of a priority queue, theory from Zei-
gler et al. 3 reveals that one additional data structure is
needed to support all applications. A central concept
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Figure 15. Multiscale time representation data types (single border), data structures (double border), and relationships (arrows).

underlying the DEVS formalism is the observation that
certain state transitions depend on the elapsed duration,
the time elapsed since the previous event. We therefore
define a time cache data structure responsible for provid-
ing elapsed durations by tracking the time points of the
previous event for each model instance. This is different
from the time sequence, which can record all event times
and is not optimized for the previous.

Conveniently, the time cache data structure can be de-
signed with ease using the following technique. Instead
of attempting to track a previous event as it recedes into
the past, the idea is to track an imaginary future event
as it becomes progressively more imminent. The previ-
ous event and its imaginary future event are always sepa-
rated by the maximum representable duration, 10005−1
time quanta, so tracking one is as effective as tracking
the other. We track the imaginary future event so that
we may simply re-purpose the time queue data structure.
Thus a time cache encapsulates a time queue; information
about past events is maintained by internally tracking
imaginary future events. More information is provided
in Appendix A.6.

4.3. Representation design

We propose that the features described in Section 4.2
be organized in a computer representation of simulated
time consisting of three data types named scale, duration,
time point, as well as three data structures named time
sequence, time queue, and time cache. All six elements
and their relationships are shown in Figure 15. The sep-
aration of durations and time points was discussed in
Section 4.2.1. The reason we abstract the concept of
scale into its own data type is that it can be reused for
both the duration and time point data types, as well as
distance-related data types in possible future work to-
ward a multiscale representation of space. As previously
discussed in Sections 4.2.4 and 4.2.5, the time sequence,
time queue, and time cache data structure collectively
support the recording of past events and the scheduling
of future events in a discrete-event simulation.

Two mathematical constants, β and η, play an im-
portant role in the representation’s design. The base
constant β is a factor that separates one allowable time
unit from the next. Since the time unit representing a
model’s precision is roughly proportional to the model’s
time scale, we could state that β also separates one scale
from the next. To adhere to Principle 2, β must be 1000,
though other base constants are possible in theory.

The epoch constant η establishes βη as the limiting
multiplier of the duration data type. We use η = 5 for
the following reason. Recall from Section 3.4 an im-
plementation strategy in which an integer-valued multi-
plier is represented using an encapsulated 64-bit floating-
point number. We adopt this technique, and must
therefore choose a limiting multiplier less than 253, or
9,007,199,254,740,992. Yet as explained below, we also
require that this limit be a power of β. The largest value
of 1000η less than 253 is one quadrillion, or 10005. Hence
η = 5, and the duration data type’s fixed-point multiplier
m must satisfy 10−15 < m < 1015.

The decision to use a 1015 multiplier limit instead of
253 is to align a full epoch at one scale with single time
quantum at a larger scale. The alignment of an epoch
with a time quantum occurs when there are exactly η
steps between the two scales. For example, with η = 5,
an epoch at a scale with an attosecond precision level
(1000−6 s) is exactly one millisecond (1000−1 s). The re-
lationship between time quanta and epochs was illus-
trated in Figure 14 with the alternative set of constant
values β = 5 and η = 3. Note that it would be impos-
sible to render a full epoch’s worth of quanta using the
actual β = 1000, η = 5 conventions.

To help make the proposed representation repro-
ducible, a detailed mathematical description of each data
type and data structure is provided in Appendix A. The
appendix uses a unique set of notations in order to distin-
guish the proposed multiscale time value operations from
conventional arithmetic. For example, the scale data
type represents a power of 1000, specifically 1000level for
some integer level , but we use the notation below in or-
der to disallow unnecessary scale-valued operations such
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as the multiplication of two scale values.

olevel {scale (1000level)}

The notation for duration values uses a clock symbol
and clearly shows the multiplier m and precision level.
The precision is represented using the scale data type.

�mou {duration (m ·1000u s)}

The time point notation uses a different clock sym-
bol and also incorporates a scale-valued precision level.
Instead of a single multiplier variable, this data type
features a sequence of n digits di, where 0 ≤ di < 1000.

� [dn−1
n−1

, . . . , d2
2
, d1

1
, d0

0
]ou {time point}

In addition to describing these data types and their
associated operations, Appendix A formalizes the key
algorithms employed by the time sequence, time queue,
and time cache data structures. Appendix B offers sam-
ple code and suggestions for implementing the multiscale
time representation in C++.

5. Modeling and simulation using a multi-
scale time representation

A multiscale time representation has now been proposed,
but how would it impact modeling and simulation? Here
we answer this question. We focus first on issues rele-
vant to modelers, particularly domain experts hoping to
collaborate in the development of multi-domain, multi-
paradigm, and multiscale simulations. We then present
a prototype implementation and its application to the
prediction system model of Section 3.3.

5.1. Implications for multiscale modeling

Modelers are experts in their domains who may have
considerable coding experience, but generally lack a sys-
tems engineer’s familiarity with computer technology
and software engineering practices. Ideally, modelers
would enjoy the benefits of a multiscale time representa-
tion with minimal exposure to its complexity. For this
reason, most modelers should use only the scale and du-
ration data types. The time point data type and the time
sequence, time queue, and time cache data structures are
intended primarily for systems engineers who develop
simulation frameworks and environments. Realistically,
there may be occasions where an expert modeler uses
one of these data structures within a model. But typi-
cally, a model will store and process temporal quantities
using the duration data type.

Aside from a modeler’s direct exposure to the duration
data type, the proposed time representation introduces
a number of considerations pertaining to the modeling
process. In the following, we explain why these consid-
erations arise and how modelers should respond.

5.1.1. Selection of time precision

As emphasized throughout the paper, our approach re-
quires almost every atomic model to have an explicitly
specified time precision. The one exception is that some
atomic models produce only zero or infinite planned du-
rations and have no need for elapsed durations. These
models can be described as having no time scale. They
need not be given any precision level.

Multiscale models are constructed by integrating
atomic models with different precision levels. Interac-
tions among these models are coordinated using multi-
scale time advancement, which truncates every increase
in the current time based on the time precision of the
atomic model scheduling a future event. It turns out
this truncation has no effect following a planned event :
an event scheduled by an instance for itself. A planned
duration can only be shortened following an unplanned
event : an event triggered by an incoming message. The
effect of this truncation is most pronounced when time
is advanced by a single quantum.

Figure 16 depicts a scenario in which the current time
is 449 leaf units. There is a model at the tree-unit pre-
cision level, and an instance of this model is currently
scheduling an event with a planned duration of 1 tree
unit. A single tree unit equals 25 leaf units; hence, un-
der a conventional time accumulation approach, the fu-
ture event would be scheduled at a time of 474 leaf units
(449 + 25). Using multiscale time advancement, how-
ever, the event time is truncated at the model’s precision
level. The event is therefore scheduled at time 450, only
one leaf unit beyond the current time. (Note: the in-
stance’s perceived time increases from 425 to 450, but
the current time advances from 449 to 450.) In effect,
the planned duration suffers a 96% error since the event
is scheduled after 1 leaf unit instead of 25.

In general, if a large-scale model produces planned
durations ∆tp equal to one unit of its precision level, and
if this model is influenced by smaller-scale models, then
temporal rounding errors may approach 100% of ∆tp.
Fortunately, this problem is easily addressed by choosing
a time quantum considerably shorter than the model’s
planned durations. If ∆tp is increased from one quantum
to only two quanta, the maximum error drops to just
under 50%. As a rule of thumb, we recommend that a
model’s time precision be one millionth of its time scale,
rounded down to a base-1000 SI unit. If this guideline
is followed, the situation in Figure 16 will rarely occur.

5.1.2. Limit on planned durations

We turn our attention to the scheduling of future events,
where the key constraint is that every finite planned du-
ration must be less than 1015 time quanta. Thus, while
a model’s time precision should be sufficiently fine to
keep rounding errors well below its scale, an excessively
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Figure 16. A scenario in which an event is scheduled with a planned duration of 1 tree unit, but the event time is truncated due
to multiscale time advancement. The scheduled event occurs only 1 leaf unit into the future.

fine precision level will limit how far into the future one
can schedule events. Let us observe that 1015 is equal
to 106 times 103 times 106. Our rule of thumb attempts
to keep most planned durations in the middle three or-
ders of magnitude, at least 6 orders above the quantum
and at least 6 orders below the 1015 limit. If a model’s
scale is roughly 5s, one chooses a 1µs precision and ac-
cepts 999, 999, 999.999999s (approximately 32 years) as
the furthest duration into the future an event can be
conveniently scheduled.

Although there is a 1015 quanta limit on the schedul-
ing of future events, there is essentially no limit on the
extent of a simulation run. For example, it is possible for
a model to schedule a preemptive event every 5 · (1014)
time quanta, ensuring that the limiting duration of 1015

quanta never expires. With this technique and some
bookkeeping code, the modeler can actually circumvent
the limit and allow events to be scheduled arbitrarily far
in the future. Yet such measures will rarely be necessary,
since 1015 allows sufficient range and precision for most
single-scale models.

5.1.3. Infinite elapsed durations

Arguably the most inconvenient aspect of the proposed
time representation is the prospect of infinite elapsed du-
rations. These occur when (a) an atomic instance enters
a passive state by yielding a planned duration of ∞, (b)
the instance remains undisturbed for at least 1015 time
quanta according to its precision level, and (c) a message
is then received triggering an unplanned event. Infinite
elapsed durations are inconvenient because special cases
may be required to handle them. Fortunately, if model-
ers forget to implement these special cases, there is good
chance their simulations will fail in a noticeable way due
to the tendency for ∞ values to propagate.

Modelers must understand that an infinite elapsed du-
ration means the instance is in a steady state. If in fact
the instance is not in a steady state, the modeler should
not have allowed the instance to remain passive for 1015

or more time quanta. Our definition of steady state is a
situation in which a response to an external stimulus no
longer depends, in any predictable way, on exactly when
the stimulus occurs. Hence when the actual elapsed du-

ration overflows to ∞, no important information is lost
in terms of how the model should behave. For example,
if a state variable y approaches an asymptote ymax, the
modeler can approximate y as either ymax or ymax − ε
for some suitably small ε. On the other hand, if the
steady state happens to be an oscillating pattern, one
option is to choose a phase randomly. Imagine a wheel
that is suddenly stopped after being allowed to spin for
a very long time; its final rotation angle is more-or-less
random. If needed, a modeler can avoid infinite elapsed
durations altogether by scheduling preemptive events ev-
ery 5 ·(1014) time quanta (see Section 5.1.2).

5.1.4. Extremely disparate scales

As previously emphasized, multiscale modeling is accom-
plished by integrating single-scale atomic models with
different precision levels. There is effectively no bound
on the diversity of scales that can be combined. Sup-
pose one simulates the cosmic evolution of the Universe
up to 1038 years when black holes theoretically become
the only stellar-like objects. Suppose he/she then wishes
to resolve molecular effects at representative locations in
this dark, distant future. The overall simulation could
be achieved with perhaps a yottasecond (1024 s) preci-
sion atomic model for the later stages of the Universe,
a yoctosecond (10−24 s) precision atomic model for the
molecular-level effects, and possibly terasecond, second,
and picosecond atomic models to bridge the gap between
these vastly disparate scales. It is unclear whether such
a simulation will ever be undertaken, but comforting to
know that even the most extreme multiscale modeling
efforts need not be hindered by issues related to time
representation. Models involving combinations of sub-
atomic, molecular, biological, geological, and astrophys-
ical time scales can be integrated with relative ease, and
simulated using mostly 64-bit time value operations.

5.2. Prototype simulator and application

The DEVS formalism provides a basis for reusable simu-
lators supporting a compositional style of model develop-
ment3. Due to the generality of the formalism, a DEVS-
based simulator can also serve as a foundation for multi-
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Figure 17. The prediction system model of Section 3.3 with time units specifying each model’s precision levels.

paradigm modeling tools which accommodate a variety
of general-purpose and domain-specific simulation tech-
niques63. Our prototype simulator takes this highly re-
garded approach, and incorporates the proposed repre-
sentation of simulated time. Although we make use of
the existing convention that DEVS models express event
times relative to the current time, every model must now
be extended with a specified time precision. We test the
prototype by applying it to the prediction system model
of Section 3.3. As discussed below, the failures and ex-
treme rounding errors observed when using fixed-point
and floating-point time representations do not surface
with the new simulator.

In reimplementing the prediction system model using
the multiscale time representation, a precision level is
specified for each of the eight atomic models. While we
would generally want to use our rule of thumb (divide
by a million, round down), this application is an unusual
case where the two duration parameters ∆toccurrence and
∆tincident each vary over 10 orders of magnitude. The
need to accommodate these vastly different time scales
forces us to choose particular precision levels. In the case
of the occurrence model, a minimum ∆toccurrence of 10s
suggests a microsecond precision level based on the rule
of thumb, but we choose milliseconds to accommodate
the maximum ∆toccurrence of 1010 s.

Figure 17 indicates the selected time precision for each
atomic model in the prediction system. Models which re-
act instantaneously in simulated time have no time scale,
and thus no time precision. Observe that 27 orders of
magnitude separate the longest simulation durations (i.e.
the 1010 s maximum occurrence duration, multiplied by
102 occurrence-incident pairs) from the finest precision
levels (i.e. femtoseconds, or 10−15 s).

The experimental results for all 100 combinations of
∆toccurrence and ∆tincident are shown in Figure 18. Un-
like the fixed- and floating-point results in Section 3.3,
the simulations neither fail nor deteriorate toward the
top right corner where the scales become disparate. The
results resemble those of the brute force approach in Sec-
tion 3.4. But since each atomic model now has its own
time precision, a wider range of disciplines can now be
accommodated.

Figure 18. Mean accuracy results for the Section 3.3 experi-
ment using the multiscale time representation.

Though the use of 64-bit operations wherever possi-
ble should promote efficiency, an analysis of computa-
tional speed and memory consumption remains as future
work. Further experiments could help answer a number
of performance-related questions. How does the use of
a fixed-point, floating-point, brute force, or multiscale
time representation affect run times for a representative
sample of simulation models? Under what circumstances
do time value operations become significant from an ef-
ficiency perspective in comparison with domain-specific
computations? How can the proposed approach be op-
timized for time and/or space efficiency, and are such
efforts worthwhile? Yet regardless of efficiency-related
considerations, the multiscale time representation is jus-
tifiable as a scalable and domain-neutral strategy for
controlling rounding error while avoiding the need for
any universally accepted precision level. The approach
promotes quality simulation results using conventions
suitable for collaborative modeling efforts.
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6. Conclusions

Scale, as defined in Section 2.1, pertains to the magni-
tudes of distances and durations that appreciably affect
simulation results. It follows that rounding errors in the
timing of events must be small relative to a model’s time
scale. But this requirement may be difficult to satisfy in
a multiscale context if time is represented using standard
32- or 64-bit numbers, as rounding errors proportional to
the longer time scales may distort behavioral patterns at
the shorter time scales. In pursuit of general approaches
for collaborative multiscale modeling, we have examined
the implications of various representations of simulated
time including the multiscale solution introduced in this
paper. This work leads us to the following conclusions:

1. All types of 32-bit time values should be avoided
in discrete-event simulation, except possibly in the
most constrained applications. With 32 bits, only a
narrow range of scales can be supported.

2. Binary floating-point time values are problematic
and should generally be avoided. While floating-
point is often considered the default representation
for real numbers, its distinguishing characteristic is
the fact that rounding errors are proportional to the
magnitude of the represented value. This round-
ing behavior is often desirable, but not in the case
of simulated time. As a simulation progresses, the
current time variable increases, but there is rarely
a reason that errors should increase as well. Errors
associated with floating-point time values can have
a severe impact in multiscale contexts.

3. Fixed-point time values with 64-bit integer multi-
pliers could be considered a näıve approach to rep-
resenting simulated time. One must choose a preci-
sion level based on the anticipated length of a simu-
lation run, then hope that the shortest scales will be
adequately resolved. The most ambitious multiscale
applications may be difficult to accommodate.

4. Fixed-point time values with arbitrary-precision in-
teger multipliers could be considered a brute force
approach to time representation. In this case the
shortest scales determine the precision level, and
computing resources are acquired as needed to ac-
commodate the full length of any simulation run.
Multiscale efforts are supported, but arguably only
within isolated disciplines. Collaboration between
disciplines suffers because modelers are unlikely to
agree on a universal time precision.

5. The solution presented in this paper constitutes a
multiscale approach to the representation of sim-
ulated time. Precision levels specified on a per-
model basis keep temporal rounding errors low rel-
ative to scale, which by definition minimizes the ef-

fects of these errors. Instead of relying on arbitrary-
precision integers throughout the simulation code,
64-bit fixed-point time values are used within mod-
els and wherever possible in the simulator. Collab-
oration among disciplines is promoted, since models
with disparate time scales can be integrated without
the need to agree on any common time precision.

A recipient of the 2013 Nobel Prize in Chemistry
awarded for multiscale modeling, Karplus 64 begins his
lecture with a three-atom simulation developed in the
1960s. This serves as an example of how an early fo-
cus on single-scale simulations, combined with a will-
ingness to collaborate, will ultimately give rise to mul-
tiscale considerations due to the inevitable differences
in scale among models. Thus, if a simulation frame-
work is intended to support the sharing and integration
of models within a growing interdisciplinary community,
one should fully expect multiscale modeling to become
a priority even if it is not emphasized at the outset.

Because time representations are generally shared be-
tween models and simulators, they are difficult to replace
once established in a framework. The fact that OM-
NeT++ switched to a fixed-point approach is a testa-
ment to the deficiencies of floating-point time values. Yet
fixed-point representations are also limited if one’s ulti-
mate hope is to foster collaboration among disciplines.
By incorporating a multiscale representation of simu-
lated time such as the one presented in this paper, a
framework’s time value operations should never become
a limiting factor as multiscale scenarios emerge.

General solutions that address the challenge of mul-
tiscale modeling will complement advances in multi-
domain and multi-paradigm modeling, improving sup-
port for collaboration in systems science. As mentioned
in Section 2.3, a new representation of time is one of
two general solutions to multiscale challenges we find
particularly compelling. The other is a multiscale rep-
resentation of space. Most computer graphics libraries
are based on floating-point spatial coordinates, and tech-
niques such as normalization are used to cope with the
resulting rounding errors. This approach will become
untenable for models combining vastly different spatial
scales. A multiscale alternative might include data types
such as a unit vector with base-2 floating-point com-
ponents (direction), a base-1000 floating-point spatial
scalar (distance), a spatial vector with base-1000 fixed-
point components (position), and an arbitrary-precision
spatial vector to be used only where needed (reference
point). In addition to effective representations of space
and time, general support is needed for domain-neutral
multiscale approaches such as those illustrated in Sec-
tion 2.2. These challenges provide a way forward in ad-
dressing one of the most important bases for heterogene-
ity in the modeling and simulation of complex systems:
a discrepancy in scale.
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Appendix A Representation mathematics

Provided here are the mathematical operations and al-
gorithms associated with the multiscale simulated time
representation, which consists of the scale, duration, and
time point data types, as well as the time sequence, time
queue, and time cache data structures.

A.1 Scale mathematics

The scale data type represents the general concept of
scale as a dimensionless power of 1000. Its primary
role in the multiscale time representation is to specify
a model’s level of time precision as a base-1000 SI unit,
satisfying Principles 1 and 2 of Section 4.1. We imagine
that a scale value could also be used to characterize the
magnitude of distance-valued quantities in a multiscale
representation of space, though this is future work.

To reason mathematically about the scale data type,
we express a scale value using the notation below. The
symbol o represents the factor of 1000 between scales,
and the attribute level is an integer exponent.

olevel {scale (1000level)}

The custom notation offers several advantages over a
conventional expression such as 1000level or βlevel (see

Section 4.3 for the definition of β). The olevel expres-
sion is more compact than 1000level , and unlike βlevel it
clearly indicates the fact that scale has only a single at-
tribute. More importantly, the custom notation allows
us to restrict the set of mathematical operations that can
be performed on scale values. For example, we consider
the product olevel1 ·olevel2 meaningless. However, it is
useful to express the division of one scale by another to
yield a power of 1000.

olevel1

olevel2
= 1000level1−level2

An implementation of the scale data type is described
in Appendix B.1.
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A.2 Duration mathematics

The duration data type represents a quantity of time as
a multiple of a time quantum, where the time quantum
is based on a precision level represented by a value of
type scale. The primary role of duration is to quantify
the simulated time between events in a discrete-event
simulation.

A duration value is expressed as follows, where m is
the multiplier and ou is the precision level.

�mou {duration (m ·1000u s)}

The quantity of time represented is m ·1000u seconds.
Examples of durations are given below.

� 1o0 {1 second}
� 10o0 {10 seconds}
� 10o−1 {10 milliseconds}
� 7158o−2 {7158 microseconds}
�−200o−2 {−200 microseconds}
−� 200o−2 {−200 microseconds}
� 200o1 {200 kiloseconds}

The standard arithmetic operators +, −, ·, and /
are used to express fixed-point operations. The fixed-
point addition (+) and subtraction (−) operations re-
quire both duration operands to have the same precision
level, and the result is always a duration value with the
same precision as the operands. If the resulting multi-
plier is less than 10005 in magnitude, addition and sub-
traction yield exact results.

� 2o0 + � 3o0 {5 seconds}
� 2o0 − � 3o0 {−1 second}

The fixed-point multiplication (·) and division (/) op-
erations always involve one duration operand and one
scalar. In the case of division, the duration must be the
numerator. For both multiplication and division, the
precision level of the resulting duration value is the same
as the duration-valued operand. This essentially means
that the multiplier m of the original duration is multi-
plied or divided by the scalar operand. In the examples
below, no rounding is needed.

5 ·� 100o0 = � 500o0

1
5 ·� 100o0 = � 20o0

� 100o0 · 15 = � 20o0

� 100o0/5 = � 20o0

In the following case, the resulting multiplier is
rounded from 12.5 to 13. A fraction of exactly half the
time quantum is rounded away from zero, though other
rounding conventions are possible.

� 100o0/8 = � 13o0

Comparison operations assume that the duration
operands on both sides could be replaced by their as-
sociated quantities m ·1000u s.

� 2o0 > � 1000o−1

� 2o0 < � 3000o−1

�−8o−4 < �−7o−4

An important consequence is that two or more dura-
tion values may be equal without being the same. For
example, the three values below are equal since they all
represent 1s. Yet the values are distinct since they have
different precision levels.

� 1o0 = � 1000o−1 = � 1000000o−2

The possibility of duration values being equal yet dis-
tinct has significant implications. For example, applying
the same fixed-point operation to the three versions of
1s yields different results.

1
3 ·� 1o0 = � 0o0

1
3 ·� 1000o−1 = � 333o−1

1
3 ·� 1000000o−2 = � 333333o−2

Whereas the = comparison operator tests only equal-
ity, one may use the ≡ operator to indicate that two du-
ration values are equivalent in both multiplier and time
precision.

� 500o−1 + � 500o−1 = � 1o0

� 500o−1 + � 500o−1 ≡ � 1000o−1

If the multiplier of a computed duration reaches or
exceeds the limit of 10005 as a result of a fixed-point
operation, it overflows yielding a positive or negative
infinite duration.

� 999999999999999o2 + � 1o2 = �∞
−1000000 ·� 1000000000o−5 = �−∞

While we regard the duration data type as a fixed-
point representation of time, an implementation effort
revealed the benefits of accommodating floating-point
operations when needed. Taking inspiration from Gold-
berg 42 , we use ⊕, 	, �, and � to indicate floating-point
arithmetic. However, in the case of duration, these are
not base-2 but rather base-1000 operations. Base-1000
floating-point operations support arithmetic between du-
ration values with different precision levels, as in the fol-
lowing examples.

� 3o0 ⊕ � 475o−1 ≡ � 3475o−1

� 1o1 ⊕ � 1o−2 ≡ � 1000000001o−2

� 500o−4 	 � 1o−3 ≡ �−500o−4
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The above examples yield exact results, though
floating-point operations can be used for approximation
as seen below.

1
3 �� 1o0 = � 333333333333333o−5

1
3 �� 1000o−1 = � 333333333333333o−5

� 1000o−1 � 3 = � 333333333333333o−5

Floating-point operations on duration values select the
time precision of the result that achieves the highest ac-
curacy possible given the 10005 multiplier limit and the
base of 1000. If there are multiple resulting precision
levels that would yield the highest achievable accuracy,
then the chosen precision is the one which differs least
from the finest precision among the operands. These
rules allow precision levels to be adjusted to avoid over-
flow, as shown below.

� 999999999999999o2 ⊕ � 1o2

≡ � 1000000000000o3

−1000000�� 1000000000o−5

≡ �−1000000000000o−4

The division of one duration by another is always con-
sidered a floating-point operation, even if the � operator
does not appear. As expressed by the general rule below,
the numerator and denominator may have different pre-
cision levels and the result is a scalar with no prescribed
precision. Implementations should represent the result
using a standard double precision floating-point value.

�m1o
u1

�m2o
u2

= m1
m2
·1000u1−u2 {general rule}

� 1o−1

� 1o0
= 0.001 {example}

Although the floating-point operations may seem con-
venient, simulation frameworks should be designed to
discourage their use. Our multiscale approach relies on
consistent precision levels within atomic models, and re-
quires exact addition and subtraction in the simulator.
The fixed-point operations have these properties.

There is one last detail concerning the mathematics
of the duration data type. We have seen that a positive
or negative infinite duration has no time precision, as it
is not needed. Intuitively, a duration of zero should not
require a precision level either. Yet we do in fact include
the time precision for zero durations. Although 0s, 0ms,
and 0µs all represent the same quantity of simulated
time, the associated precision levels are significant in
that they may affect subsequent fixed-point operations.

�∞ {infinite duration (no time precision)}
�−∞ {negative infinite duration}
� 0o0 {zero seconds}
� 0o−1 {zero milliseconds}
� 0o−2 {zero microseconds}

Our implementation of the duration data type makes
use of a C++11 feature allowing SI units to appear as
part of the syntax. For example, the code 5 ms represents
5 milliseconds. Further implementation-related details
are provided in Appendix B.2.

A.3 Time point mathematics

The time point data type represents points in simulated
time. It is intended for use in simulator code where, as
emphasized by Principle 4 of Section 4.1, software com-
plexity is tolerated to a greater extent than in model
code. The main purpose of the time point is to describe
event times as offsets from a common reference point.
Because the reference point is arbitrary, it makes lit-
tle sense to perform addition or subtraction on pairs of
time point instances, not to mention multiplication or
division. Rather, the key operations involve either per-
turbing a time point instance using a duration value, or
obtaining a duration value expressing the difference be-
tween two time point instances.

A time point instance contains an arbitrary-precision
integer in the form of a vector of n base-1000 digits
d0 . . . dn−1, plus a scale value representing the time pre-
cision associated with the least significant digit. The
time point notation is shown below.

� [dn−1
n−1

, . . . , d2
2
, d1

1
, d0

0
]ou {time point}

Underneath each digit is a corresponding index. The
little-endian convention is used, so the least significant
digit d0 has the smallest index. Each digit is an integer
in the range 0 ≤ di < 1000, and the represented time
offset in seconds is given by the following expression.∑

i∈{0,...,n−1}

di ·1000u+i {offset in seconds}

Below are several examples of time point instances.
The meaning of each expression is shown in hours (HH),
minutes (MM), seconds (SS), and fractions of sections
(xx . . .): HH:MM:SS.xxxxxx. The empty vector, shown

as � [ ]o0, represents 00:00:00.

� [ ]o0 {00:00:00}
� [45

0
]o0 {00:00:45}

� [45
1
, 1

0
]o−1 {00:00:45.001}

� [45
2
, 1

1
, 92

0
]o−2 {00:00:45.001092}

� [645
2
, 1

1
, 92

0
]o−2 {00:10:45.001092}

� [504
3
, 645

2
, 1

1
, 92

0
]o−2 {140:10:45.001092}

Unlike a floating-point value, a time point instance can
represent an extremely large magnitude yet still resolve
arbitrarily small differences. For example, the sum of a
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yettasecond (1024 s) and a yoctosecond (10−24 s) can be
exactly represented.

� [ 1
16
, 0
15
, 0
14
, . . . , 0

2
, 0

1
, 1

0
]o−8 {1024 s + 10−24 s}

A finite duration value can be added to or subtracted
from a time point instance. The result is always exact, re-
gardless of the magnitude or precision of either operand.
Note that the vector of digits in the resulting time point
may expand to accommodate any combination of scales.

� [ ]o0 + � 5000388o−3

= � [5
2
, 0

1
, 388

0
]o−3

� [5
2
, 0

1
, 388

0
]o−3 + � 1777o−4

= � [5
3
, 0

2
, 389

1
, 777

0
]o−4

The vector of digits also shrinks if possible. Any zero
digits on either end are removed. This may result in a
coarsening of the time precision, as in the second exam-
ple below.

� [5
3
, 600

2
, 280

1
, 777

0
]o−4 − � 5o−1

= � [600
2
, 280

1
, 777

0
]o−4

� [600
2
, 280

1
, 777

0
]o−4 + � 223o−4

= � [600
1
, 281

0
]o−3

When the time point data type is used in a simulation
to express the current point in simulated time, we do not
use straight-forward addition operations to advance the
time point instance. Rather, we apply multiscale time
advancement. Given a time point instance t and a finite,
nonnegative duration value �mou, multiscale time ad-
vancement is denoted t . �mou. If the advancement
duration is zero (m = 0), the result is same as the origi-
nal time point. If the duration is positive, the result is a
time point instance that is similar to t+�mou except
truncated at the precision level of the duration. Essen-
tially, all digits less significant than ou are discarded.

Advancing equal time point instances by equal dura-
tions may yield different outcomes if the durations have
different precision levels. This effect is shown in the ex-
amples below. Note that the duration is equal to 1150ms
in all three cases.

� [72
3
, 800

2
, 444

1
, 321

0
]o−3 . � 1150000000o−3

= � [73
3
, 950

2
, 444

1
, 321

0
]o−3

� [72
3
, 800

2
, 444

1
, 321

0
]o−3 . � 1150000o−2

= � [73
2
, 950

1
, 444

0
]o−2

� [72
3
, 800

2
, 444

1
, 321

0
]o−3 . � 1150o−1

= � [73
1
, 950

0
]o−1

There are two ways to measure the difference between
two time point instances. The first is regular subtraction,
using the − operator. The second is an approximation of
subtraction we refer to as a gap operation and express
using 	. The rational for providing these two similar
operations is that they both a yield duration value, and
the duration data type cannot always represent the exact
result. In some cases we are willing to approximate the
difference between two time point instances, so we use
one operation; sometimes we are not willing to employ
approximation, so we use the other operation.

If the exact difference between two time points can be
expressed with a multiplier less than 10005, then − and
	 produce the same result.

� [31
2
, 775

1
100

0
]o−2 − � [1

1
, 170

0
]o−1

= � 30605100o−2

� [31
2
, 775

1
100

0
]o−2 	 � [1

1
, 170

0
]o−1

= � 30605100o−2

Below are two more examples of − and 	 producing
the same result. Although the initial time point spans
more than 10005 quanta, the subtraction eliminates a
digit.

� [7
5
, 3

4
, 5

3
, 6

2
, 2

1
, 9

0
]o−5 − � [7

0
]o0

= � 3005006002009o−5

� [7
5
, 3

4
, 5

3
, 6

2
, 2

1
, 9

0
]o−5 	 � [7

0
]o0

= � 3005006002009o−5

If the exact difference between the time points cannot
be represented with a multiplier less than 10005, sub-
traction yields an infinite duration whereas the gap op-
eration produces an approximation. In the 	 operation
below, for example, the result is off by 9fs.

� [7
5
, 3

4
, 5

3
, 6

2
, 2

1
, 9

0
]o−5 − � [6

0
]o0

= �∞

� [7
5
, 3

4
, 5

3
, 6

2
, 2

1
, 9

0
]o−5 	 � [6

0
]o0

= � 1003005006002o−4

We require the result of a gap operation to be within
a single time quantum of the resulting duration value.
Consider the formulas below, which suggest different re-
sults for the same 	 operation. The first result (=) has
an error of 0.2fs. It is the best possible approximation,
and the error is less than the 1fs time quantum of the
resulting duration. The second result (≈) has a much
larger error of 2.8fs. It is still acceptable, however, since
the time quantum of the result is now 1ps. The third
result (6=) has an error of 1.8fs. Although this is a closer
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approximation than the second result, it is invalid since
the error is not less than the resulting duration’s time
quantum of 1fs.

� [1
0
]o0 	 � [2800

0
]o−6

= � 999999999999997o−5

� [1
0
]o0 	 � [2800

0
]o−6

≈ � 100000000000o−4

� [1
0
]o0 	 � [2800

0
]o−6

6= � 999999999999999o−5

{exact : 1s− 2800as = 999999999999997200as}

There is actually a second rule concerning 	—a some-
what obvious rule—which is that tA 	 tB must never be
approximated as zero if time points tA and tB differ.

The above rules concerning gap operations ensure that
multiscale time advancement has a convenient property.
Suppose we have time point instances tA and tB, where
tA < tB. Also suppose that we introduce a mutable
variable t, and assign it an initial value of tA. If we
repeatedly advance t toward tB using the assignment
t ← t . (tB 	 t), then t will eventually reach tB.
In practice, only one or two iterations will be required,
but the important point is that there exists a mechanism
to advance any time point to a future time point.

Taking the rules a step further, the gap operation
should be implemented such that the resulting duration
value’s precision is always the one that yields the highest
achievable degree of accuracy while satisfying the above
requirements. If there are still multiple levels to choose
from, one should select the level closest to the finest pre-
cision among the operands. If followed, these additional
conventions will help standardize multiscale time value
operations.

Appendix B.3 outlines how the data structure can be
implemented in C++.

A.4 Time sequence mathematics

The time sequence data structure stores a set of unique
time points that are appended in increasing order. The
structure’s primary role is to aid in the recording of sim-
ulation results. For example, the recorded time points
may represent event times or the endpoints of time se-
ries segments. A simple vector of time point instances
would fulfill the same role, but what distinguishes a time
sequence is that where possible, time points are stored
using duration values to save memory. The fact that ex-
act time points are recorded satisfies Principle 6 of Sec-
tion 4.1, while the use of 64-bit duration values addresses
the efficiency considerations of Principle 7.

Suppose one wishes to store time points tA, tB, and
tC, defined below.

tA = � [5
0
]o−2

tB = � [5
3
, 0

2
, 0

1
, 72

0
]o−5

tC = � [3
6
, 600

5
, 0

4
, 5

3
, 0

2
, 0

1
, 72

0
]o−5

The resulting time sequence instance would store tA
as a full time point instance, then attempt to record tB
and tC as offsets from tA. This is possible in the case of
tB, since tB − tA can be represented as a duration value.
However tC−tA cannot be represented as a duration since
the multiplier would not be less than 10005:

tB − tA = � 72o−5

tC − tA = �∞

In order to record tC, it is necessary to store a sec-
ond time point instance. Ultimately, the following infor-
mation would be stored: a sequence of offsets (of type
duration), and a typically shorter sequence of partitions.
Each partition would contain two elements: the index of
the first of a group of offsets which belong to the par-
tition, and the time point instance to which the offsets
must be added. For example, the sequence tA, tB, tC
would be represented using the three offsets shown be-
low, which are grouped into partitions [0, tA] and [2, tC].

� 0o0

0
,� 72o−5

1︸ ︷︷ ︸
[0, tA]

,� 0o0

2︸ ︷︷ ︸
[2, tC]

The following information would be stored:[
� 0o0,� 72o−5,� 0o0

]
{offsets}

[
0,� [5

0
]o−2

]
{partition[0]}

[
2,� [3

6
, 600

5
, 0

4
, 5

3
, 0

2
, 0

1
, 72

0
]o−5

]
{partition[1]}

Algorithm 1 formalizes the procedure for appending a
time point t onto a time sequence. The key decision is
on line 11, where the algorithm determines if t can be
appended as a duration offset ∆t (line 12) or if a new
partition is needed (lines 14 and 15).

The opposing procedure, obtaining the time point at a
given index i, is relatively straightforward. One may use
a binary search to identify the encompassing partition
[ip, tp], after which tp+ offsets[i] yields the time point in
question.

For most applications, a time sequence instance will
have only a single partition. The performance penalty
of storing and searching through arbitrary-precision time
point instances should surface only in multiscale contexts
where the added complexity is justified.
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Algorithm 1 Time Sequence Append

1: function append(time sequence, t)
2: [partitions, offsets]← time sequence
3: np ← #partitions
4: n← #offsets
5: ∆t←�∞
6: if np > 0 then
7: [i, ti]← partitions[np − 1]
8: ∆t← t− ti
9: ASSERT(∆t > offsets[n− 1])

10: end if
11: if ∆t <∞ then
12: offsets ← offsets ‖ [∆t]
13: else
14: partitions ← partitions ‖ [n, t]

15: offsets ← offsets ‖ [� 0o0 ]
16: end if
17: return [partitions, offsets]
18: end function

The time sequence data structure could be modified to
allow the removal of recently added time points, which
would support roll-back operations in optimistic parallel
simulation. Insertions and removals in the middle of a se-
quence are not possible unless the underlying algorithm
is replaced. Fortunately, these operations are rarely en-
countered in discrete-event simulation, since any alter-
ation in behavior at time t is likely to invalidate results
obtained later than t.

Appendix B.4 shows how custom iterators can be in-
corporated into a C++ implementation of the time se-
quence data structure, and how the structure supports
a relational approach to storing simulation results.

A.5 Time queue mathematics

The time queue data structure stores the current point
in simulated time, and keeps track of future time points
when events are scheduled to occur. It is the most so-
phisticated element of the proposed time representation.
The time queue ensures each atomic model perceives
time according to its own precision level (Principle 5,
Section 4.1). Yet being an element of the simulator, it
maintains exact timing information (Principle 6).

The time queue tracks future event times not as time
point instances, but rather as duration values (Princi-
ple 7). It is similar to the time sequence in this regard,
providing arbitrary precision despite using a memory-
efficient representation for internally stored event times.
However, the time queue solves a considerably more dif-
ficult problem. First, future event times may be added
to the queue in any order, provided they do not pre-
cede the current time. Second, future event times may
also be canceled before they have a chance to occur.
Third, numerous comparisons between event times are
needed as part of the searching and sorting inherent in

any priority queue; these comparison operations must
be performed efficiently without allocating memory in
the form of extra time point digits. As explained in Sec-
tion 4.2.4, our solution involves tracking every event time
as a planned phase: an offset from the reference point
at the beginning of an encompassing epoch. We use the
term “phase” as a shorthand for “planned phase”. This
concept, which pertains to scheduled events, must not
to be confused with the “scale phase” or “epoch phase”
quantities defined below, which pertain to the current
time.

The key to the approach is the conversion between
planned durations and phases. To schedule an event, a
planned duration must be converted into a phase to be
stored in the queue. To advance time to the most im-
minent scheduled event, the stored phase must be con-
verted into a planned duration. Let us formalize these
conversions given a current time t and a scale of interest
ou. We start by selecting notations for two quantities:

〈t〉
o
u {scale phase}

〈t〉o
u+η

o
u {epoch phase}

The scale phase is essentially the base-1000 digit of t
at the scale of interest, or zero if no digit exists at that
scale. This definition assumes t is never negative, as
otherwise some arithmetic is needed such that the offset
represented by the digit is measured away from −∞ as
opposed to zero. As defined in Section 4.2.4, the epoch
phase is the number of time quanta separating t from
the beginning of the current epoch. With β = 1000 and
η = 5 (see Section 4.3), the two quantities are bounded
as follows:

0 ≤ 〈t〉
o
u < β

0 ≤ 〈t〉o
u+η

o
u < βη

The epoch phase can be derived from scale phases:

〈t〉o
u+η

o
u =

∑
i∈{0,...,η−1}

βi · 〈t〉
o
u+i

The procedure for converting a planned duration ∆t
into a planned phase ∆tφ is given in Algorithm 2. The
decision point on line 4 checks whether the event is in
the next epoch instead of the current one.

Algorithm 3 converts a planned phase ∆tφ into a
planned duration ∆t. Line 4 again checks whether the
event is in the next epoch.

Note that the multipliers m and mφ and the epoch
phase in Algorithms 2 and 3 are regular integers, not
special data types. Hence the addition and subtraction
operations involving these variables are just standard
arithmetic operations which require no rounding.
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Figure 19. The time queue shown features one scheduled event at each of the four scales. As a result of multiscale time
advancement, scheduled event times do not necessarily adhere to the order implied by their respective planned durations. Note
that in general, a time queue can have multiple scheduled events at each scale.

Algorithm 2 Basic Conversion to Phase

1: function phase from duration(t, ∆t)

2: �mou ← ∆t

3: mφ ← 〈t〉o
u+5

o
u + m

4: if mφ ≥ 10005 then
5: mφ ← mφ − 10005

6: end if
7: ∆tφ ←�mφo

u

8: return ∆tφ
9: end function

Algorithm 3 Basic Conversion to Duration

1: function duration from phase(t, ∆tφ)

2: �mφo
u ← ∆tφ

3: m← mφ − 〈t〉o
u+5

o
u

4: if m < 0 then
5: m← m + 10005

6: end if
7: ∆t←�mou

8: return ∆t
9: end function

Until now we have assumed a common time precision
for all planned durations used to schedule events. Yet
the objective is to support atomic models with diverse
time scales. The precision levels of the planned dura-
tions may therefore differ, and so the time queue must
acknowledge the existence of not just two epochs (one
“current” and one “next”), but several distinct pairs of
epochs (one “current” and one “next” at each scale).

The incorporation of multiple precision levels into a
single queue is further complicated by the fact that a
planned duration ∆tp operates on the current time t us-
ing multiscale time advancement. The single-scale sce-
nario described in Figure 14 of Section 4.2.4 suggests
that t+ ∆tp gives the event time, but this is only true if
there is one time precision. The general expression for
each event time is in fact t .∆tp. As a result, the actual
order of scheduled event times may be inconsistent with
their planned durations.

Consider the scenario in Figure 19. As in the Sec-
tion 4.2.4 scenario, the current time is 422 leaf units,
but here it is shown as a jagged line to reflect the inclu-

sion of durations expressed in branch, tree, and forest
units. Observe that the forest and tree scales feature
scheduled events with equal planned durations (1 for-
est unit = 5 tree units). Surprisingly, the forest-scale
event is scheduled at an earlier time. The branch scale
event has a shorter ∆tp (22 branch units < 5 tree units),
but is scheduled at a later time. Finally, the tree- and
leaf-scale events are both scheduled for time 525 despite
having different planned durations.

Although scenarios involving multiple precision levels
are conceptually intimidating, only a few enhancements
are needed to make the time queue function properly.
First, in order to identify and properly handle simulta-
neous events, we need to ensure that every unique future
event time has a unique planned phase. We accomplish
this by coarsening the phase; the time precision is re-
peatedly increased by one scale so long as the event time
does not suffer any rounding error. In Figure 19, the 103
leaf unit event has a time of 525, which can be coarsened
to the tree scale without losing precision. This leaf-scale
event is then stored with the 5 tree unit event as a group
of two simultaneous events. With such groups identified,
any of a number of simultaneous event handling tech-
niques can be adopted. A tie-breaking function can be
used, as in the classic version of the DEVS formalism,
or the grouped events can be executed concurrently, as
in a variant of that formalism called Parallel DEVS3.

For this first enhancement, Algorithm 2 is replaced
by Algorithm 4 when converting planned durations into
planned phases. The key difference is the loop on line 10
of Algorithm 4, which repeatedly coarsens the precision
by one scale so long as no accuracy is lost. Once accuracy
would be lost, the maximized flag is set and the loop is
terminated. This ensures the coarsest possible prevision
level is used to store each future event time.

Algorithm 4 is complicated by two special cases. If a
scheduled event occurs at t = 0, then the phase precision
can be coarsened indefinitely. The unbounded flag de-
tects this case, and on line 30 the default precision level
oudefault is adopted for the planned phase. It is safe to
use udefault = 0 if the simulation starts at time zero. The
other special case is a planned duration of zero, which
is problematic if its precision level is too coarse. We
detect this case on line 4, and on line 5 we re-initialize



Goldstein et al. 35

Algorithm 4 Enhanced Conversion to Phase

1: function phase from duration(t, ∆t)

2: � [dn−1
n−1

, . . . , d0
0

]out ← t

3: �mou ← ∆t
4: if m = 0 then
5: u← ut
6: end if

7: mφ ← 〈t〉o
u+5

o
u + m

8: maximized ← ⊥
9: unbounded ← ⊥

10: while ¬maximized ∧ ¬unbounded do
11: carry ← 0
12: if mφ ≥ 10005 then
13: mφ ← mφ − 10005

14: carry ← 1
15: end if
16: if MOD(mφ, 1000) 6= 0 then
17: maximized ← >
18: else if (mφ = 0) ∧ (u + 5 ≥ ut + n) then
19: if carry = 0 then
20: unbounded ← >
21: end if
22: end if
23: if ¬maximized ∧ ¬unbounded then
24: mφ ← mφ/1000

25: mφ ← mφ + 10004 ·
(
〈t〉
o
u+5 + carry

)
26: u← u + 1
27: end if
28: end while
29: if unbounded then
30: u← udefault

31: end if
32: ∆tφ ←�mφo

u

33: return ∆tφ
34: end function

the time precision to that of the current time. It will
then be coarsened, but the maximized flag will prevent
it from becoming coarser than the phases of other events
scheduled for the same time.

The second time queue enhancement is a means of
comparing planned phases with different precision levels.
The näıve approach is to simply convert every phase into
a time point instance, but this would likely sacrifice the
efficiency gains that motivated the use of phases in the
first place. Instead, we need a fixed-memory algorithm
for comparing two planned phases based on the future
event times they represent. Given two planned phases
with different precision levels, the method for sorting
their respective future event times is as follows.

1. Convert both planned phases into planned dura-
tions using Algorithm 3.

2. If one planned duration has a coarser time precision
than the other, refine it until the precision levels
match.

3. After refinement, the shorter planned duration cor-
responds to the more imminent future event.

The operation in Step 2 can be achieved using Al-
gorithm 5, which refines one planned duration so that
its relatively coarse time precision ou matches another
planned duration’s precision ourefined . As usual, the cur-
rent time t plays a critical role.

Algorithm 5 Planned Duration Refinement

1: function refined duration(t, ∆t, urefined)

2: �mou ← ∆t
3: if m > 0 then
4: while (m < 10005) ∧ (u ≥ urefined) do
5: m← 1000 ·m− 〈t〉

o
u

6: u← u− 1
7: end while
8: end if
9: ∆t′ ←�∞

10: if m < 10005 then
11: ∆t′ ←�mourefined

12: end if
13: return ∆t′

14: end function

The final enhancement to support multiple scales al-
lows one to take an event’s planned duration ∆t, and
express it in the precision level ourescaled at which the
event was originally scheduled. The first step is to use
Algorithm 3 to convert the stored phase into the planned
duration ∆t. Algorithm 6 then completes the operation.
Under normal circumstances, the phase will be at least
as coarse asourescaled , and in this case line 5 re-purposes a
function we have already defined. But for an event time
of zero, the planned phase may not be coarse enough due
to line 30 of Algorithm 4. In that case, the initial value
on line 3 of Algorithm 6 will ultimately be returned.

Algorithm 6 Planned Duration Rescaling

1: function rescaled duration(t, ∆t, urescaled)

2: �mou ← ∆t
3: ∆t′ ←�mourescaled

4: if u ≤ urescaled then
5: ∆t′ ← REFINED DURATION(t,∆t, urescaled)
6: end if
7: return ∆t′

8: end function

The methods and algorithms above (a) allow future
events to be scheduled using planned durations featuring
different precision levels, (b) allow the event times to be
stored using phase durations that need not change as
time advances, (c) allow the event times to be compared
without constructing the corresponding time points, and
(d) allow an event’s planned duration to be expressed at
its original precision level. This is all that is needed
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to incorporate vastly different time scales into a single
queue of future events.

To implement the time queue data structure, the C++
functions described in Appendix B.5 proved useful.

A.6 Time cache mathematics

One of the key insights underlying the DEVS formalism
is the idea that the post-event state of a model instance
may depend not only on the previous state, but possibly
also on the duration of time elapsed since the previous
event3. Thus if a simulation framework is to be as gen-
eral as possible, a mechanism is needed to store and re-
trieve elapsed durations. The time cache data structure
fulfills this role, providing elapsed durations by tracking
previous events. It can be regarded as the opposite of
the time queue, which tracks future events and provides
planned durations.

Recall from Section 4.2.4 that for efficiency reasons,
we dismissed the idea of storing many arbitrary-precision
time point instances in the time queue. We want to min-
imize arbitrary-precision arithmetic in the time cache
as well. Also recall that the time queue does not store
planned durations directly, for then they would all need
to be decreased whenever the current time advances.
Similarly, the time cache should not store elapsed du-
rations directly, as they would all need to be increased
at every time advancement. Recall that the time queue
works by storing planned phases measured from the be-
ginning of a relevant epoch. A similar mechanism is
needed for the time cache.

Fortunately, as explained in Section 4.2.5, the time
cache data structure can be conveniently implemented
by encapsulating and re-purposing the time queue. The
idea is to track an imaginary future event instead of the
actual past event. The actual event and its imaginary
counterpart are always separated by the maximum rep-
resentable duration, � (10005 − 1)ou, so it is a trivial
matter to derive the time point of one from the time
point of the other.

The mathematics underlying the time cache is as fol-
lows. Let ∆t be the elapsed duration, measured between
the previous event and the current time. Let ∆t̃ be the
imaginary planned duration, measured between the cur-
rent time and the imaginary future event in the encap-
sulated time queue. We focus on a model instance with
a time precision of ou. When the instance undergoes
an event, that event becomes a past event with a cur-
rent elapsed duration of zero, or� 0ou. The imaginary
planned duration ∆t̃ is then initialized as follows with
the maximum multiplier of 10005 − 1.

∆t = � 0ou ⇒ ∆t̃ = � (10005 − 1)ou

As time passes, the imaginary planned duration de-
creases. Suppose that the multiplier is m̃ at some point

in time. If the elapsed duration ∆t is then needed, it is
calculated according to the formula below.

∆t̃ = � m̃ou ⇒ ∆t = � (10005 − 1− m̃)ou

An imaginary future event is terminated in any of
three circumstances. First, the simulation may end, in
which case the imaginary event is no longer needed. Sec-
ond, the instance may undergo another event, which pro-
duces a new imaginary event, which replaces the existing
one. Third, the current time may surpass the imaginary
future event, meaning that the elapsed duration has in-
creased beyond the maximum representable duration of
10005−1 time quanta. In this last case, the imaginary fu-
ture event is removed from the encapsulated time queue,
and the corresponding past event is no longer tracked.
If the elapsed duration is then needed for that model
instance, it is reported as �∞. This is the mechanism
by which infinite elapsed duration arise. As discussed
in Section 5.1.3, an elapsed duration of �∞ means the
model instance is in a steady state; otherwise, the mod-
eler should not have allowed the instance to remain pas-
sive for 1015 or more time quanta.

A C++ implementation of the time cache data struc-
ture is briefly outlined in Appendix B.6.

Appendix B Representation implementa-
tion

The multiscale time representation consists of the six
elements described in Section 4 and Appendix A: scale,
duration, time point, time sequence, time queue, and time
cache. The implementation of each element is outlined
here with the aid of simplified C++11 code listings from
our prototype simulator.

B.1 Scale implementation

In C++, the scale data type of Appendix A.1 is eas-
ily implemented as a scale class encapsulating the level
attribute as the integer level . The sample code be-
low is a simplified version of the class declaration in our
implementation. Comparison operators, string conver-
sion functions, and selected constexpr qualifiers have been
omitted.

1 class scale

2 {

3 public:

4 constexpr scale(int64 level);

5

6 int64 level() const;

7

8 scale& operator ++();

9 scale& operator --();

10 scale& operator +=( int64);

11 scale& operator -=( int64);

12

13 scale operator +() const;
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14 scale operator -() const;

15

16 scale operator +( int64) const;

17 scale operator -( int64) const;

18 int64 operator -( scale) const;

19 float64 operator /( scale) const;

20

21 private:

22 int8 level_;

23 };

Instead of constructing a scale value by invoking the
constructor directly, the programmer may simply use
one of the pre-defined values below.

1 constexpr scale yocto = scale (-8);

2 constexpr scale zepto = scale (-7);

3 constexpr scale atto = scale(-6);

4 constexpr scale femto = scale (-5);

5 constexpr scale pico = scale(-4);

6 constexpr scale nano = scale(-3);

7 constexpr scale micro = scale (-2);

8 constexpr scale milli = scale (-1);

9 constexpr scale unit = scale (0);

10 constexpr scale kilo = scale (1);

11 constexpr scale mega = scale (2);

12 constexpr scale giga = scale (3);

13 constexpr scale tera = scale (4);

14 constexpr scale peta = scale (5);

15 constexpr scale exa = scale (6);

16 constexpr scale zetta = scale (7);

17 constexpr scale yotta = scale (8);

Scales smaller than yocto (1000−8) or larger than
yetta (10008) must be obtained via the constructor (e.g.
scale(-9)). The smallest and largest possible scales are
determined by the integer data type encapsulated by
scale. Observe that on line 22 of the class declaration,
level is stored as a signed 8-bit integer which accom-
modates all integers from -128 through 127. At the time
of writing, it is difficult to imagine a need for scales
smaller than 1000−128 or larger than 1000127, regardless
of whether time or space is the dimension of interest.
Nevertheless, a larger integer data type could be chosen
should the need arise.

Some operations are redundant in a mathematical
context, yet convenient in a programming context. In
mathematical notation, we disallow olevel1 + 1 as one
can always write olevel1+1. In the code, assuming s is
an instance of scale, an expression such as s + 1 is a con-
venient alternative to scale(s.level() + 1). We therefore
include various addition and subtraction operators in the
scale class, all of which are applied to the level member
variable. The division operator still behaves according
to the mathematical operation, approximating the ratio
of the represented powers of 1000. Examples of these
operations are shown below.

1 nano + 4 // kilo

2 tera - mega // 2

3 micro - 3 // femto

4 1 + milli // unit

5 milli/pico // 1000000000

B.2 Duration implementation

A C++ implementation of the Appendix A.2 duration
data type is outlined below. Selected constexpr qualifiers,
and a number of member functions including comparison
operators, are not shown.

1 class duration

2 {

3 public:

4 constexpr duration(int64 multiplier ,

5 scale precision);

6

7 bool finite () const;

8 int64 multiplier () const;

9 scale precision () const;

10 bool fixed() const;

11

12 duration fixed_at(scale) const;

13 duration rescaled(scale) const;

14 duration refined () const;

15 duration coarsened () const;

16 duration unfixed () const;

17

18 duration& operator +=( duration);

19 duration& operator -=( duration);

20 duration& operator *=( float64);

21 duration& operator /=( float64);

22

23 duration operator +() const;

24 duration operator -() const;

25

26 duration operator +( duration) const;

27 duration operator -( duration) const;

28

29 duration operator *( float64) const;

30 duration operator /( float64) const;

31

32 float64 operator /( duration) const;

33

34 private:

35 float64 multiplier_;

36 scale precision_;

37 bool fixed_;

38 };

A duration value may be obtained using the construc-
tor, or alternatively a user-defined literal as permitted
by C++11 and subsequent standards of the program-
ming language. The user-defined literal option requires
the exact value to be known at compile time. In addi-
tion, the precision level can be no finer than yocto and
no coarser than yetta. Examples of duration values ex-
pressed as user-defined literals are below.

1 1_s // duration (1, unit)

2 1_min // duration (60, unit)

3 1_hr // duration (3600 , unit)

4 1_day // duration (86400 , unit)

5 1_yr // duration (31536000 , unit)

6

7 5_ys // duration (5, yocto)

8 5_zs // duration (5, zepto)

9 5_as // duration (5, atto)

10 5_fs // duration (5, femto)

11 5_ps // duration (5, pico)

12 5_ns // duration (5, nano)

13 5_us // duration (5, micro)



38 Multiscale Representation of Simulated Time

14 5_ms // duration (5, milli)

15 5_ks // duration (5, kilo)

16 5_Ms // duration (5, mega)

17 5_Gs // duration (5, giga)

18 5_Ts // duration (5, tera)

19 5_Ps // duration (5, peta)

20 5_Es // duration (5, exa)

21 5_Zs // duration (5, zetta)

22 5_Ys // duration (5, yetta)

Recall from Section 3.4 the implementation strategy
in which a 64-bit binary floating-point number is en-
capsulated in a fixed-point time class. This strategy
is adopted in the duration class: multiplier is of type
float64, though the member functions ensure that it is
rounded to an integer value as needed following every
operation. As mentioned in Section 4.3, the 10005 limit
is chosen as the largest power of 1000 less than 253, the
point at which float64 ceases to exactly represent all in-
tegers. The use of the float64 type allows multiplier to
be either positive or negative infinity, supporting infinite
durations. The finite() member function allows one to
check that a duration value is not infinite.

Recall from Appendix A.2 that the mathematical de-
scription of duration values involves both fixed-point and
base-1000 floating-point operations. These operations
were denoted +, −, ·, and / (fixed-point), and ⊕, 	, �,
and � (floating-point). Yet the duration class has only
one set of operators +, -, *, and /. To use these C++
operators for both fixed- and floating-point operations,
we encapsulate a flag fixed that determines their round-
ing behavior. Thus every duration value is either fixed,
in which case its time precision is preserved through op-
erations; or unfixed, in which case the resulting duration

value’s precision may be altered to minimize rounding
error.

By default, duration values are unfixed, which makes
it easy to express durations using combinations of mul-
tiples of base-1000 SI units. Consider the expression
3 s + 475 ms. If the operands were fixed, this expression
would raise an error since the left-hand side is in seconds
whereas the right-hand side is in milliseconds. But be-
cause duration values are unfixed by default, 3 s + 475 ms

is equivalent to 3475 ms.

The fixed at(scale) member function maintains the
expressed quantity of time, if possible, but fixes the time
precision. The following expressions illustrate the effect
of this operation.

1 4_s + 10_ms // 4010 _ms

2 (4_s + 10_ms)/4 // 1002500 _us

3

4 (4_s + 10_ms).fixed_at(milli)/4

5 // 1003 _ms

6 (4_s + 10_ms).fixed_at(micro)/4

7 // 1002500 _us

On line 1 above, an unfixed duration value is created
at millisecond precision. The same value is divided by
4 on line 2. Because the values are unfixed, the duration

value resulting from the division has its time precision
automatically refined to microseconds, which happens to
produce the exact result. On line 4, the original expres-
sion is fixed and then divided by 4. Since the resulting
duration value must remain in milliseconds, the result is
rounded off. If the original expression is instead fixed at
microseconds, as on line 6, an exact result is achieved.

The duration class includes a number of member func-
tions related to precision. The rescaled(scale) function
is almost identical to fixed at, producing a duration value
with the specified precision level. The difference is that
rescaled neither fixes nor unfixes the time precision of the
result. The member functions refined() and coarsened()

are similar to rescale, but automatically select the finest
or coarsest possible precision level that does not alter the
represented duration. The unfixed() method produces an
unfixed but otherwise equivalent duration value.

A key property of fixed duration values is that their
precision levels propagate. Specifically, if an operation
involves one fixed duration fixed dt and one unfixed du-
ration unfixed dt, the result is generally a fixed duration
with the time precision fixed dt.precision(). This prop-
agation of fixed precision levels is useful because, within
an atomic model, it promotes adherence to the model’s
specified time quantum. Our assumption is that nearly
all duration values produced within an atomic model in-
stance depend in part on the instance’s duration-valued
parameters and on its elapsed durations. By fixing these
input duration values at the specified time precision, any
derived duration value will adopt the same precision level
even with no conscious effort on the part of modeler.

B.3 Time point implementation

Below is an outline of a C++ time point class, with com-
parison operators and const reference qualifiers omitted.

1 class time_point

2 {

3 public:

4 time_point ();

5

6 int64 sign() const;

7 scale precision () const;

8 int64 nscales () const;

9

10 int64 scale_digit(scale) const;

11

12 time_point& advance(duration);

13

14 time_point& operator +=( duration);

15 time_point& operator -=( duration);

16

17 time_point operator +( duration) const;

18 time_point operator -( duration) const;

19

20 duration operator -( time_point) const;

21 duration gap(time_point) const;

22

23 private:

24 int8 sign_;
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25 scale precision_;

26 vector <int16 > digits_;

27 };

The class’s behavior is very consistent with the math-
ematical operations described in Appendix A.3. Unlike
the duration data type, which involved rounding in nu-
merous operations, the rounding in the time point data
type is restricted to the 	 operation implemented by
the gap(time point) member function. The sign() mem-
ber function and associated member variable accommo-
date negative time point objects. Negative time points
add flexibility to the class, but greatly complicate its
implementation. The precision() and nscales() func-
tions provide, respectively, the smallest scale with a
nonzero digit and the total number of stored digits. The
scale digit(scale) function reports the base-1000 digit at
the indicated scale.

Unlike duration, the time point class lacks multiplica-
tion and division operations. Furthermore, its computa-
tions may require memory to be dynamically allocated.
These limitations reflect the fact that time point is in-
tended for simulator developers with expertise in soft-
ware engineering. Modelers are expected to use the more
convenient and efficient duration class, which may mean
accepting some degree of approximation.

B.4 Time sequence implementation

The time sequence class below is based on the data struc-
ture described in Appendix A.4. Algorithm 1 is imple-
mented within the append(time point) member function.
The listing excludes const reference qualifiers and binary
search operations.

1 class time_sequence

2 {

3 public:

4 class const_iterator;

5 using value_type =

6 pair <int64 ,time_point >;

7

8 time_sequence ();

9

10 bool empty() const;

11 int64 size() const;

12

13 void append(time_point);

14

15 const_iterator begin() const;

16 const_iterator end() const;

17

18 time_point front() const;

19 time_point back() const;

20 time_point operator []( int64) const;

21

22 vector <value_type > partitions () const;

23

24 private:

25 vector <value_type > partitions_;

26 vector <duration > offsets_;

27 };

Adhering to a recommended practice in C++, a cus-
tom iterator is used to provide access to the stored
time points and support traversal. The iterator, named
time sequence::const iterator, can be incremented, decre-
mented, or offset by an arbitrary integer. It enables
loops such as the one on line 11 below.

1 // Construct a time sequence.

2 auto ts = time_sequence ();

3

4 // Populate the time sequence.

5 auto tp = time_point ();

6 ts.append(tp += 5_us);

7 ts.append(tp += 72_fs);

8 ts.append(tp += 1_hr);

9

10 // Iterate through the time sequence.

11 for (const auto& entry : ts) {

12 // Obtain the current index.

13 auto i = entry.first;

14 // Obtain the current time point.

15 const auto& t = entry.second;

16 ...

17 }

Information stored in the iterator improves efficiency
as one traverses the time sequence from front (earliest
time point) to back (latest time point). Accessing the
time points out of order is less efficient, though still pos-
sible and convenient.

When recording simulation results, one must store not
only time points but also their associated event data such
as inputs, outputs, and state variables. The time sequence

class could be modified to retain this information. Yet
our intention is that event data be recorded in a comple-
mentary structure that uses the same time point indices
as the time sequence. This could be interpreted as a rela-
tional approach to storing simulation results, as opposed
to an object-oriented approach. Every time point in a
time sequence should be associated with not one event but
rather a set of events, since multiple events can occur at
the same point in simulated time.

B.5 Time queue implementation

The time queue class implements the data structure in
Appendix A.5, encapsulating Algorithms 3 though 5. Its
member variables include the current time ct , a vector
of planned phases queue , and a map events which as-
sociates a set of simultaneous events with each planned
phase.

1 class time_queue

2 {

3 public:

4 using event_set = set <int64 >;

5

6 time_queue ();

7

8 bool empty() const;

9 int64 size() const;

10 int64 time_count () const;

11
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12 time_point current_time () const;

13

14 time_point advance ();

15 time_point advance(duration dt);

16 time_point advance(time_point t);

17

18 event_set imminent_events () const;

19 duration imminent_duration () const;

20

21 void pop_events ();

22 void pop_event(int64 event);

23

24 void plan_event(int64 event ,

25 duration dt);

26

27 duration until(int64 event) const;

28 bool cancel_event(int64 event);

29

30 private:

31 time_point ct_;

32 vector <duration > queue_;

33 map <duration ,event_set > events_;

34 };

Let us briefly describe the member functions starting
from near the bottom. The plan event(int64, duration)

function schedules a future event using Algorithm 4 to
derive the planned phase. The phase is inserted into
queue using a binary search based on comparison oper-
ations involving Algorithms 3 and 5.

The until(int64) function provides the planned dura-
tion after which the specified event will occur, whereas
cancel event(int64) removes the specified event. Both
of these functions can be made efficient using an ad-
ditional private member variable not shown in the above
code, one that maps each event identifier to its associ-
ated planned phase and precision level.

The imminent events of a non-empty time queue in-
stance are those future events scheduled to occur first.
The imminent events() and imminent duration() functions
obtain these events and their associated planned dura-
tion. The pop event(int64) and pop events() functions may
be used to remove these events when it is time for them
to be processed.

Three advance(...) functions are provided to advance
the current time ct . The first, with no arguments, in-
creases ct up to the event time of the imminent events.
The second, with the dt argument, applies multiscale
time advancement. An error is produced if dt advances
ct beyond the imminent events. The third function ad-
vances the current time until it reaches the time point
expressed by the t argument. It can be implemented
by repeatedly invoking advance(t.gap(ct )) until ct and
t become equal.

We design the time queue primarily for use in a simu-
lator based on the DEVS formalism, which schedules at
most one future event for every model instance. This
means that the integer-valued event identifiers are ex-
actly the same as the model instance identifiers. We
focus specifically on Classic DEVS, for which it is a
common implementation practice to order simultaneous

events by the identifier of the model instance. The stan-
dard C++ set data structure sorts its elements by de-
fault, making it efficient to implement this simple tie-
breaking mechanism. However, alternative methods for
handling simultaneous events can be incorporated with
minimal change to the time queue class.

B.6 Time cache implementation

A simplified C++ time cache implementation is shown
below. Consistent with Appendix A.6, the class encap-
sulates an instance of time queue named tq .

1 class time_cache

2 {

3 public:

4 time_cache ();

5

6 time_point current_time () const;

7

8 time_point advance(duration dt);

9 time_point advance(time_point t);

10

11 void retain_event(int64 event ,

12 scale precision);

13

14 duration since(int64 event) const;

15 bool release_event(int64 event);

16

17 private:

18 time_queue tq_;

19 };

The two key functions are retain event(int64, scale),
which applies the 10005−1 offset and stores the resulting
imaginary event in tq , and since(int64), which calculates
an elapsed duration by subtracting from 10005− 1. The
release event(int64) preemptively cancels the tracking of
an event, which should only be necessary if a model in-
stance is terminated before a simulation ends.

The remaining functions pertain to the current time
of the simulation. The current time() function simply
returns tq .current time(). The advance(...) functions
must be invoked whenever the current time changes.
These functions first remove any imaginary events in tq

that have been surpassed, then advance time in tq .
The time cache class is motivated by the prevalence of

elapsed durations in DEVS-based simulations. Together,
the time queue and time cache classes provide a general
solution to event-scheduling in the presence of multiple
time scales.
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